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Fractional order systems have a wider range of applications. Hidden attractors are a peculiar phenomenon in nonlinear systems.
In this paper, we construct a fractional-order chaotic system with hidden attractors based on the Sprott C system. According to
the Adomain decomposition method, we numerically simulate from several algorithms and study the dynamic characteristics of
the system through bifurcation diagram, phase diagram, spectral entropy, and C0 complexity. The results of spectral entropy and
C0 complexity simulations show that the system is highly complex. In order to apply such research results to engineering practice,
for such fractional-order chaotic systems with hidden attractors, we design a controller to synchronize according to the finite-time
stability theory. The simulation results show that the synchronization time is short and the robustness is stable. This paper lays the
foundation for the study of fractional order systems with hidden attractors.

1. Introduction

Since Lorenz proposed the first chaotic system [1] in 1963,
many chaotic systems [2–6] have been proposed successively.
Nonlinear systems have also been used in many fields
such as image encryption, secure communication, and UAV
navigation.

Chaotic attractors include self-excited attractors and
hidden attractors. The self-excited attractor is mainly caused
by the unstable equilibrium point, while the hidden attractor
is mainly caused by the existence of infinite equilibrium
points and disjoint with the unstable equilibrium point. In
the last half century people usedRouth-Hurwitz criterion and
Shilnikov theorem to determine the stability of equilibrium
point and then determine whether the system has attractors
or chaos. For the hidden attractor, the stable equilibrium
point does not mean that the system is stable, which means
that the previous judgment method cannot complete the
judgment work. Since Leonov and kuznetsov [7] discovered
the first Chua hidden attractor, many achievements [8–11]
have been made. At present, the researches on hidden attrac-
tors are mostly of integer order and few of fractional order.

With the in-depth research, people found the applicable
range of the fractional order system is bigger than integer

order more [12], especially secure communication. Due to
the fact that difficulty of the fractional order synchronization
is higher than the integer order system, for the fractional
order synchronous research started later than integer order.
In 2003, Li Chunguang [13] realized the synchronization of
fractional chaos system for the first time. After that, many
synchronization methods [14, 15] of fractional-order chaotic
systems have been proposed.

In this paper we combine the two hotspots of the
fractional system and the hidden attractor. We construct
a new chaotic system with hidden attractors based on
Sprott C system by adding tiny perturbations. The spectral
entropy and C0 complexity are the newest chaotic system
characterization indicators, and we use these indicators to
analyze the complex characteristics of new system. Then we
realize chaotic synchronization on the basis of fractional
finite time stability theory. These properties have significant
application value to the area of secure communication and
image encryption.

2. Dynamic Analysis

2.1. Fractional Differential Equation. Since fractional differ-
ential equations were proposed, many differential definitions
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have been proposed [16]. There are Grunwald-Letnikov (G-
L) definition, Riemann-Liouville (R-L) definition, Caputo
definition, etc., the most commonly used being G-L and R-L
definition. Caputo definition is suitable for describing initial
value problems of differential equations. In this paper, the
definition of Caputo fractional-order differential equation is
used to solve the chaos analysis of Sprott C system.

The expression of derivative of Caputo type is as follows:

𝐶
𝑎𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫𝑡𝑎 𝑓(𝑛) (𝜏) 𝑑𝜏(𝑡 − 𝜏)𝛼−𝑛+1 (1)

C indicates that this is defined as the Caputo-type frac-
tional order definition and n − 1 < 𝛼 < n, q is the order
of differential operator, and Γ(∙) is Gamma function. Caputo
differentiation involves the following properties.

Theorem 1 (see [16]).

𝐶
𝑎𝐷𝑞𝑡𝑥𝑢 = Γ (𝑢 + 1)Γ (𝑢 + 1 − 𝑞)𝑥𝑢−𝑞𝐶𝑎𝐷𝑞𝑡𝑥 (2)

Common differential equations can be described as follows:

𝐶
𝑎𝐷𝑞𝑡𝑥 (𝑡) = 𝐴𝑥 (𝑡) (3)

The general solution of the above differential equation is

x (t) = x (0)E𝑞 (𝐴𝑡𝑞) (4)

In the above formula, Mittag-Leffter function is

E𝑞 (𝑥) = ∞∑
𝑖=0

𝑥𝑖Γ (𝑞𝑖 + 1) (5)

