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Recently, multigranularity has been an interesting topic, since di�erent levels of granularity can provide di�erent information
from the viewpoint of Granular Computing (GrC). However, established researches have focused less on investigating attribute
reduction from multigranularity view.  is paper proposes an algorithm based on the multigranularity view. To construct a
framework of multigranularity attribute reduction, two main problems can be addressed as follows: (1)  e multigranularity
structure can be constructed �rstly. In this paper, the multigranularity structure will be constructed based on the radii, as di�erent
information granularities can be induced by employing di�erent radii. erefore, the neighborhood-basedmultigranularity can be
constructed. (2)  e attribute reduction can be designed and realized from the viewpoint of multigranularity. Di�erent from
traditional process which computes reduct through employing a �xed granularity, our algorithm aims to obtain reduct from the
viewpoint of multigranularity. To realize the new algorithm, two main processes are executed as follows: (1) Considering that
di�erent decision classes may require di�erent key condition attributes, the ensemble selector is applied among di�erent decision
classes; (2) to accelerate the process of attribute reduction, only the �nest and the coarsest granularities are employed.  e
experiments over 15 UCI data sets are conducted. Compared with the traditional single-granularity approach, the multi-
granularity algorithm can not only generate reduct which can provide better classi�cation accuracy, but also reduce the elapsed
time.  is study suggests new trends for considering both the classi�cation accuracy and the time e�ciency with respect to
the reduct.

1. Introduction

Up to now, attribute reduction is one of the key topics in
Rough Set  eory (RST) [1–4]. As a rough set-based feature
selection, attribute reduction aims to reduce the data di-
mensions related to a given constraint. And the used con-
straint can be clearly explained by the considered measure
such as approximation quality [5] and conditional entropy
[6]. Actually, many established researches have employed
di�erent measures to design the corresponding algorithms.
For example, Hu et al. [5] have studied uncertainty measures
related to fuzzy rough set and then further explored ap-
proximation quality-based attribute reduction; Dai et al.
[6–8] have investigated attribute reduction with respect to
several types of conditional entropies.  erefore, the

corresponding reducts are actually the subsets of the con-
dition attributes which meet the constraints de�ned by using
the measures such as approximation quality and conditional
entropy, respectively.

 ese researches above have investigated di�erent kinds
of attribute reduction based on di�erent measures, and these
measures characterize the uncertainties or distinguishing
abilities of the decision attribute through applying the in-
formation o�ered by the condition attributes. However, it is
worth noting that they all focus on one and only one �xed
parameter in attribute reduction [9–11], such as the �xed
Gaussian kernel parameter in fuzzy rough set or the �xed
radius in neighborhood rough set. From the viewpoint of
Granular Computing (GrC) [12–16], applying one and only
one parameter in rough set can only re¡ect the information
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over a fixed granularity [17–19]. ,erefore, the attribute
reduction over a fixed granularity can be termed as the
single-granularity attribute reduction. Nevertheless, the
single-granularity attribute reduction fails to meet the re-
quirements of practical applications. Generally speaking, the
limitations of single-granularity attribute reduction can be
mainly summarized as the following two aspects:

(1) ,e single-granularity attribute reduction fails to
select attributes from multilevel [20–22] or multi-
view [23, 24]. For example, supposing that a reduct is
obtained to preserve one given information granu-
lation on the universe of discourse, this reduct may
not be still the reduct for a little finer or coarser level
of information granulation which may be caused by
slight variation of data. In viewpoint of this, if it is
requested to obtain a reduct with higher adaptability
to the granularity world constructed by multilevel or
multiview, it is necessary to establish the attribute
reduction from the multigranularity view.

(2) ,e single-granularity attribute reduction may result
in obtaining poor learning performance. ,e reduct
derived from single-granularity algorithm may only
acquire the ability from a fixed sight. It is mainly
because the information over the fixed granularity
may be lacking versatility and comprehensiveness.
Actually, it is reported that given the same data sets,
different granules can provide complementary pre-
dictive powers, and the learning performance may be
improved by combining their information [25, 26]. To
improve the learning performance, it may be a feasible
method to employ the information provided by dif-
ferent granularities for computing a reduct.,erefore,
it is necessary to generate a reduct through combining
the information from the multigranularity view.

To overcome the limitations mentioned above, it is nec-
essary to establish the attribute reduction from the multi-
granularity view. It contains two processes which are
summarized as follows: (1) Construct the structure of multi-
granularity in RST. In this paper, themultigranularity structure
will be constructed through employing different radii. As re-
ported in [16, 27], the radius-based neighborhood forms a
information granule, then the neighborhood-based single-
granularity can be constructed by applying one and only one
radius, and it follows that neighborhood basedmultigranularity
can be constructed by applying a set of different radii. In this
process, applying a smaller radius will generate a finer in-
formation granule while applying a greater radius will generate
a coarser information granule. ,e different scales of in-
formation granules can offer us the multigranularity based
results of neighborhood rough approximations [25, 28].
,erefore, the structure of multigranularity is naturally ob-
tained in neighborhood rough set. (2) Design a framework to
realize the attribute reduction from the multigranularity view.
,eMultiGranularity View for Computing Reduct (MG-VCR)
is constructed to realize the new algorithm, and themechanism
ofMG-VCR is mainly faced up with two open problems which
can be shown as follows:

(1) How to select candidate attribute: Generally speak-
ing, all the decision classes are considered as a union
in the traditional process of computing reducts,
which can be seen as global view [29]. However, the
traditional approach paid less attention to the key
condition attributes related to different decision
classes. In other words, the reduct derived from the
traditional approachmay lead to the improvement of
one decision class but the deterioration of the other
decision class. To fill such a gap, we will apply the
ensemble selector [30] from local view. And, the new
strategy pays much attention to the key condition
attributes related to different decision classes [31].
Moreover, the majority voting strategy is employed
in the ensemble selector among different decision
classes for selecting candidate attribute.

(2) How to select granularity: Different from traditional
single-granularity algorithms which focus on
addressing the fixed problem over one given gran-
ularity, multigranularity attribute reduction is a
framework which processes information from a new
perspective. Actually, the multigranularity attribute
reduction can consider the differences of the dif-
ferent granularities to generate the multigranularity
reduct. Generally speaking, a natural way of finding
multigranularity reduct is to generate reduct one by
one in terms of each granularity. Nevertheless,
employing all the granularities to generate reducts
may be too time-consuming as the number of
granularities increasing. To improve the time effi-
ciency, given a set of granularities, fusing the in-
formation over some granularities of themmay be an
interesting attempt, such as only the finest granu-
larity and the coarsest granularity are applied.

From the discussions above, the motivation of this paper
is to construct a framework which can not only take the
requirements of different decision classes into account but
also realize the attribute reduction from multigranularity
view. For one thing, to select attributes from the viewpoint of
different decision classes, an ensemble selector [30] with
majority voting strategy is applied. For another thing, to
realize the attribute reduction from multigranularity view, a
set of radii are employed to construct the neighborhood
based multigranularity, then the new attribute reduction will
be designed in terms of multigranularity view. ,e ensemble
selector selects key condition attributes for different decision
classes, and the multigranularity view may provide new
strategies for more abilities related to the reduct. Immedi-
ately, the all process of constructing multigranularity at-
tribute reduction is given in the following three steps:

(1) Firstly, the multigranularity structure is constructed in
terms of the radius-based neighborhood. A set of radii
sorted in ascending order are applied, and then different
granularities can be obtained in turn, i.e., the neigh-
borhood based multigranularity can be constructed.

(2) Secondly, to accelerate the process of computing
reduct, the finest granularity and the coarsest
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granularity instead of all the granularities are
employed.

(3) Finally, the fitness function searching strategy is
employed to compute reduct. In each iteration, the
candidate attribute can be derived from all or most of
the decision classes. In this process, the majority
voting strategy is employed to determine which
attribute to be added into the potential reduct.

,e main contribution of this work can be summa-
rized as the following aspects: (1) construct the neigh-
borhood based multigranularity related to the given
different radii; (2) design the attribute reduction from
multigranularity view; (3) combine the ensemble strategy
with the multigranularity attribute reduction; (4) the
experimental results are conducted on 15 UCI data sets,
and the experimental analyses demonstrate that our al-
gorithms can be effective in the classification-oriented
attribute reduction and efficient in the computational for
generating reduct.

