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This article is concerned with a class of singular nonlinear fractional boundary value problems with p-Laplacian operator, which
contains Riemann-Liouville fractional derivative and Caputo fractional derivative. The boundary conditions are made up of two
kinds of Riemann-Stieltjes integral boundary conditions and nonlocal infinite-point boundary conditions, and different fractional
orders are involved in the boundary conditions and the nonlinear term, respectively. Based on the method of reducing the order of
fractional derivative, some properties of the corresponding Green’s function, and the fixed point theorem of mixed monotone
operator, an interesting result on the iterative sequence of the uniqueness of positive solutions is obtained under the assumption
that the nonlinear term may be singular in regard to both the time variable and space variables. And we obtain the dependence of
solution upon parameter. Furthermore, two numerical examples are presented to illustrate the application of our main results.

1. Introduction

In the past decades, fractional differential equations arise in
many mathematical disciplines as the analogue modeling of
systems and processes in many scientific fields, such as control
theory and engineering. In fact, fractional-order models have
proved to be valuable tools in modeling many physical
phenomena (for details, see [1-3] and the references therein).
Accordingly, there has been a substantial development in the
research for fractional differential equations, the properties of
solutions, especially. We refer the readers to the papers [4-
54]. For instance, in [15], Xu and Wei investigated the positive
solutions of the following fractional differential equations:

Dg (D8, x(t)) = f(t,x(t),x' (t),-D§,x(t)), tel[0,1],
x(0) =x'(0)=x"(1) =0,
Dg, x(0) = Di'x(0) = D§'x (1) = 0,

(1)

where Df, is the Riemann-Liouville’s fractional derivative,
2<a<3, and f e C([0,1] x Ri,IRJr) (R, = [0,+00)). The
existence of positive solutions is obtained by the
Krasnoselskii-Zabreiko fixed point theorem. And by using
the method of lower and upper solutions, the authors dis-
cussed the uniqueness of positive solution of this problem.

On the other hand, the fractional differential equations
with the p-Laplacian operator can describe various phe-
nomena, such as the flow of some specific fluid. Hence, the
study of fractional differential equations with the p-Lap-
lacian operator is gaining much significance and attention
(see [16, 18-21, 37-39, 48-50]). For example, in [48], in
order to research the mechanics phenomenon of turbulent
flow in a porous medium, the author introduced the fol-
lowing type equation:

(¢,(x' (1)) = f(t.x (D), x (1)), 2)

where ¢,(p>1) is the p-Laplacian operator, ie., ¢,(s) =
|s|?~2s(p > 1). In the past thirty years, many papers discussed
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equation (2) with different boundary value conditions and
then drew related conclusion in practice. We refer the reader
to [49, 50] and the references cited therein. Recently, Liu
etal. in [16] investigated the existence of positive solution of
the following fractional differential equations with p-Lap-
lacian operator:

D§,¢,(Dh.x (1)) = f(t.x(),°Dh, x (1)),
Df x(0) = x' (0) =0, (3)

x(D)=rx(p), <Dhx(1) = r5Dh,x(8),

where Dj, is the Riemann-Liouville’s fractional derivative
and CDg , is the Caputo fractional derivative, 1 <a, <2, 1},
r 20, ¢,(p>1) is the p-Laplacian operator, and
feC(l0,1] xR, xR_,R,) (R_ = (—00,0]). The existence
of lower and upper solutions is obtained by using the
monotone iterative technique.

Based on the above illustration, it is of significance to
study the fractional differential equations with p-Laplacian
operator. In this article, we investigate the following frac-
tional differential equation, which is a generalized form of
the problem (2):

Dy, ¢,(Dh,v()) + f(t.v(1), Dyv(D),..., Dfv(n)) =
0<t<l,
(4)
with the boundary conditions
v(0) = D},v(0) = D§,v(0) =(¢,(Dh,v(0))) =
i=1,...,n-2,

Dyv(1) =L J hy (s)DgLv(s)dA, (s)

J hy (YD v (S)dA, (s) + Ay Z P Dyv(n,),

(5)

where °Dg, denotes the Caputo fractional derivative; Dg .
denotes the Riemann-Liouville’s fractional derivative; ¢
is the p-Laplacian operator, ie, ¢,(s)= s|P~2s (p> 1),

I<a<2, n-1<f<n(n=3), 1<f-B,,<2, i-1<p,
v; <1, ﬂn_z—v,»Sn—Z—i(iz1,2,...,n—2), B <ri<
ro<f-1(k=12,3), 0<n<l, 0<y<mp<--- <1, p; >0
(j=1,2,...), A, >0(k =1,2,3); hy, hy: (01)—>R—[

+00) are contlnuous with hy, h, € L'(0,1); Joh (s)v(s)
dA, (s), .[oh (s)v(s)dA, (s) denote the Riemann-Stieltjes
1ntegral, in which A, A,: [0,1] — R are functions of
bounded variation; and f: (0,1) x (0, +o0)" 1 — R, is
continuous. Furthermore, we also consider the following
equation with a parameter:
D5, ¢,(Dhv(®)) + Af (£ v(0), DLy (D)., Dy v (1) =
O<t<1,

(6)
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with the boundary conditions (5), where A > 0 is a parameter.
In fact, we regard the problem (6)-(5) as a new problem for
modeling the problem (4)-(5) involving a parameter. In this
paper, a nonnegative function v € C[0, 1] is called a positive
solution of boundary value problem (4)-(5) (resp. (6)-(5)) if
it satisfies the problem (4)-(5) (resp. (6)-(5)) for t € [0, 1]
and v(t) >0 for t € (0,1].
In this paper, we make the following hypothesis:

(V) f:(0,1) x (0,+00)"" — R, is continuous and
satisfies

fltuy .o, ) =F(bugy, .oty Uy, Uy, )

+G(tuy,... JUy1)s

(7)

sUpy > Ups -

for all (t,uy,...,u,_ 1) € (0,1) x (0,+00)"!, where
F, G: (0,1) x (0,+00)*™V — R, are continuous.

(V,) Forany t € (0,1), (vj,...,v,_,) € (0,+00)"

F(t,uy, .. sty V.oV ),and G(t uy, ..o u,_q, vy,
..»V,_,) are nondecreasing in (u,...,u, ;)€ (0,
+00)"!, and for any t € (0,1), (uy,...,u, ;)€ (0,

+00)"!, F(t,uy,... Uy 13 ViV, ), and G(t,uy,
.osU,_>Vy,...,V, ;) are nonincreasing in (vi,...,
V1) € (0,+00)""
(V3) For any I € (0,1), there exists ¢ (I) € (1971, 1]
such that for any ¢ € (0,1), (u;,...,u,_;) and (v,,...,
v,_1) € (0,+00)" "

F(t,luy,..., A,0)
© Vn—l)’

l_lvn,l)

N n—l)'

-1
Iu, 1,1 vy, ...

> P N (DF (tugs .o thy s vy

(8)

-1
lu, 17 vy, .o,

G(t, lug,...,

>1P' Gty oty gy ¥y -

(V,) There exists ¢ >0 such that for any ¢ € (0, 1),
(4y,... u, 1) and (vy,...,v, ;) € (0,+00)""

i n—l)

U 1> Vs oo Vyyp)-

F(tuy, .. sty g5 Vy,..

) (9)
>0 'G(tuy,. ..

