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�is article is concerned with a class of singular nonlinear fractional boundary value problems with p-Laplacian operator, which
contains Riemann–Liouville fractional derivative and Caputo fractional derivative. �e boundary conditions are made up of two
kinds of Riemann–Stieltjes integral boundary conditions and nonlocal in�nite-point boundary conditions, and di�erent fractional
orders are involved in the boundary conditions and the nonlinear term, respectively. Based on the method of reducing the order of
fractional derivative, some properties of the corresponding Green’s function, and the �xed point theorem of mixed monotone
operator, an interesting result on the iterative sequence of the uniqueness of positive solutions is obtained under the assumption
that the nonlinear term may be singular in regard to both the time variable and space variables. And we obtain the dependence of
solution upon parameter. Furthermore, two numerical examples are presented to illustrate the application of our main results.

1. Introduction

In the past decades, fractional di�erential equations arise in
many mathematical disciplines as the analogue modeling of
systems and processes inmany scienti�c �elds, such as control
theory and engineering. In fact, fractional-order models have
proved to be valuable tools in modeling many physical
phenomena (for details, see [1–3] and the references therein).
Accordingly, there has been a substantial development in the
research for fractional di�erential equations, the properties of
solutions, especially. We refer the readers to the papers [4–
54]. For instance, in [15], Xu andWei investigated the positive
solutions of the following fractional di�erential equations:

Dα
0+ Dα

0+x(t)( ) � f t, x(t), x′(t), − Dα
0+x(t)( ), t ∈ [0, 1],

x(0) � x′(0) � x′(1) � 0,

Dα
0+x(0) � Dα+1

0+ x(0) � Dα+1
0+ x(1) � 0,




(1)

where Dα
0+ is the Riemann–Liouville’s fractional derivative,

2< α≤ 3, and f ∈ C([0, 1] ×R3
+,R+) (R+ � [0,+∞)). �e

existence of positive solutions is obtained by the
Krasnoselskii–Zabreiko �xed point theorem. And by using
the method of lower and upper solutions, the authors dis-
cussed the uniqueness of positive solution of this problem.

On the other hand, the fractional di�erential equations
with the p-Laplacian operator can describe various phe-
nomena, such as the �ow of some speci�c �uid. Hence, the
study of fractional di�erential equations with the p-Lap-
lacian operator is gaining much signi�cance and attention
(see [16, 18–21, 37–39, 48–50]). For example, in [48], in
order to research the mechanics phenomenon of turbulent
�ow in a porous medium, the author introduced the fol-
lowing type equation:

ϕp x′(t)( )( )′ � f t, x(t), x′(t)( ), (2)

where ϕp(p> 1) is the p-Laplacian operator, i.e., ϕp(s) �
|s|p− 2s(p> 1). In the past thirty years, many papers discussed
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equation (2) with different boundary value conditions and
then drew related conclusion in practice. We refer the reader
to [49, 50] and the references cited therein. Recently, Liu
et al. in [16] investigated the existence of positive solution of
the following fractional differential equations with p-Lap-
lacian operator:

Dα
0+ϕp

cD
β
0+x(t)  � f t, x(t), cD

β
0+x(t) ,

cD
β
0+x(0) � x′(0) � 0,

x(1) � r1x(η), cD
β
0+x(1) � rc

2D
β
0+x(ξ),

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(3)

where Dα
0+ is the Riemann–Liouville’s fractional derivative

and cD
β
0+ is the Caputo fractional derivative, 1< α, β≤ 2, r1,

r1 ≥ 0, ϕp(p> 1) is the p-Laplacian operator, and
f ∈ C([0, 1] × R+ × R− ,R+) (R− � (− ∞, 0]). *e existence
of lower and upper solutions is obtained by using the
monotone iterative technique.

Based on the above illustration, it is of significance to
study the fractional differential equations with p-Laplacian
operator. In this article, we investigate the following frac-
tional differential equation, which is a generalized form of
the problem (2):

c
D

α
0+ϕp D

β
0+v(t)  + f t, v(t), D

β1
0+v(t), . . . , D

βn− 2
0+ v(t)  � 0,

0< t< 1,

(4)

with the boundary conditions

v(0) � D
]i

0+v(0) � D
β
0+v(0) � ϕp D

β
0+v(0)  ′ � 0,

i � 1, . . . , n − 2,

D
r0
0+v(1) � λ1 

1

0
h1(s)D

r1
0+v(s)dA1(s)

+ λ2 
η

0
h2(s)D

r2
0+v(s)dA2(s) + λ3 

∞

j�1
ρjD

r3
0+v ηj ,

(5)

where cDα
0+ denotes the Caputo fractional derivative; D

β
0+

denotes the Riemann–Liouville’s fractional derivative; ϕp

is the p-Laplacian operator, i.e., ϕp(s) � |s|p− 2s(p> 1),
1< α≤ 2, n − 1< β≤ n(n≥ 3), 1< β − βn− 2 ≤ 2, i − 1< βi,
vi ≤ i, βn− 2 − vi ≤ n − 2 − i(i � 1, 2, . . . , n − 2), βn− 2 ≤ rk ≤
r0 ≤ β − 1(k � 1, 2, 3), 0< η≤ 1, 0< η1 ≤ η2 ≤ · · · ≤ 1, ρj ≥ 0
(j � 1, 2, . . .), λk ≥ 0(k � 1, 2, 3); h1, h2: (0, 1)⟶ R+ � [0,

+∞) are continuous with h1, h2 ∈ L1(0, 1); 
1
0 h1(s)v(s)

dA1(s), 
1
0 h2(s)v(s)dA2(s) denote the Riemann–Stieltjes

integral, in which A1, A2: [0, 1]⟶ R are functions of
bounded variation; and f : (0, 1) × (0, +∞)n− 1⟶ R+ is
continuous. Furthermore, we also consider the following
equation with a parameter:
c
D

α
0+ϕp D

β
0+v(t)  + λf t, v(t), D

β1
0+v(t), . . . , D

βn− 2
0+ v(t)  � 0,

0< t< 1,

(6)

with the boundary conditions (5), where λ> 0 is a parameter.
In fact, we regard the problem (6)-(5) as a new problem for
modeling the problem (4)-(5) involving a parameter. In this
paper, a nonnegative function v ∈ C[0, 1] is called a positive
solution of boundary value problem (4)-(5) (resp. (6)-(5)) if
it satisfies the problem (4)-(5) (resp. (6)-(5)) for t ∈ [0, 1]

and v(t)> 0 for t ∈ (0, 1].
In this paper, we make the following hypothesis:

(V1) f : (0, 1) × (0, +∞)n− 1⟶ R+ is continuous and
satisfies

f t, u1, . . . , un− 1(  � F t, u1, . . . , un− 1, u1, . . . , un− 1( 

+ G t, u1, . . . , un− 1, u1, . . . , un− 1( ,

(7)

for all (t, u1, . . . , un− 1) ∈ (0, 1) × (0, +∞)n− 1, where
F, G : (0, 1) × (0, +∞)2(n− 1)⟶ R+ are continuous.

(V2) For any t ∈ (0, 1), (v1, . . . , vn− 1) ∈ (0, +∞)n− 1,
F(t, u1, . . . , un− 1, v1, . . . , vn− 1), andG(t, u1, . . . , un− 1, v1,

. . . , vn− 1) are nondecreasing in (u1, . . . , un− 1) ∈ (0,

+∞)n− 1, and for any t ∈ (0, 1), (u1, . . . , un− 1) ∈ (0,

+∞)n− 1, F(t, u1, . . . , un− 1, v1, . . . , vn− 1), and G(t, u1,

. . . , un− 1, v1, . . . , vn− 1) are nonincreasing in (v1, . . . ,

vn− 1) ∈ (0, +∞)n− 1.
(V3) For any l ∈ (0, 1), there exists φ(l) ∈ (lq− 1, 1]

such that for any t ∈ (0, 1), (u1, . . . , un− 1) and (v1, . . . ,

vn− 1) ∈ (0, +∞)n− 1:

F t, lu1, . . . , lun− 1, l
− 1

v1, . . . , l
− 1

vn− 1 

≥φp− 1
(l)F t, u1, . . . , un− 1, v1, . . . , vn− 1( ,

G t, lu1, . . . , lun− 1, l
− 1

v1, . . . , l
− 1

vn− 1 

≥ l
p− 1

G t, u1, . . . , un− 1, v1, . . . , vn− 1( .

(8)

(V4) *ere exists 9> 0 such that for any t ∈ (0, 1),
(u1, . . . , un− 1) and (v1, . . . , vn− 1) ∈ (0, +∞)n− 1:

F t, u1, . . . , un− 1, v1, . . . , vn− 1( 

≥ 9
p− 1

G t, u1, . . . , un− 1, v1, . . . , vn− 1( .
(9)

(V5)

0< 
1

0
(1 − τ)

α− 1
F τ, 1, 1, . . . , 1√√√√√√√√

n− 1 times
, τβ− 1

, τβ− 1
, . . . , τβ− 1

√√√√√√√√√√√√√√
n− 1 times

⎛⎝ ⎞⎠dτ

< +∞,

0< 
1

0
(1 − τ)

α− 1
G τ, 1, 1, . . . , 1√√√√√√√√

n− 1 times
, τβ− 1

, τβ− 1
, . . . , τβ− 1

√√√√√√√√√√√√√√
n− 1 times

⎛⎝ ⎞⎠dτ

< +∞.

(10)
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Our main results are as follows.

Theorem 1. Suppose that (V1) − (V5) hold, then the
problem (4)-(5) has a unique solution v∗ ∈ P, and there exists
δ ∈ (0, 1) such that
Γ β − βn− 2( δ
Γ(β)

t
β− 1 ≤ v

∗
(t)≤
Γ β − βn− 2( 

Γ(β)δ
t
β− 1

, t ∈ [0, 1].