,e structure of this paper is organized as follows. In
Section 2, following some basic notions with respect to
neighborhood rough set, the neighborhood based multi-
granularity is constructed. In Section 3, the frequently used
measures and the traditional attribute reduction are pre-
sented. Section 4 introduces the ensemble selector from
local view into the traditional framework firstly, and then
the Multi-Granularity View for Computing Reduct (MG-
VCR) is presented. ,e experimental results and the cor-
responding analyses are shown in Section 5. We conclude
some remarks and perspectives for future research in
Section 6.

2. Neighborhood-Based Multigranularity

In rough set theory, neighborhood [32] is an effective way to
realize the information granule. It not only implies a simple
way to express the information granules but also provides us
a natural direction to construct the concept of the
multigranularity.

Similar to other rough set theory [31, 33–36], the
neighborhood rough set can also be formed in a decision
system such that D � 〈U, AT∪D〉: U is the set of the
samples, called the universe; AT is the set of the condition
attributes which characterize properties of samples; D is
the set of decision attributes for labeling samples. Note
that the problem of single decision attribute is mainly
discussed in this paper. ,erefore, we use D � d{ } in which
d is the considered single decision attribute. ∀x ∈ U and
d(x) denotes the label or decision value of sample x.
Assuming that the labels of samples are category, then
an equivalence relation over d can be defined such
that INDd � (x, y) ∈ U × U : d(x) � d(y) , by INDd, a
set of the decision classes can be obtained such that
U/INDd � X1, X2, . . . , Xq . Furthermore, ∀Xp ∈ U/INDd

is referred to as the p-th decision class in rough set theory.
Specially, the decision class which contains the sample x is
denoted by [x]d.

Definition 1. Given a decision system D, ∀A⊆AT, consider
a radius δ, then a neighborhood relation can be defined as

N
δ
A � (x, y) ∈ U × U : ΔA(x, y)≤ δ , (1)

where ΔA(x, y) is the distance between samples x and y
through using the information offered by A. Note that the
Euclidean distance is employed in this paper.

Following equation (1), it is not difficult to construct the
neighborhood of sample x such that

N
δ
A(x) � y ∈ U : ΔA(x, y)≤ δ . (2)

Definition 2. Given a decision systemD, U/INDd � X1, X2,

. . . , Xq}, ∀A⊆AT and ∀Xp ∈ U/INDd, the neighborhood
lower and upper approximations of Xp in terms of A are
defined as

Xp
δ
A

� x ∈ U : N
δ
A(x)⊆Xp ;

Xp

δ
A

� x ∈ U : N
δ
A(x)∩Xp ≠∅ .

(3)

From the viewpoint of the GrC, Nδ
A(x) can also be

regarded as the neighborhood-based information granule
[37–39]. Obviously, different values of δ can generate dif-
ferent results of Nδ

A(x). Supposing that a set of the radii
T � (δ1, δ2, . . . , δn) in ascending order is considered, then
given a sample x ∈ U, a set of the neighborhoods of x will be
derived such that (N

δ1
A (x), N

δ2
A (x), . . . , N

δn

A (x)). ,ese
different scales of the neighborhoods imply a structure of
multigranularity [25, 37, 40] (in this paper, a neighborhood
and a granularity are equivalent terms). It is mainly because
a smaller neighborhood expresses a finer granularity while a
greater neighborhood expresses a coarser granularity. ,e
details can be referred to Figure 1.

Figure 1 shows us the variation of the neighborhood with
the radius increasing. It should be noticed that, in real-world
applications, the samples in the given decision system may
process n attributes, and then the corresponding neigh-
borhood can be shown in n-dimensional situation. To
simplify the description, Figure 1 shown is drawn in 2-di-
mensional situation. In sub-figure 1, given a radius δ1, the
samples x1, x2, x3 are in the neighborhood of the testing
sample y; in sub-figure 1, the radius is enlarged as δ2, then
more samples, i.e., samples x4 and x5, are included in the
neighborhood of y; · · ·; finally, if the radius enlarged as δn in
sub-figure 1, then more samples such that x6, x7, x8, x9, x10
fall into the neighborhood of y. In this process, sub-figure 1
implies the finest granularity and sub-figure 1 implies the
coarsest granularity.

As what has been pointed out in Figure 1, applying
different radii can generate different granularities, then the
multigranularity lower approximation and multigranularity
upper approximation can be established through using
different radii, the details expressions can be shown as

M Xp 
A

� Xp
δ1
A

, Xp
δ2
A

, . . . , Xp
δn

A
 ;

M Xp 
A

� Xp

δ1
A

, Xp

δ2
A

, . . . , Xp

δn

A
 .

(4)
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3. Attribute Reduction

3.1. Some Measures. By considering the relation between
neighborhood-based information granule and decision
classes, a lot of measures have been explored in neighbor-
hood rough set theory, especially for characterizing un-
certainties and neighborhood-based attribute reduction. In
this section, four measures will be addressed.

Approximation quality is one of the most frequently
used measures, and it can be used to evaluate the certainty of
belongingness by using the explanation of lower approxi-
mation in rough set model. ,e formal definition of ap-
proximation quality is shown as follows.

Definition 3. [41] Given a decision system D,
U/INDd � X1, X2, . . . , Xq , ∀A⊆AT, the approximation
quality of d with respect to A is defined as

c
δ
(A, d) �

∪ q
p�1Xp

A





|U|
, (5)

where | · | denotes the cardinality of the set.
Approximation quality reflects the percentage of the

samples which belong to one of the decision classes by the
explanation of lower approximations. ,erefore, the greater
the value of the approximation quality, the higher the degree
of certain belongingness by the explanation of lower ap-
proximations in RST.

Conditional entropy is another widely accepted measure
which can characterize the discriminating ability of con-
dition attributes related to decision attribute. Presently, with
respect to different requirements, various definitions of the
condition entropies have been proposed [6–8, 42–44]. A
typical form of the conditional entropy is shown as follows.

Definition 4. [44] Given a decision system D, ∀A⊆AT, the
conditional entropy of d with respect to A is defined as

E
δ
(A, d) � −

1
|U|


x∈U

N
δ
A(x)∩ [x]d



 · log
Nδ

A(x)∩ [x]d




Nδ
A(x)




 ,

(6)

where the base of the logarithm “log” is 2.

,e lower the value of the conditional entropy, the
higher the discriminating ability of the condition attributes
related to the decision attribute.

Similar to conditional entropy, neighborhood discrim-
ination index [45] can also be used to characterize the ability
of condition attributes to distinguish samples with different
labels. However, conditional entropy requires the neigh-
borhood based information granules derived from the
neighborhood relation, and obtaining the neighborhood of
each sample from neighborhood relation is time-consuming.
To improve the time efficiency, Wang et al. [45] have
proposed the measure of neighborhood discrimination in-
dex which can be directly obtained by the neighborhood
relation instead of neighborhoods. And, the formal defini-
tion of the neighborhood discrimination index can be shown
as follows.

Definition 5. [45] Given a decision system D, ∀A⊆AT, the
neighborhood discrimination index of d with respect to A is
defined as

H
δ
(A, d) � log

Nδ
A




Nδ
A ∩ INDd



. (7)

,e lower the value of the neighborhood discrimination
index, the higher the discriminating ability of the condition
attributes related to the decision attribute.

Another measure deserved to be investigated is neigh-
borhood decision error rate (NDER) which was proposed by
Hu et al. [5]. NDER is commonly used to evaluate the
classification performance of the neighborhood classifier
(NEC) [46] in neighborhood rough set theory. Immediately,
the formal definition of NDER can be defined as the follows.

Definition 6. [47] Given a decision system D, ∀A⊆AT, the
neighborhood decision error rate of d with respect to A is
defined as

NDERδ
(A, d) �

| x ∈ U : Pre(x)≠d(x){ }|

|U|
, (8)

where Pre(x) is the predict label of the sample x derived
from the used classifier.

x1

x2 x3

x1
x5

x4

x8

x10

x9 x1

x2 x3 x4

x5

x7 x6

x2 x3

y yy
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Figure 1: Variations of neighborhood.
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,e neighborhood decision error rate shows the per-
centage of samples which are misclassified with using
neighborhood classifier.

