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Along with the improvement of Chinese people’s living standard, the proportion of residential energy consumption in total energy
consumption is rapidly increasing in China year by year. Accurately forecasting the residential energy consumption is conducive
to making energy programming and supply plan for the administrative departments or energy companies. By improving the grey
action quantity of traditional grey model with an exponential time term, a novel power-driven grey model is proposed to forecast
energy consumption as reference data for decision makers.  e nonlinear parameter of power-driven grey action quantity is a
crucial factor to in�uence the prediction precision. To promote the prediction accuracy of the power-driven grey model, whale
optimization algorithm is adopted to seek for the optimal value of the nonlinear parameter. Two validations on real-world datasets
are conducted, and the results indicate that the power-driven grey model has signi�cant advantages on the aspect of prediction
performance compared with the other seven classical grey prediction methods. Finally, the power-driven grey model is applied in
forecasting the total residential energy and the thermal energy consumption of China.

1. Introduction

 e residential energy, which includes the energy consumed
by urban and rural residents and public facilities, accounts
for a large percentage of total energy and continues to ex-
pand in China [1]. Meeting people’s residential energy de-
mand is always an important part of the energy supply in
China.  erefore, it is signi�cantly crucial to predict the
energy consumption accurately for energy programming
and supply plan of governments or energy companies.
Numerous studies have been conducted to predict total
energy consumption or other various energy consumptions,
e.g., natural gas consumption [2], oil consumption [3],
electricity consumption [4], nuclear energy consumption
[5], wind energy and renewable energy consumption pre-
diction [6], and so on. For obtaining better prediction result,

lots of conventional statistical models and machine learning
models were adopted to predict energy consumption, such
as ridge regression [7], autoregressive integrated moving
average model (ARIMA) [8], support vector regression
(SVR) [9], and arti�cial neural network (ANN) [10]. Un-
fortunately, machine learning models often need enough
training samples to construct models, while the aforemen-
tioned statistical models require more available and reliable
historical data.  ere are still di£culties to solve the pre-
diction problems with poor information or small samples.
 erefore, the grey prediction method (GM) becomes one of
the inevitable choices to handle these problems.

 e grey prediction theory was initially put forward to
study the prediction problem with inadequate information
or small samples by Deng in 1980s [11]. Traditional GM(1,1)
model has exhibited excellent ability for homogeneous
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exponential datasets in the aspect of prediction. However, it
cannot always provide a satisfactory result for in-
homogeneous exponential sequence. For tackling the
challenge, many scholars have engaged in optimization of
the traditional grey prediction model. Wang et al. extended
the existing grey model by using the exponential pre-
processing method and applied it to forecast Beijing’s ter-
tiary industry [12]. Xu et al. optimized the initial value of
time response function to boost the stability of grey model
and predict China’s electricity consumption [13].Wang et al.
analyzed the general analytic solution of the grey model’s
whitening equation and presented an improved grey model
by optimizing the initial condition which consisted of the
first and last items of the accumulated generating sequence
[14]. Meanwhile, optimization of the background value is
another crucial aspect to boost the forecasting power of the
classical grey prediction methods. Wang et al. utilized the
finite integral of the accumulative generating sequence
within the interval [k − 1, k] as background value to estimate
the parameters of the grey model by the least-squares
method [15]. Integrating the optimization of background
value and the triangular whitening weight function, Ye et al.
established a modified Grey-Markov model to handle the
fluctuating sequences [16]. Zeng and Li modified the mul-
tivariate grey model based on dynamic background-value
coefficient whose optimum value was sought out by PSO
[17]. Chang et al. designed an adaptive grey prediction
model to deal with the non-equigap sequence by optimizing
background value coefficient [18]. +e hybrid optimization
is also an effective method to increase the grey model’s
prediction performance. Li et al. enhanced the accuracy and
application fields of the classical grey model by improving
the grey model with the joint optimization of the initial
condition and background values [19]. Besides, some
scholars made efforts to enhance the adaptation ability of the
grey model. Zeng et al. designed a grey predictive framework
with a series of various grey structures which can in-
telligently select the most suitable model to predict the
electricity consumption [20].With the sum of weighted first-
order accumulative generating values as an initial condition,
Ding designed a self-adapting grey model called NSGM(1,1)
to enhance the adaptation ability for various original se-
quences. Also, the tunable weighted parameters of
NSGM(1,1) are automatically sought out by using the ant
lion optimizer [21]. Zeng et al. optimized the structure
compatibility of a multivariable grey model with adding a
random term, a linear term, and a dependent variable lag
term [22]. Besides, the fractional-order accumulation is also
significantly valid for increasing the prediction capacity of
the grey model [23]. Ma et al. presented a fractional time
delayed grey model to boost the precision and applicability
of the traditional fractional grey model [24]. At the same
time, Ma et al. proposed an unbiased fractional discrete grey
model (FDGM) in which the order was intelligently sought
out by using the grey wolf optimizer to deal with the
multivariate time series [25]. By eliminating the in-
consistency between its grey difference equation for mod-
eling and discrete function for forecasting, Ma and Liu
designed an improved GMC(1,n) model to promote the

accuracy of the classical GM(1,n) with convolution integral
[26].+e optimization of the accumulated operator is also an
effective measure to enhance the ability of the grey pre-
diction model. Ma et al. presented a new fractional accu-
mulated operator and designed a comfortable grey
prediction model which obtained better accuracy than the
classical fractional grey model [27]. Meanwhile, the opti-
mization of the grey action quantity is also an important
method used to boost the prediction performance and ap-
plicability of the grey model. Shaikh et al. utilized the
GVM(1, 1) [28] and NGBM(1, 1) [29] models to handle the
prediction problem of China’s natural gas demand with the
characteristics of S-shaped data [30]. Li et al. proposed a full-
order time power grey model to increase the structure
adaptability of the grey model and adopted it to forecast the
production of clean energy [31]. +e grey action quantity
affects the prediction performance and the applicability of
the grey model. More details of the grey models with op-
timization of the grey action quantity is presented in Section
2. However, these improved grey models cannot solve all
prediction problems. It is indispensable to continue im-
proving the grey model and extending the application range
of the grey model.

+erefore, a novel grey model is proposed to predict the
residential energy consumption of China in this paper.+ere
are two aspects of contribution as follows: (1) A novel power-
driven grey model is proposed by optimizing the grey action
quantity of traditional GM(1,1) model with an exponential
term of time. +e nonlinear parameter of the exponential
term is determined by the whale optimization algorithm
(WOA) to promote prediction accuracy. (2)+e GM(1,1,eαt)
model is used to predict China’s total residential energy and
thermal energy consumption, in which the prediction
performance is significantly superior to the other seven
contrast grey models.