(11)

And for any initial values v0, v0 ∈ Ph, by structuring the
following sequences:

vn(t) � I
βn− 2
0+  

1

0
J(t, s)ϕq

1
Γ(α)


s

0
(s − τ)

α− 1
F( τ, I

βn− 2
0+ vn− 1(τ), I

βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ), I

βn− 2
0+ vn− 1(τ),

I
βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ)dτds

+ 
1

0
J(t, s)ϕq

1
Γ(α)


s

0
(s − τ)

α− 1
G( τ, I

βn− 2
0+ vn− 1(τ), I

βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ), I

βn− 2
0+ vn− 1(τ),

I
βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ)dτds,

vn(t) � I
βn− 2
0+  

1

0
J(t, s)ϕq

1
Γ(α)


s

0
(s − τ)

α− 1
F(τ, I

βn− 2
0+ vn− 1(τ), I

βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ), I

βn− 2
0+ vn− 1(τ),

I
βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ)dτds

+ 
1

0
J(t, s)ϕq

1
Γ(α)


s

0
(s − τ)

α− 1
G( τ, I

βn− 2
0+ vn− 1(τ), I

βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ), I

βn− 2
0+ vn− 1(τ),

I
βn− 2− β1
0+ vn− 1(τ), . . . , I

βn− 2− βn− 3
0+ vn− 1(τ), vn− 1(τ)dτds,

n � 1, 2, . . . ,

(12)

we have

sup
t∈[0,1]

vn(t) − v
∗
(t)


⟶ 0,

sup
t∈[0,1]

vn(t) − v
∗
(t)


⟶ 0,

as n⟶∞.

(13)

Theorem 2. Suppose that (V1) − (V5) hold, then for any
λ> 0, the problem (6)-(5) have a unique solution v∗λ ∈ P, and
there exists δλ ∈ (0, 1) such that

Γ β − βn− 2( δλ
Γ(β)

t
β− 1 ≤ v

∗
λ(t)≤
Γ β − βn− 2( 

Γ(β)δλ
t
β− 1

, t ∈ [0, 1].

(14)

And moreover,

(1) If there exists c ∈ (0, 1) such that

φ(l)≥
1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (15)

then v∗λ is continuous with respect to λ ∈ (0, +∞).
?at is, for any λ0 ∈ (0, +∞),
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sup
t∈[0,1]

v
∗
λ(t) − v

∗
λ0

(t)


⟶ 0, as λ⟶ λ0. (16)

(2) If

φ(l)≥
1
9

l
1/2

− l  + l
1/2

, ∀ l ∈ (0, 1), (17)

then 0< λ1 < λ2 implies v∗λ1
< v∗λ2

.

(3) If there exists c ∈ (0, 1/2) such that

φ(l)≥
1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (18)

then

lim
λ⟶0+

sup
t∈[0,1]

v
∗
λ(t)


 � 0,

lim
λ⟶+∞

sup
t∈[0,1]

v
∗
λ(t)


 � +∞.

(19)

*e key argument of the problem (4)-(5) and (6)-(5) is
the iterative positive solution by applying the method of
reducing the order of fractional derivative and the fixed point
theory of mixed monotone operator. *e method of re-
ducing the order of fractional derivative is based on certain
semigroup properties of the Riemann–Liouville’s fractional
integral and derivative. We refer the reader to
[3, 24, 25, 34, 36, 46]. In this paper, different orders of
Riemann–Liouville’s fractional derivative are involved in the
nonlinearity f, which is solved in a more complex space, in
most cases. By using the method of reduction, we transform
the problem (4)-(5) (resp. (6)-(5)) into an equivalent and
low-order problem, in which the nonlinearity f contains no
fractional derivative. *erefore, the work could proceed in
the space C[0, 1], which is more interesting and meaningful.
On the other hand, by using the properties of relevant
Green’s function and cone, the theory of mixed monotone
operator could be applied on the research of fractional
boundary value problems. We suggest that one refers to
[13, 17, 24, 31, 32, 34, 47]. In this paper, by structuring a
suitable mixed monotone operator, the problem (4)-(5)
(resp. (6)-(5)), which contains the p-Laplacian operator, is
solved. In [15, 16], the positive solutions are obtained
under the assumption that the nonlinear term f is contin-
uous. But, we obtain the uniqueness of positive solution with
the assumption that the nonlinear term may be singular in
regard to both the time variable and space variables.
Compared with [15], our equation contains p-
Laplacian operator, which is more general. Compared with
[16], our boundary conditions are of general significance,
which would be used to describe more phenomena in
practice.

*e paper is organized as follows. In Section 2, we
present some relevant definitions and lemmas. And we

transform the problem (4)-(5) (resp. (6)-(5)) into an
equivalent and low-order problem (28)-(29) (resp. (44)-
(29)) and obtain some properties of the corresponding
Green’s function. In Section 3, we give the proof of our main
results, as one researches the uniqueness of iterative positive
solutions for the problem (4)-(5) and the other one analyses
the dependence of solution upon parameter for the problem
(6)-(5). In Section 4, we give two examples to illustrate our
theoretical results. In Section 5, we give a conclusion of our
main results.

2. Preliminaries and Lemmas

Definition 1. Let α> 0. *e Riemann–Liouville fractional
integral of order α of a function v : (0,∞)⟶ R is given by

I
α
0+ v(t) �

1
Γ(α)


t

0
(t − s)

α− 1
v(s)ds, (20)

provided that the right-hand side is pointwise defined on
(0,∞).

Definition 2. Let α> 0. *e Riemann–Liouville fractional
derivative of order α of a continuous function v :

(0,∞)⟶ R is given by

D
α
0+ v(t) �

d

dt
 

n

I
n− α
0+ v(t) �

1
Γ(n − α)

d

dt
 

n

· 
t

0

v(s)

(t − s)α− n+1 ds,

(21)

where n � [α] + 1, [α] denotes the integer part of the
number α, provided that the right-hand side is pointwise
defined on (0,∞). In particular, if α � n ∈ N+, then
Dα

0+ v(t) � v(n)(t).

Definition 3. Let α> 0. *e Caputo fractional derivative of
order α of a continuous function v : (0,∞)⟶ R is given
by

c
D

α
0+ v(t) �

1
Γ(n − α)


t

0

v(n)(s)

(t − s)α− n+1 ds, (22)

where n � [α] + 1, [α] denotes the integer part of the
number α, provided that the right-hand side is pointwise
defined on (0,∞). In particular, if α � n ∈ N+, then
cDα

0+ v(t) � v(n)(t).

Lemma 1 (see [7]). Let α> 0. If we assume v ∈ C(0, 1)∩
L1(0, 1), then the equation

D
α
0+ v(t) � 0, (23)

has

v(t) � c1t
α− 1

+ c2t
α− 2

+ · · · + cnt
α− n

, ci ∈ R, i � 1, 2, . . . , n,

(24)
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as the unique solution, where n is the smallest integer greater
than or equal to α.

Lemma 2 (see [7]). Let v ∈ C(0, 1)∩L1(0, 1) and Dα
0+ v ∈

C(0, 1)∩ L1(0, 1). ?en,

I
α
0+ D

α
0+ v(t) � v(t) + c1t

α− 1
+ c2t

α− 2
+ · · · + cnt

α− n
,

ci ∈ R, i � 1, 2, . . . , n,
(25)

where n is the smallest integer greater than or equal to α.

Lemma 3 (see [4]). Let v ∈ ACn[0, 1]. ?en,

I
α
0+

c
D

α
0+ v(t) � v(t) + c0 + c1t + · · · + cn− 1t

n− 1
,

ci ∈ R, i � 1, 2, . . . , n,
(26)

where n � [α] + 1 for α ∉ N+ and n � α for α ∈ N+.

Lemma 4 (see [4]).
(1) If u ∈ L1(0, 1), α≥ β> 0, then

D
α
0+ I

α
0+ u(t) � u(t),

D
β
0+ I

α
0+ u(t) � I

α− β
0+ u(t).

(27)

(2) Let α ∈ (n − 1, n). If u(0) � u′(0) � · · · � u(n− 1)(0),
then cDα

0+ v(t) � Dα
0+ v(t).

Let u � D
βn− 2
0+ v, then the problem (4)-(5) could be

transformed to the following fractional differential equation:

c
D

α
0+ϕp D

β− βn− 2
0+ u(t)  + f( t, I

βn− 2
0+ u(t),

I
βn− 2− β1
0+ u(t), . . . , I

βn− 2− βn− 3
0+ u(t), u(t) � 0, 0< t< 1,

(28)

with the boundary conditions

D
vn− 2− βn− 2
0+ u(0) � D

β− βn− 2
0+ u(0) � ϕp D

β− βn− 2
0+ u(0)  ′ � 0,

D
r0− βn− 2
0+ u(1) � λ1 

1

0
h1(s)D

r1− βn− 2
0+ u(s)dA1(s)

+ λ2 
η

0
h2(s)D

r2− βn− 2
0+ u(s)dA2(s)

+ λ3 

∞

j�1
ρjD

r3− βn− 2
0+ u ηj ,

(29)

where 1< β − βn− 2 ≤ 2.

Lemma 5. If the problem (4)-(5) have a solution v ∈ C[0, 1],
then u � D

βn− 2
0+ v is a solution of the problem (28)-(29). And in

turn, if the problem (28)-(29) have a solution u ∈ C[0, 1],
then v � I

βn− 2
0+ u is a solution of the problem (4)-(5).