3.2. Attribute Reduction. Attribute reduction [48–53] is one
of the key topics in rough set. Generally speaking, the
purpose of attribute reduction is to remove the redundant
attributes by a given constraint, and the constraint can be
constructed by the measure such as approximation quality
and conditional entropy. Up to now, many different types of
the attribute reduction with respect to different re-
quirements have been explored by researchers. However, it
can be found that those definitions of attribute reduction
may have similar structure. And, the general form of at-
tribute reduction [54, 55] can be shown as follows.

Definition 7. Given a decision system D, ∀A⊆AT, δ is a
given radius, A is called the reduct in terms of the measure ψ
if and only if

(1) A meets the ψ-constraint
(2) ∀A′ ⊂ A, A′ does not meet the ψ-constraint

In Definition 7, ψ is a given measure which can be “c,”
“E,” “H,” or “NDER” in this paper. It is noted that the
ψ-constraint should vary with the used measure ψ, and this
can be further classified as two aspects:

(1) If a greater value is requested through using the
measure ψ (such as ψ � c), then the ψ-constraint can
be set as no lower value obtained than using the raw
attribute set, i.e., ψδ(A, d)≥ψδ(AT, d)

(2) If a lower value is requested through using the
measure ψ (such as ψ � NDER), then the ψ-con-
straint can be set as no greater value obtained than
using the raw attribute set, i.e., ψδ(A, d)≤ψδ(AT, d)

Not only the definitions of attribute reduction have the
similar structure but also the reducts can be derived by the
similar searching strategy. Two main strategies are fre-
quently used to compute reducts, i.e., exhaustive searching
strategy and fitness function-based searching strategy. ,e
former one is computationally more expensive than the
latter one when dealing with data with the rapidly growing
scale of samples, and the latter one is usually adopted due to
its computational efficiency. It is mainly because different
from the exhaustive strategy, fitness function-based
searching strategy applies the greedy mechanism to com-
pute reduct. ,erefore, the reducts with respect to the
measures shown in Section 3.1 will be computed by the
similar fitness function-based searching strategy. To realize
the fitness function-based searching strategy, the signifi-
cances are required to evaluate the importance of the at-
tributes. ,en, the significance of attribute can be shown as
follows:

Sigδψ ai, A, d(  � ψδ
A∪ ai , d(  − ψδ

(A, d); (9)

Sigδψ ai, A, d(  � ψδ
(A, d) − ψδ

A∪ ai , d( , (10)

where ψδ(A, d) is the value obtained by using the in-
formation overA in terms of dwith using themeasure ψ.,e
significance function shown in equatuon (9) indicates that
the greater the value of the ψδ(A∪ ai , d), the more im-
portant the attribute ai is added intoA; while the significance
function shown in equation (10) indicates that the lower the
value of the ψδ(A∪ ai , d), the more important the attribute
ai is added into A.

As a frequently used method of this fitness function-
based searching strategy, the addition method [30, 47] be-
gins with an empty set and then selects the attribute with the
maximum significance into the potential reduct in each
iteration until the constraint is satisfied. ,en, in the fol-
lowing context, we will use the addition method to further
realize the fitness function-based searching strategy for
computing reduct in terms of the measure ψ. ,en, the
addition method for computing reducts is shown in
Algorithm 1.

Obviously, it is trivial to compute that the time com-
plexity of Algorithm 1 is O(|U|2 · |AT|2). ,is can be at-
tributed to the following two aspects: (1) the time complexity
for computing neighborhood relation isO(|U|2) because any
two samples in U should be applied for computing distance;
(2) in the worst case, no attributes can be deleted from the
raw attributes and then the iteration shown in Step 3 should
be executed |AT| times, and in the i-th iteration, Step 3 will
be executed |AT| − i + 1 times. Finally, the time complexity
of Algorithm 1 is O(|U|2 · |AT|2).

4. Ensemble-Based Attribute Reduction from
Multigranularity View

4.1. Ensemble-Based Attribute Reduction. Generally speak-
ing, it is observed that the algorithms for computing reducts
can be termed as a process of searching attributes. And, we
can see from Algorithm 1 that when selecting attributes, the
decision classes are considered as a union (global view), but
the requirements of different decision classes have not been
fully considered. In other words, more attention can be paid
to the key condition attributes related to different decision
classes (local view).

Presently, there is an increasing awareness of local view
in rough set theory. ,is is mainly because local view may
not only provide us more details of data but also offer us a
direction to study the relationship among structures with
respect to different decision classes. For instance, Chen and
Zhao [29] have proposed the concept of local measures and
investigated the structure of local attribute reduction in
fuzzy rough set decision system, which provided a new
insight into the problem of attribute reduction. Following
this strategy, Song et al. [31] have investigated the local
attribute reduction from the viewpoint of decision cost,
different from the traditional approach which considered all
decision classes from the global view, and they focused on
the attributes with close connection to one given decision
class than other ones. Yao and Zhang [53] have investigated
the relationship between the classification-based attribute
reduction (global view) and class-specific attribute reduction
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(local view). ,ough some previous results about local
approaches have been explored in rough set theory, few of
them have paid attention to the ensemble strategy from the
local view. ,erefore, to consider the different requirements
of different decision classes, the ensemble strategy from local
view may be a feasible solution. Immediately, the local
measures [56] and the ensemble strategy from local view can
be presented in the following context.

,e flowing Definition 8 will show the local measures,
and the four local measures corresponding to the measures
shown in Section 3.1 can be defined as

Definition 8. Given a decision system D, U/INDd � X1,

X2, . . . , Xq}, ∀A⊆AT, ∀Xp ∈ U/INDd,

(1) ,e local approximation quality of Xp with respect
to A is cδ(A, Xp) � |Xp

A
|/|Xp|

(2) ,e local conditional entropy of Xp with respect toA
is Eδ(A, Xp) � − (1/|Xp|)x∈Xp

(|Nδ
A(x)∩ [x]d|·

log(|Nδ
A(x)∩ [x]d|/|Nδ

A(x)|))

(3) ,e local neighborhood discrimination index of Xp

with respect to A is Hδ(A, Xp) � log(|Nδ
A|/

|Nδ
A ∩Xp|)

(4) ,e local neighborhood decision error rate of Xp

with respect to A is NDERδ(A, Xp) � |{x ∈ Xp :

Pre(x)≠ d(x)}|/|Xp|

Different from the measures shown in Section 3.1, the
local measures only apply the specific decision class instead
of all the decision classes together. For instance, the ap-
proximation quality shown in Section 3.1 reflects the
percentage of the samples which belong to one of the
decision classes by the lower approximations, while the
local approximation quality reflects the percentage of the
samples which belong to the decision class Xp by the
corresponding lower approximation. Furthermore, the
significances in terms of the decision class Xp can also be
shown as follows:

Sigδψ ai, A, Xp  � ψδ
A∪ ai , Xp  − ψδ

A, Xp ; (11)

Sigδψ ai, A, Xp  � ψδ
A, Xp  − ψδ

A∪ ai , Xp . (12)

,e significance with respect to Xp shows the degree of
importance of the attribute ai in the individual decision class
of Xp. Similarly, equations (11) and (12) are suitable for

different local measures; if a greater value is requested, then
equation (11) is applied; otherwise, equation (12) is applied.

As the local measures and significances are presented
above, then the ensemble strategy from the local view will be
applied into the process of computing reduct. ,is process
contains two key steps shown as follows:

(1) Each decision class selects an attribute with the
maximal value of significance with respect to itself in
each iteration

(2) ,e majority voting is employed to determine which
attribute to be added into the potential reduct. It is
noticed that the attribute with the highest frequency
is selected as the candidate attribute each iteration,
and if there are more than one attributes with the
same highest frequency, the attribute which ranks
lower/lowest will be selected

Take the reduct in terms of approximation quality as an
example, the attribute with the maximal growth of the
approximation quality is selected in each iteration using
Algorithm 1; while in the new ensemble-based algorithm,
the attribute with maximal growth of most of the lower
approximations (local approximation quality) of different
decision classes is selected. ,e reason comes from that if
most of the lower approximations of decision classes have
been increased, then the approximation quality in union can
also increase.,e following example will show the process of
the ensemble strategy among different decision classes.

