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In this paper, the Optimal Homotopy Asymptotic Method is extended to derive the approximate solutions of fractional order two-
dimensional partial di�erential equations. �e fractional order Zakharov–Kuznetsov equation is solved as a test example, while
the time fractional derivatives are described in the Caputo sense.�e solutions of the problem are computed in the form of rapidly
convergent series with easily calculable components using Mathematica. Reliability of the proposed method is given by
comparison with other methods in the literature. �e obtained results showed that the method is powerful and e�cient for
determination of solution of higher-dimensional fractional order partial di�erential equations.

1. Introduction

Fractional calculus is simply an extension of integer order
calculus. For many years, it was assumed that fractional
calculus is a pure subject of mathematics and having no such
applications in real-world phenomena, but this concept is
now wrong because of the recent applications of fractional
calculus inmodeling of the sound waves propagation in rigid
porous materials [1], ultrasonic wave propagation in human
cancellous bone [2], viscoelastic properties of soft biological
tissues [3], the path tracking problem in an autonomous
electric vehicles [4], etc. Di�erential equations of fractional
order are the center of attention of many studies due to their
frequent applications in the areas of electromagnetic, elec-
trochemistry, acoustics, material science, physics, visco-
elasticity, and engineering [5–9]. �ese kinds of problems
are more complex as compared to integer order di�erential
equations. Due to the complexities of fractional calculus,
most of the fractional order di�erential equations do not

have the exact solutions, and as an alternative, the ap-
proximate methods are extensively used for solution of these
types of equations [10–14]. Some of the recent methods for
approximate solutions of fractional order di�erential
equations are the Adomian Decomposition Method (ADM),
the Homotopy PerturbationMethod (HPM), the Variational
Iteration Method (VIM), Homotopy Analysis Method
(HAM), etc. [15–26].

Marinca and Herisanu introduced the Optimal
Homotopy Asymptotic Method (OHAM) for solving non-
linear di�erential equations which made the perturbation
methods independent of the assumption of small parameters
and huge computational work [27–31]. �e method was
recently extended by Sarwar et al. for solution of fractional
order di�erential equations [32–35].

In this paper, OHAM formulation is extended to two-
dimensional fractional order partial di�erential equations.
Particularly, the extended formulation is demonstrated by
illustrative examples of the following fractional version of
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the Zakharov–Kuznetsov equations shortly called FZK
(p, q, r):

D
α
t ζ + a ζp

( 􏼁x + b ζq
( 􏼁xxx + c ζr

( 􏼁yyx � 0. (1)

In above equation, α is a parameter describing theory of
the fractional derivative (0< α≤ 1), a, b and c are arbitrary
constants, and p, q, r≠ 0 are integers which govern the
behavior of weakly nonlinear ion-acoustic waves in plasma
comprising cold ions and hot isothermal electrons in the
presence of a uniform magnetic field. *e FZK equation has
been solved by many researchers using different techniques.
Some recent well-known techniques are [36–40].

*e present paper is divided into six sections. In Section
2, some basic definitions and properties from fractional
calculus are given. Section 3 is devoted to analysis of the
OHAM for two-dimensional partial differential equations of
fractional order. In Section 4, the 1st order approximate
solutions of FZK (2, 2, 2) and FZK (3, 3, 3) equations are
given, in which the time fractional derivatives are described
in the Caputo sense. In Section 5, comparisons of the results
of 1st order approximate solution by the proposed method
are made with 3rd order variational iteration method (VIM),
Perturbation-Iteration Algorithm (PIA), and residual power
series method (RPS) solutions [36, 37]. In all cases, the
proposed method yields better results.

2. Basic Definitions

In this section, some definitions and results from the lit-
erature are stated which are relevant to the current work.
Riemann–Liouville, Welyl, Reize, Compos, and Caputo
proposed many definitions.

Definition 1. A real function f(x), x> 0, is said to be in
space Cη, η ∈ R, if there is a real number p> η, such that
f(x) � xpf1(x), where f1(x) ∈ C(0,∞) and it is said to be
in the space Cη

m if only if fm ∈ Cη, m ∈ N.