2.2. System Model. The Sprott C system was discovered by J.
C. Sprott [17] through computer exhaustion. It consists of five
elements, two of which are one of the simplest nonlinear sys-
tems and are easier to implement in an application.The Sprott
C system has two equilibrium points and is symmetrical, with
a pair of conjugate virtual roots at the equilibrium point. By
adding a small perturbation term, the pure virtual root is
transformed into a pair of conjugate eigenvalues with nega-
tive real parts and does not affect its chaotic characteristics.
The Sprott C system appears chaotic and the corresponding
feature data is stable after the above transformation, which
is the hidden attractor. Liu [18] analyzed the stability and
coupling synchronization problems of integer-order Sprott
b and Sprott C systems and analyzed them by phase space
trajectory and circuit simulation. Based on this, this paper
extends it to fractional order, constructs hidden attractors,
and studies its stability and synchronization problems. Sprott
C original system is

𝑥̇ = 𝑦𝑧̇𝑦 = 𝑥 − 𝑦
𝑧̇ = 1 − 𝑥2

(6)

The modified fractional system is

𝑑𝑞𝑥𝑑𝑡𝑞 = 𝑦𝑧 + 𝑎
𝑑𝑞𝑦𝑑𝑡𝑞 = 𝑥 − 𝑦
𝑑𝑞𝑧𝑑𝑡𝑞 = 1 − 𝑥2

(7)

where 𝑞 is the order of nonlinear system and 𝑞 ∈ (0, 1]
and 𝑎 is the disturbance parameter; let a=0.001 and the right
side of (7) is equal to zero, so

𝑦𝑧 + 𝑎 = 0𝑥 − 𝑦 = 0
1 − 𝑥2 = 0

(8)

By calculating system (8) we can found that system
(7) only has two equilibria (±1, ±1, ∓a). The above two
equilibrium points are symmetric, so we only discuss the
properties of one of them.

2.3. Hidden Attractor. The Jacobean matrix for the equilib-
rium point A (1, 1, −0.001) is

𝐽 (𝐴) = ( 0 −0.001 11 −1 0−2 0 0) (9)

As we all know that the characteristic polynomial
det(𝜆𝐸 − J) = 0, there are

𝜆1 = −0.9997,𝜆2,3 = −0.0002 ± 1.4144𝑖 (10)

The Jacobean for the equilibrium point B (−1, −1, 0.001)
is

𝐽 (𝐵) = (0 0.001 −11 −1 02 0 0 ) (11)

The eigenvalues are the same as the equilibrium point A.
They are

𝜆1 = −0.9997,𝜆2,3 = −0.0002 ± 1.4144𝑖 (12)

It can be inferred from (10) and (12) that the real parts
of all eigenvalues are negative. So the equilibrium points A
and B are both stable when a= 0.001. However, the results
of numerical simulation contradict the above theoretical
analysis.
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3. Solution and Simulation

3.1. Nonlinear Multiplier Sub Decomposition. Based on the
improved Adomian algorithm [19], we decompose the non-
linear term of (7) into the following form:

𝐴01 = 𝑦0𝑧0
𝐴11 = 𝑦1𝑧0 + 𝑦0𝑧1
𝐴21 = 𝑦2𝑧0 + 𝑦1𝑧1 + 𝑦0𝑧2
𝐴31 = 𝑦3𝑧0 + 𝑦2𝑧1 + 𝑦1𝑧2 + 𝑦0𝑧3
𝐴41 = 𝑦4𝑧0 + 𝑦3𝑧1 + 𝑦2𝑧2 + 𝑦1𝑧3 + 𝑦0𝑧4
𝐴51 = 𝑦5𝑧0 + 𝑦4𝑧1 + 𝑦3𝑧2 + 𝑦2𝑧3 + 𝑦1𝑧4 + 𝑦0𝑧5

(13)

𝐴03 = −𝑥0𝑥0
𝐴13 = −2𝑥1𝑥0
𝐴23 = −2𝑥2𝑥0 − 𝑥1𝑥1
𝐴33 = −2𝑥3𝑥0 − 2𝑥2𝑥1
𝐴43 = −2𝑥4𝑥0 − 2𝑥3𝑥1 − 𝑥2𝑥2
𝐴53 = −2𝑥5𝑥0 − 2𝑥4𝑥1 − 2𝑥3𝑥2

