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A novel Filippov forest-pest system with threshold policy control (TPC) is established while an economic threshold (ET) is used
to guide switching. ­e aim of our work is to address how to reasonably and successfully control pests by means of sliding
dynamics for the Filippov system. On the basis of the above considerations, conditions for the existence and stability of
equilibria of subsystems are addressed, and the sliding segments and several types of equilibria of the proposed system are
de�ned.­ese equilibria include the regular/virtual equilibrium, pseudoequilibrium, boundary equilibrium, and tangent point.
Further, not only are the relations between nullclines and equilibria of the Filippov system discussed, but the relations between
pseudoequilibrium, nullclines, and the sliding segment are discussed. More importantly, four cases of sliding bifurcations of
the Filippov system with respect to di�erent types of equilibria of subsystems are investigated, and the corresponding biological
implications concerning integrated pest management (IPM) are analyzed. Our results show that the points of intersection
between nullclines are equilibria of the system, and the two endpoints of the sliding segment are on the nullclines. It is also
veri�ed that the pseudoequilibrium is the point of intersection of the sliding segment and nullclines of the Filippov system, and
the pseudoequilibrium exists on the sliding segment. More interestingly, sliding dynamics analysis reveals that the Filippov
system has sliding limit cycles, a bistable state and a stable refuge equilibrium point, and the optimal time and strategy for
controlling pests are provided.

1. Introduction

Because insect infestations increase forest mortality, which
in turn a�ects the carbon cycle and causes air pollution [1],
many scholars have paid much attention to the e�ects of
disturbances on forests [2–7]. Disturbances are classi�ed as
natural and anthropogenic disturbances. Natural distur-
bances include wild�res, insect infestations, �oods,
droughts, and bad weather while anthropogenic distur-
bances include deforestation, the logging of timber, and the
spraying of pesticides [4]. Hence, it is vital that the e�ects of
disturbances on the forest are solved. To do this, the age
structures of trees in forests where pests exist have been
investigated, and strategies for forest management and �re
protection have been developed by considering the size of
�res, �re control methods, and the behaviors of planted trees
[6–10]. However, few researchers have addressed the insect
infestations from a biological point of view.

­e dynamics of numerous real-world systems can be
modeled using discontinuous di�erential equations [11–15]. As
an example, Filippov pest controlmodels have been proposed to
investigate sliding bifurcations [16]. Yang and Liao studied the
Filippov Hindmarsh–Rose neuron model for several sliding
bifurcation phenomena, and the threshold policy control (TPC)
was considered [17]. Wang et al. proposed a Filippov epidemic
model in discussing the e�ects of factors on controlling epi-
demic diseases [18]. Moreover, research on the related Filippov
system has focused on bifurcation analysis [16,19–22]. Tan et al.
discussed the sliding bifurcation analysis for a Filippov pred-
ator-prey system [23]. Qu and Li investigated the sliding
phenomenon in Filippov dynamical systems based on Chua’s
circuit [24]. ­erefore, combining integrated pest management
(IPM), a Filippov system with TPC (i.e., a discontinuous
piecewise smooth system [25]) is established to reasonably and
successfully control pests. It is a challenging but important work
to determine the functional response of pests [26–28].
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IPM is a well-known strategy of controlling pests ef-
fectively [29–35], which includes biological strategies (i.e.,
releasing natural enemies), cultural strategies (i.e., acquiring
or capturing pests artificially), and chemical strategies (i.e.,
spraying a certain dosage of pesticides) that are used for pest
control to avoid exceeding an economic threshold (ET) [36].
In other words, the three types of strategies aim to reduce the
number of pests below the economic injury level (EIL), i.e.,
the environment is not destroyed [37]. TPC, a control
strategy, is implemented once the number of pests reaches
and exceeds the ET [38–42].

Recently, Xiao and Bosch have built a model with re-
spect to the effects of pest on biologically based technol-
ogies for controlling pest (BBTs), which revealed that
biological control has two effects including stabilization
and destabilization [43]. Stern et al. have verified that
integrated control was the most effective where chemical
treatment was carried out for successful pest control and
pest eradication was not necessary to be considered, and an
ET was applied to determine the use of pesticides [36].
Liang and Tang have analyzed the key factors (i.e., opti-
mum timing, the dosage of pesticide, and ET) which affect
pest management by employing different impulsive dif-
ferential equations [44]. A pest-natural enemy system has
been proposed by Liang et al., and pesticide resistance was
taken into account, which aimed to determine the number
of releasing natural enemies to ensure pest eradication [45].
*e present paper focuses on the control of pests (beetles),
and the sliding dynamics of a Filippov system based on the
tree-beetle model is discussed.