+e rest of the paper is organized as follows. Firstly, an
overview of the traditional GM(1,1) model and its extension
models is introduced in Section 2. +en, the power-driven
grey model is proposed by substituting an exponential time
grey action quantity for the constant grey input of traditional
GM(1,1) in Section 3. In Section 4, a nonlinear programming
problem with equality constraint is established to seek the
optimum value of the nonlinear parameter by using the
whale optimization algorithm. Meanwhile, the overall al-
gorithm flowchart of GM(1,1,eαt) is presented. In Section 5,
the validations of GM(1,1,eαt) is performed on two real-
world datasets. Compared with the other seven existing grey
prediction methods, the predicted results show that the
proposed model has the most excellent prediction accuracy.
In Section 6, the power-driven grey model is used to forecast
China’s total residential energy and residential thermal
energy consumption. At last, the conclusions are drawn in
Section 7.

2. GM(1,1) Model and Its Extension Models

+e grey prediction method is one of the most popular and
effective models to deal with time series prediction. It has
been widely employed in many application areas and has
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obtained remarkable achievement in prediction problems
with small samples. To boost the prediction accuracy of the
classical grey prediction model, scholars have conducted
numerous studies, such as improving the grey accumulation
generation, optimizing grey background value, optimizing
the initial condition, and so on. +is section presents a
survey of the classic grey prediction model and its extension
models with optimizing grey action quantity.

Definition 1. Let X(0) � (x(0)(1), x(0)(2), . . . , x(0)(n)) be
the raw sequence. +e first-order accumulated sequence
generated from the raw sequence is defined as

X
(1)

� x
(1)

(1), x
(1)

(2), . . . , x
(1)

(n)􏼐 􏼑, (1)

where x(1)(k) � 􏽐
k
i�1x

(0)(i).+e background value sequence
generated from consecutive neighbors of first-order accu-
mulated sequence is defined as

Z
(1)

� z
(1)

(2), z
(1)

(3), . . . , z
(1)

(n)􏼐 􏼑, (2)

where z(1)(k) � 0.5(x(1)(k) + x(1)(k − 1)).
+en, the definition of the classical grey model for

dealing with univariate time series prediction is presented as
follows. +e equation

x
(0)

(k) + az
(1)

(k) � b, (3)

is the definition equation of GM(1,1), in which a and b are
development coefficient and grey input of the grey model.

+e differential equation

dx(1)(t)

dt
+ ax

(1)
(t) � b, (4)

is the whitening equation of GM(1,1).
In order to perform a prediction task, the key issue is to

resolve the optimal value of linear parameters a and b. By
using the least-squares method, the optimal parameters 􏽢u �

[􏽢a, 􏽢b]T can be calculated as follows:

􏽢u � [􏽢a, 􏽢b]
T

� A
T
A􏼐 􏼑

− 1
A

T
Y, (5)

where

A �

− z(1)(2) 1

− z(1)(3) 1

⋮ ⋮

− z(1)(n) 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Y �

x(0)(2)

x(0)(3)

⋮

x(0)(n)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

Once the linear parameters of the grey model are esti-
mated, the time response function of the grey model can be
obtained by solving the whitening equation (4). By
substituting the initial condition into the solution of the
whitening equation (4), the discrete time response sequence
of the grey model is formulated as

􏽢x
(1)

(k) � x
(0)

(1) −
􏽢b

􏽢a
􏼠 􏼡e

− 􏽢a(k− 1)
+

􏽢b

􏽢a
. (7)

However, the sequence is not the final predicted result of
the grey model. By using inverse accumulated generating
operator, the restored value of the grey model is calculated as

􏽢x
(0)

(k) � 􏽢x
(1)

(k) − 􏽢x
(1)

(k − 1). (8)

+en, the sequence produced by the grey model is
represented as

􏽢x
(0)

(k) � x
(0)

(1) −
􏽢b

􏽢a
􏼠 􏼡 1 − e􏽢a)e

− 􏽢a(k− 1)
,􏼐 (9)

where k � 2, 3, . . . , n, and 􏽢x(0)(1) � x(0)(1).
By analyzing the above stored sequence (9), it can be

noticed that the GM(1,1) model has an ideal performance for
the univariate time series with homogeneous exponential
characteristics. Nevertheless, there are many time series data
with nonhomogeneous exponential characteristics. Many
improved grey models have been studied and designed to
enhance the prediction accuracy for the nonhomogeneous
exponential data sequence. One of the boosting strategies is
to optimize the grey action quantity. A series of grey models
with optimization of grey action quantity were proposed as
follows.

By replacing the grey input b of the original GM(1,1)
model with the term bk, the NGM model [32] can be ob-
tained with the following formula:

x
(0)

(k) + az
(1)

(k) � bk. (10)

By replacing the grey input b of the original GM(1,1)
model with the term bk + c, the SAIGM model [20] can be
obtained with the following formula:

x
(0)

(k) + az
(1)

(k) � bk + c. (11)

By replacing the grey input b of the whitening equation
of the original GM(1,1) model with the term b(x(1)(t))n, the
whitening equation of the NGBM model [29] can be ob-
tained as follow:

dx(1)(t)

dt
+ ax

(1)
(t) � b x

(1)
(t)􏼐 􏼑

n
. (12)

When n � 2, the NGBM model can be degenerated into
the GVM(1,1) [28] model.

By replacing the grey input b of the original GM(1,1)
model with the term 􏽐

h
i�1bik

i, the FOTP-GM(1,1,k) model
[31] can be obtained with the following equation:

x
(0)

(k) + az
(1)

(k) � 􏽘

h

i�1
bik

i
, h≥ 1. (13)

By replacing the grey input b of the whitening equation
of the original GM(1,1) model with the term btα + c,
GM(1,1,tα) is obtained with the whitening equation:

dx(1)(t)

dt
+ ax

(1)
(t) � bt

α
+ c. (14)
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By replacing the grey input b of the original GM(1,1)
model with the term 􏽐

N
j�2bjx

(1)
j (k), the GM(1,N) model

[33] is obtained with the following form:

x
(0)
1 (k) + az

(1)
1 (k) � 􏽘

N

j�2
bjx

(1)
j (k). (15)

+ese research results show that the performance and
accuracy of these grey models are significantly improved as
well as the application range is also expanded into more
fields by improving the grey action quality.

3. TheNewProposedPower-DrivenGreyModel

Obviously, the optimization of the grey action quantity is an
effective means to increase the performance and applica-
bility of the grey model from the previous section. +is
section proposes a novel power-driven grey model in which
a natural exponential function of time is considered as the
grey action quantity.