(Vs)

1
< J (1- r)‘“F(r,l, L...,
0

n—1times

LA AP ar
n—1times
< +00,

1
< J (1- 1)“_1G<T, 1, 1,...,1,Tﬁ_1,‘[ﬁ_1,...,Tﬁ_l>dT
0 . A

n—1times n—1times

< +00.
(10)
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Our main results are as follows. And for any initial values v,V € Py, by structuring the
following sequences:
Theorem 1. Suppose that (V,)— (V) hold, then the
problem (4)-(5) has a unique solution v* € P, and there exists
6 € (0,1) such that
r (/3 — ﬁn—Z)

F(ﬁ—ﬁn,z)a B-1 * p-1
Wt <V () S——F T( S)St , te[0,1].
(11)

v, (t) = Igﬁz{ J; J(t, Skbfi(ﬁ J; (s— T)‘HF(T, Igf’zvn_l (1), Igf’fﬁ‘ V1 (1), Igﬁ’z_ﬁ“’3 Vo (2, v, (T), If,‘z*vn_l (1),
by (o, PPy (0,5, (T))dr)ds
+ j; J(t, s)%(ﬁ JO (s—D'G(r, B, (1), Py, (1), .. I Py (o), (1), 1029, (D),
Bty (o, PPy (0,5, (T))d‘[)ds},

v, (1) = 1’312{ J; I, s)¢q<ﬁ JO (s— D F(n, 127, (0, 15 P %, (1), I Pow, (0,7, (1), I, (1),
Igi‘fﬁ‘ Vo (1), .. ,Igi‘fﬁ"‘wn,l (1), v,y (T)dT)dS
N j; I, s)gbq(%“) JO (s = G (1, Brov, (0, B, (0, o3, (0,7 (0, BBy, (0),

Py (o, Py (o), (T))d‘r)ds},

n=12,...,
(12)
we have (8- r(B-
(ﬁ Bn—Z)(S/\tﬁfl SV: (t)S (ﬂ /”)n—z)tﬁfl) te [0,1]
sup |v, (£) = v" (1)] — 0, r'(B) T'(B)6,
te[0,1] (14)
t:hl)g]lv"(t) v (t)| —0 (13) And moreover,
asn —s oo, (1) If there exists y € (0, 1) such that

(p(z)zé(zy-z)w, vie (01,  (15)

Theorem 2. Suppose that (V,)— (V5) hold, then for any
A >0, the problem (6)-(5) have a unique solution vi € P, and then vy is continuous with respect to A € (0, +c0).
there exists §) € (0,1) such that That is, for any A, € (0, +00),



4
sup |vX (t) - V)TO (t)| — 0, asA— A, (16)
te[0,1]
@ If
0) zl(z”2 —1)+1'%, vie(0,1), (17)
Q
then 0 <A, <A, implies Vi <L
(3) If there exists y € (0,1/2) such that
<p(l)zl(lV—l)+lV, Vie (0,1), (18)
Q
then

lim sup |v; (t)| =0,
A—0" t¢[0,1] (19)

The key argument of the problem (4)-(5) and (6)-(5) is
the iterative positive solution by applying the method of
reducing the order of fractional derivative and the fixed point
theory of mixed monotone operator. The method of re-
ducing the order of fractional derivative is based on certain
semigroup properties of the Riemann-Liouville’s fractional
integral and derivative. We refer the reader to
[3, 24, 25, 34, 36, 46]. In this paper, different orders of
Riemann-Liouville’s fractional derivative are involved in the
nonlinearity f, which is solved in a more complex space, in
most cases. By using the method of reduction, we transform
the problem (4)-(5) (resp. (6)-(5)) into an equivalent and
low-order problem, in which the nonlinearity f contains no
fractional derivative. Therefore, the work could proceed in
the space C[0, 1], which is more interesting and meaningful.
On the other hand, by using the properties of relevant
Green’s function and cone, the theory of mixed monotone
operator could be applied on the research of fractional
boundary value problems. We suggest that one refers to
[13, 17, 24, 31, 32, 34, 47]. In this paper, by structuring a
suitable mixed monotone operator, the problem (4)-(5)
(resp. (6)-(5)), which contains the p-Laplacian operator, is
solved. In [15, 16], the positive solutions are obtained
under the assumption that the nonlinear term f is contin-
uous. But, we obtain the uniqueness of positive solution with
the assumption that the nonlinear term may be singular in
regard to both the time variable and space variables.
Compared with [15], our equation contains p-
Laplacian operator, which is more general. Compared with
[16], our boundary conditions are of general significance,
which would be used to describe more phenomena in
practice.

The paper is organized as follows. In Section 2, we
present some relevant definitions and lemmas. And we
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transform the problem (4)-(5) (resp. (6)-(5)) into an
equivalent and low-order problem (28)-(29) (resp. (44)-
(29)) and obtain some properties of the corresponding
Green’s function. In Section 3, we give the proof of our main
results, as one researches the uniqueness of iterative positive
solutions for the problem (4)-(5) and the other one analyses
the dependence of solution upon parameter for the problem
(6)-(5). In Section 4, we give two examples to illustrate our
theoretical results. In Section 5, we give a conclusion of our
main results.

2. Preliminaries and Lemmas

Definition 1. Let a>0. The Riemann-Liouville fractional
integral of order a of a function v: (0, 00) — R is given by

o 1 ! a—1
(0 = s JO (t = % Ly (s)ds, (20)

provided that the right-hand side is pointwise defined on
(0, ).

Definition 2. Let a>0. The Riemann-Liouville fractional
derivative of order a of a continuous function v:
(0,00) — R is given by

o _ d ! n—a _ 1 i "
Dy.v(t) —<E> Iv(t) = CEr) (dt)

t
: j V(Slz—n-v-l dS,
o (t-s)
where n = [a] +1, [a] denotes the integer part of the
number «, provided that the right-hand side is pointwise

defined on (0,00). In particular, if o« =n¢eN,, then
Dg.v(t) = v (1),

(21)

Definition 3. Let « > 0. The Caputo fractional derivative of
order a of a continuous function v: (0,00) — R is given
by

(n)
y (s) ds (22)

C & _ 1 !
Dy.v(t) = To—a) JO TRl

where n = [a] +1, [a] denotes the integer part of the
number «, provided that the right-hand side is pointwise
defined on (0,00). In particular, if o« =n¢eN,, then
‘D& v(t) = v (1).

Lemma 1 (see [7]). Let a>0. If we assume v € C(0,1)N
L'(0,1), then the equation

Dg.v(t) =0, (23)

has

v(t) = et et e 0T

¢, eR,i=1,2,...,n,
(24)
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as the unique solution, where n is the smallest integer greater
than or equal to a.

Lemma 2 (see [7]). Let v € C(0,1)NL'(0,1) and Dj.v €
C(0,1)NL(0,1). Then,

a—2

15D v () = v(t) + eyt eyt 4ot

(25)
¢;eR,i=12,...,n,

where n is the smallest integer greater than or equal to a.

Lemma 3 (see [4]). Let v € AC"[0,1]. Then,

DS v(t) = v(t) + ¢y + et + -+t

(26)
c;eR,i=1,2,...,n,
where n = [a] + 1 for « ¢ N, and n =« for a € N,.
Lemma 4 (see [4]).
(1) Ifu e L'(0,1), a> >0, then
Dy Igou(t) = u(t),
S« a—p (27)
Dy Iyu(t) = I "u(t).
(2) Let a € (n—1,n). If u(0) =u'(0) =--- = u®1(0),

then “Dg.v(t) = Dg.v(t).

Let u:Dgi’zv, then the problem (4)-(5) could be
transformed to the following fractional differential equation:
D, ¢,(Dhu®) + f (615 u (),

Py, Py, u) =0, 0<t<l,
(28)

with the boundary conditions
DS:Z_BH_ZM(O) — Dg;'g"_zu(o) = (q‘)p(Dg;ﬁn-Zu(O)))’ =0,
1
DS‘:ﬁHU (1) = /11 JO hl (S)D&r‘ﬁwzu(s)dAl (s)

n
, J hy ()DL P2 ()d A, (s)
0

+A3 ) Pngfﬁ"’zu(’?j)’
j=1
(29)

where 1< - f3,_,<2.