First, a novel Filippov forest-pest model is proposed by
combining IPM and TPC. *en, conditions for the exis-
tence and stability of equilibria of subsystems are
addressed, which is helpful to study the dynamics of the
proposed system. Further, the sliding segments and several
types of equilibria of the system are defined, and these
equilibria include the regular/virtual equilibrium, pseu-
doequilibrium, boundary equilibrium, and tangent point.
*e relations between nullclines and equilibria of the
Filippov system are discussed, which reveal that the points
of intersection between nullclines are these equilibrium
points of the system. Moreover, the relations between
pseudoequilibrium, nullclines and the sliding segment are
also discussed. *e results verify that pseudoequilibrium is
the point of intersection of the sliding segment and null-
clines of the Filippov system, and the pseudoequilibrium
exists on the sliding segment.

*e sliding bifurcations of the Filippov system are
addressed for different values of ET. Results show that the
value of ET affects the control range and also the time that
we decide to take action to prevent the density of the pest
population from reaching the value of ET. *erefore, it is
important to choose the optimal strategy when the pest
density reaches the ET. More importantly, the Filippov
system has sliding limit cycles, a bistable state, and a stable
refuge equilibrium point (i.e., when the pest population with
relatively small intrinsic growth rate, it will be stable at the
small density).

*e remainder of the paper is organized as follows. In
Section 2, the model description and preliminaries of the
Filippov system are introduced. In Section 3, equilibria and
sliding dynamics including the conditions for the existence
and stability of equilibria of subsystems are addressed.
Moreover, the sliding regions and equilibria of the Filippov
system are discussed. In Section 4, the sliding bifurcations of
the Filippov system with respect to different types of
equilibria of subsystems are presented, and the corre-
sponding biological implications related to pest control are
analyzed. Conclusions drawn from the results of our work
are presented in Section 5.

2. Model Description and Preliminaries

2.1. Model Description. To explore the effects of insect in-
festations on the forest, the classical tree-beetle model was
considered [4]:

_V(t) � rvV(t) 1 −
V(t)

kv

− m(B)􏼠 􏼡,

_B(t) � rbB(t) 1 −
B(t)

kb

􏼠 􏼡 −
αB2(t)

1 + βB2(t)
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1)

where the number of susceptible trees is denoted by V(t),
B(t) represents the population density of mountain pine
beetles per tree, rv and rb are the intrinsic growth rates of
V(t) and B(t), respectively, and their carrying capacity is
denoted by kv and kb, respectively, α is a positive constant
that depends upon trees, and β is also a positive constant that
determines the scale at which beetle density generates
saturation.

Note that the beetles can be treated as herbivore type
insects, which consume trees [46–48]. *e density growth of
trees is subject to a logistic self-interaction in the absence of
beetles where the forest does not have any defense against
insect predation. In particular, a functional response (i.e., the
Holling type-III functional response) is assumed [26]. *e
functional response of the predator is an important part of
the prey-predator relationship, which is the impact of the
predator (pest) per unit time on the change in prey (forest)
density. Types of functional response include Holling types
I-III [26, 49], the ratio-dependence type [27, 50], and the
Hassell-Varley type [28].

When the beetles are introduced in the first equation of
model (1), a linear function is assumed. It means that the
number of trees decreases because the beetles feed on trees.
So a novel tree-beetle model is obtained as

_V(t) � rvV(t) 1 −
V(t)

kv

􏼠 􏼡 − δB(t)V(t),

_B(t) � rbB(t) 1 −
B(t)

kb

􏼠 􏼡 + ηδB(t)V(t) −
αB2(t)

1 + βB2(t)
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2)
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where δ represents the rate that every beetle eats tree; η is the
conversion coefficient of the beetles; ηδB(t)V(t) denotes the
number of the beetles increases after they eat trees; and V(t)

and B(t) can be treated as the forest (tree) and pest (beetle).
*us, model (2) is called the forest-pest model. To a certain
extent, they can also be seen as prey and predator.

Furthermore, we let q1 represent the proportion of pests
(prey) that is captured, transferred, or killed by using the
cultural and chemical strategies. *erefore, the control
model for B(t)>ET is written as

_V(t) � rvV(t) 1 −
V(t)

kv

􏼠 􏼡 − δB(t)V(t),

_B(t) � rbB(t) 1 −
B(t)

kb

􏼠 􏼡 + ηδB(t)V(t)

−
αB2(t)

1 + βB2(t)
− q1B(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where the ET is a switching threshold, i.e., system (2) is
satisfied if B(t)<ET while system (3) is satisfied if B(t)>ET.