3.1. 3e Power-Driven Grey Model

Definition 2. Assume that X(0), X(1), Z(1) are defined as the
same in Definition 1. +e differential equation

dx(1)(t)

dt
+ ax

(1)
(t) � be

αt
+ c, (16)

is defined as the whitening equation of the power-driven
grey model (GM(1,1,eαt)). +e parameter a denotes the
development coefficient. +e term beαt + c denotes the
power-driven grey input in which the coefficient α is a
tunable parameter.

By integrating the both sides of whitening equation (16)
within [k − 1, k], the discrete formulation of the GM(1,1,eαt)
model can be represented as follows.

Definition 3. +e grey differential equation

x
(0)

(k) + az
(1)

(k) � b
eα − 1
α

􏼠 􏼡e
α(k− 1)

+ c, (17)

is called the discrete form of the GM(1,1,eαt) model.

3.2. Parameter Estimation of the Power-Driven Grey Model.
For the traditional GM(1,1) model, the parameters a and b
can be directly estimated by using the least-squares method
because they are linear parameters. From Definition 2, it can
be clearly noticed that the parameters a, b, and c of the
power-driven grey model are linear parameters while the
parameter α is a nonlinear parameter. It is difficult to es-
timate the nonlinear parameter by using the least-squares
method directly. A two-stage strategy is adopted to gain the
optimum parameters of the proposed model. In the first
stage, the equality equation between the linear parameters
and nonlinear parameter is obtained by using the least-
squares method under the hypothetical condition that the
nonlinear parameter α is given. +en, the optimal nonlinear

parameter α is determined by solving an established non-
linear programming problem with equality constraint by
using an intelligence algorithm (e.g., whale optimization
algorithm [34]). In the second stage, the linear parameters are
determined by the least-squares method after seeking out the
optimum value of the nonlinear parameter. +e process of
determining the nonlinear parameter is presented in Section
4, while the linear parameters are estimated as follows.

Assuming the nonlinear parameter α is given, the pa-
rameters 􏽢u � (􏽢a, 􏽢b, 􏽢c)T of the power-driven grey model can
be determined by employing the least-square method, and it
satisfies

􏽢u � (􏽢a, 􏽢b, 􏽢c)
T

� B
T
B􏼐 􏼑

− 1
B

T
Y, (18)

where

Y �

x(0)(2)

x(0)(3)

⋮

x(0)(v)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

− z(1)(2) βe2α 1

− z(1)(3) βe3α 1

⋮ ⋮ ⋮

− z(1)(v) βevα 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)

in which β � α− 1(eα − 1) and v denotes the number of
samples used for constructing model. +e detailed proof
process of the linear parameter estimation is omitted here
because it is similar to the classical GM(1,1) model.

3.3. 3e Time Response Function and Restored Response
Sequence. After the parameters of the proposed grey model
are determined, the time response and restored value se-
quence can be obtained as follows.

Theorem 1. 3e time response function of the power-driven
grey model is defined as

􏽢x
(1)

(k) � x
(0)

(1) −
􏽢b

􏽢a + α
e
α

−
􏽢c

􏽢a
􏼠 􏼡e

− 􏽢a(k− 1)
+

􏽢b

􏽢a + α
e
αk

+
􏽢c

􏽢a
.

(20)

+e restored response sequence of the power-driven grey
model can be obtained by

􏽢x
(0)

(k) � 1 − e􏽢a( 􏼁 x
(0)

(1) −
􏽢b

􏽢a + α
e
α

−
􏽢c

􏽢a
􏼠 􏼡e

− 􏽢a(k− 1)

+
􏽢b 1 − eα( )

􏽢a + α
e
αk

.

(21)

Proof. Assume that μ(t) is an arbitrary function and satisfies

μ′(t) � aμ(t). (22)

Multiply both sides of equation (16) by μ(t) and obtain
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μ(t)
dx(1)(t)

dt
+ μ(t)ax

(1)
(t) � μ(t) be

αt
+ c􏼐 􏼑. (23)

Equation (22) is substituted into equation (23) to get the
following formula:

μ(t)
dx(1)(t)

dt
+ μ′(t)x

(1)
(t) � μ(t) be

αt
+ c􏼐 􏼑. (24)

Rearrange equation (24) and obtain

μ(t)x
(1)

(t)􏼐 􏼑′ � μ(t) be
αt

+ c􏼐 􏼑. (25)

Integrate both sides of equation (25) and obtain

x
(1)

(t) �
􏽒 μ(t) beαt + c( 􏼁dt − C ​

μ(t)
. (26)

Solving equation (22), the solution is obtained as

μ(t) � ke
at

, (27)

where k is an arbitrary real number. Substitute equation (27)
into equation (26) and obtain

x
(1)

(t) � Ce
− at

+
b

a + α
e
αt

+
c

a
. (28)

Substituting the initial condition and the estimated
parameters calculated by (18) into equation (28), the time
response function is obtained as

􏽢x
(1)

(k) � x
(0)

(1) −
􏽢b

􏽢a + α
e
α

−
􏽢c

􏽢a
􏼠 􏼡e

− 􏽢a(k− 1)
+

􏽢b

􏽢a + α
e
αk

+
􏽢c

􏽢a
.

(29)

By using inverse accumulation generating operator, the
stored value can be calculated as follows:

􏽢x
(0)

(k) � 􏽢x
(1)

(k) − 􏽢x
(1)

(k − 1). (30)

+en, the stored value is obtained as

􏽢x
(0)

(k) � 1 − e
􏽢a

􏼒 􏼓 x
(0)

(1) −
􏽢b

􏽢a + α
e
α

−
􏽢c

􏽢a
􏼠 􏼡e

− 􏽢a(k− 1)

+
􏽢b 1 − eα( )

􏽢a + α
e
αk

.

(31)

+is completes the proof. □

According to Maclaurin’s formula, the expansion of the
term eαt can be obtained as

e
at

� 1 + αt +
(αt)2

2!
+

(αt)3

3!
+ · · · +

(αt)n

n!
+ Rn, (32)

where Rn is known as the error term. If some higher-order
term of equation (32) is ignored, the power-driven grey
model can be degenerated into other existing grey models. If
the higher-order terms other than first-order terms are
ignored, the term eat � 1 + αt can be obtained. +en, the
GM(1,1,eαt) model can be degenerated into the grey SAIGM
[20] with whitening equation (11). In a similar way, the
GM(1,1,eαt) model can be degenerated to a kind of FOTP-

GM(1,1,k) model [31] with special whitening equation (13)
in which the parameter bi � bαi/i!. When bα � 0, the
GM(1,1,eαt) model can be degenerated into the traditional
grey model with whitening equation (4).