Lemma 5. If the problem (4)-(5) have a solution v € C[0, 1],
then u = D{fz% is a solution of the problem (28)-(29). And in

turn, if the problem (28)-(29) have a solution u € C[0, 1],
then v = Igﬁ‘zu is a solution of the problem (4)-(5).

Proof. Let
u(t) =Dirv(r), telo1], (30)

where v € C[0, 1] is a solution of the problem (4)-(5). By
using Lemma 2, we have

v(t) = P2 (t) — ey tPrt =g P D (31)

wherec; € R(i =1,2,...,n—2). By the boundary condition
v(0) = 0, we get ¢,_, = 0. So, we have

v(t) = Ipu(t) — ey tf! — g Y (32)

Furthermore, we obtain

T (By-2)

DgiV(f) = Igi’z_vlu(t) —C 7tﬁn-z‘1’1—1

11“(/5”,2 - )

r(ﬁn—Z - 1) tﬁy,_zﬂzl—Z _

CMG-m-y e Y

. r(ﬂn—z_(”_4))
r(ﬁn—Z s T (71 - 4))

(P ~(n-3)
4 >

which combines with the boundary condition Dy, v(0) = 0
meaning ¢,_; = 0. In a similar manner, we obtain c,_, =
.--=¢; =0 based on the boundary condition Dy
y(0)=-.-= DSTV(O) = 0. Thus, we have

v(t) = Iu(), te(01]. (34)

Applying the operator Dg+ to both sides of this equality,

we have

Div(t) = Dy (Ig~u(n) = %Igiﬁ(lﬁw(t))

a" n(p-p,.
_ ﬁzw( Du(t)

_ d_z ( a2 2 )12—(ﬁ—ﬁnz)u (t) (35)

de2\dm-20 )70

d* 2(p-p,
= ﬁlo*( )u(t)

= D P (r),



Similarly, we know
Dy (t) = Dy P (), (36)

Div(t) = DiIbru(t) = DiP2u(r), i=0,1,2,3.
(37)

In addition, by means of Lemma 4, we can obtain

Diiv(t) = Db Bu(e) = B Pu(e), i=1,2,...,n-3.
(38)
According to (30), (34), (36), and (38), we have

Di g, (DL u(®) + f (616, 167
(), . I P (), u(t))
=D, ¢,(Db,v()) + f(t,v(1), Dy v (D),...., Dfv(t))

=0.
(39)

It follows from (35)-(37) that

DEP2u(0) = DE,v(0) = 0, (40)

(9p(D0"2u(@)) =(9p(Phv(@)) =0, (41)

Dy P2y (0) = DYv(0) =0, (42)

1
DI (1) = Dlov(1) = AIJO by ()DL v (s)dA, (s)

. AZJZ hy (5)DLv (s)dA, (s)

(09
+; ZPiD(r)i-V(r/i)
i-1

1 (43)
=Mh Jo hy (S)D(r)fﬁ“’zu(s)dA1 (s)

n _
. AZJO hy (YD P (5)d A, (5)

+A; Z PiDSir_ﬁH“ (m;).

i=1

On the basis of (39)-(43), we know u = Dgf’zv is a so-
lution of the problem (28)-(29).

On the other hand, if the problem (28)-(29) has a so-
lution u € C[0,1], then v =1Iy""u is a solution of the
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problem (4)-(5). Since the proof is similar to Lemma 3 in
[44], we omit it here. O

Remark 5. According to Lemma 5, we conclude that the
work on considering the solution of the problem (4)-(5) is
equivalent to the search for the solution of (28)-(29).
Similarly, we can prove the work on the problem (6)-(5) is
equivalent to the following equation:

“Dg, @6 (1)) + A f (815w (0, 10 »
(), .oy, ut) =0, 0<t<l,

with the boundary conditions (29).

Lemma 6. Let x € C(0,1)NL'(0,1). Then, the fractional
differential equation

DEPu(t) +x(t) =0, 0<t<l, 1<f-p,,<2, (45)
with the boundary conditions
1/;'172_ﬂn—2
Dy P (0) = 0,

1
Dy Fu(1) = 0, JO hy (s)Dy P u(s)dA, (s)

1 r-B (46)
+ A, Jo h, (s)Dy. " u(s)dA, (s)
A3 ) pD5u(ny),
=
has a unique solution
1
u®) = | 1t (47)
0

where

1
J(t,s) =Jy(t,s) + tﬁ‘ﬁﬂ-fl(Jo J, (t,5)h, (1)dA, (1)>
n
N tﬂ_ﬁ“’2_1<J0 T, (r,5)h, (1)dA, (T)>

[ee]
Y s (),
j=1
(48)

in which
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1 theal (1= 907t — (1 = s P,
MDD | g

A (ot (1= (-
) = Cr =BT (B—1) i (it (1 - g)f ot

A, [l (1= s)frot (¢
L9 = =B, T (- 1) ‘A (ol (1 - g o]

p (o (1 - st (2
T = =B B r) i (il (1 5)f 7!

= Ty Ty o -

Obviously, J: [0,1] x [0,1] — R, is continuous.

Proof. We may apply Lemma 2 to reduce equation (45) to an
equivalent integral equation:

u(t) = cltﬁ_‘g"‘z_1 + cztﬁ_"g"‘z_2 - Ig;ﬁ"‘zx(t), (50)
where ¢, ¢, € R. Since Dg’:f’g”’zu(O) =0, we have ¢, = 0. So
u(t) = e, tF Pt b Py (), (51)

Applying the operator Dg’:ﬁ "2 (i =0,1,2,3) to both sides

of (51), we have

o T(B=Pos) por-
DO;ﬁn—zu(t) =c (ﬁ [371 Z)tﬂ i—1

_ p-r;
r@-r)

i=0,1,2,3.

(52)

Hence, according to (52) and the boundary condition

Dg‘fﬁ"‘zu(l) — /\1 J h (S)Drl_ﬁn ZLL(S)dAl (5)

J hy ()DE P (s)d A, (s) (53)

+/1 Zp] Vaﬁnz ( )

7
s<t,
tS S,
s)f it s<t,
t<s,
—g)frl s<t,
t<s,
—g)frsl s<t,
t<s,
Bty (s)dA, (s) - frsl 4o,
T (ﬁ ) j 2 2 Z P]
(49)
we can obtain
B 1 1 ! Bl _ A
ﬁ_aTw*ﬁmﬁ{wanﬂjou R S Y (cRry
1 s /1
_ p-ri-1 _ 2
. JO(L (s— 1) x(r)dr)h1 (4 )~ 5521y
. r(r (s— 'r)ﬁ_’z_lx('r)d'r)h2 (s)dA, (s)
0 0
B-r3—
Fry 20 o () )
(54)
where
1 /1 J. ﬁ ri—1
0= Yhy (s)dA, (s)
T(B-ry) T(B-r1)
py " g
) erz) J o (9dA () (55)

F 20

Then
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SRS S PPN &/ ! { L PR
0= g Jo O O G (g | O
/1 ' p-r1— _ AZ
I‘(ﬁ ”1) J. (J (s—1) x(T)dT) 1 ($)dA, (s) 71"(/3—1’2)

n s . .
'Joqo (= lx(T)dT)hZ(s)dAz(s) r(B- rs)ZPJJ (-9 1X(s)ds}

= (G lﬁ )J (t = s)P P x (s)ds
n-2

BBl

PPl (1 — )P () ds 4 — TG A

F(ﬁ ﬁn 2) J ) J; (1) x(s)ds

o

{r(ﬁ - j j r)ﬁ‘“‘lxmdr)hl(s)dA1<s>+r(ﬁ )j(j (s = " x (e iy (A, (9)

