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Based on previous experimental results of the plastic dynamic analysis of metallic glasses upon compressive loading, a dynamical model is
proposed. �is model includes the sliding speed of shear bands in the plastically strained metallic glasses, the shear resistance of shear
bands, the internal friction resulting from plastic deformation, and the in�uences from the testing machine. �is model analysis
quantitatively predicts that the loading rate can in�uence the transition of the plastic dynamics in metallic glasses from chaotic (low
loading rate range) to stable behavior (high loading rate range), which is consistent with the previous experimental results on the
compression tests of a Cu50Zr45Ti5 metallic glass. Moreover, we investigate the existence of a nonconstant periodic solution for plastic
dynamical model of bulk metallic glasses by using Manásevich–Mawhin continuation theorem.

1. Introduction

In [1], Cheng et al. investigate a plastic deformation and give
the following model

σp − kx( ) − σf x′( )[ ]
πd2

4
�Mx″, (1)

where σp is the loading stress of the shear bands, d is the
sample diameter, x is the shear sliding displacement,M is the
equal e�ective mass, and it is also the e�ective inertia of the
machine-sample system (MSS) when responding to the
stress gradient and is an empirical parameter estimated to be
of the order of 10–100 kg for a typical MSS. And,
k � (E/L)(1 + S), where L is the sample height, E is Young’s
Modulus, and S is the sti�ness ratio of the sample to the
testing machine and S � Ks/KM � πd2E/4LkM in [2]. σf is
the shear resistance along the shear plane. As the driving
forces exceed the static shear resistance for one block, shear
sliding will occur corresponding to the formation of one
shear band.

�e above model in [1] is considered an ideal situation,
i.e., without internal friction. However, when a solid ma-
terial undergoes plastic deformation, the internal friction
re�ects the force resisting motion between the elements,

which de�nitely cannot be avoided [3]. In the current study,
the internal friction coe¡cient of the model materials, i.e.,
metallic glasses [1], was measured by an elastic modulus and
internal friction meter (NIHON Techno-Plus Company,
Japan), which is 0.0012 at room temperature.

Motivated by this problem, we improve model (1) with
internal friction

σp − kx( ) − σf x′( ) − cx′[ ]
πd2

4
�Mx″, (2)

where c is the internal friction coe¡cient and σf is a complex
function of the loading rate and temperature in the shear
bands [1]. Here, we assume σf � σf0/(1 + Ax′) according to
[4], with σf0 taken as the yielding strength of the sample and
A being a constant. So, (2) is translated into

σp − kx( ) −
σf0

1 + Ax′
− cx′[ ]

πd2

4
�Mx″. (3)

If σp � kpt, where p is the loading rate in [4–7], then (3)
can be rewritten into a nonautonomous equation:

(kpt − kx) −
σf0

1 + Ax′
− cx′[ ]

πd2

4
�Mx″. (4)

Furthermore, we obtain
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x″ + cBx′ +
Bσf0

1 + Ax′
+ Bkx � Bkpt, (5)

where B � πd2/4M. In Section 2, we conduct a dynamic
analysis of model (5). /is model analysis quantitatively
predicts that the loading rate can influence the transition of
the plastic dynamics in metallic glasses from chaotic (low
loading rate range) to stable behavior (high loading rate
range), which is consistent with the previous experimental
results on the compression tests of a Cu50Zr45Ti5 metallic
glass.

On the other hand, if σp � σ(0), where σ(0) is the initial
internal stress, which is equal to the yield stress in [8–10],
from (3) and (5), we obtain

x″ + cBx′ +
Bσf0

1 + Ax′
+ Bkx � Bσ(0). (6)

Using Manásevich–Mawhin continuation theorem, we
obtain the existence of a periodic solution for model (6) in
Section 3. Moreover, we give the existence of upper and
lower bounds of the periodic solution of this equation.