4. Determining the Nonlinear Parameter of the
Power-Driven Grey Model with Whale
Optimization Algorithm

From the previous section, the linear parameters of the
proposed model are determined by using the least-squares
approach under the assumption that the nonlinear pa-
rameter is given. However, the nonlinear parameter cannot
be directly calculated by the ordinary least-squares method
because it is an exponential coefficient of grey action
quantity. In fact, the nonlinear parameter α plays an in-
dispensable role in promoting the prediction performance of
the power-driven grey model. In this section, an intelligent
nature-inspired optimization method called whale optimi-
zation algorithm is employed to seek for the optimal value of
nonlinear parameter α.

4.1. Constructing the Optimization Problem for the Power-
Driven Grey Model. Actually, an optimum value of non-
linear parameter α can make the power-driven grey model
obtain the best prediction performance because the pa-
rameter not only directly affects the grey action quantity but
also can control the development coefficient. +erefore, an
optimization problem with constraint is built to obtain the
optimum value of α, in which the objective function is to
minimize the fit error of the power-driven grey prediction
model. +e equality constraints of the optimization problem
are formulated in the previous modeling process. Mathe-
matically, the optimization problem for seeking out optimal
nonlinear parameter is formulated as follows:

min
α

1
n − v

􏽘

n

m�v+1

x(0)(m) − 􏽢x(0)(m)

x(0)(m)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%

s.t.

Y �

x(0)(2)

x(0)(3)

⋮

x(0)(v)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

− z(1)(2) βe2α 1

− z(1)(3) βe3α 1

⋮ ⋮ ⋮

− z(1)(v) βevα 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

􏽢x(1)(m) � x(0)(1) −
􏽢b

􏽢a + α
e
α

−
􏽢c

􏽢a
􏼠 􏼡e− 􏽢a(m− 1) +

􏽢b

􏽢a + α
e
αm

+
􏽢c

􏽢a
,

􏽢x(0)(m) � 􏽢x(1)(m) − 􏽢x(1)(m − 1), m � 2, 3, . . . , v, . . . , n,

􏽢u � (􏽢a, 􏽢b, 􏽢c)T � BTB( 􏼁
− 1

BTY.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(33)
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Input: +e raw data X(0), lower and upper bound of α.
Output: +e optimal value of the nonlinear parameter α.

(1) Initialize the maximum number of iterations T and the number of humpback whales;
(2) Initialize the locations P

⇀
of the humpback population;

(3) Compute the fitness of each humpback by equation (38);
(4) Determine the best candidate P

⇀∗
based on fitness of each whale agent;

(5) for k � 1; k<T; k � k + 1 do
(6) for each humpback whale do
(7) Update the parameters r, p, l, β;
(8) if ξ < 0.5then
(9) if |C

⇀
|< 1then

(10) Update the location of each humpback by equation (36);
(11) else
(12) Determine P

⇀
r by randomly choosing a whale;

(13) Update the location of each humpback by equation (37);
(14) end
(15) else
(16) Update the location of each humpback by equation (36);
(17) end
(18) Compute the fitness of each humpback by equation (38);
(19) end
(20) Update P

⇀∗
if a better solution exists;

(21) end
(22) return the optimum value P

⇀∗
;

ALGORITHM 1: Algorithm of WOA to search for the nonlinear parameter α of the power-driven grey model.

Start

Step 1: generate 1-AGO sequence from
raw data.

Step 2: generate the background value
sequence.

Step 3: determine the nonlinear parameter
of grey action quantity.

Step 4: estimate the linear parameters by
the least-squares method.

Step 5: compare and analyze the results
produced by models.

Step 6: forecast the future data and draw
conclusion.

End

Initialize the whale population and set the maximum number of iterations.
Set the lower and upper bounds of nonlinear parameter.

Calculate the fitness of each whale by equation (41) and determine the best candidate.

Update the parameters r, p, l, and b of WOA.

p < 0.5 |C| < 1

Update agents’ position
by equation (37)

Update agents’ position
by equation (37)

Calculate the fitness of each whale and update the optimal parameter if it exists.

Is stop criterion met?

Whale optimization algorithm

NoYes

Yes

Yes

No

No

Update agents’ position
by equation (40)

Figure 1: +e flowchart of the power-driven grey model.
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In this paper, a different strategy which is similar to nest
cross validation in machine learning [35] is utilized to seek
the optimal value of the coefficient α.. During the simulation
stage, the samples are partitioned into two subsets. +e first
set, including the first v samples (from 1 to v samples), is
used for establishing the equality constraint equation (19)
between the linear parameters and the nonlinear parameter.
+e second set, including the last n − v samples (from v + 1
to n samples), is utilized to compute the fitness value of the
established optimization problem.+e value of v satisfies v �

n − 2 in Sections 5 and 6. +e optimum value of nonlinear
parameter α is sought out by solving the optimization
problem equation (33). In the meanwhile, the linear pa-
rameters are also obtained when the optimal value α is
substituted into equation (19).+is strategy has been utilized
to search for the optimum order of the fractional grey
prediction model [25, 36].

4.2. Whale Optimization Algorithm. Motivated by the social
behavior of humpback group, an intelligent nature-based
optimization approach called whale optimization algorithm
(WOA) was originated by Mirijalili and Lewis in 2016 [34].
In recent years, WOA has been widely employed to settle the
optimization problems inmany fields such as image retrieval
[37], classification [38], bioinformatics [39], feature selection

Table 1: +e definition of the comparative grey models used.

No. Name Model Reference
1 GM(1,1) (dx(1)(t)/dt) + ax(1)(t) � b [11]
2 ARGM x(0)(k) � ax(0)(k − 1) + b [43]
3 DGM x(1)(k) � ax(1)(k − 1) + b [44]
4 NGM x(0)(k) + az(1)(k) � bk [32]
5 NIGM 􏽐

n
i�kx(0)(i) � a􏽐

n
i�kx(0)(i − 1) + (n − k + 1)b [43]

6 FGM(1,1) (dx(r)(t)/dt) + ax(r)(t) � b [45]
7 SAIGM x(0)(k) + az(1)(k) � bk + c [20]

Table 2: +e definition of performance metrics used.