S PI) RUBDIEE Vot

= 1 BBu2-1 B-ro-1 B ¢  \BPBua-l
T T(B-PB,. 2){Jt (1-9) x(s)ds Jo (t—-s) x(s)ds}

i horE

Atﬁﬁ 21
T (BB )T (B-1) “0<

A tﬁ Pzl
oI‘(ﬁ Bua)T(B=13) s

j Uy ()dA, (s)+r(ﬁ )J Uy (94 (9) + ZP] porye }

1

$Frta- T)ﬁ_ro_lx(T)dT—Js (s—T)ﬂ"l“x(r)d7>hl(s)dA1(s)}
0

1

Jf
J

0

S - X (Ddr - j (s— T)‘*"flx(r)dr)hz(s)dA2 (s)}
0

M8

(Jlﬂ (= s)P” x(s)ds—J’Zv(nj—s)ﬁ_r‘*_lx(s)ds)

0

1 1 ! ! 1
=J ]O(t,s)x(S)dSJrJ tﬁﬁ”21<J 7, (S,T)X(T)dT)h1(s)dAl (s)+J tﬁﬁnzl(J' ]2(5,T)x(T)dT>h2(S)dAz(S)
0 0 0 ’ '
TR
+ tﬁ—ﬁmz‘ J Zp].]3(;7j,s)x(s)d5
055
1 1 !
=J ]o(t,s)x(s)ds+J tﬁ_ﬁ”z_l<J ]1(T>S)h1(7)dA1(T))x(S)ds
0 0 0

1
+ Jo tﬂfﬁ"’fl(J'Z I, (1,8)h, (1)dA, (T))X(S)dS+J P IZp]]3(11] )x(s)ds

j=1

_ jl Tt $)x (s)ds.
0
(56)

The proof is complete. O



Complexity

Lemma 7. Let x € C(0,1)NL'(0,1) be a given function.
Then, the following equation

D¢, (DhFou(®) +x() =0, 0<t<l,  (57)

with the boundary conditions

Dg:——zfﬁn—zu(o) _ Dﬂ*ﬁn—zu(o) — ((/,’)p(Dg;ﬁ”’zu(O)))/ =0,
Dg(lr_ﬁn—zu (1) — /11 J h (S)D”l_ﬁn Zu(S)dAl (S)

J h, (s)D2 P2y (s)dA, (s)

+AZP1 5P mu(ny),

(58)

has a unique solution

1 1
u(t) = Jo J(t, s)</>q<jo H (s, T)x(T)dT)dS, (59)

where ¢, = gb;l, J(t,s) is defined in Lemma 6, and
L [ e=9%" ossst<,
H(t,s) = r (60)
( ) 0<t<s<l.

Proof. Let ¢ (D’3 P “u(t)) = w(t). Then, we can strip down
the problem (57)-(58) to the following two problems:

‘Diw(t)+x(t) =0, 0<t<l1,

{ , (61)
w(0) =w (0) =
DEPray(t) = </>qw(t), 0<t<1,

D”n—z P u (0) —

1 D) =2 J hy ()DL P (5)dA, (5)

j=1
(62)
Obviously, the problem (61) can be written as

w(t) =cy+ct — Iy, x(t). (63)

The boundary conditions w(0) = w' (0) = 0 imply that
¢y = ¢, = 0. Thus,
1
w) =l == [ He9x@ds (69
0

On the other hand, by Lemma 6, we know the problem
(62) has a unique solution:

1
u(t) = - L 1t )6, (w()ds. (65)

Therefore, the problem (57)-(58) has a unique solution:

J by (D2 (dA () + Ay 3 p D u(y).

1 1
u(t) = Jof(t, s)</>q(JOH(s, T)x(T)dT)ds. (66)
O

Lemma 8. Let o >0 (defined in Lemma 6), A; >0 (i = 1,2, 3),
[, sF R, (9d4,(5)20, [1sfrthy (5)dA, (5)20, and
0<Y2ipit; ﬁ "l < +00. Then, the following properties hold:

(1) tFPamlg (s) < Ty (t,5) < AgtPPr2l, where Ay =1/
(r(ﬁ _ﬁVl—Z)))

(1= (1= (1 =gy ),

(67)

1
90 =T E-p o)

(2) P71 g, (s) < T; (t, ) < AP (i = 1,2, 3), where

—; _ p-ro-1 _ _ o T .
gi(s)_r(ﬂ—ri)(l s) (1-(1-9"7), =123,
L
A = i . i=1,2,3.
(BB T By
(68)

(3) h(t)g(s)<J(t,s)<Ah(t), where h(t) = PP

1
909 =909+ | 1, (r. 90 (1A, (0
+ JZ J, (7,8)h, (1)dA, (1) + Z ]3(11j,s),
i=1
) J
A=Ay + AI(J A (1)dA, (T)>
0

+A2(J A (1)dA, (T)>+A3ij prit

(69)
Proof
(1) For 0<s<t<1,
1
Jo(t,s) = PPl (- S)ﬁ—ro—l —(t- 5)13—5,172—1
0 r (/3 - ﬁn—Z) [ ]
1 BB, -1 Bry-1
>— [P (1 =)0
F(ﬁ - /:')n—z) [
— PPl (- S)ﬁ*ﬁmrl]
1 tﬂ’ﬁn—z’l (1 _ S)ﬁ’rl)’l [1 _ (1 _ S)rl)’ﬁmz]

TT(B- )
_ tﬁ-ﬁmz—l o (5),

_ S)ﬁ—ro—l

Jo(t,s) = [tﬁ frta

_ ABBual
TB-Fra) ﬁnz (k=]

< AP P!,
(70)
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For 0<t<s<l,

Jo(t,s) = mﬂs—ﬁn,ﬂ (1 g
= 7P, (s),

Jo(ts) = @tmm (1 gl
< A PPt

(71)
(2) Similarly as (1), we can obtain that
g () < T () <AFTT i=1,2,3. (72)

(3) In view of the conclusions of (1) and (2), we have
1
J(t5) = Jo(t,s) + £ ﬁ”“([ 17 (D4, (T)>
n
+ tﬁfﬁ“’fl(j T, (1,8)h, (1)dA, (T))
0
+tF PN o g (05)
=
1
S tﬁfﬁ"’rlgo (s) + PPl < JO T, (1, 9)h, (1)dA, (T)>
n
4 PPl (j I, (7,8)h, (1)dA, (T))
0

AR WIACI)

j=1

=h(t)g(s),

1
J(t,s) =Jo(t,s) + tﬁ_ﬁ“_1<J0 T, (1, 9)h, (1)dA, (T)>
n
b PP ( L T, (r, ), ()dA, (r))

o0
AR WIA(Y)
=

1
S W Wi (j Py (1)dA, (r)>
0
n
+ Aztﬁ’ﬁ"‘f1 (J ‘rﬁ*rflh2 (1)dA, (T))
0

+ A3tﬁ*ﬂn—2*1 ijrlg"fl
j=1
= Ah(t).
(73)

The proof is complete. O

Complexity

Let (E,| - |) be a Banach space, P be a cone in E, and 6
be the zero element of E. P is said to be normal if there exists
a constant N >0 such that

O<u<v=|ul|<N|vl, Vu,veP. (74)

The smallest constant, which satisfies the above in-
equality, is called the normality constant of P. Then, E is a
partially ordered Banach space by P; that is to say,

v<uesu-veP~r. (75)

For u,v € E, the notation u~v shows that there exist
A>0 and p>0 such that Au<v<pu. Clearly, ~ is an
equivalence relation in E. For any he P\{0}, let
P,={ucE|lu~ht={ucE|lgh<u<y'h, 0<pu<1}. Then,
P, c P is a component of P. For more details, we suggest
readers to refer [10, 11, 13].

Definition 4 (see [11]). Let E be a Banach space and D ¢ E.
The operator T: D x D — E is called a mixed monotone
operator if T'(u, v) is increasing in u € D and decreasing in
v e D, ie.,

Uy <u,,
v 2V, =T (uy,v,) < T (U, v,), (76)

Yu,v;€D,i=1,2.