Example 1. As the decision system shown in Table 1, U �

x1, x2, . . . , x6  is the set of samples, AT � a1, a2, . . . , a6  is
the set of condition attributes, and d is the decision attribute.

It is obtained that U/INDd � X1, X2, X3 , and
X1 � x1, x2 , X2 � x3, x4, x5 , and X3 � x6 .

Take the measure of “c” as an example, supposing that
δ � 0.08, if AT is used, then it is obtained that
cδ(AT, d) � 0.5000.

If Algorithm 1 is applied, then the obtained reduct is
A1 � a4, a5  as cδ(A1, d) � 0.6667> cδ(AT, d). Immedi-
ately, cδ(A1, X1) � 1.0000, cδ(A1, X2) � 0.6667, and
cδ(A1, X3) � 0 can be obtained. If the ensemble strategy is
employed in the process for computing reducts, then the
obtained reduct is A2 � a1, a2 . Actually, in the first iter-
ation of this new process, the attribute with the maximum
value of significance with respect to the decision class of

Inputs: decision system D, radius δ.
Outputs: a reduct: A.
(1) A⟵∅;
(2) Compute ψδ(AT, d);
(3) Do
(1) ∀ai ∈ AT − A, compute Sigδψ(ai, A, d), select b such that Sigδψ(b, A, d) � max Sigδψ(ai, A, d) : ∀ai ∈ AT − A ;
(2) A � A∪ b{ };
Until A meets the given ψ-constraint;

(4) Return A.

ALGORITHM 1: Addition method for computing reduct (AMCR).
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X1, X2, X3 is a1, a5, a2, respectively. ,is time the three
attributes are with the same frequency. As a1 ranks lowest in
the first iteration, then a1 is added into the potential reduct.
In the next iteration, the selected attribute with respect to the
decision class of X1, X2, X3 is a2, a2, a2, respectively, then a2
is the attribute with the highest frequency. ,erefore, a2 is
added into the potential reduct. Furthermore, the constraint
is satisfied as cδ(A2, d) � 0.8333> cδ(AT, d). Immediately,
cδ(A2, X1) � 1.0000, cδ(A2, X2) � 1.0000, and cδ(A2, X3) �

0 can be obtained.
It is observed that compared with the Algorithm 1, the

ensemble strategy is employed, then the value of the local
approximation quality with respect to the decision class X2
has increasing, and the values of local approximation quality
with respect to the decision class X1 and X3 remain un-
changed. ,e above results tell us that the ensemble strategy
among different decision classes can keep or improve the
performance of single decision class. And, the similar
mechanism can be applied for other measures.

4.2. Multigranularity Attribute Reduction. Algorithm 1
shows the process of generating reducts over one and
only one granularity, i.e., the algorithm from single-gran-
ularity view. As pointed in Section 1, the single-granularity
attribute reduction has some inherent limitations.,erefore,
in the following context, the attention can be paid to the
multigranularity attribute reduction. And, the realization of
multigranularity attribute reduction is made up with two key
processes: (1) construct the multigranularity structure in
RST; (2) realize the attribute reduction from the multi-
granularity view. As shown in Section 2, given a set of radii
T � (δ1, δ2, . . . , δn) which is in ascending order, it follows
that different neighborhoods can be constructed by applying
different radii. Furthermore, the multigranularity structure
[28, 40, 57] can be constructed. ,en, the multigranularity
attribute reduction can be designed in the following
contexts.

Definition 9. Given a decision system D,
U/INDd � X1, X2, . . . , Xq , ∀A⊆AT, an ascending order
set T , A is called the multigranularity reduct in terms of the
measure ψ if and only if

(1) A meets the ψG-constraint
(2) ∀A′ ⊂ A, A′ does not meet the ψG-constraint

Similar to the Definition 7, themeasure ψ can also be “c,”
“E,” “H,” or “NDER,” and the ψG-constraint is a multi-
granularity constraint which should also vary with the used
measure ψ. But, the result should satisfy the multigranularity
constraint instead of the single-granularity. Let us see the
multigranularity constraint; a simple way to design the
multigranularity constraint is to fuse all the constraints [25]
with respect to all the considered granularities. However, it
will bring us two challenges: (1) the complexity of the fused
constraint will lower the speed of reduction process; (2) too
many constraints will result in the difficulty of eliminating
attributes. ,erefore, to overcome the limitations above, we

will develop a quick process which is based on the fusion
related to the finest and the coarsest granularities. It is
mainly because that, for a given testing sample, applying the
finest granularity, the fewest neighbors are obtained and
applying the coarsest granularity, the most neighborhoods
are obtained. And, this performance can also be clearly
observed from Figure 1 in Section 2.

Section 4.1 shows the ensemble-based attribute re-
duction with majority voting strategy, the context in section
analyzes the multigranularity view, and then the new pro-
posed algorithmwill combine themultigranularity view with
the ensemble strategy together. ,e new algorithm will be
termed as Multi-Granularity View for Computing Reduct
(MG-VCR). Similar to Algorithm 1, MG-VCR compute
reducts through using the addition method. However, there
are two main differences summarized as follows:

(1) MG-VCR selects attributes from the viewpoints of
different decision classes instead of the union, and
the ensemble selector with the majority voting
strategy is employed to select the candidate attribute

(2) ,e multigranularity view will be employed in the
MG-VCR, and as only the finest granularity and the
coarsest granularity are applied, then given a radii set
T � (δ1, δ2, . . . , δn), only δ1 and δn are employed in
the process of computing reducts.

,e first one gives a general framework about how to
select candidate attributes, and the second one shows the
strategy about how to select granularities in MG-VCR.,en,
the detailed process using the addition method will be
designed as follows:

In Algorithm 2, the time complexity of computing
reduct is O(q · |U|2 · |AT|2), in which q is the number of
decision classes. Step 3 is the key in the process of computing
reducts, what should be emphasized is the context shown as
follows:

(1) ,e finest and the coarsest granularity each takes up
the weight ηδt

to realize the multigranularity view,
and the condition ηδ1 + ηδn

� 1 holds.
(2) (i) the process of the ensemble selector among the

different decision classes Xp(p � 1, 2, . . . , q); (ii) the
majority voting mechanism which is used for
selecting the candidate attributes. It is noted that the
“Psig” is the weighted average values related to the
decision class “Xp.” In this process, we first compute
the weighted average values related to each decision
class through using the finest granularity and the
coarsest granularity, and then the ensemble-based

Table 1: An example of decision system.

ID a1 a2 a3 a4 a5 a6 d

1 0.1419 0.8147 0.1576 0.0975 0.6557 0.7577 1
2 0.0357 0.9058 0.9706 0.2785 0.5357 0.7431 1
3 0.3922 0.5469 0.9572 0.5469 0.8491 0.9157 2
4 0.6555 0.6553 0.4854 0.7922 0.9340 0.7922 2
5 0.3721 0.6354 0.5432 0.8344 0.6787 0.9595 2
6 0.7922 0.3429 0.9572 0.9595 0.5768 0.0561 3
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strategy shown in Example 1 can be applied to select
the suitable attribute.

(3) ,e multigranularity constraint (ψG-constraint) re-
quires the fusion value of ψδt (A, d), (t � 1, n) meet
the constraint with respect to the fusion value of the
ψδt (AT, d), (t � 1, n), respectively. ,e fusion of the
considered different granularities can be weighted
mean value or harmonic mean value, etc. It is noticed
that the weighted mean value is used in our
experiment.

Finally, it is noticed that if only one granularity is used in
this process, the algorithm will degenerate into single-
granularity process, i.e., Single-granularity View for Com-
puting Reduct (SG-VCR). Given the radii set
T � (δ1, δ2, . . . , δn), SG-VCR should execute n times to
obtain all the reducts, while MG-VCR only need execute one
which may reduce the elapsed time as it applies the mul-
tigranularity view.

,e following example shows us a general process of the
Multi-Granularity View for Computing Reduct (MG-VCR).
Suppose that δ1 � 0.03, δn � 0.30, and ηδ1 � ηδn

� 1/2
(η0.03 � η0.30 � 1/2).

Example 2. As the decision system shown in Table 1, take
approximation quality as an example, as
cδ1(AT, d) � 0.6667, cδn (AT, d) � 0.3333 can be obtained,
then the fusion value by the raw attributes (AT) is 0.5000.