No. Name Formula Reference
1 RMSE ((1/v)􏽐

v
m�1(x(0)(m) − 􏽢x(0)(m))2)0.5 [24]

2 MAE (1/v)􏽐
v
m�1|x

(0)(m) − 􏽢x(0)(m)| [24]
3 NRMSE (1/x)

��������������������������

(1/v)􏽐
v
m�1(x(0)(m) − 􏽢x(0)(m))2

􏽱

× 100 [24]
4 MAPE (1/v)􏽐

v
m�1(|x(0)(m) − 􏽢x(0)(m)|)(|x(0)(m)|)− 1 × 100 [24]

5 RMSPE ((1/v)􏽐
v
m�1((x(0)(m) − 􏽢x(0)(m))(x(0)(m))− 1)2)0.5 × 100 [24]

6 MSE 1/v􏽐
v
m�1(x(0)(m) − 􏽢x(0)(m))2 [24]

7 IA 1 − 􏽐
v
m�1(x(0)(m) − 􏽢x(0)(m))2(􏽐

v
m�1(|x(0)(m) − x| + |􏽢x(0)(m) − x|)2)− 1 [5]

8 U1 (􏽐
v
m�1(x(0)(m) − 􏽢x(0)(m))2)0.5((􏽐

v
m�1x

(0)(m)2)0.5 + (􏽐
v
m�1􏽢x(0)(m)2)0.5)− 1 [46]

9 U2 (􏽐
v
m�1(x(0)(m) − 􏽢x(0)(m))2)0.5(􏽐

v
m�1x

(0)(m)2)− 0.5 [46]

Table 3: Lewis’ criterion for model evaluation.

MAPE (%) Prediction performance
< 10 Excellent
10 − 20 Good
20 − 50 Reasonable
> 50 Incorrect

Table 4: +e original data of China’s natural gas consumption
(NGC) (2005–2015).

Year NGC
2005 467.63
2006 561.41
2007 705.23
2008 812.94
2009 895.2
2010 1069.41
2011 1305.3
2012 1463
2013 1705.37
2014 1868.94
2015 1931.75
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Figure 2: Convergence curve of WOA in Example A.
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[40], image processing [41], and so on. Meanwhile, it is also
effective to solve the optimization problems like training
multilayer perceptron neural network which involves a
complex nonlinear optimization problem [42] and is more
complicated than problem (33). +is paper adopts the WOA
algorithm to solve the nonlinear optimization problem (33).
+e main idea and model of WOA are mathematically
described as follows.

+e main idea of WOA is to imitate the predation be-
haviors of humpback group, for example, bubble-net feeding
for catching fish. When the humpback whales catch fish, they
usually encircle the fish school whose position is considered as
the current best candidate target. +en, these whales update
their positions based on the candidate target. Mathematically,
the encircling behavior is represented as follows:

D
⇀

� 2r
⇀

· P
⇀∗

(i) − P
⇀

(i)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌,

C
⇀

� 2f(i) · r
⇀

− f(i),

f(i) � 2 −
2i

T
,

P
⇀

(i + 1) � P
⇀∗

(i) − C
⇀

· D
⇀

,

(34)

where P
⇀

(i) denotes the current position of the humpback
whale, P

⇀∗
(i) denotes the best current position of the humpback

whale, the vector r
⇀ is randomly generated in the interval

[0, 1], and T denotes the maximum number of iterations.
Furthermore, humpback whales move in spirals when
they catch the prey. To simulate the helix-shaped
movement, the spiral updating position is represented as
follows:

P
⇀

(i + 1) � P
⇀∗

(i) − P
⇀

(i)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 · e
βl

· cos(2πl) + P
⇀∗

(i), (35)

where the coefficient l is a stochastic number in the interval
[− 1, 1] and β is an arbitrary constant which determines the
shape of the spiral movement. However, encircling and spiral
moving behaviors happen simultaneously in the real world. For
keeping it simple in this model, the entire predationmovement
of humpbacks is mathematically represented as follows:

P
⇀

(i + 1) �
P
⇀∗

(i) − (2f(i) · r
⇀

− f(i)) · D
⇀

, if ξ < 0.5(a),

P
⇀∗

(i) − P
⇀

(i)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 · eβl · cos(2πl) + P
⇀∗

(i), if ξ ≥ 0.5(b),

⎧⎪⎪⎨

⎪⎪⎩

(36)

where ξ is a probability to choose a movement strategy from
encircling and spiral moving behaviors. When the norm of C

⇀

is greater than 1, the position of all whales is updated based on
the position of a whale randomly selected, not on optimal
ones.Mathematically, themodel can be formulated as follows:

P
⇀

(i + 1) � P
⇀

r(i) − C
⇀

· 2r
⇀

· P
⇀

r(i) − P
⇀

(i)

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌, (37)

where P
⇀

r is the position of a whale randomly chosen from
humpback group. Based on the principle of humpback’s
predation behavior, it is iterative to update the position of
each whale until the stop criteria are met.

4.3. Implementation of WOA for Searching the Optimal
Nonlinear Parameter. In the nonlinear programming
problem (33), the main purpose is to find out the optimum
value of the nonlinear parameter to obtain the highest per-
formance of the proposed greymodel. From section 4.2, it can
be noticed that the original WOA is initially designed for
unconstrained optimization and cannot directly solve the
optimization problem with constraint. +erefore, the original
WOA needs to be revised based on equation (33). Primarily,
the fitness function needs to be established to calculate the

Table 6: Evaluation result of different grey models in Example A.

Fitting GM(1,1) ARGM DGM NGM NIGM FGM(1,1) SAIGM GM(1,1,eαt)
RMSE 23.86274134 27.06135354 23.66839461 118.1206638 24.48123827 24.4715338 23.55366157 28.84466814
MAE 20.25637699 19.68692977 20.89112313 88.25197924 19.59112421 18.18583986 20.50145901 20.47248493
NRMSE 0.007664991 0.024109321 0.00130884 0.262191084 3.09E − 16 0.009028807 6.38E − 05 0.036768004
MAPE 2.28258768 2.120482298 2.336063456 11.47265586 2.156267271 1.934316772 2.275679299 2.351034331
RMSPE 2.668940276 2.90890819 2.674700195 17.69775476 2.656105278 2.605146741 2.617187635 3.280388261
MSE 569.4304242 732.3168555 560.1929035 13952.49123 599.3310274 598.8559665 554.7749735 832.01488
IA 0.998657193 0.998291523 0.998685903 0.969110255 0.998594898 0.998594002 0.998699542 0.998042174
U1 0.01235891 0.013937773 0.012237389 0.063448569 0.012659895 0.012673831 0.012179981 0.014834273
U2 0.024676152 0.027983796 0.024475181 0.122147051 0.025315732 0.025305697 0.024356537 0.029827898
Prediction GM(1,1) ARGM DGM NGM NIGM FGM(1,1) SAIGM GM(1,1,eαt)
RMSE 252.8476943 141.1491367 260.5294979 275.1057498 170.7912875 189.0706106 236.7945303 83.450789
MAE 190.0408036 102.9062759 198.9204499 274.0837795 124.4124534 137.7478703 176.7256754 82.8804665
NRMSE 0.179344392 0.08089408 0.187724249 0.258657024 0.106690266 0.120734047 0.166778703 0.07821556
MAPE 9.954008505 5.411556534 10.4350859 14.92924272 6.519477311 7.211856848 9.251358159 4.50171212
RMSPE 13.13711368 7.326292761 13.54158261 14.96064621 8.861865967 9.811145772 12.30065852 4.5142693
MSE 63931.95652 19923.07878 67875.61925 75683.17359 29169.6639 35747.69578 56071.64958 6964.03418
IA 0.593522143 0.786941885 0.580405823 0.462920793 0.731260314 0.699839537 0.616307649 0.83617379
U1 0.06517862 0.037446493 0.067003457 0.080883402 0.044965721 0.049568808 0.061267078 0.02322958
U2 0.137579314 0.076801972 0.141759132 0.149690352 0.092930838 0.102876971 0.128844478 0.04540719
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Figure 3: Comparison of the true value and the produced value by different grey models in Example A.