Lemma 9 (see [13, 17]). Let P be a normal cone in the
Banach space E and T,S: P, x P, — P, be mixed mono-
tone operators which satisfy the following:

(1) For any I € (0, 1), there exists ¢ (I) € (I,1] such that

T(lu,I"'v) > 9(DT (u,v), VYu,veP, (77)

(2) oranyl e (0,1), u,v e Py,

S(lu,I"'v) > 1S (u, v). (78)

(3) There exists a constant 9>0 such that for any
u,v € Py, T(u,v)>0S(u,v).

Then, the equation T (u,u) + S(u,u) = u has a unique
fixed point u* € P,. And for any initial values u,, v, € Py, by
structuring the following sequences:

, =T (U, 1, Vyq) + S(Uy_15Vyy)s
Vn = T(Vn—l’ un—l) + S(vn—l’ un—l)’ (79)
n=12,...,

we have |lu, —u*|| — 0 and |lv,—u*|| — 0 in E, as
n— oo.

Lemma 10 (see [13, 17]). Assume T and S satisfy all the
conditions of Lemma 9. fen, for any A>0, the equation
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AT (u, u) + AS (u, u) = u has a unique solution uy € P, which
satisfies the following:

(1) If there exists y € (0, 1) such that

1
go(l)za I-0+1I", Ve (0,1), (80)
then u; is continuous with respect to A € (0, +co). That
is, for any Ay € (0, +0c0),

uy — asd — A, (81)

) If

op()>- (11/2 N+, vie (0,1), (82)

then 0 <A, <A, implies uy <uj .

(3) If there exists y € (0,1/2) such that

1 1
(Tw) (1) = JO I, s)¢q<J0 H(s, 1) f(r Ihu (0, 1 Pru (), ..

1 1
T, (u,v) (1) = JO I, s)¢q< JO H (s, DF(7, Iu (0), I Pu(o),

1 1
T, (u,v) (t) = JO J(t, s)¢q<J0 H (s, 0G(7. I u (o), Iy Pru(o), ..,

It is easy to check that u € C[0, 1] is a positive solution of
the problem (28)-(29) if it is a fixed point of T'in P,

Proof of Theorem 1. Obviously, by (V,), Tu=T,
(u,u) + T, (u,u). And it is easy to check that u € C[0,1] isa
solution of the problem (28)-(29) if it satisfies
u=Tu=T,(u,u)+T,uu).

The first work is to prove T}, T, : P, x P, — P are well
defined. For any u, v € Py, there exists a constant y € (0, 1)
such that

ph(t)<u(t) <u 'h(t),
ph(t)<v(t) <u 'h(t), (86)
€ [0,1].

On the other hand, it is easy to check that

11

(p(z)zé =1+, vie (0,1), (83)

then
lim ||u; | =o,

(84)
lim ”uA || = +00.

A—+00
In this paper, we denote E = C[0,1] with the norm
vl = sup |v(¢t)l. Then (E,||-|l) is a Banach space. Let P =

0<t<1

{veE:v(t)=0,t € [0,1]} be a cone in E. It is easy to check
that P is normal in E with the normality constant N = 1.

3. Proof of Main Results

In this section, let P,={ueE:u~h}, where
h(t) = th-P2"1, t € [0,1] (defined in Lemma 8). Then, P, is
a component of P. Let us define three operators T': P, — P
and T'|,T,: P, x P, — P as follows:

,Ig‘jr’z_ﬁ”’3u (1), u (T))dr)ds,

Py (1), u(0), By (1), B Pro (o), B Py (1), v(r))dr)ds,

P (), u (), v (0), T Py (), T Py (1), v(T))dT)ds.

(85)
Bt (1) - Brrl pBoa-l
I = 5 ﬁn_z) J (t—s) ds .
r(ﬁ ﬂn 2)
=% <1, telo1],
Bra P 1 _ gy Birl Bual
I "h(t) = T, - l)j (t —s) ds
_T(B=Bus) pp
T T(B-B)

i=1,2,...,n=3,t€[01].
(88)

Let

r = min r(ﬁ_ﬁ"—Z) r(ﬁ_ﬁn—Z) r(ﬁ_ﬁn-z)
B { T (B) ’r(ﬁ—/sl)""’r(ﬁ_ﬁH)’l}- (89)




12

Then, 0 <r <1. According to (V,)-(V;) and (87)-(89),
we have

F(r, I u (o), I Pru(o), ..

<F(r.15u  h(0), 15 Py h(o), .

b Pou (), u o), v (), e P (o),

B T (), i (o), B (2), 1B P (1),

Complexity

g P (), v(n)

P uh (1), uh (1)

SF(T,#l)ﬂl,”.’Ml,‘u . (ﬁr By 2) # L r(ﬁ B 2)Tﬁ B ,.“"ui(ﬁ B 2) BPus= L PP 1)
() (B-p1) B=B.s)

SF(T, (‘ur)fl, (‘ur)fl, . (Kur)fl, (yr)fl,yrrﬁfl,yrrﬁfﬂfl .,yr‘rﬂfﬂ"*fl,yrrﬁ’ﬁ"*fl)
<—— F(r,1,1,...,1, 1,7 PP PPl PR

P~ (ur) ( )

1

<———F T,l,...,l,rﬁfl,...,rﬁfl ,

@P~t (ur) ( )

F(r, 1§ u (o), 15> Pru(o), .
> F(1, I puh (1), Iy Pryh (o), ..

1By (0, u(0), By (0, B P (),
Iﬁnfz_ﬁn *uh (1), ph (1), I/3n 2 _lh(T) [ﬁn—z—ﬁl‘“—lh(T), ...

(90)

I P (n),v(1))
g P (@), ()

zF(T,y (ﬂr Pue) #F(/)’ Pu-z) g1 ;(ﬁ Pu-a) 54,1 Wﬁ—ﬁn2—1,#—1’#—1’.“’#—1#—1)
) T(B-B) (B PBus)

2F(T, ‘ur‘r ,yr‘r Fhiml ,yrrﬁ Pus™ ,yrrﬁ_ﬁ”’z , (yr) , (yr) . (yr)_l, (/,tr)_l)

zq)P—l (‘ur)F(T,‘rﬁ_l,Tﬁ_ﬁ‘_1 ,Tﬁ_ﬁ”’fl,rﬁ_ﬁ"*z_l,1,1,...,1,1)

>of! (MT)F(T, T T 1).

Similarly, we have

G(r, 1§" 2u(r), Iﬁ“ 2 ﬁ’u(r), . .,Igi’z_ﬁ“’3u(‘r),

u(0), By (o), B Py (o), . PPy (1), v(2))

(92)

(91)

G(r. I u (o), I Pru(o), . I P (), u(2), I v (1),
1Py (o), I Pov(2), v (D) 2 ()P
‘G(T,Tﬁil,...,Tﬁil,l,...,l).

(93)

On the basis of (90), (92), and (V5), we know that for any
t e [0,1],

1 1
T, (u,v)(t) = Jo J(t, S)¢q<IOH(S, T)F(T, Ig?ﬁu(‘r),]gf’rﬁlu(.[)) o ,Ig:”rﬁ"’3u(‘l’),M(T),Igf’zv(f),lgf’rﬁlv(ﬂ, I‘B 2B (1), V(T))d‘[)

Ah(t)

1
i S el -1
< T I(P([/H‘) J ¢‘1<J.0 (1-1) F(T,l,...,l,T V.

< +00,

Ah(t)

T, (u,v)(t) < _((T

Jl ¢q<J; (1- T)‘HG(T, 1,

1,#71,.A.,Tﬂ71)d7>d5< +00.