Proof. Let

u(t) � D
βn− 2
0+ v(t), t ∈ [0, 1], (30)

where v ∈ C[0, 1] is a solution of the problem (4)-(5). By
using Lemma 2, we have

v(t) � I
βn− 2
0+ u(t) − c1t

βn− 2− 1
− · · · − cn− 2t

βn− 2− (n− 2)
, (31)

where ci ∈ R(i � 1, 2, . . . , n − 2). By the boundary condition
v(0) � 0, we get cn− 2 � 0. So, we have

v(t) � I
βn− 2
0+ u(t) − c1t

βn− 2− 1
− · · · − cn− 3t

βn− 2− (n− 3)
. (32)

Furthermore, we obtain

D
v1
0+ v(t) � I

βn− 2− ]1
0+ u(t) − c1

Γ βn− 2( 

Γ βn− 2 − ]1( 
t
βn− 2− ]1− 1

− c2
Γ βn− 2 − 1( 

Γ βn− 2 − ]1 − 1( 
t
βn− 2− ]1− 2

− · · · − cn− 3

·
Γ βn− 2 − (n − 4)( 

Γ βn− 2 − ]1 − (n − 4)( 
t
βn− 2− ]1− (n− 3)

,

(33)

which combines with the boundary condition D
]1
0+v(0) � 0

meaning cn− 3 � 0. In a similar manner, we obtain cn− 4 �

· · · � c1 � 0 based on the boundary condition D
]2
0+

v(0) � · · · � D
]n− 3
0+ v(0) � 0. *us, we have

v(t) � I
βn− 2
0+ u(t), t ∈ [0, 1]. (34)

Applying the operator D
β
0+ to both sides of this equality,

we have

D
β
0+ v(t) � D

β
0+ I

βn− 2
0+ u(t)  �

dn

dtn
I

n− β
0+ I

βn− 2
0+ u(t) 

�
dn

dtn
I

n− β− βn− 2( )
0+ u(t)

�
d2

dt2
dn− 2

dtn− 2I
n− 2
0+ I

2− β− βn− 2( )
0+ u(t)

�
d2

dt2
I
2− β− βn− 2( )
0+ u(t)

� D
β− βn− 2
0+ u(t).

(35)
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Similarly, we know

D
]n− 2
0+ v(t) � D

]n− 2− βn− 2
0+ u(t), (36)

D
ri

0+ v(t) � D
ri

0+ I
βn− 2
0+ u(t) � D

ri − βn− 2
0+ u(t), i � 0, 1, 2, 3.

(37)

In addition, by means of Lemma 4, we can obtain

D
βi

0+ v(t) � D
βi

0+ I
βn− 2
0+ u(t) � I

βn− 2− βi

0+ u(t), i � 1, 2, . . . , n − 3.

(38)

According to (30), (34), (36), and (38), we have

c
D

α
0+ϕp D

β− βn− 2
0+ u(t)  + f( t, I

βn− 2
0+ u(t), I

βn− 2− β1
0+

· u(t), . . . , I
βn− 2− βn− 3
0+ u(t), u(t))

�
c
D

α
0+ϕp D

β
0+v(t)  + f t, v(t), D

β1
0+v(t), . . . , D

βn− 2
0+ v(t) 

� 0.

(39)

It follows from (35)–(37) that

D
β− βn− 2
0+ u(0) � D

β
0+v(0) � 0, (40)

ϕp D
β− βn− 2
0+ u(0)  ′ � ϕp D

β
0+v(0)  ′ � 0, (41)

D
]n− 2− βn− 2
0+ u(0) � D

]n− 2
0+ v(0) � 0, (42)

D
r0− βn− 2
0+ u(1) � D

r0
0+v(1) � λ1

1

0
h1(s)D

r1
0+v(s)dA1(s)

+ λ2
η

0
h2(s)D

r2
0+v(s)dA2(s)

+ λ3 

∞

i�1
ρiD

r3
0+v ηi( 

� λ1
1

0
h1(s)D

r1− βn− 2
0+ u(s)dA1(s)

+ λ2
η

0
h2(s)D

r2− βn− 2
0+ u(s)dA2(s)

+ λ3 

∞

i�1
ρiD

r3− βn− 2
0+ u ηi( .

(43)

On the basis of (39)–(43), we know u � D
βn− 2
0+ v is a so-

lution of the problem (28)-(29).
On the other hand, if the problem (28)-(29) has a so-

lution u ∈ C[0, 1], then v � I
βn− 2
0+ u is a solution of the

problem (4)-(5). Since the proof is similar to Lemma 3 in
[44], we omit it here. □

Remark 5. According to Lemma 5, we conclude that the
work on considering the solution of the problem (4)-(5) is
equivalent to the search for the solution of (28)-(29).
Similarly, we can prove the work on the problem (6)-(5) is
equivalent to the following equation:

c
D

α
0+ϕp D

β− βn− 2
0+ u(t)  + λf( t, I

βn− 2
0+ u(t), I

βn− 2− β1
0+

· u(t), . . . , I
βn− 2− βn− 3
0+ u(t), u(t) � 0, 0< t< 1,

(44)

with the boundary conditions (29).

Lemma 6. Let x ∈ C(0, 1)∩ L1(0, 1). ?en, the fractional
differential equation

D
β− βn− 2
0+ u(t) + x(t) � 0, 0< t< 1, 1< β − βn− 2 ≤ 2, (45)

with the boundary conditions

D
]n− 2− βn− 2
0+ u(0) � 0,

D
r0− βn− 2
0+ u(1) � λ1 

1

0
h1(s)D

r1− βn− 2
0+ u(s)dA1(s)

+ λ2 
η

0
h2(s)D

r2− βn− 2
0+ u(s)dA2(s)

+ λ3 

∞

j�1
ρjD

r3− βn− 2
0+ u ηj ,

(46)

has a unique solution

u(t) � 
1

0
J(t, s)x(s)ds, (47)

where

J(t, s) � J0(t, s) + t
β− βn− 2− 1


1

0
J1(τ, s)h1(τ)dA1(τ) 

+ t
β− βn− 2− 1


η

0
J2(τ, s)h2(τ)dA2(τ) 

+ t
β− βn− 2− 1



∞

j�1
ρjJ3 ηj, s ,

(48)

in which
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J0(t, s) �
1

Γ β − βn− 2( 

tβ− βn− 2− 1(1 − s)β− r0− 1 − (t − s)β− βn− 2− 1, s≤ t,

tβ− βn− 2− 1(1 − s)β− r0− 1, t≤ s,

⎧⎪⎪⎨

⎪⎪⎩

J1(t, s) �
λ1

σΓ β − βn− 2( Γ β − r1( 

tβ− r1− 1(1 − s)β− r0− 1 − (t − s)β− r1− 1, s≤ t,

tβ− r1− 1(1 − s)β− r0− 1, t≤ s,

⎧⎪⎪⎨

⎪⎪⎩

J2(t, s) �
λ2

σΓ β − βn− 2( Γ β − r2( 

tβ− r2− 1(1 − s)β− r0− 1 − (t − s)β− r2− 1, s≤ t,

tβ− r2− 1(1 − s)β− r0− 1, t≤ s,

⎧⎪⎪⎨

⎪⎪⎩

J3(t, s) �
λ3

σΓ β − βn− 2( Γ β − r3( 

tβ− r3− 1(1 − s)β− r0− 1 − (t − s)β− r3− 1, s≤ t,

tβ− r3− 1(1 − s)β− r0− 1, t≤ s,

⎧⎪⎪⎨

⎪⎪⎩

σ �
1

Γ β − r0( 
−

λ1
Γ β − r1( 


1

0
s
β− r1− 1

h1(s)dA1(s) −
λ2
Γ β − r2( 


η

0
s
β− r2− 1

h2(s)dA2(s) −
λ3
Γ β − r3( 



∞

j�1
ρjη

β− r3− 1
j ≠ 0.

(49)

Obviously, J : [0, 1] × [0, 1]⟶ R+ is continuous.

Proof. Wemay apply Lemma 2 to reduce equation (45) to an
equivalent integral equation:

u(t) � c1t
β− βn− 2− 1

+ c2t
β− βn− 2− 2

− I
β− βn− 2
0+ x(t), (50)

where c1, c2 ∈ R. Since D
]n− 2− βn− 2
0+ u(0) � 0, we have c2 � 0. So

u(t) � c1t
β− βn− 2− 1

− I
β− βn− 2
0+ x(t). (51)

Applying the operator D
ri− βn− 2
0+ (i � 0, 1, 2, 3) to both sides

of (51), we have

D
ri − βn− 2
0+ u(t) � c1

Γ β − βn− 2( 

Γ β − ri( 
t
β− ri − 1 − I

β− ri

0+ x(t), i � 0, 1, 2, 3.

(52)

Hence, according to (52) and the boundary condition

D
r0− βn− 2
0+ u(1) � λ1 

1

0
h1(s)D

r1− βn− 2
0+ u(s)dA1(s)

+ λ2 
η

0
h2(s)D

r2− βn− 2
0+ u(s)dA2(s)

+ λ3 

∞

j�1
ρjD

r3− βn− 2
0+ u ηj ,

(53)

we can obtain

c1 �
1

σΓ β − βn− 2( 


1
Γ β − r0( 


1

0
(1 − s)

β− r0− 1
x(s)ds −

λ1
Γ β − r1( 

· 
1

0


s

0
(s − τ)

β− r1− 1
x(τ)dτ h1(s)dA1(s) −

λ2
Γ β − r2( 

· 
η

0


s

0
(s − τ)

β− r2− 1
x(τ)dτ h2(s)dA2(s)

−
λ3
Γ β − r3( 



∞

j�1
ρj 

ηj

0
ηj − s 

β− r3− 1
x(s)ds,

(54)

where

σ �
1

Γ β − r0( 
−

λ1
Γ β − r1( 


1

0
s
β− r1− 1

h1(s)dA1(s)

−
λ2
Γ β − r2( 


η

0
s
β− r2− 1

h2(s)dA2(s)

−
λ3
Γ β − r3( 



∞

j�1
ρjη

β− r3− 1
j ≠ 0.