Table 7: +e raw sequence of China’s total energy consumption
(TEC) (2008–2018).

Year TEC
2008 320611
2009 336126
2010 360648
2011 387043
2012 402138
2013 416913
2014 425806
2015 429905
2016 435819
2017 448529.1
2018 464000
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Figure 4: Convergence curve of WOA in Example B.
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fitness of each whale agent. According to equation (33), the
fitness function can be represented as follows:

fitness �
1

n − v
􏽘

n

m�v+1

x(0)(m) − 􏽢x(0)(m)

x(0)(md)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
× 100%. (38)

+e revised WOA is presented in detail in Algorithm 1.

4.4. Modeling Procedure of the Power-Driven Grey Model.
Based on the modeling process of the power-driven grey
model and WOA for seeking out the optimal nonlinear
parameter, the overall computational steps of GM(1,1,eαt)
with WOA is depicted in the flowchart shown in Figure 1.
In the proposed model, the critical issue is to search
optimal nonlinear parameter α and estimate the linear
parameters to construct the model for achieving a better
prediction performance. Firstly, the equality equation of
the optimization problem is formulated under the as-
sumption that the nonlinear parameter is given. +en, the
optimal nonlinear parameter is sought out through
solving the optimization problem by nature-inspired
optimization algorithm WOA, and the estimated linear
parameters are calculated by the least-squares method.
Finally, the power-driven grey model with optimal pa-
rameters is used to forecast the future value in case study.

5. Validation of the Power-Driven Grey Model

In this section, the validations are performed to examine the
forecasting superiority of the proposed GM(1,1,eαt) model
through two real-world examples.

5.1. Contrast Grey Models and Performance Criteria. To il-
lustrate the advantages of the power-driven grey model with
WOA in the aspect of prediction performance, the nu-
merical validation study is conducted on two real-world data

sequences. A series of classic existing grey models listed in
Table 1 are used to compare with the power-driven grey
model. +e power-driven grey model and the contrastive
grey models are all realized byMATLAB.+en, all validation
experiments and case studies are performed on the MAT-
LAB platform 2019a.

Nine evaluation criteria tabulated in Table 2 are adopted
to evaluate the prediction ability of the aforementioned grey
prediction models. Meanwhile, Lewis’ criteria [47]shown in
Table 3 are also adopted to illustrate the prediction power of
grey models.

For seeking out the optimal nonlinear parameter of the
proposed model, the necessary parameters of WOA are set
to the same values in validation experiments and applica-
tions as follows. +e population size of the humpbacks is set
to 30. Maximum iteration is set to 200. +e minimum value
and maximum value of the nonlinear parameter are set to
− 10 and 10, respectively.

5.2. Example A: Predicting the Natural Gas Consumption of
China. In this section, the validation experiment is to
study and analyze China’s natural gas consumption
(NGC). +e original sequence of the natural gas con-
sumption during 2005–2015 is listed in Table 4, which was
collected from China’s National Bureau of Statistics. To
construct a power-driven grey model and validate its
superiority, the dataset is partitioned into two sub-
datasets, including training set and test set. +e test set,
including the natural gas consumption in the last 3 years,
is employed to check the prediction performance of grey
models. +e training set, including the natural gas con-
sumption from 2005 to 2012, is utilized to build models of
the eight grey models.

For achieving better prediction accuracy, the WOA
method is used to seek the optimum value of the proposed
model’s nonlinear parameter. Figure 2 shows the

Table 9: Evaluation result of different grey models in Example B.

Fitting GM(1,1) ARGM DGM NGM NIGM FGM(1,1) SAIGM GM(1,1,eαt)
RMSE 8410.121727 4906.499126 8410.286218 51928.17151 5158.480682 1367.489689 1660.996872 18561.19627
MAE 6926.686251 4221.269336 6927.244243 27186.02944 3881.517201 1016.979092 1384.772743 14753.88106
NRMSE 1.79E − 05 0.006017121 0.000384048 0.199776443 5.88E − 16 0.003063485 1.47E − 04 0.108418844
MAPE 1.787683435 1.104264936 1.788930619 7.705950265 1.099328531 0.256381015 0.358317783 3.9624714
RMSPE 2.197483638 1.313602202 2.200080172 15.3330731 1.509443367 0.34767392 0.437458618 5.139941157
MSE 70730147.47 24073733.67 70732914.28 2696534997 26609922.95 1870028.049 2758910.609 344518006.9
IA 0.987856201 0.995717785 0.987850143 0.775004734 0.995552338 0.999687628 0.99954467 0.95091572
U1 0.010871273 0.00635032 0.010870745 0.069089208 0.006667366 0.001768468 0.002146699 0.024435002
U2 0.021739295 0.012682793 0.02173972 0.134228952 0.013334139 0.003534819 0.004293505 0.047978772
Prediction GM(1,1) ARGM DGM NGM NIGM FGM(1,1) SAIGM GM(1,1,eαt)
RMSE 29188.27919 7225.052506 29121.06984 34223.58019 13657.87156 17245.03553 11989.99302 6088.66592
MAE 28931.23345 5843.326918 28866.80301 32283.57548 10658.80219 13665.04068 9353.617817 4849.76408
NRMSE 0.111492795 0.013953907 0.111244499 0.124411774 0.041076011 0.052661204 0.03217455 0.00913139
MAPE 6.419544814 1.280694484 6.405345597 7.122972999 2.324557306 2.982593219 2.04044481 1.06500067
RMSPE 6.457863097 1.566430259 6.443180338 7.496943508 2.960127649 3.739148714 2.595513162 1.32349051
MSE 851955642.2 52201383.72 848036708.6 1171253441 186537455.5 297391250.5 143759932.6 37071852.7
IA 0.521410498 0.823769072 0.52205901 0.349931321 0.596904989 0.495386509 0.615535006 0.88095424
U1 0.031445311 0.008068562 0.031375108 0.039484363 0.015373596 0.019477492 0.013461203 0.00678995
U2 0.064920974 0.016070062 0.064771486 0.07612056 0.030378027 0.038356646 0.026668308 0.0135425
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convergence curve. It can be noticed that the fitness function
converges to a constant after dozens of iterations. +en, the
linear parameters a, b, and c and nonlinear parameter α are
obtained and are equal to − 0.175843, − 4.869699, 463.613598,
and 0.469429, respectively.+e order of FGM(1,1) is equal to
0.862399 obtained by the whale optimization algorithm. All
established models are used to predict the consumption
from 2013 to 2015. For each greymodel, the produced results
and their absolute percentage error (APE) [12] are tabulated
in Table 5. +e evaluation values of the eight models are
given in Table 6. Based on Lewis’ criteria, GM(1,1,eαt),
GM(1,1), ARGM, SAIGM, NIGM, and FGM models exhibit
excellent prediction performance while the other grey
models only show good prediction performance.
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Figure 5: Comparison of the true value and the produced value by different grey models in Example B.