. ,Tﬁfl)d'r>ds

(94)

(95)
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That is, T,,T,: P, x P, — P are well defined. On the
other hand, by means of (V,), for any (u;,v;), (u,,v,)
satisfying u; <u, and v, >v,, we have
1 1
T, (up,vy) (@) = .[0 J(t, s)¢q< jo H (s, 7)F (7, Igf’zul (T),Iﬁf’fﬁlul (1), ... ,Igf’fﬁ”’WI (1), uy (1), Igf’zvl (1),
by (), PPy (), (T))d‘l’)ds
: : - B2y B2 £y (96)
< [ 7099, | HEDF@ I 0.0 P (0 B Oy (0.1, (),
I’gf’fﬁ‘ vy (1), ... ,Igﬁ’fﬁ””‘ v, (1), v, (T))dr)ds
= Tl (uZ’ VZ) (t)) te [07 1])
1 : g £ab fab g
T, (uy,vy) (t) = Jo J(t, s)¢q<IO H (s, 7)Gt, Iy uy (1), I Wluy (1), .. I 72 uy (1), uy (1), T2 vy (1),
Py (1), TPy, (1), 0, (T)d‘r)ds
1 1
< J-o J (¢, S)(Pq(JO H(s,7)G (7, Igi“zuz (1), Igi‘fﬁ‘ Uy (1), .. s I’gi‘fﬁ"‘3u2 (1), u, (1), 1’32-21/2 (1), ©7)
PP, (o, e oy, (0,0, (T))dr)ds
=T, (uy,v,) (1), te[0,1].
Hence, T,,T,: P, x P, — P are mixed monotone In the following, we prove that T, T,: P, x P, — P,
operators. It follows from (91) and (93) that for any u, v € P, and
t € [0,1],
1 1
Ty (1, ) (t) = jo J(t, s)¢q( jo H (s, DF (7, Izu (o), Iy Pu), . e P (0, u(0), v (),
Iﬁi’fﬁlv(r), . ,Igf’fﬁ””‘v(r),v(r))dr)ds
1 1
> J J(t, s)¢q(¢p_1 (ur) J H{(s, T)F(T, PN I 1)dr)ds (98)
0 0
1 1
> o (ur)h(t) j g(s)(/)q(J Hs, 0F(n, 7,71, 1)dr>ds
0 0
>M"h(t),
1 1
T, () (0) (1) | g(s)qaqU H(s0G(r? . P 1)dr>ds )
0 0

>M h(t),

where M is a constant, which satisfies
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max{A qus <Jl (1—1)“‘1F(T L., 1,77, Tﬁ_l)dr>ds
(T ()T p(ur) Jo "\ Jo e ’

1 1
A ( )J gbq(J (l—T)a_lG(T,l,...,I,Tﬁ_l,...,‘[ﬁ_l)d‘[)ds,
pr) Jo 0

(@)t
(100)
1 1 -1
. (q)(yr) J g(s)¢q(J H (s, T)F(T, L i R l)dr>ds> ,
0 0
1 1 -1
: (WJ g(s)gbq(J H(s0)G(r, 7.7, 1)d7)d5> } <M.
0 0
According to (94) and (95), we have
A 1 1
T, (u,v)(t) Sh—_(lt) J ¢4<J (1- T)'HF(T, ..., 1,77 ,Tﬁ_l)d‘t’)ds
(T (@) @(ur) Jo 0 (101)
< Mh(t),
Ah(t) Jl J’l a-1 B-1 B-1
T, (u, H———— 1- Gl1,1,...,1, RN dr |d
5 (u,v) (1) @) ) Jo bl |, (1-D (r T 7 )dr |ds (102)
< Mh(t).
On the basis of (98), (99), (101), and (102) we infer that Moreover, it follows from (V3), for any / € (0,1) and u,
T,,T,: P, xP, — P v e P, and t € [0, 1], we have

T, (I, I7') (¢) = J; J(t, s)%(ﬂ H (s, 7)F (1, I lu (o), B P (o), . B P (), lu (), B2 v (1),
B P (@, 1 P @, ()de )ds
_ J; T, s)¢q<ﬂ H (s, DF (0,1 u (), 115 P o), . 18P (), u (), 7 I (1),
1*1152-2“*1 v(1),..., 1*1152-2‘@-31/(1), lilv(r))d‘r>d5
> J; J(t, )b (l)(J; H (s, DF (v, It u (), B Pru(o), . B Py (o), u(x), v (o),
B v, T Pov (@, v (m)dr )ds
=¢(l) J; J(t, s)gbq(J:) H (s, 7)F (7, Igi’zu(r), Igﬁ’z_ﬁ‘u(‘r), .. .,1(,51*2"‘"%(1),u(r),Iﬁz*v(r),

Igi‘fﬁlv(r), e I’gi‘fﬁ"'3v(r), v(r))dr)ds
= (DT, (u,v) (1),

(103)
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Tz(lu, lilv) (t) = J;](t, s)gbq(J‘ H (s, 7)G (7, 1/3” 2lu (1), IIS” 2 ﬁllu(T), . ,Igi’fﬁ" *lu(t), lu(t), Iﬁ” 1y (1),

B P (@, T P @, (1) de )ds

1 1
zlJ ](t,s)gbq(J H (s, T)G(T,Ig" u(7), I/S" 2 ﬁlu(r), e Iﬁ" 2P ‘u(r), u(r), Iﬁ” 2y (1),
0 0
ey, B Poy (), v(T))dT)ds

=1IT, (u,v) ().

From (V,), foranyu,v € P, andt € [0, 1], we can obtain

1 1
T, (u,v) () = J-Oj(t, s)¢q<J H (s, )F (1, IBru (o), B P (o), . B Py (o), u (), v (),
I’gi’z_ﬂ‘v(r), e Igi’z_ﬁ”’3v(r), v(r))dr)ds
1 1
zj ](t,s)gbq(QP_lJ H (s, DG (7, I5u (1), I Pru(n), ., I P (o), u(n), v (v),
0 0

152’27’81 v(1),..., Igi’fﬁ"’3v(1), v(r)))dr)ds

=0T, (u,v)(t).

StP Pt = St <u* (1) <8 h(t) = 8PP

So, based on (103)-(105) and Lemma 9, we know the
equation T (u,u) + T, (u,u) = u has a unique fixed point
u* € Py, which means u* is the unique positive solution of

the problem (28)-(29), and there exists § € (0,1) such that the following sequences:

' ' ; B2 b B2 ;
u,(t) = JOJ(t, s)¢q(JOH(s, ) F (1,1 2w,y (2), Iy Py (1), I 2w, (1), 4,y (2), 1020, (T),
B, (0 10, (2.5, ()d )ds
1 1
+ Jo J(t, S)¢q<Jo H (s, 71)G(7, Igﬁqu,kl (1), Igffﬁ‘unq (1),... )[ﬁfz’ﬁmsuml (1)1, (1), Igt,zﬁml (1),
Prba, (o), e Pon (0.8, (T))dr)ds,
1 1
i, (t) = JOJ(t, s)¢q(JOH(s, OF (r, 125, (), I P, (1), ., e Ped, (0,3, (1),
Iﬁi‘zu (D), Iﬁ" Py (). ,Ig:“fﬁ“*un,l (1), u,_, (T))dT)dS
1 1
+ jOJ(t,S)%(JOH(s, G (v, Ia, (0, 1P, (o), e P, (0,8, (1),

Igi‘zun,l (1), Igi‘z_ﬂ‘ Uy 1 (T)s. ., 15:—2“*"-314",1 (1), 1,4 (T))dT)dS,

telo1], n=12,...

such that

15

(104)

(105)

t € [0,1].
(106)

And for any initial values u,, %, € P,, we can construct

(107)
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sup u, (t) = u" (1) = |u, - u"[| — 0,
te[0,1]

sup [&, (1) —u" ()] = ||ﬁn - u*" — 0, (108)
te[0,1]

asn — OQ.