It is noted that the significances of attributes are the
also the fusion values (weighted average values). As q � 3
can be obtained, the significances of each attribute will be
computed 3 times to obtain the importance degree re-
lated to each decision classes. Immediately, the most
important attribute related to each decision classes will
be obtained. In this process, the attribute with the
maximum fusion value of significance with respect to the
decision class of X1, X2, X3 is a1, a2, a1, respectively. ,en,
a1 is added into the potential reduct (A) using the ma-
jority voting strategy. ,is employs the same strategy
shown in Example 1.

,en, we should know if the potential reduct meets the
ψG-constraint. Finally, as cδ1(A, d) � 0.6667, cδn (A, d) �

0.5000 can be obtained, the fusion value by the A is 0.5834
which is larger than the fusion value by the raw attributes.
,erefore, the reduct derived from the Algorithm 2 is
A � a1 .

5. Experimental Analysis

In this section, to validate the effectiveness of MG-VCR
proposed in this paper, 15 UCI data sets have been employed
to conduct the experiment. ,e basic description of data
information is shown in Table 2. All the experiments have
been carried out on a personal computer with Windows 7,
dual-core 1.50GHz CPU, 8GB memory. ,e programming
language is MATLAB R2016a.

Fivefold cross-validation (5-CV) is used for evaluating
the effectiveness of the proposed new algorithm. 5-CV di-
vides all samples into 5 groups of the same size, and then
four groups compose the training set to compute the reduct,
while the one group composes the testing set to obtain the
results for comparisons. ,e algorithm process repeats 5
times in turn, and the mean values are recorded. Besides, in
the previous works [30, 58], it has been experimental proved
that [0.1, 0.3] is an optimal candidate interval for the radius,
where most of the classifiers can get good classification
performance; to this end, 10 different values of δ such that
0.03, 0.06, . . . , 0.30 are selected. For SG-VCR, all the 10 radii
will be employed to compute 10 reducts. As only the finest
and the coarsest granularities are employed in the MG-VCR,
the radii applied are 0.03 and 0.30, and the weight values are
set as ηδ1 � ηδn

� 1/2 (η0.03 � η0.30 � 1/2) in this paper; it
should be emphasized that the MG-VCR only obtain a
reduct using the given radii.

In the following context, “single-granularity algorithm”
and “multigranularity algorithm” can be applied to denote
the algorithm of Single-granularity View for Computing
Reduct (SG-VCR) and Multi-Granularity View for Com-
puting Reduct (MG-VCR), respectively. And, the results
related to different reducts can be classified as two types. (1)

Inputs: decision system D, U/INDd � X1, X2, . . . , Xq , a set of radii T � (δ1, δ2, . . . , δn).
Outputs: a multigranularity reduct: A.
(1) A⟵∅;
(2) Compute ψδt (AT, d), (t � 1, n);
(3) Do

(1) For p � 1 to q
∀ai ∈ AT − A, compute Sigψδt (ai, A, Xp);
∀ai ∈ AT − A, PSigψ(a

p
i , A, Xp) �  ηψδt · (Sigψδt (ai, A, Xp));

PSigψ(a
p

j , A, Xp) � max PSigψ(a
p

i , A, Xp) : ∀ai ∈ AT − A ;
End

(2) Record the frequencies of each attribute a
p

j and select the one with the highest frequency: b;
(3) A � A∪ b{ };
(4) Compute ψδt (A, d);
Until A meets the ψG-constraint;

(4) Return A.

ALGORITHM 2: Multi-Granularity View For Computing Reduct (MG-VCR).
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APP, ENT, DIS, and ERR denote the results related to the
reduct derived from single-granularity algorithm in terms
of approximation quality, conditional entropy, neighbor-
hood discrimination index, and neighborhood decision
error rate, respectively. And, these reducts can be collec-
tively termed as single-granularity reducts. (2) MGAPP,
MGENT, MGDIS, and MGERR denote the results related
to the corresponding reduct derived from the multi-
granularity algorithm in terms of approximation quality,
conditional entropy, neighborhood discrimination index,
and neighborhood decision error rate, respectively. And,
these reducts can be collectively termed as multigranularity
reducts.

5.1. Comparisons among the Lengths of Reducts. Table 3
shows the comparisons among the lengths of reducts, and
the reducts are derived from single-granularity algorithm
and multigranularity algorithm in terms of different
measures.

With a careful investigation of Table 3, it is not difficult
to observe the following.

In the aspect of the lengths, the reducts derived from
multigranularity algorithm are greater than those derived
from single-granularity algorithm generally. In other words,
more attributes are added into the reduct set with using the
multigranularity algorithm. ,ough there may exist some
fluctuations between the measures of “DIS” and “MGDIS,”
the differences between the lengths with respect to the “DIS”
and “MGDIS” are not obvious. Furthermore, the average
values in the last row can demonstrate that reducts derived
from multigranularity algorithm need more attributes to be
added into the reduct than single-granularity algorithm. To
sum up, the multigranularity algorithm can almost coincide
with that of single-granularity algorithm in the lengths of
reducts.

5.2. Comparisons among the ElapsedTime. Table 4 shows the
comparisons among the elapsed time related to single-
granularity algorithm and multigranularity algorithm in
terms of different measures. It should be noticed that the
elapsed time of the single-granularity algorithm is the
summate of the processes through using the constraints
related to the 10 granularities, and the elapsed time of the
multigranularity algorithm is the one process using the
fusion constraint related to the finest granularity and the
coarsest granularity. In this experiment, the obtained
multigranularity reduct will represent all the reducts related
to all the given granularities, and the finest granularity and
the coarsest granularity are only employed to select the
attributes. ,erefore, the multigranularity reduct is more
than the reduct related to the used granularities, and it will
be employed over all the given 10 granularities. Besides, the
unit of the elapsed time is “s.”

With a careful investigation of Table 4, it is not difficult
to observe the following:

(1) ,e multigranularity algorithm requires less time
compared with the corresponding single-granu-
larity algorithm. Furthermore, the total elapsed
time of single-granularity algorithm in terms of all
the fixed radii is five times as much as the elapsed
time of multigranularity algorithm generally. It is
mainly because the single-granularity algorithm
applied all the given granularitities for computing
reducts while the multigranularity algorithm only
applied the finest granularity and the coarsest
granularity.

(2) ,ere also exists an exception: in the data set “Wine
Quality” (ID: 15), the elapsed time of computing
“MGDIS” is greater than computing “DIS.” ,is can
mainly attribute to the too great value of the length;
this can be observed in Table 3; the “MGDIS” is
almost eight times as long as the “DIS.”

(3) Besides, the average elapsed time listed in the last
row demonstrates that the multigranularity algo-
rithm requires less time than single-granularity al-
gorithm. To sum up, the elapsed time in Table 4
demonstrates that the multigranularity algorithm
can improve the time efficiency compared with
single-granularity algorithm.

5.3. Comparisons among the Classification Accuracies Using
NEC. Figure 2 shows us the comparisons among classifi-
cation accuracies with respect to the single-granularity
reducts and the multigranularity reducts using NEC. It is
noted that the multigranularity algorithm obtains one
multigranularity reduct, and this reduct will represent all the
reducts related to n (n� 10 in our experiment) granularities.
,erefore, the one multigranularity reduct will be employed
under all the granularities. In the following charts, the X-axis
represents different kinds of reducts, and the Y-axis rep-
resents the corresponding values of classification accuracy.

With a careful investigation of Figure 2, it is not difficult
to observe the following:

Table 2: Descriptions of data sets.

ID Data sets Samples Attributes Decision
classes

1 Breast cancer Wisconsin
(diagnostic) 569 30 2

2 Breast tissue 106 9 6

3 Climate model simulation
crashes 540 20 2

4 Dermatology 366 34 6
5 Fertility 100 9 2
6 Forest type mapping 523 27 4
7 Gesture phase segmentation 9901 18 5
8 Ionosphere 351 34 2

9 Molecular biology
(promoter gene sequences) 106 57 2

10 QSAR biodegradation 1055 41 2
11 Seeds 210 7 3

12 Statlog (German credit
data) 1000 24 2

13 Vertebral column 310 6 2
14 Wine 178 13 3
15 Wine quality 6497 11 7
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Table 3: Comparisons among the lengths of reducts (the greater values are in bold).