Table 10: Raw sequence of China’s total residential energy con-
sumption (TREC) (2005–2015).

Year TREC
2005 27573
2006 27765
2007 30814
2008 31898
2009 33843
2010 36470
2011 39584
2012 42306
2013 45531
2014 47212
2015 50099
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Furthermore, the GM(1,1,eαt) model obtains the lowest
MAPE of prediction. From Figure 3, it can be noticed that
the results produced by GM(1,1,eαt) are more approximate
to real values than those of the other seven contrast models.
Overall, the proposed model can more accurately predict
natural gas consumption, though its fitted performance is
not better than the other comparative models.

5.3. Example B: Predicting the Total Energy Consumption of
China. In this example, China’s total energy consumption
from 2008 to 2018 is employed to examine the accuracy of
the grey prediction models. +e raw sequence is listed in
Table 7, which was collected from China’s National Bureau
of Statistics. To construct models and validate the prediction
performance, the raw dataset is broken into two groups,
including training set and test set. +e training set, including
the consumption from 2008 to 2015, is used to build models
of the proposed model and other contrast grey models. +e
test set containing the rest digits is utilized to test the
prediction accuracy of all models.

During the stage of constructing the new proposedmodel,
the WOA optimizer is utilized to seek the optimum value of
power-driven grey model’s nonlinear parameter. From Fig-
ure 4, which shows convergence curve of WOA, it can be
noticed that the fitness function converges to a constant
rapidly after dozens of iterations. +en, the linear parameters
a, b, and c and nonlinear parameter α are obtained and are
equal to − 0.003666, − 224002.105686, 458089.69852, and
− 0.235980, respectively. +e order of FGM(1,1) is equal to
0.209972 obtained by the whale optimization algorithm. All
established models are employed to forecast the energy
consumption from 2016 to 2018 in China. For each grey
model, the raw data, fitted data, predicted data, and their
absolute percentage error (APE) are tabulated in Table 8. +e
evaluation results of the eight models are given in Table 9.
Based on Lewis’ criteria, the GM(1,1,eαt) model shows an
excellent forecasting ability. Although other grey models also
exhibit excellent prediction performances, the proposed
model has the lowest value ofMAPE. It can be noticed that the

forecasted values of the GM(1,1,eαt) model are more ap-
proximate to the actual values than those of the other seven
comparative grey models in Figure 5. Overall, the power-
driven grey model has the highest prediction performance of
the total energy consumption though it is not the best one for
fitted performance compared with the other contrast grey
models.

6. Applications

Residential energy consumption refers to the energy con-
sumption of urban residents, rural residents, and public
facilities. +e residential energy consumption has been the
second largest part of total energy consumption in China
[48]. Effective forecasting of the residential energy con-
sumption plays an indispensable role in programming and
planning of energy for governments and companies. So, the
research studies of forecasting the total residential energy
and the residential thermal energy consumption are, re-
spectively, conducted in this section.

6.1. Case 1: Predicting the Total Residential Energy Con-
sumption of China. Original data on total residential energy
consumption (2005–2015) were collected from China’s
National Bureau of Statistics and are tabulated in Table 10.
+e original data are partitioned into two groups, including
training set and test set. +e training set, including annual
total residential energy consumption between 2005 and
2012, is employed to establish models of the proposed and
the other seven contrast grey models. +e test set, including
the total residential energy consumption in the last three
years, is utilized to verify the prediction performance of
these grey models.

To get a better prediction performance of the power-
driven grey model, it is essential to seek out the optimal
parameters of the model. WOA algorithm is employed to
seek for the optimal parameter of the proposed model.
Furthermore, the linear parameter is estimated by using the
least-squares method once the nonlinear parameter is
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Figure 6: Convergence curve of WOA in Case 1.
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determined. +e convergence curve of WOA is shown in
Figure 6. Obviously, it can be noticed that the fitness
function converges to a constant after dozens of iterations
from the convergence curve. According to the computa-
tional steps of the power-driven grey model, the linear
parameters a, b, and c and nonlinear parameter α are equal
to − 0.085448, − 1868.619677, 27446.346885, and 0.171344,
respectively. +e order of FGM(1,1) obtained by the WOA
optimizer is equal to 1.047609. By using these established
grey models, the fitted and predicted results are produced
and are given in Table 11. +e evaluation results of the 8
grey models are tabulated in Table 12. Obviously, the
prediction performance of the power-driven grey method is
much better than those of other seven contrast grey pre-
diction methods; though the fit ability is not the best, it is
not the worst. +e results produced by each model are also
shown in Figure 7 in which the horizontal axis denotes the raw
values and the vertical axis denotes the simulated or predicted
values. It can be found that the values produced by the
GM(1,1,eαt) model are almost equal to the real consumption.
Meanwhile, the correlation coefficient between the raw values
and the produced values of the proposed model is also the
highest among the eight prediction methods. Above all, the
performance of the power-driven grey model is the best for
forecasting the total residential consumption compared with
the other seven grey prediction methods.

6.2. Case 2: Predicting the Residential 3ermal Energy
Consumption. In this case study, the main aim is to
forecast China’s residential thermal consumption, which
is considered as a raw sequence. +e raw data listed in
Table 13 were collected from China’s National Bureau of

Statistics from 2005 to 2016. +e first seven digits are used
to build models of the power-driven grey model and the
other seven comparative grey models, respectively. +e
rest of the digits of raw data are utilized to validate the
predicted values.