Definition 2. *e Riemann–Liouville fractional integral
operator of order α≥ 0 of a function f ∈ Cη, η≥ − 1 is
defined as

I
α
af(x) �

1
Γ(α)

􏽚
x

a
(x − η)

α− 1
f(η)dη, α> 0, x> 0,

I
0
af(x) � f(x).

(2)

When we formulate the model of real-world problems
with fractional calculus, the Riemann–Liouville operator
have certain disadvantages. Caputo proposed a modified
fractional differential operator Dα

∗ in his work on the theory
of viscoelasticity.

Definition 3. *e fractional derivative of f(x) in Caputo
sense is defined as

D
α
af(x) � I

m− α
a D

m
f(x) �

1
Γ(m − a)

􏽚
x

a
(x − ζ)

m− α− 1
f

m
(ζ)dζ,

form − 1< α≤m, m ∈ N, x> 0, f ∈ C
m
− 1.

(3)

Definition 4. If m − 1< α≤m, m ∈ N, and f ∈ Cm
η , η ≥ − 1,

then

D
α
aI

α
af(x) � f(x),

D
α
aI

α
af(x) � f(x) − 􏽘

m− 1

k�0
f

(k)(x − a)

k!
, x> 0.

(4)

One can found the properties of the operator Iα in the
literature. We mention the following:

For f ∈ Cm
η , α, β> 0, η ≥ − 1 and c ≥ − 1.

Iαaf(x) exists for almost every x ∈ [a, b].
IαaIβaf(x) � Iα+β

a f(x).
IαaIβaf(x) � IβaIαaf(x).
Iαa(x − a)c � Γ(c + 1)/Γ(α + c + 1)(x − a)α+c.

3. OHAM Analysis for Fractional Order PDEs

In this section, the OHAM for fractional order partial dif-
ferential equation is introduced. *e proposed method is
presented in the following steps.

Step 1: write the general fractional order partial dif-
ferential equation as

zαζ(r, t)

ztα
� A(ζ(r, t)) + f(r, t), α> 0. (5)

Subject to the initial conditions,

D
α− k
0 ζ(r, 0) � hk(r), k � 0, 1, 2, . . . , n − 1,

D
α− n
0 ζ(r, 0) � 0, n � [α],

D
k
0ζ(r, 0) � gk(r), k � 0, 1, 2, . . . , n − 1,

D
n
0ζ(r, 0) � 0, n � [α].

(6)

In above equations, zα/ztα is the Caputo or
Riemann–Liouville fraction derivative operator, A is
the differential operator, ζ(r, t) is the unknown func-
tion and f(r, t) is known analytic function, r ∈ Ω is an
n-tuple which denotes spatial independent variables,
and t represents the temporal independent variable,
respectively.
Step 2: construct an optimal homotopy for fractional
order partial differential equation, ϕ(r, t; p) : Ω×

[0, 1]⟶ R which is
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(1 − p)
zαϕ(r, t)

ztα
− f(r, t)􏼠 􏼡 − H(r, p)

zαϕ(r, t)

ztα
􏼠

− (A( ϕ(r, t)) + f(r, t)􏼡 � 0.

(7)

In equation (7) p ∈ [0, 1] is the embedding parameter
and H(r, p) is auxiliary function which satisfies the
following relation:
H(r, p)≠ 0 for p≠ 0 and H(r, 0) � 0.
*e solution ϕ(r, t) converges rapidly to the exact
solution as the value of p increases in the interval [0, 1].
*e efficiency of OHAM depends upon the construc-
tion and determination of the auxiliary function which
controls the convergence of the solution.
An auxiliary function H(r, p) can be written in the form

H(r, p) � pk1 r, Ci( 􏼁 + p
2
k2 r, Ci( 􏼁 + p

3
k3 r, Ci( 􏼁 + . . .

+ p
m

km r, Ci( 􏼁.