ID APP MGAPP ENT MGENT DIS MGDIS ERR MGERR
1 4.5000 4.0000 2.4400 3.2000 30.0000 25.0000 21.5200 18.6000
2 2.4800 5.0000 1.8600 2.2000 1.0200 4.2000 2.8400 5.2000
3 4.4400 5.0000 2.5600 3.0000 20.0000 9.6000 1.5800 1.0000
4 13.4200 18.2000 7.0400 11.8000 32.1600 26.8000 21.9600 32.8000
5 7.0200 7.4000 7.3800 8.0000 9.0000 8.4000 1.1000 1.0000
6 11.3400 18.0000 3.8600 11.0000 13.6400 19.2000 9.0000 7.8000
7 3.1600 7.8000 3.7800 6.2000 18.0000 16.2000 5.0400 8.6000
8 9.5600 7.0000 1.4200 3.0000 12.8600 6.2000 2.4200 3.8000
9 2.8800 4.4000 2.0000 2.6000 7.0000 7.0000 2.0000 3.0000
10 10.3600 18.2000 4.9200 10.8000 16.8200 34.4000 17.3200 21.2000
11 3.1000 3.8000 3.3400 4.0000 7.0000 6.2000 7.0000 4.0000
12 11.0600 10.8000 10.5000 11.0000 24.0000 12.6000 3.1000 2.2000
13 4.0800 3.6000 2.2000 4.2000 5.5000 6.0000 3.5600 4.2000
14 6.4780 5.2000 4.9200 6.0000 13.0000 12.2000 10.7400 11.0000
15 6.2400 7.6000 4.1800 6.6000 1.0000 8.2000 1.0000 1.0000
Avg 6.6745 8.4000 4.1600 6.2400 14.0600 13.4800 7.3453 8.3600

Table 4: Comparisons among the elapsed time.

ID APP MGAPP ENT MGENT DIS MGDIS ERR MGERR
1 71.4247 13.7473 66.0414 11.1967 301.0050 50.9976 220.0193 39.6363
2 0.6136 0.2186 1.1509 0.1183 0.2982 0.1915 0.7021 0.2427
3 32.0207 7.0614 33.5664 4.7105 88.3461 11.0420 11.6320 1.5377
4 127.4708 31.6491 124.9537 22.5923 209.1630 38.6443 173.5181 41.5509
5 0.5358 0.1365 1.2395 0.1694 0.6159 0.1107 0.1189 0.0436
6 213.2737 60.5530 139.8738 45.7522 196.7573 60.2659 191.1344 35.8713
7 3.9206E+ 03 1.8569E+ 03 1.1352E+ 04 1.4564E+ 03 1.5761E+ 04 2.8735E+ 03 4.6174E+ 04 1.3484E+ 04
8 43.4906 7.0300 14.2405 3.1897 99.5249 6.4197 12.1248 3.8759
9 0.7876 0.2522 2.5775 0.1462 10.2326 2.0908 1.5736 0.4877
10 280.6782 54.6040 341.0450 72.6792 118.3220 31.5351 675.3199 150.4289
11 2.7859 0.4199 3.1873 0.4339 3.1362 0.5318 2.1888 0.4149
12 358.8993 75.2890 513.9914 69.0625 537.2714 75.0350 110.9560 15.7937
13 2.7859 0.5061 3.1873 0.5695 3.1362 0.6182 2.1888 0.5042
14 4.8653 0.9244 7.3322 0.9314 6.6377 1.3385 5.8532 1.2405
15 2.3221E+ 04 1.6156E+ 04 5.0364E+ 04 5.7845E+ 03 3.5816E+ 03 1.7434E+ 04 3.5871E+ 03 673.4737
Avg 1885.4155 1217.6861 4197.8925 498.1635 1394.4698 1372.4214 3411.2287 963.2735
,e lower values are given in Italics.
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Figure 2: Continued.
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Figure 2: Comparisons among the classification accuracies with using NEC. (a) Breast Cancer Wisconsin (Diagnostic). (b) Breast Tissue.
(c) Climate Model Simulation Crashes. (d) Dermatology. (e) Fertility. (f ) Forest Type Mapping. (g) Gesture Phase Segmentation.
(h) Ionosphere. (i) Molecular Biology (Promoter Gene Sequences). (j) QSAR Biodegradation. (k) Seeds. (l) Statlog (German Credit Data).
(m) Vertebral Column. (n) Wine. (o) Wine Quality.
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(1) ,e multigranularity reducts can improve classifi-
cation accuracy compared with the single-granu-
larity reducts. Take the data set of “Ionosphere” (ID:
8) as an example, the mean values of the classification
accuracies derived from the single-granularity
reducts are 0.8800, 0.8726, 0.8074, are 0.8686 with
using APP, ENT, DIS, and ERR, respectively. While
the mean values of the classification accuracies de-
rived from the multigranularity reducts are 0.9057,
0.9154, 0.8646, and 0.9023 using MGAPP, MGENT,
MGDIS, and MGERR, respectively. ,is demon-
strates that the attribute reduction from multi-
granularity view can improve the classification
accuracy.

(2) In the data set “Wine Quality” (ID: 15), the length
of reduct shown in Table 3 indicates that more
attributes are added into the reduct set using the
reduct “DIS,” while the mean value of classification
accuracy in terms of “MGDIS” is also much greater
than the value in terms of “DIS.” Besides, the
multigranularity reducts can generally improve the
classification performance than the single-granu-
larity reducts. ,is may indicate that though there
exists some difference among different granular-
ities, considering the finest and the coarsest
granularities may be a feasible way to introduce the
multigranularity thing into the attribute
reduction.

Table 5 shows the comparisons among the classification
accuracies related to the raw attributes, single-granularity
reducts, and multigranularity reducts. To felicitate the
readers, the greatest values of classification accuracy are in
bold, and the smallest values are in italics.

With a careful investigation of Table 5, it is not difficult
to observe the following:

(1) As for the measure related to the approximation
quality and neighborhood discrimination index,
among the comparisons, the largest value tends to be
the one related to the multigranularity reduct, and
the smallest value tends to be the one related to the
single-granularity reduct. It implies that overfitting
[59] may occur in most data sets using these single-
granularity reducts. In other words, the single-
granularity reducts perform better than the raw
attributes in training samples but perform worse in
testing samples.

(2) As for the measure related to conditional entropy
and neighborhood decision error rate, among the
comparisons, the largest value tends to be the one
related to the multigranularity reduct, and the
smallest value tends to be the one related to the raw
attributes.

(3) To sum up, whether the singe-granularity reducts
perform well or not, the multigranularity reducts can
improve the classification performance.

,e results shown in this subsection demonstrates that
the multigranularity view may suggest new trends for

improving the classification performances related to the
reducts.

Furthermore, the Wilcoxon Rank Sum Test method will
be employed for comparing the distributions with respect to
the classification accuracies derived from the single-gran-
ularity algorithm and multigranularity algorithm. ,e
purpose of our comparison is trying to reject the null-hy-
pothesis that the distributions of the classification accuracies
are significantly different. Assuming that the threshold is set
as 0.05, if the value is greater than 0.05, we then reject the
null-hypothesis, i.e., the distributions of the classification
accuracies are similar.

It is observed from Table 6 that the obtained values are
greater than 0.05 generally. As for the obtained values which
are less than 0.05, we can find from Figure 2 that the mean
values with respect to multigranularity reducts are greater
than those with respect to the single-granularity reducts
generally. Take the data set of “Wine Quality” (ID: 15) as an
example, in the comparison of “DIS & MGDIS,” the result
with the method is less than 0.05, but the mean value of
classification accuracy in terms of “DIS” and “MGDIS” is
0.4779 and 0.5507, respectively. ,e only exception is the
data set “Vertebral Column” (ID: 13), in the comparison of
“ERR & MGERR,” the mean value of classification accuracy
in terms of “ERR” and “MGERR” is 0.7768 and 0.6935,
respectively. To sum up, there is not much significant dif-
ference between these two distributions of classification
accuracies, and the multigranularity reducts even improve
the classification performance than the single-granularity
reducts.

5.4. Comparisons among the Classification Accuracies Using
SVM and CART. To further verify the effectiveness of
multigranularity algorithm, the other two popular classifiers
are also applied which are SVM [60–62] and CART [63]. To
make the comparison feasible, the mean classification ac-
curacies with respect to the single-granularity reduct are
computed by those responding 10 values.