2. Dynamical Analysis for Model (5)

Let x � z + pt. We have from (5) that

z″ + cBz′ +
Bσf0

1 + Ap + Az′
+ Bkz + cBp � 0, (7)

and then
z′ � y,

y′ � − cBy −
Bσf0

1 + Ap + Ay
− Bkz − cBp.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Obviously, (8) has one equilibrium point at
E ≔ (− (cp/k) − (σf0/k + Akp), 0). Let A(z, y) be the co-
efficient matrix of the linearized system of (8) at an equi-
librium point (z, y). /en, we have at E

A −
cp

k
−

σf0
k + Akp

, 0  �

0 1

− Bk
ABσf0

(1 + p)2
− cB

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

/e characteristic equation of A(− (cp/k) − (σf0/k +

Akp), 0) is

f(λ) � λ2 −
ABσf0

(1 + p)2
− cB λ + Bk, (10)

which yields

λ1,2 �
ABσf0/(1 + p)2  − cB  ±

��������������������������

ABσf0/(1 + p)2  − cB 
2

− 4Bk



2
. (11)

By analyzing, we obtain the following results.

Theorem 2.1. If c≥ (Aσf 0/(1 + p)2) + (4
�����
kMπ

√
/dπ), then

the equilibrium point E is stable node; if
c≤ (Aσf 0/(1 + p)2) − (4

�����
kMπ

√
/dπ), then the equilibrium

point E is unstable node.

Theorem 2.2. If (Aσf 0/(1 + p)2)< c< (Aσf 0/(1 + p)2) +

(4
�����
kMπ

√
/dπ), then the equilibrium point E is stable focus; if

(Aσf0
/(1 + p)2) − (4

�����
kMπ

√
/dπ)< c< (Aσf 0/(1 + p)2), then

the equilibrium point E is unstable focus. Moreover, system
(8) has Hopf bifurcation with c � Aσf 0/(1 + p)2.

Next, from (8), we denote that
f(z, y) � y,

g(z, y) � − cBy −
Bσf0

1 + Ap + Ay
− Bkz − cBp.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(12)

Let αc � ((ABσf0/(1 + p)2) − cB)/2. We know that the
bifurcation value is αc0

� 0 if c � Aσf0/(1 + p)2. And,
dαc

dc

c� Aσf0/(1+p)2 
�

− B

2
< 0, (13)

i.e., αc decreases with c.
By Andronov–Hopf bifurcation theorem ([11], P. 167),

we have fz � 0, gy � 0, andfygz � − Bk< 0. From

16Kr0
�
8A3B(3/2)k(1/2)σf0

(1 + p)5
> 0, (14)

we have the following.

Theorem 2.3. If c � (Aσf 0/(1 + p)2), then the equilibrium
point E is weak repell; if c> (Aσf 0/(1 + p)2), there exists an
unstable periodic orbit of system (11) from the equilibrium
point E. 8is is subcritical bifurcation.

On the other hand, let ασf0 � ((ABσf0/(1 + p)2) − cB)/2.
We know that the bifurcation value is ασf0 � 0 if
σf0 � c(1 + p)2/A. And,

dασf0
dσf0

σf0� c(1+p)2/A( )

�
AB

2(1 + p)2
> 0, (15)

i.e., ασf0 is increasing about σf0.
By Andronov–Hopf bifurcation theorem (see [11], P.

167), we have fz � 0, gy � 0, andfygz � − Bk< 0. From
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16Kr0
�
8A2cB(3/2)k(1/2)

(1 + p)3
> 0, (16)

we have the following.

Theorem 2.4. If σf 0 � c(1 + p)2/A, then the equilibrium
point E is weak repell; if σf 0 < c(1 + p)2/A, there exists an
unstable periodic orbit of system (11) from the equilibrium
point E. 8is is subcritical bifurcation.

In the following, we consider Lyapunov exponent of
system (5). By substituting z � t, nonautonomous system (5)
can be rewritten into a three-dimensional autonomous
system:

x′ � y,

y′ � − Bcy −
Bσf0

1 + Ay
− Bkx + Bkpz.

z′ � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(17)

From (17), we know that there is a uniform solution
(trajectory) in which the shear bands slide at the loading rate:

x � pt −
σf0

k + Akp
−

cp

k
,

y � p,

z � t.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(18)

Let B(x, y, z) be the coefficient matrix of the linearized
system of (17) at a trajectory (x, y, z). /en, we have at the
trajectory of (18)

B pt −
σf0

k + Akp
−

cp

k
, p, t 

�

0 1 0

− Bk − Bc +
ABσf0

(1 + Ap)2
Bkp

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(19)

/e characteristic equation of B(pt − (σf0/k + Akp)−

(cp/k), p, t) is

g(λ) � λ λ2 −
ABσf0

(1 + Ap)2
− Bc λ + Bk , (20)

and then

λ1 � 0, λ2,3 �
ABσf0/(1 + Ap)2  − Bc  ±

���������������������������

ABσf0/(1 + Ap)2  − Bc 
2

− 4Bk



2
. (21)

Define C � 4KME/(4LKM + πd2E)Ak. By [12] (P. 727),
we obtain the following results.