In the next subsection, some preliminaries of the Fili-
ppov system are provided to understand this paper easily,
which prepares for the later sections.

2.2. Preliminaries. On the basis of IPM strategies and TPC,
models (2) and (3) are combined and rewritten as [11, 51]

_V(t) � rvV(t) 1 −
V(t)

kv

􏼠 􏼡 − δB(t)V(t),

_B(t) � rbB(t) 1 −
B(t)

kb

􏼠 􏼡 + ηδB(t)V(t)

−
αB2(t)

1 + βB2(t)
− εq1B(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

with

ε �
0, B(t)<ET,

1, B(t)>ET.
􏼨 (5)

Models (4) and (5) are related to TPC. More details on
the Filippov system have been given in the literature [52, 53].

Let H(Z) � B(t) − ET with column vector Z � (V, B)T

and

FS1
(Z) � rvV 1 −

V

kv

􏼠 􏼡 − δBV, rbB 1 −
B

kb

􏼠 􏼡􏼠

+ ηδBV −
αB2

1 + βB2􏼡

T

,

FS2
(Z) � rvV 1 −

V

kv

􏼠 􏼡 − δBV, rbB 1 −
B

kb

􏼠 􏼡􏼠

+ ηδBV −
αB2

1 + βB2 − q1B􏼡

T

.

(6)

*en, system (6) is rewritten as a Filippov system
[52, 53]:

_Z(t) �
FS1

(Z), Z ∈ S1,

FS2
(Z), Z ∈ S2.

⎧⎨

⎩ (7)

Moreover, the discontinuity boundary set is defined; that
is, Σ � Z ∈ R2

+ ∣ H(Z) � 0􏼈 􏼉, which divides R2
+ into two

regions, i.e.,

S1 � Z ∈ R
2
+ ∣ H(Z)< 0􏽮 􏽯,

S2 � Z ∈ R
2
+ ∣ H(Z)> 0􏽮 􏽯.

(8)

In this paper, Filippov system (7) in region S1 or S2 is,
respectively, referred to as subsystem S1 or subsystem S2.

Let

σ(Z) �〈HZ(Z), FS1
(Z)〉〈HZ(Z), FS2

(Z)〉, (9)

where HZ is a nonvanishing gradient of the smooth scale
function on Σ and 〈·〉 denotes the standard scalar product.
*en, sliding regions are defined as

ΣS � Z ∈ Σ ∣ σ(Z)≤ 0{ }. (10)

Meanwhile, the following regions on Σ are distinguished:

(i) Escaping region: if 〈HZ(Z), FS1
(Z)〉< 0 and

〈HZ(Z), FS2
(Z)〉> 0

(ii) Sliding region: if 〈HZ(Z), FS1
(Z)〉> 0 and

〈HZ(Z), FS2
(Z)〉< 0

(iii) Sewing region: if 〈HZ(Z), FS1
(Z)〉〈HZ(Z),

FS2
(Z)〉> 0

*e essential definitions for different types of equilibria
of Filippov system (7) are taken from the literature [54, 55].

Definition 1. Z∗ is called a regular equilibrium of Filippov
system (7) if FS1

(Z∗) � 0 and H(Z∗)< 0, or FS2
(Z∗) � 0 and

H(Z∗)> 0. Z∗ is called a virtual equilibrium of Filippov
system (7) if FS1

(Z∗) � 0 and H(Z∗)> 0, or FS2
(Z∗) � 0 and

H(Z∗)< 0.

Definition 2. Z∗ is called a pseudoequilibrium if it is an
equilibrium on the sliding segment of Filippov system (7),
i.e., (1 − λ(Z))FS1

(Z∗) + λ(Z)FS2
(Z∗) � 0, H(Z∗) � 0, and

0< λ(Z)< 1, where

λ(Z) �
〈HZ(Z), FS1

(Z)〉
〈HZ(Z), FS1

(Z) − FS2
(Z)〉

. (11)

Definition 3. Z∗ is called a boundary equilibrium of Filippov
system (7) if FS1

(Z∗) � 0 with H(Z∗) � 0 or FS2
(Z∗) � 0

with H(Z∗) � 0.

Definition 4. Z∗ is called a tangent point of Filippov system
(7) if Z∗ ∈ ΣS and 〈HZ(Z∗), FS1

(Z∗)〉 � 0 or 〈HZ(Z∗),

FS2
(Z∗)〉 � 0.
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3. Equilibria and Sliding Dynamics

*is section discusses conditions for the existence and
stability of equilibria of subsystems S1 and S2. *e sliding
segment/region and equilibria of Filippov system (7) are
addressed, which prepares for Section 4.