Tables 7 and 8 display the comparisons among the
classification accuracies with respect to raw attributes, the
single-granularity reducts, and the multigranularity reducts
using SVM and CART, respectively. To felicitate the readers,
the greatest values of classification accuracy are in bold, and
the smallest values are in italics.

With a careful investigation of Tables 7 and 8, it is not
difficult to observe the following:

(1) In Table 7, the classification accuracies related to the
raw attributes are largest generally. And, in Table 8,
the percentage that the classification accuracies re-
lated to the raw attributes is largest and almost 55%.
It implies that overfitting occurs in most data sets
with using SVM or CART.

(2) ,e classification accuracies with respect to the
multigranularity reducts are greater than the single-
granularity reducts generally. Actually, in Table 7,
among the comparisons (15 UCI data sets), the
performance of “MGENT” is the best, the larger
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values take up 80% (12 data sets); and as for
“MGAPP,” “MGDIS,” and “MGERR,” they all get
66.7% (10 data sets). ,e similar performance can be
seen in Table 8, the performance of “MGDIS” and the
“MGERR” is the best, and the larger values both take
up 86.7% (13 data sets); and the suboptimal one is
“MGAPP” which gets 73.3% (11 data sets), the
performance of “MGENT” which gets 66.7% (10 data
sets).

(3) To sum up, the multigranularity reducts are superior
to those single-granularity reducts in improving
classification accuracies. As presented in Tables 7 and
8, the multigranularity reducts can improve the
classification accuracies generally. And the average
values of the 15 UCI data sets in both the tables can
also demonstrate that the classification accuracies
related to the multigranularity reducts are greater
than the single-granularity reducts. To sum up, the

multigranularity reducts perform better than those
single-granularity reducts with using SVM and
CART.

,e Anoval function was used to verify whether there is a
significant difference existing in the distributions with re-
spect to the classification accuracies. Similar to theWilcoxon
Rank Sum Test shown above, the purpose of the comparison
is trying to reject the null-hypothesis that the distributions of
the classification accuracies are significantly different. As-
suming that the threshold is set as 0.05 and if the value is
greater than 0.05, we then reject the null-hypothesis, i.e., the
distributions of the classification accuracies are similar. And
the results of the comparison among the distributions using
SVM and CART are listed in the following Tables 9 and 10,
respectively.

Following the results of Tables 9 and 10, we can find that
the values are greater than 0.05 generally. In the following,
we will explain these results in Tables 9 and 10, respectively.

Table 5: Comparisons among the classification accuracies with using NEC.

ID RAW APP MGAPP RAW ENT MGENT RAW DIS MGDIS RAW ERR MGERR
1 0.9232 0.9204 0.9401 0.9232 0.9337 0.9489 0.9232 0.9232 0.9253 0.9232 0.9211 0.9253
2 0.5038 0.5104 0.5125 0.5038 0.5389 0.5600 0.5038 0.3748 0.5204 0.5038 0.5131 0.5176
3 0.9052 0.9037 0.9019 0.9052 0.9211 0.9274 0.9052 0.9052 0.9133 0.9052 0.9107 0.9111
4 0.9557 0.9181 0.9373 0.9557 0.9339 0.9561 0.9557 0.9406 0.9470 0.9557 0.9432 0.9575
5 0.8380 0.8300 0.8440 0.8380 0.8280 0.8400 0.8380 0.8380 0.8320 0.8380 0.8600 0.8600
6 0.7871 0.7794 0.7843 0.7871 0.8030 0.8156 0.7871 0.6843 0.7821 0.7871 0.7965 0.7843
7 0.5454 0.4987 0.5580 0.5454 0.5634 0.5743 0.5454 0.5454 0.5497 0.5454 0.5602 0.5678
8 0.8057 0.8800 0.9057 0.8057 0.8726 0.9154 0.8057 0.8074 0.8646 0.8057 0.8686 0.9023
9 0.7235 0.6729 0.7402 0.7235 0.8235 0.8431 0.7235 0.7235 0.7235 0.7235 0.7644 0.7500
10 0.8089 0.7688 0.8241 0.8089 0.8158 0.8339 0.8089 0.7762 0.8068 0.8089 0.8017 0.8017
11 0.9124 0.8886 0.8905 0.9124 0.8943 0.9038 0.9124 0.9124 0.9171 0.9124 0.9124 0.8990
12 0.6986 0.7090 0.7172 0.6986 0.7120 0.7038 0.6986 0.6985 0.6926 0.6986 0.7134 0.7144
13 0.7639 0.7510 0.7871 0.7639 0.7794 0.7800 0.7639 0.7619 0.7639 0.7639 0.7768 0.6935
14 0.9733 0.9631 0.9811 0.9733 0.9722 0.9656 0.9733 0.9733 0.9756 0.9733 0.9610 0.9675
15 0.5500 0.5246 0.5596 0.5500 0.5500 0.5574 0.5500 0.4779 0.5507 0.5500 0.4469 0.4469
AVG 0.7597 0.7679 0.7922 0.7597 0.7961 0.8084 0.7597 0.7562 0.7843 0.7597 0.7029 0.7799
,e greatest values are in bold, and the smallest values are in italics.

Table 6: Comparisons of the distributions with NEC.

ID APP & MGAPP ENT & MGENT DIS & MGDIS ERR & MGERR
1 0.1986 0.1503 0.7911 0.9397
2 0.5952 0.4717 0.1116 0.7617
3 0.3944 0.2516 0.0430 0.3681
4 0.0153 0.0481 0.7321 0.0252
5 0.0934 0.1115 0.9668 0.3681
6 0.7054 0.5851 0.1212 0.5706
7 0.3256 0.8205 0.6232 0.8501
8 0.0814 0.0298 0.0954 0.8474
9 0.0045 0.0510 1.0000 0.2043
10 0.2718 0.0339 0.6500 0.4707
11 1.0000 0.2685 0.5593 0.0636
12 0.1291 0.2558 0.6494 0.9396
13 0.2395 0.9095 0.9694 0.0071
14 0.0098 0.3777 0.7793 0.8780
15 0.4055 0.7913 3.2984E − 04 1.0000
Avg 0.2834 0.3645 0.5166 0.5862
,e values less than 0.05 are italics.
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Table 7: Comparisons among the classification accuracies with using SVM.

ID RAW APP MGAPP RAW ENT MGENT RAW DIS MGDIS RAW ERR MGERR
1 0.9471 0.9422 0.9543 0.9471 0.9365 0.9507 0.9471 0.9471 0.9436 0.9471 0.9468 0.9365
2 0.4909 0.4413 0.4364 0.4909 0.5527 0.5345 0.4909 0.3284 0.5873 0.4909 0.5020 0.4709
3 0.9407 0.9152 0.9074 0.9407 0.9296 0.9444 0.9407 0.9407 0.9222 0.9407 0.9126 0.9111
4 0.9671 0.9343 0.9671 0.9671 0.9380 0.9398 0.9671 0.9432 0.9272 0.9671 0.9518 0.9671
5 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600 0.8600
6 0.8282 0.8354 0.8282 0.8282 0.8166 0.8549 0.8282 0.6704 0.8282 0.8282 0.8437 0.8472
7 0.5465 0.4084 0.5446 0.5465 0.4912 0.5267 0.5465 0.5465 0.5438 0.5465 0.4967 0.5446
8 0.9314 0.8886 0.9143 0.9314 0.8611 0.8857 0.9314 0.9274 0.8571 0.9314 0.8669 0.8914
9 0.6909 0.6204 0.5709 0.6909 0.6862 0.6709 0.6909 0.6909 0.6909 0.6909 0.6342 0.7273
10 0.8315 0.7873 0.8201 0.8315 0.8226 0.8296 0.8315 0.7605 0.8201 0.8315 0.8248 0.8125
11 0.9048 0.8914 0.8952 0.9048 0.9000 0.9048 0.9048 0.9048 0.9048 0.9048 0.9048 0.9143
12 0.7480 0.7382 0.7480 0.7480 0.7400 0.7500 0.7480 0.7480 0.7300 0.7480 0.7124 0.7100
13 0.8323 0.7748 0.8000 0.8323 0.7600 0.8194 0.8323 0.8142 0.8323 0.8323 0.7832 0.8323
14 0.9889 0.9800 0.9778 0.9889 0.9822 0.9667 0.9889 0.9889 0.9889 0.9889 0.9767 0.9778
15 0.5402 0.5001 0.5349 0.5402 0.5259 0.5297 0.5402 0.4797 0.5383 0.5402 0.4444 0.4444
Avg 0.8032 0.7678 0.7839 0.8032 0.7868 0.7979 0.8032 0.7700 0.8013 0.8032 0.7774 0.7898
,e greatest values are in bold, and the smallest values are italics.