Theorem 2.5. If p>C(
������
Aσf 0/c


− 1), then (5) is the stable

closed orbit for trajectory (18). If p<C(
������
Aσf 0/c


− 1), then

(5) is hyperchaotic for trajectory (18).

3. Periodic Solution for Model (6)

In this section, we prove the existence of a nonconstant
ω-periodic solution for model (6) by applying
Manásevich–Mawhin continuation theorem. First, we
consider the following differential equation with a singu-
larity of derivative:

x″ + Cx′ + g x′(  + Kx � e(t), (22)

where K and C are positive constants, e ∈ L2([0,ω]) and
e(t) ≡ g(0) − Kc, for all c ∈ R, g: (b, +∞)⟶ R is a
continuous function, and g(0) ≔ σ < ‖e‖ ≔ maxt∈[0,ω]|e(t)|,

g may have a singularity of derivative at u � b, which means
that

lim
u⟶b+


u

1
g(s)ds � +∞, (23)

where b is a constant and b< 0.
Next, we embed (22) into the following equation family

with a parameter λ ∈ (0, 1]:

x″ + λ Cx′ + g x′(  + Kx(  � λe(t). (24)

/e following lemma is Manásevich–Mawhin continu-
ation theorem ([13], /eorem 3.1).

Lemma 3.1. ([13], /eorem 3.1) Let Ω be an open bounded
set in the space X ≔ ϕ ∈ C1(R,R): ϕ(t + ω) �

ϕ(t), ϕ′(t + ω) � ϕ′(t), ∀t ∈ R}. Suppose the following con-
ditions are satisfied:

(i) (24) has no solution on zΩ.
(ii) 8e following equation
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F(a) ≔
1
ω


ω

0
(g(0) + Kx(t) − e(t))dt � 0, (25)

has no solution on zΩ∩R.
(iii) 8e Brouwer degree of F

deg F,Ω∩R, 0{ }≠ 0. (26)

8en, (22) has at least one periodic solution on Ω.

Theorem 3.1. Assume that condition (23) holds. If
K(ω/2π)2 < 1, then equation (22) has at least one non-
constant periodic solution x with

x ∈ −
‖e‖ − σ

K
−

(ω/2π)‖e‖2

1 − K(ω/2π)2
,
‖e‖ − σ

K
+

(ω/2π)‖e‖2

1 − K(ω/2π)2
 .

(27)

Proof. Suppose that x is a solution of (24) for some
λ ∈ (0, 1]. Let t∗, t∗ be, respectively, the global maximum
point and global minimum point of x(t) on [0,ω], then we
obtain x′(t∗) � 0, x′(t∗) � 0, x″(t∗)≤ 0, and x″(t∗)≥ 0.

Furthermore, we arrive at

x″ t
∗

(  + λ g x′ t
∗

( (  + Kx t
∗

( (  � λe t
∗

( . (28)

Since x″(t∗)≤ 0 and g(0) � σ, then we obtain

x t
∗

( ≥
e t∗( ) − σ

K
≥

e∗ − σ
K
≔ D1, (29)

where e∗ ≔ mint∈[0,ω]p(t).

Similarly, we get

x t∗( ≤
e t∗(  − σ

K
≤

‖e‖ − σ
K
≔ D2 > 0, (30)

since ‖e‖ − σ > 0. From equations (29) and (30), x is a
continuous function inR, there exists a point τ ∈ (0,ω) such
that

D1 ≤x(τ)≤D2. (31)

Multiplying both sides of (24) by x″(t) and integrating
over the interval [0,ω], we have


ω

0
x″(t)



2dt + λ

ω

0
Cx′(t)x″(t)dt

+ λ
ω

0
g x′(t)( x″(t)dt + λK 

ω

0
x(t)x″(t)dt

� λ
ω

0
e(t)x″(t)dt.