(14)

Now, let

𝑥0 = 𝑥 (𝑡0) = 𝑐01𝑦0 = 𝑦 (𝑡0) = 𝑐02𝑧0 = 𝑧 (𝑡0) = 𝑐03
(15)

Then

𝑥1 = (𝑐02 𝑐03 + 𝑎) (𝑡 − 𝑡0)𝑞𝑞
𝑦1 = (𝑐01 − 𝑐02) (𝑡 − 𝑡0)𝑞𝑞
𝑧1 = (1 − 𝑐01 𝑐01) (𝑡 − 𝑡0)𝑞𝑞

(16)

Let all variables be equal to the corresponding coefficient
values:

𝑐11 = 𝑐02 𝑐03 + 𝑎
𝑐12 = 𝑐01 − 𝑐02𝑐13 = 1 − 𝑐01 𝑐01

(17)

We can find out all the coefficients by using the above
method. They are

𝑐21 = 𝑐02 𝑐13 + 𝑐12 𝑐03 + 𝑎
𝑐22 = 𝑐11 − 𝑐12𝑐23 = 1 − 2𝑐11𝑐01𝑐31 = 𝑐02 𝑐23 + 𝑐22 𝑐03+𝑐22𝑐23 + 𝑎
𝑐32 = 𝑐21−𝑐22𝑐33 = 1 − 2𝑐01 𝑐21 − 𝑐11 𝑐11𝑐41 = 𝑐32 𝑐03 + 𝑐22 𝑐13 + 𝑐12 𝑐23 + 𝑎
𝑐42 = 𝑐31−𝑐32𝑐43 = 1 − 2𝑐31 𝑐01 − 𝑐21 𝑐11𝑐51 = 𝑐42 𝑐03 + 𝑐32 𝑐13 + 𝑐22 𝑐23 + 𝑐12 𝑐33 + 𝑐02 𝑐43 + 𝑎
𝑐52 = 𝑐41−𝑐42𝑐53 = 1 − 2𝑐41 𝑐01 − 2𝑐31 𝑐11 − 𝑐21 𝑐21𝑐61 = 𝑐52 𝑐03 + 𝑐42 𝑐13 + 𝑐32 𝑐23 + 𝑐22 𝑐33 + 𝑐12 𝑐43 + 𝑐02 𝑐53 + 𝑎
𝑐62 = 𝑐51 − 𝑐52𝑐63 = 1 − 2𝑐51 𝑐01 − 2𝑐41 𝑐11 − 2𝑐31 𝑐21

(18)

Based on the above decomposed coefficients, the equa-
tions of the nonlinear system can be combined as follows:

𝑥𝑚 (𝑥) = 6∑
𝑛=0

𝑐𝑚𝑛 (𝑡 − 𝑡0)𝑛𝑞𝑛!𝑞𝑛 (19)

3.2. Numerical Simulation. Bifurcation diagrams are often
used in dynamic analysis to observe system characteristics.
However, the bifurcation diagram can only show the case
where an independent variable changes with one parameter.
At present, most studies only use the bifurcation diagram
to judge the type of system classification. We use the order
parameter q in system (7) as the variable of bifurcation graph
and take the initial value as [𝑥(0), 𝑦(0), 𝑧(0)] = (0.1, 0.2, 0.3)
to get the numerical change of state variable y. As shown in
Figure 1, the bifurcation diagram is drawnwith themaximum
value method.

It is obvious that system (7) is chaotic in [0.988, 1.000]
and stable in [0.980, 0.988]. The dynamic characteristics of
system (7) are very sensitive to the change of order q.
When 𝑞 < 0.988, system (7) is in a stable state. When𝑞 > 0.988, system (7) enters chaos state through period-
doubling bifurcation.However, due to the existence of hidden
attractors in the system, the bifurcation diagram also loses its
absolute accuracy.
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Figure 1: Bifurcation diagram with the change of q.
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Figure 2: Phase diagram of system (7).