(8)

In the above equation, Ci, i � 1, 2, 3 . . . are the con-
vergence control parameters and ki(r), i � 1, 2, 3, . . . is
a function of r.
Step 3: expanding ϕ(r, t; p, Ci) in Taylor’s series about
p, we have

ϕ r, t; Ci( 􏼁 � ζ0(r, t) + 􏽘

m

k�1
ζk r, t; Ci( 􏼁( 􏼁p

k
, i � 1, 2, 3, . . . .

(9)

Remarks: it is clear from equation (9), the convergence
of the series depends upon the auxiliary convergence
control parameter Ci, i � 1, 2, 3, 4, . . . , m

If it converges at p � 1, one has

ζ r, t; Ci( 􏼁 � ζ0(r, t) + 􏽘
∞

k�1
ζk r, t; Ci( 􏼁, i � 1, 2, 3, . . . .

(10)

Step 4: equating the coefficients of like powers of p after
substituting equation (10) in equation (7), we get zero
order, 1st order, 2nd order, and high-order problems:

p
0
:

zαζ0(r, t)

ztα
− f � 0,

p
1

:
zαζ1 r, t, C1( 􏼁

ztα
− 1 + C1( 􏼁

zαζ0(r, t)

ztα
+ 1 + C1( 􏼁f

+ C1A ζ0(r, t)( 􏼁 � 0,

p
2

:
zαζ2 r, t, C1, C2( 􏼁

ztα
− 1 + C1( 􏼁

zαζ1 r, t, C1( 􏼁

ztα
− C2

zαζ0(r, t)

ztα

+ C1A ζ1 r, t, C1( 􏼁( 􏼁 + C2 f + A ζ0(r, t)( 􏼁( 􏼁 � 0.

(11)

Step 5: these problems contain the time fractional
derivatives. *erefore, we apply the Iα operator on the
above problems and obtain a series of solutions as
follows:

ζ0(r, t) � I
α
[f],

ζ1 r, t; C1( 􏼁 � I
α 1 + C1( 􏼁

zαζ0(r, t)

ztα
− 1 + C1( 􏼁f􏼢

− C1A ζ0(r, t)( 􏼁􏼣,

ζ2 r, t; C1, C2( 􏼁 � I
α 1 + C1( 􏼁

zαζ1 r, t; C1( 􏼁

ztα
+ C2

zαζ0(r, t)

ztα
􏼢

− C1A ζ1 r, t; C1( 􏼁( 􏼁 − C2 f + A ζ0(r, t)( 􏼁( 􏼁􏼣 . . . .

(12)

By putting the above solutions in equation (12), one can
get the approximate solution ζ(r, t; Ci). *e residual
R(r, t; Ci) is obtained by substituting approximate
solution ζ(r, t; Ci) in equation (5).
Step 6: the convergence control parameters C1, C2, . . .

can be found either by the Ritz method, Collocation
method, Galerkin’s method, or least square method. In
this presentation, least square method is used to cal-
culate the convergence control parameters, in which we
first construct the functional:

χ Ci( 􏼁 � 􏽚
t

0
􏽚

x

0
R
2

r, t; Ci( 􏼁dr dt. (13)

And then the convergence control parameters are
calculated by solving the following system:

zχ
zC1

�
zχ

zC2
� · · · �

zχ
zCm

� 0. (14)

*e approximate solution is obtained by putting the
optimum values of the convergence control parameters
in equation (10). *e method of least squares is a
powerful technique and has been used in many other
methods such as Optimal Homotopy Perturbation
Method (OHPM) and Optimal Auxiliary Functions
Method (OAFM) for calculating the optimum values of
arbitrary constants [41, 42].

4. OHAM Convergence

If the series (10) converges to ζ(x, t), where ζk(x, t) ∈ L(R+)

is produced by zero order problem and the K-order de-
formation, then ζ(x, t) is the exact solution of (5).