(55)

*en
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u(t) � −
1

Γ β − βn− 2( 


t

0
(t − s)

β− βn− 2− 1
x(s)ds +

tβ− βn− 2− 1

σΓ β − βn− 2( 


1
Γ β − r0( 


1

0
(1 − s)

β− r0− 1
x(s)ds

−
λ1
Γ β − r1( 


1

0


s

0
(s − τ)

β− r1− 1
x(τ)dτ h1(s)dA1(s) −

λ2
Γ β − r2( 

· 
η

0


s

0
(s − τ)

β− r2− 1
x(τ)dτ h2(s)dA2(s) −

λ3
Γ β − r3( 



∞

j�1
ρj 

ηj

0
ηj − s 

β− r3− 1
x(s)ds

� −
1

Γ β − βn− 2( 


t

0
(t − s)

β− βn− 2− 1
x(s)ds

+
1

Γ β − βn− 2( 

1

0
t
β− βn− 2− 1

(1 − s)
β− r0− 1

x(s)ds +
tβ− βn− 2− 1

σΓ β − βn− 2( 

1

0
(1 − s)

β− r0− 1
x(s)ds

×
λ1
Γ β − r1( 


1

0
s
β− r1− 1

h1(s)dA1(s) +
λ2
Γ β − r2( 


η

0
s
β− r2− 1

h2(s)dA2(s) +
λ3
Γ β − r3( 



∞

j�1
ρjη

β− r3− 1
j

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭

− 
λ1
Γ β − r1( 


1

0


s

0
(s − τ)

β− r1− 1
x(τ)dτ h1(s)dA1(s) +

λ2
Γ β − r2( 


η

0


s

0
(s − τ)

β− r2− 1
x(τ)dτ h2(s)dA2(s)

+
λ3
Γ β − r3( 



∞

j�1
ρj 

ηj

0
ηj − s 

β− r3− 1
x(s)ds

tβ− βn− 2− 1

σΓ β − βn− 2( 

�
1

Γ β − βn− 2( 

1

0
t
β− βn− 2− 1

(1 − s)
β− r0− 1

x(s)ds − 
t

0
(t − s)

β− βn− 2− 1
x(s)ds 

+
λ1tβ− βn− 2− 1

σΓ β − βn− 2( Γ β − r1( 

1

0

1

0
s
β− r1− 1

(1 − τ)
β− r0− 1

x(τ)dτ − 
s

0
(s − τ)

β− r1− 1
x(τ)dτ h1(s)dA1(s) 

+
λ2tβ− βn− 2− 1

σΓ β − βn− 2( Γ β − r2( 

η

0

1

0
s
β− r2− 1

(1 − τ)
β− r0− 1

x(τ)dτ − 
s

0
(s − τ)

β− r2− 1
x(τ)dτ h2(s)dA2(s) 

+
λ3tβ− βn− 2− 1

σΓ β − βn− 2( Γ β − r3( 


∞

j�1
ρj 

1

0
ηβ− r3− 1

j (1 − s)
β− r0− 1

x(s)ds − 
ηj

0
ηj − s 

β− r3− 1
x(s)ds 

� 
1

0
J0(t, s)x(s)ds + 

1

0
t
β− βn− 2− 1


1

0
J1(s, τ)x(τ)dτ h1(s)dA1(s) + 

η

0
t
β− βn− 2− 1


1

0
J2(s, τ)x(τ)dτ h2(s)dA2(s)

+ t
β− βn− 2− 1


1

0


∞

j�1
ρjJ3 ηj, s x(s)ds

� 
1

0
J0(t, s)x(s)ds + 

1

0
t
β− βn− 2− 1


1

0
J1(τ, s)h1(τ)dA1(τ) x(s)ds

+ 
1

0
t
β− βn− 2− 1


η

0
J2(τ, s)h2(τ)dA2(τ) x(s)ds + 

1

0
t
β− βn− 2− 1



∞

j�1
ρjJ3 ηj, s x(s)ds

� 
1

0
J(t, s)x(s)ds.

(56)

*e proof is complete. □
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Lemma 7. Let x ∈ C(0, 1)∩L1(0, 1) be a given function.
?en, the following equation

c
D

α
0+ϕp D

β− βn− 2
0+ u(t)  + x(t) � 0, 0< t< 1, (57)

with the boundary conditions

D
]n− 2− βn− 2
0+ u(0) � D

β− βn− 2
0+ u(0) � ϕp D

β− βn− 2
0+ u(0)  ′ � 0,

D
r0− βn− 2
0+ u(1) � λ1 

1

0
h1(s)D

r1− βn− 2
0+ u(s)dA1(s)

+ λ2 
η

0
h2(s)D

r2− βn− 2
0+ u(s)dA2(s)

+ λ3 

∞

j�1
ρjD

r3− βn− 2
0+ u ηj ,

(58)

has a unique solution

u(t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)x(τ)dτ ds, (59)

where ϕq � ϕ− 1
p , J(t, s) is defined in Lemma 6, and

H(t, s) �
1
Γ(α)

(t − s)α− 1, 0≤ s≤ t≤ 1,

0, 0≤ t≤ s≤ 1.

⎧⎪⎨

⎪⎩
(60)

Proof. Let ϕp(D
β− βn− 2
0+ u(t)) � w(t). *en, we can strip down

the problem (57)-(58) to the following two problems:

cDα
0+w(t) + x(t) � 0, 0< t< 1,

w(0) � w′(0) � 0,
 (61)

D
β− βn− 2
0+ u(t) � ϕqw(t), 0< t< 1,

D
]n− 2− βn− 2
0+ u(0) � 0,

D
r0− βn− 2
0+ u(1) � λ1

1

0
h1(s)D

r1− βn− 2
0+ u(s)dA1(s)

+ λ2
η

0
h2(s)D

r2− βn− 2
0+ u(s)dA2(s) + λ3 

∞

j�1
ρjD

r3− βn− 2
0+ u ηj .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(62)

Obviously, the problem (61) can be written as

w(t) � c0 + c1t − I
α
0+x(t). (63)

*e boundary conditions w(0) � w′(0) � 0 imply that
c0 � c1 � 0. *us,

w(t) � − I
α
0+x(t) � − 

1

0
H(t, s)x(s)ds. (64)

On the other hand, by Lemma 6, we know the problem
(62) has a unique solution:

u(t) � − 
1

0
J(t, s)ϕq(w(s))ds. (65)

*erefore, the problem (57)-(58) has a unique solution:

u(t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)x(τ)dτ ds. (66)

□

Lemma 8. Let σ > 0 (defined in Lemma 6), λi ≥ 0 (i � 1, 2, 3),

1
0 sβ− r1− 1h1(s)dA1(s)≥ 0, 

η
0 sβ− r2− 1h2(s)dA2(s)≥ 0, and

0≤
∞
j�1ρjη

β− r3− 1
j < +∞. ?en, the following properties hold:

(1) tβ− βn− 2− 1g0(s)≤ J0(t, s)≤Λ0tβ− βn− 2− 1, where Λ0 � 1/
(Γ(β − βn− 2)),

g0(s) �
1

Γ β − βn− 2( 
(1 − s)

β− r0− 1 1 − (1 − s)
r0− βn− 2 .

(67)

(2) tβ− ri− 1gi(s)≤ Ji(t, s)≤Λit
β− ri− 1(i � 1, 2, 3), where

gi(s) �
1
Γ β − ri( 

(1 − s)
β− r0− 1 1 − (1 − s)

r0− ri( , i � 1, 2, 3,

Λi �
λi

σΓ β − βn− 2( Γ β − ri( 
, i � 1, 2, 3.

(68)

(3) h(t)g(s) ≤ J(t, s)≤Λh(t), where h(t) � tβ− βn− 2− 1,

g(s) � g0(s) + 
1

0
J1(τ, s)h1(τ)dA1(τ)

+ 
η

0
J2(τ, s)h2(τ)dA2(τ) + 

∞

j�1
J3 ηj, s ,

Λ � Λ0 + Λ1 
1

0
τβ− r1− 1

h1(τ)dA1(τ) 

+ Λ2 
η

0
τβ− r2− 1

h2(τ)dA2(τ)  + Λ3 

∞

j�1
ρjη

β− r3− 1
j .

(69)

Proof

(1) For 0≤ s≤ t≤ 1,

J0(t, s) �
1

Γ β − βn− 2( 
t
β− βn− 2− 1

(1 − s)
β− r0− 1

− (t − s)
β− βn− 2− 1

 

≥
1

Γ β − βn− 2( 
t

β− βn− 2 − 1
(1 − s)

β− r0 − 1

− t
β− βn− 2 − 1

(1 − s)
β− βn− 2− 1

�
1

Γ β − βn− 2( 
t
β− βn− 2 − 1

(1 − s)
β− r0 − 1 1 − (1 − s)

r0− βn− 2 

� t
β− βn− 2− 1

g0(s),

J0(t, s) �
1

Γ β − βn− 2( 
t
β− βn− 2− 1

(1 − s)
β− r0− 1

− (t − s)
β− βn− 2− 1

 

≤Λ0t
β− βn− 2 − 1

.

(70)
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For 0≤ t≤ s≤ 1,

J0(t, s) �
1

Γ β − βn− 2( 
t
β− βn− 2− 1

(1 − s)
β− r0 − 1

≥
1

Γ β − βn− 2( 
t
β− βn− 2− 1

(1 − s)
β− r0− 1 1 − (1 − s)

r0 − βn− 2 

� t
β− βn− 2 − 1

g0(s),

J0(t, s) �
1

Γ β − βn− 2( 
t
β− βn− 2− 1

(1 − s)
β− r0 − 1

≤Λ0t
β− βn− 2 − 1

.

(71)

(2) Similarly as (1), we can obtain that

t
β− ri− 1gi(s)≤ Ji(t, s)≤Λit

β− ri − 1, i � 1, 2, 3. (72)

(3) In view of the conclusions of (1) and (2), we have

J(t, s) � J0(t, s) + t
β− βn− 2 − 1


1

0
J1(τ, s)h1(τ)dA1(τ) 

+ t
β− βn− 2− 1


η

0
J2(τ, s)h2(τ)dA2(τ) 

+ t
β− βn− 2− 1



∞

j�1
ρjJ3 ηj, s 

≥ t
β− βn− 2− 1

g0(s) + t
β− βn− 2− 1


1

0
J1(τ, s)h1(τ)dA1(τ) 

+ t
β− βn− 2− 1


η

0
J2(τ, s)h2(τ)dA2(τ) 

+ t
β− βn− 2− 1



∞

j�1
ρjJ3 ηj, s 

� h(t)g(s),

J(t, s) � J0(t, s) + t
β− βn− 2 − 1


1

0
J1(τ, s)h1(τ)dA1(τ) 

+ t
β− βn− 2− 1


η

0
J2(τ, s)h2(τ)dA2(τ) 

+ t
β− βn− 2− 1



∞

j�1
ρjJ3 ηj, s 

≤Λ0t
β− βn− 2− 1

+ Λ1t
β− βn− 2− 1


1

0
τβ− r1− 1

h1(τ)dA1(τ) 

+ Λ2t
β− βn− 2− 1


η

0
τβ− r2− 1

h2(τ)dA2(τ) 

+ Λ3t
β− βn− 2− 1



∞

j�1
ρjη

β− r3 − 1
j

� Λh(t).