Simulation of chaotic image and time domain image will
help us to analyze its dynamic features. Take order q=0.99,
and the initial point is[𝑥 (0) , 𝑦 (0) , 𝑧 (0)] = [0.1, 0.2, 0.3] (20)

The Douglas-Jones method was adopted for numerical
simulation. Step size ℎ = 0.01, simulation duration 𝑇 = 100𝑠,

and chaotic images and time-domain images were obtained.
As shown in Figures 2 and 3, the system is chaotic.

System (7) is chaotic and shows the characteristics of
double vortexes. According to Shilnikov’s theorem [20], a
necessary and sufficient condition for a system to chaos is that
it should have at least one unstable point. However, according
to (10) and (12), the two equilibrium points of system (7)
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Figure 3: Time series diagram of system (7).

A and B are all stable, so hidden attractors appear here.
According to the above analysis, we can find that system (7)
is a fractional-order chaotic system with hidden attractors.

3.3. Complexity Analysis. Complexity is a new quantitative
evaluation tool for nonlinear systems. The more complex
the dynamic properties of nonlinear systems, the higher the
information entropy. In this section, we will analyze the
behavioral complexity of system (7) from the perspective of
spectral entropy andC0 complexity, respectively.Thefirst step
is to remove the DC information from the chaotic sequence
according to the system equation. Formula is as follows:

x (n) = 𝑥 (𝑛) − 𝑥(𝑥 = 1𝑁𝑁−1∑
𝑛=0

𝑥 (𝑛)) (21)

Then you take the Fourier transform of the x sequence:

X (k) = 𝑁−1∑
𝑛=0

𝑥 (𝑛) 𝑒−𝑗(2𝜋/𝑁)𝑛𝑘 = 𝑁−1∑
𝑛=0

𝑥 (𝑛)𝑊𝑛𝑘𝐾 (22)

The relative power spectrum P𝑘 is

𝑃𝑘 = 𝑝(𝑘)𝑝𝑡𝑜𝑡 = (1/𝑁) |𝑋 (𝑘)|2(1/𝑁)∑𝑁/2−1𝑘=0 |𝑋 (𝑘)|2
= |𝑋 (𝑘)|2∑𝑁/2−1𝑘=0 |𝑋 (𝑘)|2

(23)

So, the spectral entropy is

𝑠𝑒 = −𝑁/2−1∑
𝑘=0

𝑃𝑘 ln𝑃𝑘
SE (N) = 𝑠𝑒

ln (𝑁/2)
(24)

The simulation result plays in Figure 4, the parameters
remain unchanged, and the system complexity is calculated
as the order q changes.
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As shown in Figure 4, both SE complexity and C0 com-
plexity of the system decrease with the increase of order q.
Only one single parameter change does not yet show the
overall complexity of the system.

The closer the order q is to 1, the lower the information
entropy is, and the attachment near zero is at its maximum.
When the order q is fixed, the change of the constant a does
not greatly change the information entropy of the system.

Conversely, when the constant a is constant, the infor-
mation entropy and complexity of the system will change
as the order q changes. We change the order 𝑞 and the
disturbance 𝑎 at the same time, so that we can observe all the
complexity changes. As shown in Figures 5 and 6, the smaller
the parameter a, the greater the complexity of the system.The
order q also has the same properties.
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4. Finite Time Synchronization

4.1. Finite Time StabilityTheory. Synchronization of fraction-
al-order systems is an important part of secure commu-
nication. At present, many methods have been proposed,
such as drive-response method, generalized synchronization
method, projection synchronization, etc. Zhao Lingdong [21]
proposed a finite-time stability theory for fractional-order
systems, which is characterized by fast speed and good
robustness. ZhengGuangchao [22] successfully synchronized
a chaotic system by using fractional-order finite-time syn-
chronization theory.

Theorem 2. The general fractional order system satisfies the
following conditions:

𝑥 𝐶𝛼𝐷𝑞𝑡𝑥𝑇 = Γ (2)Γ (2 + 𝛼)𝑎 𝐶𝛼𝐷𝑞𝑡𝑥 (𝑥𝑞)𝑇 ≤ −𝑘 (𝑥𝑥𝑇)𝛼 ,
𝛼 < 𝑞 + 𝑞22 , 𝑘 > 0 (25)

where variables 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛] and 𝑥𝑞 = [𝑥1𝑞, 𝑥2𝑞,. . . , 𝑥𝑛𝑞]. The variable x of the fractional-order system will be
close to zero before the time reaches which is the following
expression.