Finally, on the basis of Lemma 5, we know v* = If-2u* is
the unique positive solution of problem (4)-(5). By (106), we
have

1“(/3 ﬁn 2) ﬂl * (ﬁ /';n Z)ﬁl
) — =T <y (1) < T(B)s — =y e [0,1].

(109)
Let v, = Igﬁ’zun and v, = Igﬁ’zﬁn; by using the mono-
tonicity and continuity of fractional integral, we have

sup |vn(t) - (t)l = ||vn —v* || — 0,
te[0,1]

sup [v, (£) = v* (1)] = ||Vn -y || — 0, (110)
te[0,1]

asn — OQ.

O

Proof of Theorem 2. For any A > 0, let us define three operators
T,T,T,: P,xP,— P by T=Q"'T), T, = A\'T)),
and T, = (A7'T,), respectively. It is easy to check that
u € C[0, 1] is a positive solution of the problem (44)-(29) if it
is a fixed point of T in Py, i.e, u = Tu =T, (u,u) + T, (u, u1).
Considering the results of Theorem 1 and Lemma 10 together,
we know the following equation

T, (uu) + T, (u,u) = (Aq_lTl) (u, 1) +(Aq_1T2) (u, 1) =u
(111)
has a unique solution u; € P,, which implies u} is the

unique positive solution of the problem (44)-(29), and there

exists §, € (0,1) such that
St Pl = 8 () <u) (1) <8, () = 8P P71, e (0,1,

(112)
Furthermore, u} satisfies the following conclusion:
(1) If there exists y € (0, 1) such that

go(l)zé(ly—l)+ly, Vie (0,1), (113)

then u} is continuous with respect to A € (0, +00).
That is, for any A, € (0, +oo)

sup 'uA (t) - uA (t)| —"u,L , asA — A,

te[0,1]
(114)

@) If

1
<p(l)25(l“2 —1)+1"%, Vie (0,1), (115)

then 0 <A, <A, implies uj <uj .
(3) If there exists y € (0,1/2) such that

Complexity

1
(p(l)zé(ly—l)+ly, Vie (0,1), (116)
then

,\ILH(IV t:up |uy ()] = lim+ I =o,

(117)
lim sup |u/\ (t)| = hm
A—+00 4 te[0,1]
Bu-a

Finally, by Lemma 5, we deduce v = I;”u] is a unique
positive solution of the problem (6)-(5), which satisfies

I'(B-B.2)d A1 T(B-B,. z)tﬁ )

T() T(B)5, teloll

<v ()<

(118)

And by using the monotonicity and continuity of
fractional integral, we have the following:
(1) If there exists y € (0,1) such that
1
() 25 =0+,

vie (0,1), (119)

then v} is continuous with respect to A € (0, +00).
That is, for any A, € (0, +00),

sup 'VA (t) - VA (t)' —”vl - VA ” — 0, asl— A,

te[0,1]
(120)
(2) If
p(l)>- (l”2 N+1"2, vie (0,1), (121)
then 0 <A, <A, implies v; <vj .
(3) If there exists y € (0,1/2) such that
a0 2l I"-0+1", Ve (0,1), (122)
Q
then
)ngn sup |VA (t)| = hm ||vA || =
(123)
lim  sup |v/1 (t)| = hm ||v/\ | = +oo.
A—+00 4 te[0,1] O

4. Numerical Examples

In this section, we give two simple theoretical numerical
examples which justify Theorems 1 and 2.

Example 1. We consider the following equation:
3/2 D20 ~(19/20) 172 ~(9/20) 172
N 0 (3 ) B A Rl (O R e Gl ()

— 1/4 _
+ 2t (29/40) 1/4 (t)( gilov(t)) + 2t19/201/ (1/2) (t)

+2t”2( D (t)) —0, 0<t<l,
(124)

with the boundary conditions
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v(0) = Déﬂ“‘v(o) = D" v(0)
3
19/10 —(1/2) 1715
1 D dA
V()= ( )jo 5y (s)dA, (s)

L (' 1 o0
+ﬁ Jos Dy, v(s)dA,(s)

+L§ L ponoy,
100 &i(i+1) 7

(125)
where ¢;, (s) = IsI"“?s and
2
—, te 0,1
T (0,1)
A (1) = -
13
= t=1,
11
(126)
1
—, 0,1
5 (0,1)
Az(t) =4
14
—, t=1
L 13

Proof. Let
Ftupuy) = t-(19/20)u}/2 N t-(9/20)u1/2 N 2t_(29/40)u}/4u;/4

+ 2t19/20u;(1/2 + 2t1/2u—(1/2)

(127)

(pp(s) = ¢35 (), a«=3/2, f=29/10, B, = 9/10, v, =10/11,
ro = 19/10, r, =7/5, ry =9/10, ry =9/10, p; = 1/i(i + 1),
m=1 (i=12..),7=1,1 = (1/100)[ (3/2), A, = 1/100,
Ay =1/100, hy(t) =t"?, and h,(t) =t"'. Then, the
problem (124)-(125) can be expressed as the problem (4)-(5).
Notice that

1

J S ()dA, (s) = 10,
0
1 p-r—1

J T hy (s)dA, (s) = 1>0,
0

ZP, frt=n,

1 - A
L(B-ry) T(B-r1)

- jl S, (5)dA, (s) -
0

o=

A

r(ﬁ"’z)
p-r,-1

JO h, ()dA, (s) - r(ﬁ -

Zp, Fral 20,97 0.

(128)

(¢3/2( 33/101’(0))), =0,

17

We infer that the properties of Green’s function in
Lemma 8 are achieved. Let

(19/20) 1/2 —(29/40), 1/4_ 1/4

F(t,uy,uy, vy, v,) =t +t

+ t19/20VI(1/2) + tl/ZV;(l/Z)’

(129)

—(9/20), 1/2 29/40)  1/4 1/4
:t(/)/ (/)u/uz/

G (t,uys 1y, vy, 7,) 1

+t

+ t19/20vI(1/2) + t1/2vg(1/2).

It is easy to check the following conditions:

(V) f(t,u,u,)
u,).

(V,) For fixed te (0,1), and (v;,v,) € (0,+00)?
F(t,u;,u,,v,v,), G(t,u,uy,v,,v,) are increasing in
(uy,u,) € (0, +00)%; for fixed ¢ € (0,1) and (u,u,) €
(0, +00)%, F(t,uy,uy, vy, v,) and G (t,u,, u,, v;,v,) are
decreasing in (v,,v,) € (0, +00)2.

(V3) Let ¢(I) =1. Then, for I € (0,1), t € (0,1), and
(uy,uy,v1,v,) € (0, +oo)4,

= F(t,uy, uy, uq, uy) + G(t, Uy, Uy, Uy,

F(t, lul,luz,l_lvl’l_l"z)
_ ¢ 19020) (g Y2 Q910 (1 VA (1 U8
N t19/20(l—lvl)’(”2) i t”z(l_lvz)i(m)
> 1V2E (b 11y, 14y, v, v, ) = g01/2 (DF (t,uy,uy, vy, v5)
= P N (DF (t,uy, g, vy, vy),
G(t, lul,luz,l_lvl)l_lvz)
O 4
. t19/20(l—lvl)‘(”2) + t“z(l_lvz)_(m)
> 1"2G (1 14y, 14y, v, v) = PG (1 1y, 1y v1, 7).