(32)

Substituting 
ω
0 Cx′(t)x″(t)dt � 0, 

ω
0 g(x′(t))x″(t)

dt � 0, and 
ω
0 x(t)x″(t)dt � − 

ω
0 |x′(t)|2dt into (32) and

applying the Hölder inequality, we see that


ω

0
x″(t)



2dt � λK 

ω

0
x′(t)



2dt + λ

ω

0
e(t)x″(t)dt

≤K 
ω

0
x′(t)



2
dt + λ

ω

0
|e(t)| x″(t)


 dt

≤K 
ω

0
x′(t)



2dt + λ 

ω

0
|e(t)|

2dt 
(1/2)

· 
ω

0
x″(t)



2dt 

(1/2)

.

(33)

Using the Wirtinger inequality ([14], Lemma 2.4), it is
clear that


ω

0
x″(t)



2 dt≤K

ω
2π

 
2


ω

0
x″(t)



2 dt

+ λ 
ω

0
|e(t)|

2 dt 
(1/2)


ω

0
x″(t)



2 dt 

(1/2)

.

(34)

Since K(ω/2π)2 < 1 and 
ω
0 |x″(t)|2 dt≠ 0, it is easy to see

that


ω

0
x″(t)



2 dt 

(1/2)

≤
λ‖e‖2

1 − K(ω/2π)2
≔ λM1′ , (35)

where e2 ≔ (
ω
0 |e(t)|2 dt)(1/2). From (31) and the Wirtinger

inequality, we have\openup3

‖x‖≤D2 + 
ω

0
x′(t)


dt

≤D2 +
��
ω

√

ω

0
x′(t)



2dt 

(1/2)

≤D2 +
��
ω

√ ω
2π

  
ω

0
x″(t)


dt 

(1/2)

≤D2 +
��
ω

√ ω
2π

 λM1′

≤
‖e‖ − σ

K
+

(ω/2π)‖e‖2

1 − K(ω/2π)2
≔M1.

(36)

Since x(0) � x(ω), there exists a point ξ ∈ (0,ω) such
that x′(ξ) � 0. /erefore, we have

x′(t) � x′(ξ) + 
t

ξ
x″(s)ds

≤ 
ω

0
x″(t)


dt

≤
��
ω

√

ω

0
x″(t)



2dt 

(1/2)

≤
��
ω

√
λM1′

≤
��
ω

√
e2/1 − K(ω/2π)

2
  ≔M2.

(37)

On the other hand, multiplying both sides of (24) by
x″(t), we get
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x″(t)( 
2

+ λg x′(t)( x″(t) + λKx(t)x″(t) � λe(t)x″(t).

(38)

Let ξ ∈ [0,ω] be defined in (37). For any ξ ≤ t≤ω, in-
tegrating (38) on [ξ, t], we obtain

λ
x′(t)

x′(ξ)
g(u)du � λ

t

ξ
g x′(s)( x″(s)ds

� 
t

ξ
x″(s)( 

2ds − λ
t

ξ
Cx′(s)x″(s)ds

− λ
t

ξ
Kx(s)x″(s)ds + λ

t

ξ
e(s)x″(s)ds.

(39)

Furthermore, we see that

λ 
x′(t)

x′(ξ)
g(u)du




� λ 

t

ξ
g x′(s)( x″(s)ds





≤
ω

0
x″(s)



2ds

+ λC 
ω

0
x′(s)


 x″(s)


ds

+ λK 
ω

0
|x(s)| x″(s)


ds

+ λ
ω

0
|e(s)| x″(s)


ds.

(40)

From (35) and (36), applying the Hölder inequality, we
have

λ 
x′(t)

x′(ξ)
g(u)du




≤ 

ω

0
x″(s)



2ds

+ λC x′
����

����
��
ω

√

ω

0
x″(s)



2ds 

(1/2)

+ λK‖x‖
��
ω

√

ω

0
x″(s)



2ds 

(1/2)

+ λ 
ω

0
|e(t)|

2dt 
(1/2)


ω

0
x″(s)



2ds 

(1/2)

≤ λM1′( 
2

+ λ2CM2
��
ω

√
M1′

+ λ2KM1
��
ω

√
M1′ + λ2‖e‖2M1′.