𝑡 = [V (0)𝑞−2𝛼/(1+𝑞)
⋅ Γ (1 + 𝑞 − 2𝛼/ (1 + 𝑞)) Γ (1 + 𝑞)Γ (1 + 2𝑞 − 2𝛼/ (1 + 𝑞)) 𝑘Γ (2 + 𝑞)]

1/𝑞

V = 𝑥 (𝑥𝑞)𝑇
(26)

When a, b>0 and 0<c<1, we can get the following
inequality:

(𝑎 + 𝑏)𝑐 ≤ 𝑎𝑐 + 𝑏𝑐 (27)

Let formula (7) be the drive system; parameter q=0.99;
then its corresponding response system is

𝑑𝑞𝑥1𝑑𝑡𝑞 = 𝑦1𝑧1 + 𝑎 − 𝑢1
𝑑𝑞𝑦1𝑑𝑡𝑞 = 𝑥1 − 𝑦1 − 𝑢2
𝑑𝑞𝑧1𝑑𝑡𝑞 = 1 − 𝑥12 − 𝑢3

(28)

𝑢1, 𝑢2, and 𝑢3 are controllers designed based on theorem;
the error between drive system and response system is as
follows: 𝑒1 = 𝑥1 − 𝑥,𝑒2 = 𝑦1 − 𝑦,𝑒3 = 𝑧1 − 𝑧 (29)

Then, the error system is

𝑑𝑞𝑒1𝑑𝑡𝑞 = 𝑦1𝑒3 + 𝑒2𝑧 − 𝑢1
𝑑𝑞𝑒2𝑑𝑡𝑞 = 𝑒1 − 𝑒2 − 𝑢2
𝑑𝑞𝑒3𝑑𝑡𝑞 = −𝑒1 (𝑥 + 𝑥1) − 𝑢3

(30)

Therefore, the controller is

𝑢1 = −𝑒3 (𝑥 + 𝑥1) + 𝑘𝑒1𝛽𝑢2 = 𝑒1 (1 + 𝑧) + 𝑘𝑒2𝛽𝑢3 = 𝑦1𝑒1 + 𝑘𝑒3𝛽
(31)

The system will be stable within t(𝑠).
𝑡 = {[𝑒 (𝑒𝑞)𝑇]𝑞−(1+𝛽)/(1−𝑞)

⋅ Γ (1 + 𝑞 − (1 + 𝛽) / (1 − 𝑞)) Γ (1 + 𝑞)Γ (1 + 2𝑞 − (1 + 𝛽) / (1 − 𝑞)) 𝑘Γ (2 + 𝑞)}
1/𝑞

(32)

where 𝑒 = [𝑒1, 𝑒2, 𝑒3] and 𝑒𝑞 = [𝑒1𝑞, 𝑒2𝑞, 𝑒3𝑞].
Prove. According to the error system and the controller, the
synchronization error is

𝑑𝑞𝑒1𝑑𝑡𝑞 = 𝑒1𝑧 + 𝑦1𝑒3 + 𝑒3 (𝑥 + 𝑥1) − 𝑘𝑒1𝛽
𝑑𝑞𝑒2𝑑𝑡𝑞 = −𝑒1𝑧 − 𝑒2 − 𝑘𝑒2𝛽
𝑑𝑞𝑒3𝑑𝑡𝑞 = −𝑒1 (𝑥 + 𝑥1) − 𝑦1𝑒1 − 𝑘𝑒3𝛽

(33)

By deriving (17),
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Γ (2)Γ (2 + 𝛼) 𝑑𝑞𝑑𝑡 [𝑒1, 𝑒2, 𝑒3] [𝑒1𝑞, 𝑒2𝑞, 𝑒3𝑞]𝑇 = [𝑒1, 𝑒2, 𝑒3] [𝑑𝑞𝑒1𝑑𝑡𝑞 𝑑𝑞𝑒2𝑑𝑡𝑞 𝑑𝑞𝑒3𝑑𝑡𝑞 ]
= (𝑒1, 𝑒2, 𝑒3) [𝑒1𝑧 + 𝑦1𝑒3 + 𝑒3 (𝑥 + 𝑥1) − 𝑘𝑒1𝛽 − 𝑒1𝑧 − 𝑒2 − 𝑘𝑒2𝛽 − 𝑒1 (𝑥 + 𝑥1) − 𝑦1𝑒1 − 𝑘𝑒3𝛽] = −𝑒22 − 𝑘𝑒11+𝛽 − 𝑘𝑒21+𝛽
− 𝑘𝑒31+𝛽 ≤ −𝑘𝑒11+𝛽 − 𝑘𝑒21+𝛽 − 𝑘𝑒31+𝛽 = −k (𝑒21)(1+𝛽)/2 − k (𝑒22)(1+𝛽)/2 − k (𝑒23)(1+𝛽)/2