Proof. since the series

􏽘

∞

k�1
ζ i,k x, t; C1, C2, . . . , Ck( 􏼁, (15)
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converges, it can be written as

ψi(x, t) � 􏽘

∞

k�1
ζ i,k x, t; C1, C2, . . . , Ck( 􏼁, (16)

and its holds that

lim
k⟶∞

ζ i,k x, t; C1, C2, . . . , Ck( 􏼁 � 0. (17)

In fact, the following equation is satisfied:

ζ i,1 x, t; C1( 􏼁 + 􏽘

n

k�2
ζ i,k x, t; C

⟶
k􏼒 􏼓

− 􏽘
n

k�2
ζ i,k− 1 x, t; C

⟶
k− 1􏼒 􏼓

� ζ i,2 x, t; C
⟶

2􏼒 􏼓 − ζ i,1 x, t; C1( 􏼁 + · · · + ζ i,n x, t; C
⟶

n􏼒 􏼓

− ζ i,n− 1 x, t; C
⟶

n− 1􏼒 􏼓

� ζ i,n x, t; C
⟶

n􏼒 􏼓.

(18)

Now, we have

Li,1 ζ i,1 x, t; C1( 􏼁􏼐 􏼑 + 􏽘
∞

k�2
L1 ζ i,k x, t; C

⟶
k􏼒 􏼓􏼒 􏼓

− 􏽘
∞

k�2
Li ζ i,k− 1 x, t; C

⟶
k− 1􏼒 􏼓􏼒 􏼓

� Li ζ i,1 x, t; C1( 􏼁􏼐 􏼑 + 􏽘
∞

k�2
Li ζ i,k x, t; C

⟶
k􏼒 􏼓􏼒 􏼓

− 􏽘
∞

k�2
Li ζ i,k− 1 x, t; C

⟶
k− 1􏼒 􏼓􏼒 􏼓 � 0,

(19)

which satisfies

Li,1 ζ i,1 x, t; C1( 􏼁􏼐 􏼑 + Li 􏽘

∞

k�2
ζ i,k x, t; C

⟶
k􏼒 􏼓􏼒 􏼓

− Li 􏽘

∞

k�2
ζ i,k− 1 x, t; C

⟶
k− 1􏼒 􏼓􏼒 􏼓

� 􏽘
∞

k�2
Cm Li ζ i,k− m x, t; C

⟶
k− m􏼒 􏼓􏼒 􏼓 + Ni,k− m􏼔

· ζ i,k− 1 x, t; Ck− 1( 􏼁􏼓􏼒 􏼕 + gi(x, t) � 0.

(20)

Now if Cm, m � 1, 2, 3 . . . , is properly chosen, then the
equation leads to

Li ζ i(x, t) + A( 􏼁 � 0, (21)

which is the exact solution. □

5. Application of OHAM

5.1. Time Fractional FZK (2, 2, 2). Consider the following
Time Fractional FZK (2, 2, 2) equation with initial condition
as

zαw

ztα
+

zw2

zx2 +
1
8

z3w2

zx3 +
1
8

z3w2

zx zy2 � 0, 0< α≤ 1,

w(x, y, 0) �
4
3
λ sinh2(x + y).

(22)

*e exact solution of equation (22) for α � 1,

w(x, y, t) �
4
3
λ sinh2(x + y − λt), (23)

where λ is an arbitrary constant.
Using the OHAM formulation discussed in Section 3, we

have

Zero-order problem:

zαw

ztα
� 0,

w0(x, y, 0) �
4
3
λ sinh2(x + y).

(24)

First-order problem:

zαw1(x, y, t)

ztα
�

zαw0(x, y, t)

ztα
+ C1

zαw0(x, y, t)

ztα

+ 2C1
zαw0(x, y, t)

ztα
w0(x, y, t) +

1
4
C1

z2w0(x, y, t)

zy2 ,

zw0(x, y, t)

zx
+
1
2
C1

zw0(x, y, t)

zy

z2w0(x, y, t)

zx zy

+
1
4
C1w0(x, y, t)

z3w0(x, y, t)

zx zy2 +
3
4
C1

zw0(x, y, t)

zx
,

z2w0(x, y, t)

zx2 +
1
4
C1w0(x, y, t)

z3w0(x, y, t)

zx3 , w1(x, y, 0) � 0.