3.1. Existence of Equilibria for Subsystems S1 and S2. To
discuss the types of equilibria and sliding bifurcations of
Filippov system (7), the existence of equilibria for subsystems
S1 and S2 needs to be solved. For subsystem S1, let _V(t) � 0
and _B(t) � 0. *en, the equilibrium E1∗(V1∗, B1∗) satisfies

B
3
(t) + a1B

2
(t) + b1B(t) + c1 � 0, (12)

where a1 � ((− kbrbrv − ηδkbkvrv)/(rbrv + δ2ηkbkv)), b1 �

((rbrv + δ2ηkbkv + αkbrv)/(rbrvβ + δ2ηkbkvβ)), and c1 �

((− kbrbrv − ηδkbkvrv)/(rbrvβ + δ2ηkbkvβ)). Let Q1 � ((a2
1 −

3b1)/9),R1 � − ((2a3
1 − 9a1b1 + 27c1)/54),M1 � R2

1 − Q3
1, and

θ1 � arccos(R1/Q3/2
1 ).

(i) If M1 < 0, then (12) has three fixed solutions given by

B1i � − 2
���
Q1

􏽰
cos

θ1 + 2kπ
3

􏼠 􏼡 −
a1

3
, k � − 1, 0, 1;

i � 1, 2, 3,

V1i � kv −
δB1ikv

rv

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

(ii) If M1 > 0, then (12) has a unique equilibrium point
given by

B1 � − R1 +
���
M1

􏽰
􏼐 􏼑

1/3
+ − R1 −

���
M1

􏽰
􏼐 􏼑

1/3
−

a1

3
,

V1 � kv −
δB1kv

rv

.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

(iii) If M1 � 0, then (12) has two equilibrium points. We
do not discuss this case in the present paper.

In particular, the equilibrium E∗1 must be positive, i.e.,
V1i > 0, B1i > 0 (i � 1, 2, 3). Analogously, the existence con-
ditions of equilibria for subsystem S2 can be obtained.

3.2. Stability of Equilibria for Subsystems S1 and S2. In
general, the Jacobian matrix is employed to explore the
stability of equilibrium E1∗(V1∗, B1∗) for subsystem S1, i.e.,

J1∗ �

rv −
2rvV1∗

kv

− δB1∗ − δV1∗

ηδB1∗ rb −
2rbB1∗

kb

+ ηδV1∗ −
2αB1∗

1 + βB2
1∗( 􏼁

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(15)

*en, the characteristic equation is λ2 + p1λ + q1 � 0,
where

p1 � − rv +
2rvV1∗

kv

+ δB1∗ − rb +
2rbB1∗

kb

− ηδV1∗ +
2αB1∗

1 + βB2
1∗( 􏼁

2,

(16)

q1 � rv −
2rvV1∗

kv

− δB1∗􏼠 􏼡 rb −
2rbB1∗

kb

+ ηδV1∗􏼠

−
2αB1∗

1 + βB2
1∗( 􏼁

2
⎞⎠ + ηδ2B1∗V1∗.

(17)

If inequalities p1 > 0 and q1 > 0 are satisfied, then E1∗ is
asymptotically stable. Similarly, the conditions for the sta-
bility of equilibria of subsystem S2 are addressed.

3.3. Sliding Segment and Region. From Definition 2, the
equation is obtained:

λ(Z) �
rb 1 − B(t)/kb( 􏼁( 􏼁 + ηδV(t) − αB(t)/ 1 + βB2(t)( 􏼁( 􏼁

q1
.

(18)

*e sliding regions are determined by solving
0≤ λ(Z)≤ 1 with respect to V(t). *us, the algebraic
equations need to be considered, i.e.,

rb 1 −
ET
kb

􏼠 􏼡 + ηδV(t) −
αET

1 + βET2 � 0,

rb 1 −
ET
kb

􏼠 􏼡 + ηδV(t) −
αET

1 + βET2 − q1 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(19)

*en, solving equation (19) with respect to V(t) yields
two real roots:

V1 �
αET/ 1 + βET2( 􏼁( 􏼁 − rb 1 − ET/kb( 􏼁( 􏼁

ηδ
,

V2 �
q1 + αET/ 1 + βET2( 􏼁( 􏼁 − rb 1 − ET/kb( 􏼁( 􏼁

ηδ
.