(34)

Combining the following formula:

(𝑎 + 𝑏)𝑐 ≤ 𝑎𝑐 + 𝑏𝑐 (35)

There are

− (𝑒21)(1+𝛽)/2 − (𝑒22)(1+𝛽)/2 − (𝑒23)(1+𝛽)/2
≤ − (𝑒21 + 𝑒22 + 𝑒23)(1+𝛽)/2 (36)

Therefore

Γ (2)Γ (2 + 𝛼) 𝑑𝑞𝑑𝑡 [𝑒1, 𝑒2, 𝑒3] [𝑒1𝑞, 𝑒2𝑞, 𝑒3𝑞]𝑇
≤ −k (𝑒21 + 𝑒22 + 𝑒23)(1+𝛽)/2
= −𝑘 {[𝑒1, 𝑒2, 𝑒3] [𝑒1𝑞, 𝑒2𝑞, 𝑒3𝑞]𝑇}(1+𝛽)/2
= −𝑘 (𝑒𝑒𝑇)(1+𝛽)/2

(37)

It is obvious that (37) satisfies the conditions in Theorem 2.
In other words, the variables 𝑒1, 𝑒2, and 𝑒3 are stable for less
than 𝑡 the error system can be synchronized within a limited
time.

4.2. The Numerical Simulation. In this section we will sim-
ulate the synchronization process in MATLAB using the
Adomian decomposition method. The step size h=0.001, and

simulation time T=6S. In order to make it easy to observe the
synchronization results, the initial point is

[𝑥 (0) , 𝑦 (0) , 𝑧 (0)] = [5, 0.2, 2]
[𝑥1 (0) , 𝑦1 (0) , 𝑧1 (0)] = [−5, 0, −2] (38)

Disturbance parameter a=0.002. The parameters of the
controller are k=1 and 𝛽 = 0.8. The error system synchro-
nization process is shown in Figure 7.𝑒1, 𝑒2, and 𝑒3 are the initial errors between the x, y, and
z variables, respectively. For observability simulation results,
here we take different initial values. As shown in Figure 7, the
simulation synchronization time is approximately 4 seconds.
After 4 seconds, 𝑒1, 𝑒2, and 𝑒3, all three errors, are equal to
0, which means synchronization is achieved. The maximum
initial error 𝑒1 is equal to -10, the smallest is 𝑒2 equal to 0.2,
and the synchronization error range is large.

x1 and y1 are the x variables of the drive system and the
response system, respectively. x2 and y2 are the y variables
of the drive system and the response system, respectively. x3
and y3 are the z variables of the drive system and the response
system, respectively. It is not difficult to konw from Figure 8
that the synchronization process of variables is very short and
the robustness is well after synchronization. Synchronization
under different parameters can be considered in future
studies. According to (32), we know that the synchronization
stabilization time is only related to the order of the fractional
order system.However, the robustness of synchronization has
no related theorem or formula that can be inferred to be
related to parameter changes.
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Figure 8: Plots of state variables.

5. Conclusion

This paper verifies that the hidden attractor can be generated
without changing the nature of the original system by
adding small perturbations. We decompose the nonlinear
system by Adomain decomposition method and make up
the algorithm to simulate the complexity. The simulation
results show that the nonlinear system has higher complexity
with the decrease of order q. In order to accelerate the
application of the results, a controller is designed based on
the finite time stability theory. After adding the controller, the
synchronization system achieves synchronization in a short

time. The controlled system after synchronization also has
good robustness. This paper lays a foundation for the study
of fractional systems with hidden attractors. This paper also
puts forward some innovative ideas for the dynamic analysis
of nonlinear systems.
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