(25)

*e solutions of above problems are as follows:

w0(x, y, t) �
4
3
λ sinh2(x + y),

w1 x, y, t, C1( 􏼁 �
− 8C1t

αλ2(4 sinh(2(x + y)) − 5 sinh(4(x + y)))

9Γ(1 + α)
.

(26)

*e 1st order approximate solution by the OHAM is
given by the following expression:
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􏽥w x, y, t; Ci( 􏼁 � w0(x, y, t) + w1 x, y, t; C1( 􏼁,

􏽥w x, y, t; C1( 􏼁 �
4
3
λ sinh2(x + y) +

1
9Γ(1 + a)

· − 8C1t
αλ2(4 sinh(2(x + y))􏼐

− 5 sinh(4(x + y)))􏼁.

(27)

5.2. Time Fractional FZK (3, 3, 3). Consider the following
Time Fractional FZK (2, 2, 2) equation with initial condition
as

zαw

ztα
+

zw3

zx
+ 2

z3w3

zx3 + 2
z3w3

zx y2 � 0, 0< α≤ 1,

w(x, y, 0) �
3
2
λ sinh

1
6

(x + y)􏼒 􏼓.

(28)

*e exact solution of equation (22) for α � 1,

w(x, y, t) �
3
2
λ sinh

1
6

(x + y − λt)􏼒 􏼓, (29)

where λ is an arbitrary constant.
Using the OHAM formulation discussed in Section 3, we

have

Zero-order problem:
zαw(x, y, t)

ztα
� 0,

w0(x, y, 0) �
3
2
λ sinh

1
6

(x + y)􏼒 􏼓.

(30)

First-order problem:
zαw1(x, y, t)

ztα
�

zαw0(x, y, t)

ztα
+ C1

zαw0(x, y, t)

ztα

+ 3C1
zw0(x, y, t)

zx
w

2
0(x, y, t)

+ 12C1
z2w2

0(x, y, t)

zy2

·
zw0(x, y, t)

zx
+ 12C1w0(x, y, t)

z2w0(x, y, t)

zy2
zw0(x, y, t)

zx

+ 12C1
zw3

0(x, y, t)

zx3 + 24C1w0(x, y, t)

zw0(x, y, t)

zx

z2w0(x, y, t)

zx zy
+ 6C1w

2
0(x, y, t)

z3w0(x, y, t)

zx zy2

+ 36C1w
2
0(x, y, t)

zw0(x, y, t)

zx

z2w0(x, y, t)

zx2

+ 6C1w
2
0(x, y, t)

z3w0(x, y, t)

zy3 , w1(x, y, 0) � 0.

(31)

*e solutions of above problems are as follows:

w0(x, y, t) �
3
2
λ sinh

1
6

(x + y)􏼒 􏼓,

w1 x, y, t; C1( 􏼁 �
1

32Γ(1 + α)
3C1t

αλ3 − 5 cosh
1
6

(x + y)􏼒 􏼓􏼒􏼒

+ 9 cosh
1
2

(x + y)􏼒 􏼓􏼓􏼓.

(32)

*e 1st order approximate solution by the OHAM is
given by the following expression:

􏽥w x, y, t, Ci( 􏼁 � w0(x, y, t) + w1 x, y, t, C1( 􏼁. (33)

6. Results and Discussion

OHAM formulation is tested upon the FZKequation.
Mathematica 7 is used for most of computational work.