(73)

*e proof is complete. □

Let (E, ‖ · ‖) be a Banach space, P be a cone in E, and θ
be the zero element of E. P is said to be normal if there exists
a constant N> 0 such that

θ≤ u≤ v⟹ ‖u‖≤N‖v‖, ∀u, v ∈ P. (74)

*e smallest constant, which satisfies the above in-
equality, is called the normality constant of P. *en, E is a
partially ordered Banach space by P; that is to say,

v≤ u⟺ u − v ∈ P. (75)

For u, v ∈ E, the notation u∼v shows that there exist
λ> 0 and μ> 0 such that λu≤ v≤ μu. Clearly, ∼ is an
equivalence relation in E. For any h ∈ P\ θ{ }, let
Ph � u ∈ E | u∼h{ } � u ∈ E | μh≤ u≤ μ− 1h, 0< μ< 1 . *en,
Ph ⊂ P is a component of P. For more details, we suggest
readers to refer [10, 11, 13].

Definition 4 (see [11]). Let E be a Banach space and D ⊂ E.
*e operator T : D × D⟶ E is called a mixed monotone
operator if T(u, v) is increasing in u ∈ D and decreasing in
v ∈ D, i.e.,

u1 ≤ u2,

v1 ≥ v2⟹T u1, v1( ≤T u2, v2( ,

∀ui, vi ∈ D, i � 1, 2.

(76)

Lemma 9 (see [13, 17]). Let P be a normal cone in the
Banach space E and T, S : Ph × Ph⟶ Ph be mixed mono-
tone operators which satisfy the following:

(1) For any l ∈ (0, 1), there exists φ(l) ∈ (l, 1] such that

T lu, l
− 1

v ≥φ(l)T(u, v), ∀ u, v ∈ Ph. (77)

(2) or any l ∈ (0, 1), u, v ∈ Ph,

S lu, l
− 1

v ≥ lS(u, v). (78)

(3) ?ere exists a constant 9> 0 such that for any
u, v ∈ Ph, T(u, v)≥ 9S(u, v).

?en, the equation T(u, u) + S(u, u) � u has a unique
fixed point u∗ ∈ Ph. And for any initial values u0, v0 ∈ Ph, by
structuring the following sequences:

un � T un− 1, vn− 1(  + S un− 1, vn− 1( ,

vn � T vn− 1, un− 1(  + S vn− 1, un− 1( ,

n � 1, 2, . . . ,

(79)

we have ||un − u∗||⟶ 0 and ||vn − u∗||⟶ 0 in E, as
n⟶∞.

Lemma 10 (see [13, 17]). Assume T and S satisfy all the
conditions of Lemma 9. İen, for any λ> 0, the equation
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λT(u, u) + λS(u, u) � u has a unique solution u∗λ ∈ Ph, which
satisfies the following:

(1) If there exists c ∈ (0, 1) such that

φ(l)≥
1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (80)

then u∗λ is continuous with respect to λ ∈ (0, +∞). ?at
is, for any λ0 ∈ (0, +∞),

u
∗
λ − u
∗
λ0

�����

�����⟶ 0, as λ⟶ λ0. (81)

(2) If

φ(l)≥
1
9

l
1/2

− l  + l
1/2

, ∀ l ∈ (0, 1), (82)

then 0< λ1 < λ2 implies u∗λ1
< u∗λ2

.

(3) If there exists c ∈ (0, 1/2) such that

φ(l)≥
1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (83)

then

lim
λ⟶0+

u
∗
λ

����
���� � 0,

lim
λ⟶+∞

u
∗
λ

����
���� � +∞.

(84)

In this paper, we denote E � C[0, 1] with the norm
‖v‖ � sup

0≤t≤1
|v(t)|. ?en (E, ‖ · ‖) is a Banach space. Let P �

v ∈ E : v(t) ≥ 0, t ∈ [0, 1]{ } be a cone in E. It is easy to check
that P is normal in E with the normality constant N � 1.

3. Proof of Main Results

In this section, let Ph � u ∈ E : u∼h{ }, where
h(t) � tβ− βn− 2− 1, t ∈ [0, 1] (defined in Lemma 8). *en, Ph is
a component of P. Let us define three operators T : Ph⟶ P

and T1, T2 : Ph × Ph⟶ P as follows:

(Tu)(t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)f τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ) dτ ds,

T1(u, v)(t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)F τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ), I

βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ) dτds,

T2(u, v)(t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)G τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ), I

βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ) dτ ds.

(85)

It is easy to check that u ∈ C[0, 1] is a positive solution of
the problem (28)-(29) if it is a fixed point of T in Ph.

Proof of ?eorem 1. Obviously, by (V1), Tu � T1
(u, u) + T2(u, u). And it is easy to check that u ∈ C[0, 1] is a
solution of the problem (28)-(29) if it satisfies
u � Tu � T1(u, u) + T2(u, u).

*e first work is to prove T1, T2 : Ph × Ph⟶ P are well
defined. For any u, v ∈ Ph, there exists a constant μ ∈ (0, 1)

such that

μh(t)≤ u(t)≤ μ− 1
h(t),

μh(t)≤ v(t)≤ μ− 1
h(t),

t ∈ [0, 1].

(86)

On the other hand, it is easy to check that

I
βn− 2
0+ h(t) �

1
Γ βn− 2( 


t

0
(t − s)

βn− 2− 1
s
β− βn− 2− 1

ds

�
Γ β − βn− 2( 

Γ(β)
t
β− 1 ≤ 1, t ∈ [0, 1],

(87)

I
βn− 2− βi

0+ h(t) �
1

Γ βn− 2 − βi( 


t

0
(t − s)

βn− 2− βi − 1s
β− βn− 2− 1

ds

�
Γ β − βn− 2( 

Γ β − βi( 
t
β− βi − 1 ≤ 1,

i � 1, 2, . . . , n − 3, t ∈ [0, 1].

(88)

Let

r � min
Γ β − βn− 2( 

Γ(β)
,
Γ β − βn− 2( 

Γ β − β1( 
, . . . ,
Γ β − βn− 2( 

Γ β − βn− 3( 
, 1 . (89)
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*en, 0< r≤ 1. According to (V1)–(V3) and (87)–(89),
we have

F τ, I
βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ), I

βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ) 

≤F τ, I
βn− 2
0+ μ− 1

h(τ), I
βn− 2− β1
0+ μ− 1

h(τ), . . . , I
βn− 2− βn− 3
0+ μ− 1

h(τ), μ− 1
h(τ), I

βn− 2
0+ μh(τ), I

βn− 2− β1
0+ μh(τ), . . . , I

βn− 2− βn− 3
0+ μh(τ), μh(τ) 

≤F τ, μ− 1
, μ− 1

, . . . , μ− 1
, μ− 1

, μ
Γ β − βn− 2( 

Γ(β)
τβ− 1

, μ
Γ β − βn− 2( 

Γ β − β1( 
τβ− β1− 1

, . . . , μ
Γ β − βn− 2( 

Γ β − βn− 3( 
τβ− βn− 3− 1

, τβ− βn− 2− 1
 

≤F τ, (μr)
− 1

, (μr)
− 1

, . . . , (μr)
− 1

, (μr)
− 1

, μrτβ− 1
, μrτβ− β1− 1

, . . . , μrτβ− βn− 3− 1
, μrτβ− βn− 2− 1

 

≤
1

φp− 1(μr)
F τ, 1, 1, . . . , 1, 1, τβ− 1

, τβ− β1− 1
, . . . , τβ− βn− 3− 1

, τβ− βn− 2− 1
 

≤
1

φp− 1(μr)
F τ, 1, . . . , 1, τβ− 1

, . . . , τβ− 1
 ,

(90)

F τ, I
βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ), I

βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ) 

≥F τ, I
βn− 2
0+ μh(τ), I

βn− 2− β1
0+ μh(τ), . . . , I

βn− 2− βn− 3
0+ μh(τ), μh(τ), I

βn− 2
0+ μ− 1

h(τ), I
βn− 2− β1
0+ μ− 1

h(τ), . . . , I
βn− 2− βn− 3
0+ μ− 1

h(τ), μ− 1
h(τ) 

≥F τ, μ
Γ β − βn− 2( 

Γ(β)
τβ− 1

, μ
Γ β − βn− 2( 

Γ β − β1( 
τβ− β1− 1

, . . . , μ
Γ β − βn− 2( 

Γ β − βn− 3( 
τβ− βn− 3− 1

, μτβ− βn− 2− 1
, μ− 1

, μ− 1
, . . . , μ− 1

, μ− 1
 

≥F τ, μrτβ− 1
, μrτβ− β1− 1

, . . . , μrτβ− βn− 3− 1
, μrτβ− βn− 2− 1

, (μr)
− 1

, (μr)
− 1

, . . . , (μr)
− 1

, (μr)
− 1

 

≥φp− 1
(μr)F τ, τβ− 1

, τβ− β1− 1
, . . . , τβ− βn− 3− 1

, τβ− βn− 2− 1
, 1, 1, . . . , 1, 1 

≥φp− 1
(μr)F τ, τβ− 1

, . . . , τβ− 1
, 1, . . . , 1 .