+e results produced by these established grey prediction
methods are tabulated in Table 14. +e comparisons of
various grey prediction methods are plotted in Figure 8, in
which the horizontal axis denotes the original value and the
vertical axis represents the generated values. From the re-
gression lines in Figure 8, it can be found that the simulated
and forecasted consumptions of the power-driven grey
prediction method are very close to the actual consumption
while the other seven grey prediction methods are worse
than the proposed method. Meanwhile, the correlation
coefficient between the raw consumptions and the generated
consumptions of the proposed model is the highest among
the eight grey prediction methods. +e fitted and predicted
metrics of these models are listed in Table 15. It can be clearly
noticed that the prediction accuracy of the proposed pre-
diction model is the best; though the fitting accuracy is not
the best, it is not the worst. +e convergence curve of WOA
during the stage of building power-driven grey model is
plotted in Figure 9. +e fitness value rapidly stabilizes to a
constant after a few iterations. It shows that the WOA
method is effective to search for the optimum value of
nonlinear parameter. According to the calculation pro-
cedures of the power-driven grey model, the linear pa-
rameters a, b, and c and nonlinear parameter α are equal to
− 0.015782, 35273.868015, 13840.161440, and 0.057975, re-
spectively, in this case.+e order of FGM(1,1), which is equal
to − 0.071090, is also calculated by the WOA optimizer. To
sum up, the power-driven grey prediction method has better

Table 12: Evaluation result of different grey models for fitting and forecasting China’s total residential energy consumption in Case 1.

Fitting GM(1,1) ARGM DGM NGM NIGM FGM(1,1) SAIGM GM(1,1,eαt)
RMSE 390.9308897 592.0396847 390.5257193 4998.407423 433.8786898 393.6339653 366.3717398 729.3183711
MAE 304.3361034 454.5790022 305.3384416 3115.451246 359.0785841 264.2156166 266.0438679 555.9520645
NRMSE 0.001442512 0.034214153 0.000188067 0.215925463 3.43E − 16 0.001570568 3.22E − 05 0.04351679
MAPE 0.917567213 1.41907916 0.923604391 10.00319848 1.17303263 0.838592869 0.833461064 1.695028338
RMSPE 1.219447364 1.958309635 1.219282349 17.31812039 1.471344436 1.287221758 1.186116654 2.227857299
MSE 152826.9605 350510.9882 152510.3374 24984076.77 188250.7174 154947.6986 134228.2517 531905.2864
IA 0.998469768 0.996464675 0.998474462 0.832432082 0.998113113 0.99844636 0.998656649 0.994674042
U1 0.005725206 0.008618064 0.005717969 0.07547321 0.006352639 0.005765005 0.005364149 0.010598626
U2 0.011447175 0.01733601 0.011435311 0.146362557 0.012704766 0.011526326 0.010728038 0.021355782
Prediction GM(1,1) ARGM DGM NGM NIGM FGM(1,1) SAIGM GM(1,1,eαt)
RMSE 1129.146983 3095.192957 1147.235089 8999.707111 2574.222417 1881.723156 2346.09186 547.909444
MAE 1027.709741 2664.610899 1037.636147 8817.91821 2104.938825 1507.948278 1922.28879 448.704651
NRMSE 0.02676036 0.096930345 0.027692398 0.320768731 0.076571197 0.054778092 0.069926951 0.0163225
MAPE 2.123843293 5.478528089 2.143125482 18.4001908 4.309109234 3.083818646 3.936570679 0.94784892
RMSPE 2.307063232 6.299170718 2.343113335 18.64536826 5.227933254 3.828372361 4.768440944 1.16691584
MSE 1274972.909 9580219.441 1316148.349 80994728.08 6626621.053 3540882.034 5504147.015 300204.759
IA 0.941388626 0.738632316 0.939683635 0.267264603 0.797293581 0.866620632 0.819041097 0.9797724
U1 0.011752671 0.031568432 0.011937749 0.104105989 0.026407079 0.019427025 0.024114228 0.00577616
U2 0.02369601 0.064954984 0.024075603 0.188865715 0.05402202 0.039489395 0.049234526 0.0114983
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accuracy for forecasting the residential thermal energy
consumption than the other contrast grey prediction
models.

7. Conclusions

A novel power-driven grey prediction method called
GM(1,1,eαt) is proposed to forecast the total residential energy
consumption and the residential thermal energy consumption
of China in this paper. +e grey input of GM(1,1,eαt) is an
exponential term which is different from the grey action
quantity of the traditional grey model. It plays an imperative
role in raising the prediction performance of GM(1,1,eαt). +e
optimal value of nonlinear parameter α is sought out by using
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Figure 7: Comparison of the true value and the produced value by different grey models in Case 1.

Table 13: Raw sequence of China’s residential thermal energy
consumption (R+EC) (2005–2016).

Year R+EC
2005 52044
2006 56948
2007 57689
2008 62765
2009 67000
2010 67410
2011 70044
2012 77608
2013 81472
2014 86482
2015 93841
2016 98623
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the WOA algorithm. Compared with seven classical grey
prediction methods such as ARGM, DGM, NGM, NIGM,
FGM(1,1), GM(1,1), and SAIGM, the proposed grey model
obtains a more superior prediction accuracy in validation ex-
periments and case studies. From their fitted and predicted
results, it can be clearly noticed that the GM(1,1,eαt) model
reaches the lowest forecast errors though the fit errors are not
the lowest.+emain reason for taking higher fitting error is that
the strategy similar to cross validation is chosen to build the
GM(1,1,eαt) model. In fact, the strategy can overcome the
overfitting phenomenon of the prediction problem. According
to Lewis’ criterion of accuracy evaluation, the fit abilities of the

proposed greymodel are still excellent in all validations and case
studies because the MAPEs of fitting are less than 10%. In
summary, three conclusions are drawn as follows. Firstly, the
improvement of grey action quantity with an exponential term
of time is one of the effectivemethods to improve the prediction
accuracy of the grey predictionmethod. Secondly, the nonlinear
parameter of exponential grey action quantity plays a significant
role in forecasting future data accurately. Moreover, the heu-
ristic optimization algorithmWOA can be used to seek out the
optimal value of the nonlinear parameter effectively.+irdly, the
strategy similar to cross validation can be used to conquer the
overfitting problem in prediction task.
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Figure 8: Comparison of the true value and the produced value by different grey models in Case 2.
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As future work, more studies and applications about the
strategy of determining the nonlinear parameters in the grey
model should be carried out to overcome the overfitting problem
in prediction task. Besides, the power-driven greymodel can also
be employed to solve more problems such as solving the in-
dustrial, rural, and urban energy supply and demand prediction
problems. At the same time, it is worth studying to extend the
power-driven grey model to other more prediction applications.
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