Table 1 shows the optimum values of the convergence
control parameters for FZK (2, 2, 2) and FZK (3, 3, 3)
equations at different values of α. In Tables 2 and 3, the
results obtained by 1st order approximation of proposed
method for the FZK (2, 2, 2) equation are compared with 3rd
order approximation of Perturbation-Iteration Algorithm
(PIA) and Residual power Series (RPS) method at different
values of α. In Tables 4 and 5, the results obtained by 1st
order approximation of the proposed method are compared
with 3rd order approximation of VIM for FZK (3, 3, 3)
equation. Figures 1–4 show the 3D plots of exact versus
approximate solution by the proposed method for FZK (2, 2,
2) equation. Figures 1 and 2 show the 3D plots of exact
versus approximate solution by the proposed method for
FZK (3, 3, 3) equation. Figure 5 shows the 2D plots of
approximate solution by the proposed method for FZK (2, 2,
2) equation at different values of α. Figure 6 shows the 2D
plots of approximate solution by the proposed method for
FZK (3, 3, 3) equation at different values of α.

It is clear from 2D figures that as value of α increases to 1,
the approximate solutions tend close to the exact solutions.

Table 1: Convergence-control parameters for FZK (2, 2, 2) and FZK (3, 3, 3).

FZK (2, 2, 2) FZK (3, 3, 3)
α C1 α C1

1.0 − 0.1654570202126229 1.0 − 1.0008903783207066
0.75 − 0.11770797863128038 0.75 − 0.999990856107855
0.67 − 0.11303202695535328 0.67 − 0.9999963529361133

Complexity 5



Table 3: 1st order approximate solution obtained by the OHAM in comparison with 3 terms approximate solution obtained by PIA and RPS
for FZK (2, 2, 2) at λ � 0.001.

α � 0.67 α � 0.75
x y t PIA [36] solution RPS [36] solution OHAM solution PIA [36] solution RPS [36] solution OHAM solution

0.1 0.1
0.2 5.31854×10− 5 5.31244×10− 5 5.39424×10− 5 5.32747×10− 5 5.32479×10− 5 5.3953×10− 5

0.3 5.28631× 10− 5 5.28410×10− 5 5.39094×10− 5 5.29757×10− 5 5.29675×10− 5 5.39191× 10− 5

0.4 5.25777×10− 5 5.25897×10− 5 5.38798×10− 5 5.27039×10− 5 5.27119×10− 5 5.38881× 10− 5

0.6 0.6
0.2 2.95493×10− 3 2.95185×10− 3 3.0273×10− 3 2.96356×10− 3 2.96251× 10− 3 3.02837×10− 3

0.3 2.92662×10− 3 2.92709×10− 3 3.02397×10− 3 2.93717×10− 3 2.93780×10− 3 3.02496×10− 3

0.4 2.90307×10− 3 2.90522×10− 3 3.02099×10− 3 2.91448×10− 3 2.91561× 10− 3 3.02182×10− 3

0.9 0.9
0.2 1.06822×10− 2 1.05522×10− 2 1.14179×10− 2 1.07716×10− 2 1.07143×10− 2 1.14303×10− 2

0.3 1.04487×10− 2 1.01199×10− 2 1.13792×10− 2 1.05488×10− 2 1.03695×10− 2 1.13907×10− 2

0.4 9.02777×10− 2 9.60606×10− 2 1.13447×10− 2 1.03736×10− 2 9.96743×10− 2 1.13543×10− 2

Table 4: 1st order solution compared with three terms of VIM at λ � 0.001, for FZK (3, 3, 3).

Solution α � 1 Absolute errors
x y t VIM [37] solution OHAM solution Exact solution OHAM error

0.1 0.1
0.2 5.00091× 10− 5 5.00092×10− 5 4.99592×10− 5 4.99519×10–8

0.3 5.00091× 10− 5 5.00091× 10− 5 4.99342×10− 5 7.49278×10–8

0.4 5.00091× 10− 5 5.00091× 10− 5 4.99092×10− 5 9.99037×10–8

0.6 0.6
0.2 3.02003×10− 4 3.02004×10− 4 3.01953×10− 4 5.08987×10–8

0.3 3.02003×10− 4 3.02004×10− 4 3.01927×10− 4 7.63479×10–8

0.4 3.02003×10− 4 3.02004×10− 4 3.01902×10− 4 1.01797×10–7

0.9 0.9
0.2 4.56780×10− 4 4.5678×10− 4 4.56728×10− 4 5.21227×10–8

0.3 4.56780×10− 4 4.5678×10− 4 4.56702×10− 4 7.81839×10–8

0.4 4.56780×10− 4 4.5678×10− 4 4.56676×10− 4 1.04245×10–7

Table 5: 1st order solution compared with 3 terms of VIM for, λ � 0.001, for FZK (3, 3, 3).