(41)

/e above inequality implies


x′(t)

x′(ξ)
g(u)du




≤M
′2
1 + CM2

��
ω

√
M1′ + KM1

��
ω

√
M1′

+‖e‖2M1′ ≔M3′.

(42)

From (23), we know that there exists a constant M3 > b

such that

x′(t)≥M3, ∀t ∈ [ξ,ω]. (43)

/e case t ∈ [0, ξ] can be treated similarly.
From (36), (37), and (43), we obtain

Ω � x ∈ X: ‖x‖<M1 andM3 < x′(t)<M2 ∀ t ∈ R .

(44)

We know that (24) has no solution on zΩ as λ ∈ (0, 1),
and when x(t) ∈zΩ∩R andx(t) � M1, from (31), we know
that M1 >D2; So, from (29), we see that

1
ω


ω

0
g(0) + Kx − e(t) dt> 0, (45)

since C 
ω
0 x′(t)dt � 0. So, condition (ii) is also satisfied. Set

H(x, μ) � μx +(1 − μ)
1
ω


ω

0
g x′(  + Kx − e(t)( dt,

(46)

where x ∈zΩ∩R and μ ∈ [0, 1], we have

xH(x, μ) � μx
2

+(1 − μ)
x

ω

ω

0
g x′(  + Kx − e(t)( dt> 0,

(47)

and thus H(x, μ) is a homotopic transformation and

deg F,Ω∩R, 0{ } � deg
1
ω


ω

0
g x′(  + Kx − e(t)( dt,Ω∩R, 0 

� deg x,Ω∩R, 0{ }≠ 0.

(48)

So, condition (iii) is satisfied. By Lemma 3.1, there exists
a ω-periodic solution x with

x ∈ −
‖e‖ − σ

K
−

(ω/2π)‖e‖2

1 − K(ω/2π)2
,
‖e‖ − σ

K
+

(ω/2π)‖e‖2

1 − K(ω/2π)2
 .

(49)

Finally, observe that x is not a constant. Otherwise,
suppose x ≡ c (constant), then we get x � e(t) − σ/K, which
contradicts the assumption e(t) ≡ σ − Kc; so, the proof is
complete.

Next, we apply /eorem 3.1 to the plastic dynamical
model of bulk metallic glasses (6). Model (6) is of form (22)
with C � Bc, g(x′) � Bσf0

/1 + Ax′, e(t) � Bσ(0), and
K � Bk. It is easy to see that limx′⟶(− 1/A)+ 

u

1(Bσf0/1
+ Ax′) � +∞. □

Corollary 3.1. Assume that (πd2k/4M)(ω/2π)2 < 1,
σ(0)> σf 0, and σ(0)≠ σf 0 + kc for all c ∈ R hold. 8en, (6)
has at least one nonconstant ω-periodic solution x with

x ∈ −
σ(0) − σf0

k
−

��
ω

√
πd2σ(0)(ω/2π)

4M − πd2k(ω/2π)2
,
σ(0) − σf0

k


+

��
ω

√
πd2σ(0)(ω/2π)

4M − πd2k(ω/2π)2
.

(50)

4. Conclusion and Discussion

In conclusion, we establish a model considering the internal
friction during the plastic deformation and investigate how
the parameters influence the stability of the system.
Meanwhile, we prove the existence of chaotic and periodic
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solutions by applying mathematical methods. Based on
/eorems 2.1 and 2.2, for larger internal friction coefficient,
the plastic system manifests a stable state, while for smaller
internal friction coefficient, the system becomes unstable.
/e increasing of the friction coefficient improves the re-
sistance of the motion. As a result, it requires more energy
for the plastic deformation, which means the state of the
system will not be changed easily, reflecting a stable state.

/eorem 2.5 shows that the plastic dynamics transits
from chaotic to stable state as the loading rate increases.
For larger loading rate, the system evolves into a stable
state. It is corresponding to that the self-organized critical
behavior happens at the larger strain rate [15]. While for
lower loading rate, the system is chaos, which is corre-
sponding to the chaotic behavior happens at lower strain
rate [15]. /ese results in /eorem 2.5 are consistent with
the analysis based on the experimental data considering
the loading rate is linearly dependent to the strain rate.
Based on the result in /eorem 2.5, we can obtain a
critical loading rate, p � (1/k)(

������
Aσf0/c


− 1), and the

strain rate can be estimated about 10− 3 s− 1. It is quite
accordant with the results that the plastic dynamic be-
havior changes from chaotic to self-organized critical
behavior as the strain rate increases from 4 × 10− 3 s− 1 to
4 × 10− 2 s− 1 in [15].