Table 8: Comparison among the classification accuracies with using CRAT.

ID RAW APP MGAPP RAW ENT MGENT RAW DIS MGDIS RAW ERR MGERR
1 0.9122 0.9154 0.9365 0.9122 0.9148 0.9259 0.9122 0.9122 0.9297 0.9122 0.9206 0.9206
2 0.6273 0.5253 0.5236 0.6273 0.5389 0.5473 0.6273 0.3375 0.5673 0.6273 0.5225 0.5891
3 0.9111 0.9048 0.9000 0.9111 0.9041 0.9000 0.9111 0.9111 0.9037 0.9111 0.9085 0.9111
4 0.9236 0.9271 0.9342 0.9236 0.9386 0.9450 0.9236 0.9056 0.9344 0.9236 0.9250 0.9290
5 0.8200 0.8300 0.8000 0.8200 0.8320 0.8200 0.8200 0.8200 0.8200 0.8200 0.8600 0.8600
6 0.8396 0.8270 0.8396 0.8396 0.7979 0.8509 0.8396 0.6575 0.8356 0.8396 0.8377 0.8280
7 0.8754 0.5849 0.8404 0.8754 0.8223 0.8228 0.8754 0.8754 0.8689 0.8754 0.8028 0.8327
8 0.8629 0.8991 0.8800 0.8629 0.8297 0.8914 0.8629 0.8651 0.8800 0.8629 0.8411 0.8686
9 0.7709 0.7200 0.7509 0.7709 0.7989 0.7909 0.7709 0.7709 0.7709 0.7709 0.7644 0.7673
10 0.8608 0.7872 0.8239 0.8608 0.8112 0.8372 0.8608 0.7523 0.8011 0.8608 0.8130 0.8125
11 0.9048 0.8657 0.9238 0.9048 0.8924 0.9143 0.9048 0.9048 0.9048 0.9048 0.9048 0.9238
12 0.6960 0.6900 0.6940 0.6960 0.6908 0.6980 0.6960 0.6960 0.6880 0.6960 0.7094 0.7240
13 0.8129 0.7329 0.7161 0.8129 0.7626 0.7613 0.8129 0.8019 0.8129 0.8129 0.7535 0.7677
14 0.9333 0.9420 0.9556 0.9333 0.9578 0.9222 0.9333 0.9333 0.9444 0.9333 0.9322 0.9333
15 0.5789 0.5263 0.5820 0.5789 0.5515 0.5771 0.5789 0.4739 0.5746 0.5789 0.4444 0.4444
Avg 0.8219 0.7786 0.8067 0.8219 0.8029 0.8136 0.8219 0.7745 0.8158 0.8219 0.7960 0.8075
,e greatest values are in bold, and the smallest values are italics.

Table 9: Comparisons of the distributions with using SVM.

ID APP & MGAPP ENT & MGENT DIS & MGDIS ERR & MGERR
1 0.1029 0.0088 1.0000 0.9999
2 0.9989 0.9997 2.9621E − 06 0.7499
3 1.0000 0.9739 0.9852 1.0000
4 0.8988 0.5226 0.0584 0.9697
5 1.0000 1.0000 1.0000 1.0000
6 0.9967 0.0783 1.9014E − 07 0.8709
7 2.8827E − 36 2.0328E − 08 1.0000 1.1929E − 09
8 0.1236 0.9765 0.3849 0.0043
9 0.2643 0.9999 1.0000 0.9949
10 0.1887 0.1506 3.2225E − 13 0.5573
11 0.9561 0.8719 1.0000 1.0000
12 0.9997 0.9996 0.9999 0.9852
13 0.2446 0.0261 0.2749 0.0392
14 0.9918 0.8474 1.0000 0.7630
15 7.8457E − 20 0.2767 0.0059 1.0000
Avg 0.5844 0.5821 0.5806 0.7290
,e values less than 0.05 are in italics.
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(1) As for those values which are equal toor less than
0.05 in Table 9, it can be observed from Table 7 that
the classification accuracies with respect to the
multigranularity reduct are greater than the ones in
terms of the corresponding single-granularity
reducts. Take the data set of “Vertebral Column” (ID:
13) as an example, there are two values no greater
than 0.05: in the comparisons of “ENT & MGENT”
and “ERR & MGERR.” However, the classification
accuracies with respect to these reducts (ENT,
MGENT, ERR, and MGERR) are 0.7600, 0.8194,
0.7832, and 0.8323. We can find that the values in
terms of “MGENT” (“MGERR”) are greater than
“ENT” (“ERR”).

(2) ,e similar discovery can be observed from Table 10.
As for the values which are the same to or less than
0.05, the multigranularity reducts provide greater
values of classification accuracies. However, the only
exception is the data set “Ionosphere” (ID: 8); in the
comparison of “APP & MGAPP,” the value of the
result is less than 0.05, and themean values in term of
“APP” and “MGAPP” is 0.8991 and 0.8800,
respectively.

To sum up, we can conclude that there is not much
significant difference between the distributions among the
classification accuracies with respect to the single-granu-
larity reducts and the multigranularity reducts. Further-
more, not only the multigranularity reducts can provide
better classification accuracies than the single-granularity
reducts but also the multigranularity algorithm can improve
the time efficiency.

6. Conclusions and Future Perspectives

In this paper, a framework of multigranularity view for
computing reduct has been proposed. Different from the
traditional algorithm for reduct which uses only one fixed
granularity, our algorithm is executed from the multi-
granularity view. In the experiment, the finest and the

coarsest granularities are employed to realize the multi-
granularity framework. Furthermore, to select attributes
from the viewpoint of different decision classes, the en-
semble strategy is introduced into the traditional fitness
function based searching strategy, and the majority
mechanism is employed to choose the attribute with the
highest frequency with respect to different decision
classes. Compared with the single-granularity view for
computing reduct, the proposed algorithm can not only
reduce the elapsed time but also the reducts derived from
the new algorithm can improve the classification
accuracies.

,e following topics deserve our further investigations:

(1) Both the finest granularity and the coarsest granu-
larity each take up the weight of 1/2 in this paper, and
different weights with respect to granularities may be
conducted with different requirements in the future
investigations.

(2) ,e weighted average values related to the finest
granularity and the coarsest granularity are applied
in the multigranularity algorithm, and other more
granularities or other more fusion strategies can be
considered as the multigranularity view to realize the
attribute reduction.

(3) To consider the different requirements of different
decision classes, the ensemble selector with the
majority voting mechanism is employed to select the
suitable attribute in our experiment, and more types
of strategies may be investigated among decision
classes in the future.
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Table 10: Comparisons of the distributions with using CART (the values less than 0.05 are italics).

ID APP & MGAPP ENT & MGENT DIS & MGDIS ERR & MGERR
1 0.0532 1.9620E − 04 0.9997 0.9912
2 0.1040 1.0000 0.0046 0.9261
3 0.9988 0.9101 1.0000 1.0000
4 0.9933 0.5804 0.1851 0.9985
5 0.9988 0.9997 1.0000 1.0000
6 0.2141 0.0044 1.6372E − 06 0.9973
7 2.2575E − 52 4.1119E − 27 0.9415 1.8770E − 10
8 0.0253 0.3208 0.9741 0.5315
9 0.9083 1.0000 1.0000 0.9963
10 0.1223 2.0327E − 04 6.6803E − 06 0.6861
11 0.4844 0.1356 1.0000 0.9999
12 0.5605 0.9801 1.0000 0.9299
13 0.6600 0.5010 0.2942 0.0936
14 0.9219 0.9374 1.0000 0.8304
15 8.8496E − 26 2.6348E − 07 1.6897E − 05 1.0000
Avg 0.4697 0.4913 0.6266 0.7987
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