(91)

Similarly, we have

G( τ, I
βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ),

u(τ), I
βn− 2
0+ v(τ), I

βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ)

≤
1

(μr)p− 1 G τ, 1, . . . , 1, τβ− 1
, . . . , τβ− 1

 ,

(92)

G( τ, I
βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ),

I
βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ)≥ (μr)

p− 1

· G τ, τβ− 1
, . . . , τβ− 1

, 1, . . . , 1 .

(93)

On the basis of (90), (92), and (V5), we know that for any
t ∈ [0, 1],

T1(u, v)(t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)F τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ), I

βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ) dτ ds

≤
Λh(t)

(Γ(α))q− 1φ(μr)

1

0
ϕq 

1

0
(1 − τ)

α− 1
F τ, 1, . . . , 1, τβ− 1

, . . . , τβ− 1
 dτ ds

< +∞,

(94)

T2(u, v)(t)≤
Λh(t)

(Γ(α))q− 1(μr)

1

0
ϕq 

1

0
(1 − τ)

α− 1
G τ, 1, . . . , 1, τβ− 1

, . . . , τβ− 1
dτ ds< +∞. (95)
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*at is, T1, T2 : Ph × Ph⟶ P are well defined. On the
other hand, by means of (V2), for any (u1, v1), (u2, v2)

satisfying u1 ≤ u2 and v1 ≥ v2, we have

T1 u1, v1( (t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)F( τ, I

βn− 2
0+ u1(τ), I

βn− 2− β1
0+ u1(τ), . . . , I

βn− 2− βn− 3
0+ u1(τ), u1(τ), I

βn− 2
0+ v1(τ),

I
βn− 2− β1
0+ v1(τ), . . . , I

βn− 2− βn− 3
0+ v1(τ), v1(τ)dτds

≤ 
1

0
J(t, s)ϕq

 1

0
H(s, τ)F( τ, I

βn− 2
0+ u2(τ), I

βn− 2− β1
0+ u2(τ), . . . , I

βn− 2− βn− 3
0+ u2(τ), u2(τ), I

βn− 2
0+ v2(τ),

I
βn− 2− β1
0+ v2(τ), . . . , I

βn− 2− βn− 3
0+ v2(τ), v2(τ)dτds

� T1 u2, v2( (t), t ∈ [0, 1],

(96)

T2 u1, v1( (t) � 
1

0
J(t, s)ϕq

1

0
H(s, τ)Gτ, I

βn− 2
0+ u1(τ), I

βn− 2− β1
0+ u1(τ), . . . , I

βn− 2− βn− 3
0+ u1(τ), u1(τ), I

βn− 2
0+ v1(τ),

I
βn− 2− β1
0+ v1(τ), . . . , I

βn− 2− βn− 3
0+ v1(τ), v1(τ)dτds

≤ 
1

0
J(t, s)ϕq

1

0
H(s, τ)G( τ, I

βn− 2
0+ u2(τ), I

βn− 2− β1
0+ u2(τ), . . . , I

βn− 2− βn− 3
0+ u2(τ), u2(τ), I

βn− 2
0+ v2(τ),

I
βn− 2− β1
0+ v2(τ), . . . , I

βn− 2− βn− 3
0+ v2(τ), v2(τ)dτds

� T2 u2, v2( (t), t ∈ [0, 1].

(97)

Hence, T1, T2 : Ph × Ph⟶ P are mixed monotone
operators.

In the following, we prove that T1, T2 : Ph × Ph⟶ Ph.
It follows from (91) and (93) that for any u, v ∈ Ph and
t ∈ [0, 1],

T1(u, v)(t) � 
1

0
J(t, s)ϕq 

1

0
H(s, τ)F( τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ),

I
βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ)dτds

≥ 
1

0
J(t, s)ϕq φp− 1

(μr) 
1

0
H(s, τ)F τ, τβ− 1

, . . . , τβ− 1
, 1, . . . , 1 dτ ds

≥φ(μr)h(t) 
1

0
g(s)ϕq 

1

0
H(s, τ)F τ, τβ− 1

, . . . , τβ− 1
, 1, . . . , 1 dτ ds

≥M
− 1

h(t),

(98)

T2(u, v)(t)≥ μrh(t) 
1

0
g(s)ϕq 

1

0
H(s, τ)G τ, τβ− 1

, . . . , τβ− 1
, 1, . . . , 1 dτ ds

≥M
− 1

h(t),

(99)

where M is a constant, which satisfies
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max
Λ

(Γ(α))q− 1φ(μr)

1

0
ϕq 

1

0
(1 − τ)

α− 1
F τ, 1, . . . , 1, τβ− 1

, . . . , τβ− 1
 dτ ds,

·
Λ

(Γ(α))q− 1(μr)

1

0
ϕq 

 1

0
(1 − τ)

α− 1
G τ, 1, . . . , 1, τβ− 1

, . . . , τβ− 1
 dτ ds,

· φ(μr) 
1

0
g(s)ϕq 

1

0
H(s, τ)F τ, τβ− 1

, . . . , τβ− 1
, 1, . . . , 1 dτ ds 

− 1

,

· μr 
1

0
g(s)ϕq 

1

0
H(s, τ)G τ, τβ− 1

, . . . , τβ− 1
, 1, . . . , 1 dτ ds 

− 1⎫⎬

⎭ <M.

(100)

According to (94) and (95), we have

T1(u, v)(t)≤
Λh(t)

(Γ(α))q− 1φ(μr)

1

0
ϕq 

1

0
(1 − τ)

α− 1
F τ, 1, . . . , 1, τβ− 1

, . . . , τβ− 1
 dτ ds

≤Mh(t),

(101)

T2(u, v)(t)≤
Λh(t)

(Γ(α))q− 1(μr)

1

0
ϕq 

1

0
(1 − τ)

α− 1
G τ, 1, . . . , 1, τβ− 1

, . . . , τβ− 1
 dτ ds

≤Mh(t).

(102)

On the basis of (98), (99), (101), and (102) we infer that
T1, T2 : Ph × Ph⟶ Ph.

Moreover, it follows from (V3), for any l ∈ (0, 1) and u,
v ∈ Ph and t ∈ [0, 1], we have

T1 lu, l
− 1

v (t) � 
1

0
J(t, s)ϕq

1

0
H(s, τ)F( τ, I

βn− 2
0+ lu(τ), I

βn− 2− β1
0+ lu(τ), . . . , I

βn− 2− βn− 3
0+ lu(τ), lu(τ), I

βn− 2
0+ l

− 1
v(τ),

I
βn− 2− β1
0+ l

− 1
v(τ), . . . , I

βn− 2− βn− 3
0+ l

− 1
v(τ), l

− 1
v(τ)dτds

� 
1

0
J(t, s)ϕq

1

0
H(s, τ)F( τ, lI

βn− 2
0+ u(τ), lI

βn− 2− β1
0+ u(τ), . . . , lI

βn− 2− βn− 3
0+ u(τ), lu(τ), l

− 1
I
βn− 2
0+ v(τ),

l
− 1

I
βn− 2− β1
0+ v(τ), . . . , l

− 1
I
βn− 2− βn− 3
0+ v(τ), l

− 1
v(τ)dτds

≥ 
1

0
J(t, s)ϕqφ

p− 1
(l)

1

0
H(s, τ)F( τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ),

I
βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ)dτds

� φ(l) 
1

0
J(t, s)ϕq

1

0
H(s, τ)F( τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ),

I
βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ)dτds

� φ(l)T1(u, v)(t),

(103)
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T2 lu, l
− 1

v (t) � 
1

0
J(t, s)ϕq

1

0
H(s, τ)G( τ, I

βn− 2
0+ lu(τ), I

βn− 2− β1
0+ lu(τ), . . . , I

βn− 2− βn− 3
0+ lu(τ), lu(τ), I

βn− 2
0+ l

− 1
v(τ),

I
βn− 2− β1
0+ l

− 1
v(τ), . . . , I

βn− 2− βn− 3
0+ l

− 1
v(τ), l

− 1
v(τ)dτds

≥ l 
1

0
J(t, s)ϕq

1

0
H(s, τ)G( τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ),

I
βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ)dτds

� lT2(u, v)(t).

(104)

From (V4), for any u, v ∈ Ph and t ∈ [0, 1], we can obtain

T1(u, v)(t) � 
1

0
J(t, s)ϕq

1

0
H(s, τ)F( τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ),

I
βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ)dτds

≥ 
1

0
J(t, s)ϕq9

p− 1

1

0
H(s, τ)G( τ, I

βn− 2
0+ u(τ), I

βn− 2− β1
0+ u(τ), . . . , I

βn− 2− βn− 3
0+ u(τ), u(τ), I

βn− 2
0+ v(τ),

I
βn− 2− β1
0+ v(τ), . . . , I

βn− 2− βn− 3
0+ v(τ), v(τ))dτds

� 9T2(u, v)(t).

(105)

So, based on (103)–(105) and Lemma 9, we know the
equation T1(u, u) + T2(u, u) � u has a unique fixed point
u∗ ∈ Ph, which means u∗ is the unique positive solution of
the problem (28)-(29), and there exists δ ∈ (0, 1) such that

δt
β− βn− 2− 1

� δh(t)≤ u
∗
(t)≤ δ− 1

h(t) � δ− 1
t
β− βn− 2− 1

, t ∈ [0, 1].

(106)

And for any initial values u0, u0 ∈ Ph, we can construct
the following sequences:

un(t) � 
1

0
J(t, s)ϕq

1

0
H(s, τ)F( τ, I

βn− 2
0+ un− 1(τ), I

βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ), I

βn− 2
0+ un− 1(τ),

I
βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ)dτds

+ 
1

0
J(t, s)ϕq

1

0
H(s, τ)G( τ, I

βn− 2
0+ un− 1(τ), I

βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ), I

βn− 2
0+ un− 1(τ),

I
βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ)dτds,

un(t) � 
1

0
J(t, s)ϕq

1

0
H(s, τ)F( τ, I

βn− 2
0+ un− 1(τ), I

βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ),

I
βn− 2
0+ un− 1(τ), I

βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ)dτds

+ 
1

0
J(t, s)ϕq

1

0
H(s, τ)G( τ, I

βn− 2
0+ un− 1(τ), I

βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ),

I
βn− 2
0+ un− 1(τ), I

βn− 2− β1
0+ un− 1(τ), . . . , I

βn− 2− βn− 3
0+ un− 1(τ), un− 1(τ)dτds,

t ∈ [0, 1], n � 1, 2, . . . ,

(107)

such that
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sup
t∈[0,1]

un(t) − u
∗
(t)


 � un − u

∗����
����⟶ 0,

sup
t∈[0,1]

un(t) − u
∗
(t)


 � un − u

∗����
����⟶ 0,

as n⟶∞.