/e stick-slip system shows rich dynamic behaviors
such as chaos and quasi periodic solution [16, 17]. In this
paper, we prove that there is a periodic solution based on
mathematical theory, and the periodic solution is accor-
dant with the sinusoidal density variations in shear bands
[18]. /e chaotic behavior is a result of the shear band
instabilities [19]. We illustrate the plastic dynamics transits
from chaos to stable state applying nonlinear dynamic
theory and demonstrate how the parameters influence the
plastic dynamics, which helps us to clarify the internal
mechanism of plastic deformation for bulk metallic
glasses.

Data Availability

All data generated or analyzed during this study are included
in this article.

Conflicts of Interest

YSW andCZB declare that they have no competing interests.

Authors’ Contributions

YSW and CZB contributed equally and significantly in
writing this article. Both authors read and approved the final
manuscript.

Acknowledgments

/is study was supported by the National Natural Science
Foundation of China (no. 11501170), China Postdoctoral
Science Foundation funded project (no. 2016M590886),
Fundamental Research Funds for the Universities of Henan
Province (NSFRF170302), Young backbone teachers of

colleges and universities in Henan Province (2017GGJS057),
and Education Department of Henan Province project
(20B110006).

References

[1] Y. Q. Cheng, Z. Han, Y. Li, and E. Ma, “Cold versus hot shear
banding in bulk metallic glass [Phys. Rev. B80, 134115
(2009)],” Physical Review B, vol. 80, p. 134115, 2009.

[2] Z. Han, W. F. Wu, Y. Li, Y. J. Wei, and H. J. Gao, “An in-
stability index of shear band for plasticity in metallic glasses,”
Acta Materialia, vol. 57, no. 5, pp. 1367–1372, 2009.

[3] G. E. Dieter, Mechanical Metallurgy, /e McGraw-Hill
Companies, Inc., New York, NY, USA, 3rd edition, 2006.

[4] B. A. Sun, H. B. Yu, W. Jiao, H. Y. Bai, D. Q. Zhao, and
W. H. Wang, “Plasticity of ductile metallic glasses: a self-
organized critical state,” Physical Review Letters, vol. 105,
no. 3, Article ID 035501, 2010.

[5] J. W. Qiao, F. Q. Yang, G. Y. Wang, P. K. Liaw, and Y. Zhang,
“Jerky-flow characteristics for a Zr-based bulk metallic glass,”
Scripta Materialia, vol. 63, no. 11, pp. 1081–1084, 2010.

[6] F. Q. Yang, “Plastic flow in bulk metallic glasses: effect of
strain rate,” Applied Physics Letters, vol. 91, no. 5, Article ID
051922, 2007.

[7] Z. B. Cheng and F. F. Li, “Positive periodic solutions for a kind
of second-order neutral differential equations with variable
coefficient and delay,”Mediterranean Journal of Mathematics,
vol. 15, no. 3, p. 19, 2018.

[8] J. L. Ren, C. Chen, G. Wang et al., “Various sizes of sliding
event bursts in the plastic flow of metallic glasses based on a
spatiotemporal dynamic model,” Journal of Applied Physics,
vol. 116, no. 3, Article ID 033520, 2014.

[9] C. Chen, J. L. Ren, G.Wang, A. Dahmen, and R. Liaw, “Scaling
behavior and complexity of plastic deformation for a bulk
metallic glass at cryogenic temperatures,” Physical Review E,
vol. 92, no. 1, Article ID 012113, 2015.

[10] S. Yao and Z. Cheng, “/e homotopy perturbationmethod for
a nonlinear oscillator with a damping,” Journal of Low Fre-
quency Noise, Vibration and Active Control, vol. 38, no. 3-4,
pp. 1110–1112, 2019.

[11] R. C. Robinson, An Introduction to Dynamical Systems:
Continuous and Discrete, Pearson Education, London, UK,
2004.

[12] S. Wiggins, Introduction to Applied Nonlinear Dynamical
Systems and Chaos, Springer, Berlin, Germany, 2003.
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