α � 0.67 α � 0.75
x y t VIM [37] solution OHAM solution VIM [37] solution OHAM solution

0.1 0.1
0.2 5.00091× 10− 5 500091× 10− 5 5.00091× 10− 5 5.00091× 10− 5

0.3 5.00090×10− 5 500091× 10− 5 5.00090×10− 5 5.00091× 10− 5

0.4 5.00090×10− 5 50009×10− 5 5.00090×10− 5 5.00091× 10− 5

0.6 0.6
0.2 3.02003×10− 4 302004×10− 4 3.02003×10− 4 302004×10− 4

0.3 3.02003×10− 4 302004×10− 4 3.02003×10− 4 302004×10− 4

0.4 3.02003×10− 4 302004×10− 4 3.02003×10− 4 302004×10− 4

0.9 0.9
0.2 4.56780×10− 4 45678×10− 4 4.5678×10− 4 45678×10− 4

0.3 4.56780×10− 4 45678×10− 4 4.56780×10− 4 45678×10− 4

0.4 4.56780×10− 4 45678×10− 4 4.56780×10− 4 45678×10− 4

Table 2: 1st order approximate solution obtained by the OHAM in comparison with 3 terms approximate solution obtained by PIA and RPS
for FZK (2, 2, 2) at λ � 0.001.

Solution for α � 1.0 Absolute errors for α � 1.0
x y t OHAM solution Exact solution PIA [34] error RPS [34] error OHAM error

0.1 0.1
0.2 5.3966×10− 5 5.39388×10− 5 3.85217×10− 7 3.85217×10− 7 2.71884×10− 8

0.3 5.39248×10− 5 5.38841× 10− 5 5.75911× 10− 7 5.75912×10− 7 4.07394×10− 8

0.4 5.38837×10− 5 5.38294×10− 5 7.65359×10− 7 7.65352×10− 7 5.42615×10− 8

0.6 0.6
0.2 3.02967×10− 3 3.03651× 10− 3 4.66337×10− 5 4.66389×10− 5 6.83433×10− 6

0.3 3.02553×10− 3 3.03578×10− 3 6.86056×10− 5 6.86314×10− 5 1.02517×10− 5

0.4 3.02138×10− 3 3.03505×10− 3 8.98263×10− 5 8.99046×10− 5 1.36692×10− 5

0.9 0.9
0.2 1.14455×10− 2 1.1537×10− 2 5.12131× 10− 4 5.14241× 10− 4 9.14704×10− 5

0.3 1.13973×10− 2 1.15345×10− 2 7.38186×10− 4 7.48450×10− 4 1.37206×10− 4

0.4 1.13492×10− 2 1.15321× 10− 2 9.57942×10− 4 9.89139×10− 4 1.82943×10− 4
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7. Conclusion

*e 1st order OHAM solution gives more encouraging re-
sults in comparison to 3rd order approximations of PIA,
RPS, and VIM. From obtained results, it is concluded that

the proposed method is very effective and convenient for
solving higher-dimensional partial differential equations of
fractional order. *e accuracy of the method can be further
improved by taking higher-order approximations.

0.010

0.005

0.0
0.2

0.4
0.6

0.8 0.0

0.1

0.2

0.3

0.4

Figure 1: Approximate solution for equation (22) for α � 1,
(y � 0.9).
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Figure 2: Exact solution for equation (22) for α � 1, (y � 0.9).
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Figure 4: Exact solution for equation (28) for α � 1, (y � 0.9).
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Figure 3: Approximate solution for equation (28) for α � 1,
(y � 0.9).
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Figure 5: Convergence at different value of alpha for equation (22)
at t � 0.1, y � 0.2.
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