(108)

Finally, on the basis of Lemma 5, we know v∗ � Iβn− 2u∗ is
the unique positive solution of problem (4)-(5). By (106), we
have
Γ β − βn− 2( δ
Γ(β)

t
β− 1 ≤ v

∗
(t)≤
Γ β − βn− 2( 

Γ(β)δ
t
β− 1

, t ∈ [0, 1].

(109)

Let vn � I
βn− 2
0+ un and vn � I

βn− 2
0+ un; by using the mono-

tonicity and continuity of fractional integral, we have

sup
t∈[0,1]

vn(t) − v
∗
(t)


 � vn − v

∗����
����⟶ 0,

sup
t∈[0,1]

vn(t) − v
∗
(t)


 � vn − v

∗����
����⟶ 0,

as n⟶∞.

(110)

□

Proof of?eorem 2. For any λ> 0, let us define three operators
T, T1,

T2 : Ph × Ph⟶ P by T � (λq− 1T), T1 � (λq− 1T1),
and T2 � (λq− 1T2), respectively. It is easy to check that
u ∈ C[0, 1] is a positive solution of the problem (44)–(29) if it
is a fixed point of T in Ph, i.e., u � Tu � T1(u, u) + T2(u, u).
Considering the results of *eorem 1 and Lemma 10 together,
we know the following equation

T1(u, u) + T2(u, u) � λq− 1
T1 (u, u) + λq− 1

T2 (u, u) � u,

(111)

has a unique solution u∗λ ∈ Ph, which implies u∗λ is the
unique positive solution of the problem (44)–(29), and there
exists δλ ∈ (0, 1) such that

δλt
β− βn− 2− 1

� δλh(t)≤ u
∗
λ(t)≤ δ− 1

λ h(t) � δ− 1
λ t

β− βn− 2− 1
, t ∈ [0, 1].

(112)

Furthermore, u∗λ satisfies the following conclusion:

(1) If there exists c ∈ (0, 1) such that
φ(l)≥

1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (113)

then u∗λ is continuous with respect to λ ∈ (0, +∞).
*at is, for any λ0 ∈ (0, +∞),

sup
t∈[0,1]

u
∗
λ(t) − u

∗
λ0

(t)


 � u
∗
λ − u
∗
λ0

�����

�����⟶ 0, as λ⟶ λ0.

(114)

(2) If
φ(l)≥

1
9

l
1/2

− l  + l
1/2

, ∀ l ∈ (0, 1), (115)

then 0< λ1 < λ2 implies u∗λ1
< u∗λ2

.
(3) If there exists c ∈ (0, 1/2) such that

φ(l)≥
1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (116)

then

lim
λ⟶0+

sup
t∈[0,1]

u
∗
λ(t)


 � lim

λ⟶0+
u
∗
λ

����
���� � 0,

lim
λ⟶+∞

sup
t∈[0,1]

u
∗
λ(t)


 � lim

λ⟶+∞
u
∗
λ

����
���� � +∞.

(117)

Finally, by Lemma 5, we deduce v∗λ � I
βn− 2
0+ u∗λ is a unique

positive solution of the problem (6)-(5), which satisfies
Γ β − βn− 2( δλ
Γ(β)

t
β− 1 ≤ v

∗
λ(t)≤
Γ β − βn− 2( 

Γ(β)δλ
t
β− 1

, t ∈ [0, 1].

(118)

And by using the monotonicity and continuity of
fractional integral, we have the following:

(1) If there exists c ∈ (0, 1) such that

φ(l)≥
1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (119)

then v∗λ is continuous with respect to λ ∈ (0, +∞).
*at is, for any λ0 ∈ (0, +∞),

sup
t∈[0,1]

v
∗
λ(t) − v

∗
λ0(t)



 � v
∗
λ − v
∗
λ0

�����

�����⟶ 0, as λ⟶ λ0.

(120)

(2) If

φ(l)≥
1
9

l
1/2

− l  + l
1/2

, ∀ l ∈ (0, 1), (121)

then 0< λ1 < λ2 implies v∗λ1
< v∗λ2

.
(3) If there exists c ∈ (0, 1/2) such that

φ(l)≥
1
9

l
c

− l(  + l
c
, ∀ l ∈ (0, 1), (122)

then

lim
λ⟶0+

sup
t∈[0,1]

v
∗
λ(t)


 � lim

λ⟶0+
v
∗
λ

����
���� � 0,

lim
λ⟶+∞

sup
t∈[0,1]

v
∗
λ(t)


 � lim

λ⟶+∞
v
∗
λ

����
���� � +∞.

(123)

□

4. Numerical Examples

In this section, we give two simple theoretical numerical
examples which justify *eorems 1 and 2.

Example 1. We consider the following equation:
c
D

3/2
0+ ϕ3/2 D

29/10
0+ v(t)  + t

− (19/20)
v
1/2

(t) + t
− (9/20)

v
1/2

(t)

+ 2t
− (29/40)

v
1/4

(t) D
9/10
0+ v(t) 

1/4
+ 2t

19/20
v

− (1/2)
(t)

+ 2t
1/2

D
9/10
0+ v(t) 

− (1/2)
� 0, 0< t< 1,

(124)

with the boundary conditions
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v(0) � D
10/11
0+ v(0) � D

29/10
0+ v(0) � ϕ3/2 D

29/10
0+ v(0)  ′ � 0,

D
19/10
0+ v(1) �

1
100
Γ

3
2

  
1

0
s

− (1/2)
D

7/5
0+ v(s)dA1(s)

+
1
100


1

0
s

− 1
D

9/10
0+ v(s)dA2(s)

+
1
100



∞

i�1

1
i(i + 1)

D
9/10
0+ v(1),

(125)

where ϕ3/2(s) � |s|− (1/2)s and

A1(t) �

2
11

, t ∈ [0, 1)

13
11

, t � 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A2(t) �

1
13

, t ∈ [0, 1),

14
13

, t � 1.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(126)

Proof. Let

f t, u1, u2(  � t
− (19/20)

u
1/2
1 + t

− (9/20)
u
1/2
1 + 2t

− (29/40)
u
1/4
1 u

1/4
2

+ 2t
19/20

u
− (1/2)
1 + 2t

1/2
u

− (1/2)
2 ,

(127)

ϕp(s) � ϕ3/2(s), α � 3/2, β � 29/10, β1 � 9/10, ]1 � 10/11,
r0 � 19/10, r1 � 7/5, r2 � 9/10, r3 � 9/10, ρi � 1/i(i + 1),
ηi � 1, (i � 1, 2, . . .), η � 1, λ1 � (1/100)Γ(3/2), λ2 � 1/100,
λ3 � 1/100, h1(t) � t− (1/2), and h2(t) � t− 1. *en, the
problem (124)-(125) can be expressed as the problem (4)-(5).
Notice that


1

0
s
β− r1− 1

h1(s)dA1(s) � 1> 0,


η

0
s
β− r2− 1

h2(s)dA2(s) � 1> 0,



∞

i�1
ρiη

β− r3− 1
i � 1,

σ �
1

Γ β − r0( 
−

λ1
Γ β − r1( 

· 
1

0
s
β− r1− 1

h1(s)dA1(s) −
λ2
Γ β − r2( 

· 
η

0
s
β− r2− 1

h2(s)dA2(s) −
λ3
Γ β − r3( 

· 
∞

i�1
ρiη

β− r3− 1
i � 0.97> 0.

(128)

We infer that the properties of Green’s function in
Lemma 8 are achieved. Let

F t, u1, u2, v1, v2(  � t
− (19/20)

u
1/2
1 + t

− (29/40)
u
1/4
1 u

1/4
2

+ t
19/20

v
− (1/2)
1 + t

1/2
v

− (1/2)
2 ,

G t, u1, u2, v1, v2(  � t
− (9/20)

u
1/2
1 + t

− (29/40)
u
1/4
1 u

1/4
2

+ t
19/20

v
− (1/2)
1 + t

1/2
v

− (1/2)
2 .

(129)

It is easy to check the following conditions:

(V1) f(t, u1, u2) � F(t, u1, u2, u1, u2) + G(t, u1, u2, u1,

u2).

(V2) For fixed t ∈ (0, 1), and (v1, v2) ∈ (0, +∞)2,
F(t, u1, u2, v1, v2), G(t, u1, u2, v1, v2) are increasing in
(u1, u2) ∈ (0, +∞)2; for fixed t ∈ (0, 1) and (u1, u2) ∈
(0, +∞)2, F(t, u1, u2, v1, v2) and G(t, u1, u2, v1, v2) are
decreasing in (v1, v2) ∈ (0, +∞)2.
(V3) Let φ(l) � l. *en, for l ∈ (0, 1), t ∈ (0, 1), and
(u1, u2, v1, v2) ∈ (0, +∞)4,

F t, lu1, lu2, l
− 1

v1, l
− 1

v2 

� t
− (19/20)

lu1( 
1/2

+ t
− (29/40)

lu1( 
1/4

lu2( 
1/4

+ t
19/20

l
− 1

v1 
− (1/2)

+ t
1/2

l
− 1

v2 
− (1/2)

≥ l
1/2

F t, u1, u2, v1, v2(  � φ1/2
(l)F t, u1, u2, v1, v2( 

� φp− 1
(l)F t, u1, u2, v1, v2( ,

G t, lu1, lu2, l
− 1

v1, l
− 1

v2 

� t
− (9/20)

lu1( 
1/2

+ t
− (29/40)

lu1( 
1/4

lu2( 
1/4

+ t
19/20

l
− 1

v1 
− (1/2)

+ t
1/2

l
− 1

v2 
− (1/2)

≥ l
1/2

G t, u1, u2, v1, v2(  � l
p− 1

G t, u1, u2, v1, v2( .