(130)

(V,) Let g = 1. Then, for all (u;,u,, v;,v,) € (0,+00)*,

F(t,uy,uy, vy, v,) 2 0G (8, Uy, ty, V1, v,). (131)
(V5) The functions F and G satisty

1
< j (1- T)‘HF(T, 1, I,Tﬁ_l,rﬁ_l)d‘r

0
= B(1.5,0.05) + B(1.5,0.275) + B(1.5,1)

+ B(1.5,0.55) < +00,
(132)

1
< J (1- T)‘HG(T, 1, I,Tﬁ_l,rﬂ_l)d‘r
0

= B(1.5,0.55) + B(1.5,0.275) + B(1.5,1)
+ B(1.5,0.55) < +00.
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Iterative process of v; Iterative process of ¥;
—— V" - v, —— V" —-= 7,
—— v —— Vg —— 7 —— Vs
2 4
(a) (b)
FIGURE I: Iterative process of v; and ;.
Thus, the assumptions of Theorem 1 are satisfied. By TaBLE 1: Iterative process of ;.
calculation, we obtain the approximate solution of the ; , , , ) , , ,
problem (124)-(125) is v*(t) ~ 34.315¢t'°. On the other 0 ! 2 3 4 5 i
hand, let u, (f) = t and @, = 10£. We take v, (£) = [Fiug (f) 00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
and ¥, = IP17i, (t). By iterating the sequences, the numerical 8; ggggg gggg; 88;23 88‘115 8842? 88‘11 ig ?g;g
results of the iterative process are shown as follows (Figure 1 - ’ ‘ : ‘ : :
and Tables 1 and 2) P ( 8 0 0.3 0.0556 0.0759 0.0857 0.0908 0.0935 0.0950 3.4835
’ 0.4 0.0960 0.1307 0.1476 0.1563 0.1610 0.1635 6.0172
0.5 0.1466 0.1983 0.2239 0.2373 0.2443 0.2481 9.1945
Example 2. We consider the equation 0.6 0.2073 02769 03126 03312 03411 03464 13.0008
0.7 0.2779 0.3631 0.4100 0.4344 0.4474 0.4543 17.4249
0.8 0.3581 0.4520 0.5104 0.5408 0.5570 0.5657 22.4572

3/2 D2 -(35/144) 112 pli2 1/12
Dy bso( Dy V(f))+/\( t (t)( Dy, v (1)) 0.9 0.4480 05361 0.6054 0.6415 0.6606

0.6710 28.0895

1.0 0.5472 0.6045 0.6828 0.7234 0.7450 0.7567 34.3150
23172 ~(1/6) 16 ( plinz e 1Y =
+ 2t v (t) + 2t ( (t)) = 0, where (/)3/2 (S) — |S|7(1/2)S and
(2
0<t<l, o telob
(133) A (t) =+
13 f=1
with the boundary conditions 11 -
1 (135)
V(O) _ 12/13 (0) 35/12 (0) 1_3’ te [0, 1)’
A, (t) =+
D2 2
(¢3/2( (0))) 14
— t=1
[ 13
23/12 13\ (! -(1/2) 1712
D212y(1) = —r<—> sUPDYII2, 944 (5)
100 \2/ Jo (134)
Proof. Let
1
+ ﬁ J SilD(l)i/lzv(S)dAz (5) f(t,ul,uz) — A(2t7(35/144)u1/12u;/12 + 2t23/72bl;(1/6) (136)
0
12616, 4 1),
[ee]
Z .= Dy (1), $, () = 35 (5), @ =3/2, B=35/12, B, = 11/12, , = 12/13,
051l ro=23/12,  r =17/12,  r,=11/12,  ry=11/12,
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TaBLE 2: Iterative process of ;.

t 7 7, 7, 2 7, 7, v,
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
01 0.0689 0.0943 0.1064 0.1128 0.1161 01179 0.4320
02 02571 03518 03971 0.4207 04333 0.4400 1.6123
03 0.5555 0.7591 0.8570 0.9079 0.9350 0.9496 3.4835
04 09596 13071 14757 1.5633 16100 1.6351 6.0172
0.5 14663 19835 22394 23724 24433 24814 9.1945
0.6 2.0733 27688 31262 3.3120 3.4109 3.4641 13.0008
0.7 27788 3.6311 41000 43438 4.4735 4.5433 17.4249
0.8 3.5814 4.5203 51043 5.4079 5.5695 5.6565 22.4572
0.9 44796 53612 6.0542 6.4144 6.6062 6.7093 28.0895
1.0 54724 6.0459 6.8277 7.2340 7.4502 7.5666 34.3150

pi=1iG+1), m=1, (i=12..), n=1, A =
(1/100)T (3/2), A, = 1/100, A; = 1/100, h, (t) = -2, and
h, (t) = t™!. Then, the problems (133)-(134) can be expressed
as the problems (6)-(5). Notice that

1 M
F(B-ry) T(B-r)

A
F(ﬁ —13)

o=

j £ ()dA, (5)

J S ()dA, (s)
(137)

—r3—1
F(ﬁ—r3 me,

i=1

=0.97>0.

We infer that the properties of Green’s function in
Lemma 8 are achieved. Let

35/144) 1/12 1/12 23/72 —(1/6
(35/ )“1/ uz/ / Vl(/)

F(t,up,uy, vy, vy) = A(E +t

+ t1/6V;(1/6) + 1),

G(t,ul,uz, V1>V2) _ A(t7(35/144)u1/12u§/12 + t23/72VI(1/6)
+ t1/6vg(1/6)).
(138)

It is easy to check the conditions (V,)-(Vs) are all
satisfied with ¢ (I) = "> and ¢ = 1. On the other hand, let
y = (4/9) < (1/2). Then,

L) () =1">1/9)(I" = 1) + I = (6/5)I° — (29/40)],
Vie (0,1)

(2) () =13 >(1/0) (I~ 1) + IV = (6/5)I'"* - (29/40)1,
Vie (0,1)

So, the assumptions of Theorem 2 are satisfied. In the
following, we give the graphical simulations and table of the
solution v with respect to A =0.5, 1, 1.5, 2, 3, 10, re-
spectively (Figure 2 and Table 3). O

Based on the graphical simulations and table, we obtain
the following conclusions:

19
12 T T T T
10 +
8+
6 +
4L
2L
0 " :
0 0.2 0.4 0.6 0.8 1
Example 2
—+— 1=0.5 A=15
4 A=1 —— A=2
F1GURE 2: Dependence of the solution v; upon A.
TABLE 3: Numerical value of the solution v;.
t A=05 A=1 A=15 A=2 A=3 A=10
0.0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.0093 0.0342 0.0759 0.1362 0.3198 5.0454
0.2 0.0351 0.1289 0.2867 0.5140 1.2073 19.0488
0.3 0.0763 0.2805 0.6237 1.1182 2.6262 41.4358
0.4 0.1324 0.4868 1.0825 1.9407 4.5582 71.9187
0.5 0.2030 0.7466 1.6603  2.9765 6.9909  110.3027
0.6 0.2880 1.0589 2.3548 42216 9.9151 156.4408
0.7 0.3870 1.4229 3.1642 5.6727 13.3233  210.2155
0.8 0.4998 1.8379 4.0871 7.3272 17.2093  271.5289
09 0.6264 2.3034 5.1222 9.1830 21.5678  340.2972
1.0 0.7666 2.8188 6.2684 11.2379 26.3942 416.4475

(1) vy is continuous with respect to A € (0, +co). That is,
for any A, € (0, +00),

— 0, asA— A,

sup 'V/\ (t) - VA (t)' —”v/\
te[0,1]

(139)

(2) 0<A; <A, implies v <vy .

(3) lim sup |vj (¢)] = hm ||V,1|| =0, lim
A—0* te[0,1] /\*?+OO
sup |v} (t)I— hm [vill = +co.
te(0,1]

5. Conclusion

In this paper, we introduce the fixed point theorem of mixed
monotone operator for finding the uniqueness of positive
solution of a class of fractional boundary value problems,
which is a generalized form of turbulent flow problem in a
porous medium. Two theoretical numerical examples are
given to illustrate Theorems 1 and 2; the results then bring us a
step closer to research the characters of solutions.
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Furthermore, as the application of mixed monotone operator
operator, further research and discussion are required in
practice.
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