(130)

(V4) Let 9 � 1. *en, for all (u1, u2, v1, v2) ∈ (0, +∞)4,

F t, u1, u2, v1, v2( ≥ 9G t, u1, u2, v1, v2( . (131)

(V5) *e functions F and G satisfy

0< 
1

0
(1 − τ)

α− 1
F τ, 1, 1, τβ− 1

, τβ− 1
 dτ

� B(1.5, 0.05) + B(1.5, 0.275) + B(1.5, 1)

+ B(1.5, 0.55)< +∞,

0< 
1

0
(1 − τ)

α− 1
G τ, 1, 1, τβ− 1

, τβ− 1
 dτ

� B(1.5, 0.55) + B(1.5, 0.275) + B(1.5, 1)

+ B(1.5, 0.55)< +∞.

(132)
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*us, the assumptions of *eorem 1 are satisfied. By
calculation, we obtain the approximate solution of the
problem (124)-(125) is v∗(t) ≈ 34.315t1.9. On the other
hand, let u0(t) � t and u0 � 10t. We take v0(t) � Iβ1u0(t)

and v0 � Iβ1 u0(t). By iterating the sequences, the numerical
results of the iterative process are shown as follows (Figure 1
and Tables 1 and 2). □

Example 2. We consider the equation

c
D

3/2
0+ ϕ3/2 D

35/12
0+ v(t)  + λ2t

− (35/144)
v
1/12

(t) D
11/12
0+ v(t) 

1/12

+ 2t
23/72

v
− (1/6)

(t) + 2t
1/6

D
11/12
0+ v(t) 

− (1/6)
+ 1 � 0,

0< t< 1,

(133)

with the boundary conditions

v(0) � D
12/13
0+ v(0) � D

35/12
0+ v(0)

� ϕ3/2 D
35/12
0+ v(0)  ′ � 0,

D
23/12
0+ v(1) �

1
100
Γ

3
2

  
1

0
s

− (1/2)
D

17/12
0+ v(s)dA1(s)

+
1
100


1

0
s

− 1
D

11/12
0+ v(s)dA2(s)

+
1
100



∞

i�1

1
i(i + 1)

D
11/12
0+ v(1),

(134)

where ϕ3/2(s) � |s|− (1/2)s and

A1(t) �

2
11

, t ∈ [0, 1),

13
11

, t � 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A2(t) �

1
13

, t ∈ [0, 1),

14
13

, t � 1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(135)

Proof. Let

f t, u1, u2(  � λ( 2t
− (35/144)

u
1/12
1 u

1/12
2 + 2t

23/72
u

− (1/6)
1

+ 2t
1/6

u
− (1/6)
2 + 1,

(136)

ϕp(s) � ϕ3/2(s), α � 3/2, β � 35/12, β1 � 11/12, ]1 � 12/13,
r0 � 23/12, r1 � 17/12, r2 � 11/12, r3 � 11/12,

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

v2
v5

v∗
v0
v1

10.6 0.80.2 0.40
Iterative process of vi

(a)

v∗

v0
v1

v2
v5

0

1

2

3

4

5

6

7

8

10.6 0.80.2 0.40
Iterative process of vi

˜
˜

˜
˜

˜

(b)

Figure 1: Iterative process of vi and vi.

Table 1: Iterative process of vi.

t v0 v1 v2 v3 v4 v5 v∗

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0069 0.0094 0.0106 0.0113 0.0116 0.0118 0.4320
0.2 0.0257 0.0352 0.0397 0.0421 0.0433 0.0440 1.6123
0.3 0.0556 0.0759 0.0857 0.0908 0.0935 0.0950 3.4835
0.4 0.0960 0.1307 0.1476 0.1563 0.1610 0.1635 6.0172
0.5 0.1466 0.1983 0.2239 0.2373 0.2443 0.2481 9.1945
0.6 0.2073 0.2769 0.3126 0.3312 0.3411 0.3464 13.0008
0.7 0.2779 0.3631 0.4100 0.4344 0.4474 0.4543 17.4249
0.8 0.3581 0.4520 0.5104 0.5408 0.5570 0.5657 22.4572
0.9 0.4480 0.5361 0.6054 0.6415 0.6606 0.6710 28.0895
1.0 0.5472 0.6045 0.6828 0.7234 0.7450 0.7567 34.3150
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ρi � 1/i(i + 1), ηi � 1, (i � 1, 2, . . .), η � 1, λ1 �

(1/100)Γ(3/2), λ2 � 1/100, λ3 � 1/100, h1(t) � t− (1/2), and
h2(t) � t− 1. *en, the problems (133)-(134) can be expressed
as the problems (6)-(5). Notice that

σ �
1

Γ β − r0( 
−

λ1
Γ β − r1( 


1

0
s
β− r1− 1

h1(s)dA1(s)

−
λ2
Γ β − r2( 


η

0
s
β− r2− 1

h2(s)dA2(s)

−
λ3
Γ β − r3( 



∞

i�1
ρiη

β− r3− 1
i

� 0.97> 0.

(137)

We infer that the properties of Green’s function in
Lemma 8 are achieved. Let

F t, u1, u2, v1, v2(  � λ( t
− (35/144)

u
1/12
1 u

1/12
2 + t

23/72
v

− (1/6)
1

+ t
1/6

v
− (1/6)
2 + 1,

G t, u1, u2, v1, v2(  � λ( t
− (35/144)

u
1/12
1 u

1/12
2 + t

23/72
v

− (1/6)
1

+ t
1/6

v
− (1/6)
2 .

(138)

It is easy to check the conditions (V1)–(V5) are all
satisfied with φ(l) � l1/3 and 9 � 1. On the other hand, let
c � (4/9)< (1/2). *en,

(1) φ(l) � l1/3 ≥ (1/9)(lc − l) + lc � (6/5)l4/9 − (29/40)l,

∀ l ∈ (0, 1)

(2) φ(l) � l1/3 ≥(1/9)(l1/2 − l) + l1/2 �(6/5)l1/2 − (29/40)l,

∀ l ∈ (0, 1)

So, the assumptions of *eorem 2 are satisfied. In the
following, we give the graphical simulations and table of the
solution v∗λ with respect to λ � 0.5, 1, 1.5, 2, 3, 10, re-
spectively (Figure 2 and Table 3). □

Based on the graphical simulations and table, we obtain
the following conclusions:

(1) v∗λ is continuous with respect to λ ∈ (0, +∞). *at is,
for any λ0 ∈ (0, +∞),

sup
t∈[0,1]

v
∗
λ(t) − v

∗
λ0

(t)


 � v
∗
λ − v
∗
λ0

�����

�����⟶ 0, as λ⟶ λ0.

(139)

(2) 0< λ1 < λ2 implies v∗λ1
< v∗λ2

.
(3) lim

λ⟶0+
sup

t∈[0,1]

|v∗λ(t)| � lim
λ⟶0+

‖v∗λ‖ � 0, lim
λ⟶+∞

sup
t∈[0,1]

|v∗λ(t)| � lim
λ⟶+∞

‖v∗λ‖ � +∞.

5. Conclusion

In this paper, we introduce the fixed point theorem of mixed
monotone operator for finding the uniqueness of positive
solution of a class of fractional boundary value problems,
which is a generalized form of turbulent flow problem in a
porous medium. Two theoretical numerical examples are
given to illustrate*eorems 1 and 2; the results then bring us a
step closer to research the characters of solutions.

Example 2

0

2

4

6

8

10

12

λ = 0.5
λ = 1

λ = 1.5
λ = 2

10.6 0.80.2 0.40

Figure 2: Dependence of the solution v∗λ upon λ.

Table 3: Numerical value of the solution v∗λ .

t λ� 0.5 λ� 1 λ� 1.5 λ� 2 λ� 3 λ� 10
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0093 0.0342 0.0759 0.1362 0.3198 5.0454
0.2 0.0351 0.1289 0.2867 0.5140 1.2073 19.0488
0.3 0.0763 0.2805 0.6237 1.1182 2.6262 41.4358
0.4 0.1324 0.4868 1.0825 1.9407 4.5582 71.9187
0.5 0.2030 0.7466 1.6603 2.9765 6.9909 110.3027
0.6 0.2880 1.0589 2.3548 4.2216 9.9151 156.4408
0.7 0.3870 1.4229 3.1642 5.6727 13.3233 210.2155
0.8 0.4998 1.8379 4.0871 7.3272 17.2093 271.5289
0.9 0.6264 2.3034 5.1222 9.1830 21.5678 340.2972
1.0 0.7666 2.8188 6.2684 11.2379 26.3942 416.4475

Table 2: Iterative process of vi.

t v0 v1 v2 v3 v4 v5 v∗

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0689 0.0943 0.1064 0.1128 0.1161 0.1179 0.4320
0.2 0.2571 0.3518 0.3971 0.4207 0.4333 0.4400 1.6123
0.3 0.5555 0.7591 0.8570 0.9079 0.9350 0.9496 3.4835
0.4 0.9596 1.3071 1.4757 1.5633 1.6100 1.6351 6.0172
0.5 1.4663 1.9835 2.2394 2.3724 2.4433 2.4814 9.1945
0.6 2.0733 2.7688 3.1262 3.3120 3.4109 3.4641 13.0008
0.7 2.7788 3.6311 4.1000 4.3438 4.4735 4.5433 17.4249
0.8 3.5814 4.5203 5.1043 5.4079 5.5695 5.6565 22.4572
0.9 4.4796 5.3612 6.0542 6.4144 6.6062 6.7093 28.0895
1.0 5.4724 6.0459 6.8277 7.2340 7.4502 7.5666 34.3150
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Furthermore, as the application of mixed monotone operator
operator, further research and discussion are required in
practice.
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