(20)

Because of the relation between V1 and V2 (V1 <V2), the
sliding segment of Filippov system (7) can be defined as

ΣS � (V, B) ∣ V1 ≤V≤V2, B � ET􏼈 􏼉. (21)

3.4. Equilibria of the Filippov System. Nullclines of both
subsystems S1 and S2 are related to the existence of equi-
libria, which is conducive to sliding bifurcation analysis and
to estimating the existence of equilibria of Filippov system
(7). For the two subsystems, nullclines are determined by
using equations _V(t) � 0 and _B(t) � 0 as
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fS1
� fS2

�
kv

rv

rv − δB(t)( 􏼁,

gS1
�

1
ηδ

− rb 1 −
B(t)

kb

􏼠 􏼡 +
αB(t)

1 + βB2(t)
􏼠 􏼡,

gS2
�

1
ηδ

q1 − rb 1 −
B(t)

kb

􏼠 􏼡 +
αB(t)

1 + βB2(t)
􏼠 􏼡.

(22)

Different types of equilibria of Filippov system (7)
were defined in Section 2. Several types of equilibria
for Filippov system (7) are defined, which include the
regular equilibrium, virtual equilibrium, pseudoequili-
brium, boundary equilibrium, and a special point called
the tangent point. *ese equilibria are denoted by ER, EV,
EP, EB, and ET. For Filippov system (7), more detailed
definitions of the equilibria mentioned are in the fol-
lowing section.

3.4.1. Regular/Virtual Equilibrium. According to Definition
1, Zji � (Vji, Bji) (j � 1, 2; i � 1, 2, 3) is a regular equilibrium
of Filippov system (7) if FSj

(Zji) � 0, for subsystem S1 (i.e.,
j � 1), B1i <ET, or for subsystem S2 (i.e., j � 2), B2i >ET.
*ese equilibria are denoted by ER

1i and ER
2i, respectively.

Zji � (Vji, Bji) (j � 1, 2; i � 1, 2, 3) is a virtual equilibrium of
Filippov system (7) if FSj

(Zji) � 0, for subsystem S1 (i.e.,
j � 1), B1i >ET, or for subsystem S2 (i.e., j � 2), B2i <ET.
*ese equilibria are denoted by EV

1i and EV
2i, respectively.

3.4.2. Pseudoequilibrium. According to Definition 2, by
employing the Utkin equivalent control method [51] and
letting HZ � _B(t) � 0, equations with respect to ε are
obtained:

ε �
rb 1 − ET/kb( 􏼁( 􏼁 + ηδV − αET/ 1 + βET2( 􏼁( 􏼁

q1
. (23)

*us, the equation _V(t) � rvV(t)(1 − (V(t)/kv)) −

δB(t)V(t) determines the dynamics on ΣS. If pseudoequi-
librium EP(VP,ET) satisfies _V(t) � 0 (i.e., VP � ((kv(rv −

δB(t)))/rv) and B(t) � ET), then EP((kv(rv − δET)/rv),

ET) ∈ ΣS. *erefore, VP must satisfy the inequality
V1 ≤VP ≤V2, i.e., if the inequalities

kbkvδ
2ηET

kbkvδη + rb kb − ET( 􏼁 − αETkb/ 1 + βET2( 􏼁( 􏼁

< rv <
kbkvδ

2ηET
kbkvδη − q1 + rb kb − ET( 􏼁 − αETkb/1 + βET2( 􏼁

,

(24)

hold, then Filippov system (7) has a pseudoequilibrium EP.

3.4.3. Boundary Equilibrium. According to Definition 3, the
boundary equilibrium of Filippov system (7) satisfies

rvV(t) 1 −
V(t)

kv

􏼠 􏼡 − δB(t)V(t) � 0,

rb 1 −
B(t)

kb

􏼠 􏼡 + ηδV(t) −
αB(t)

1 + βB2(t)
− q1 � 0,

B(t) � ET,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

with ε � 0 or 1. If ε � 0, the boundary equilibrium

E
B
1 �

αET/ 1 + βET2( 􏼁( 􏼁 − rb 1 − ET/kb( 􏼁( 􏼁

ηδ
,ET􏼠 􏼡, (26)

is obtained. If ε � 1, we have the boundary equilibrium

E
B
2 �

q1 + αET/ 1 + βET2( 􏼁( 􏼁 − rb 1 − ET/kb( 􏼁( 􏼁

ηδ
,ET􏼠 􏼡.

(27)

3.4.4. Tangent Point. According to Definition 4, the tangent
point ET(VT,ET) on ΣS satisfies

rb 1 −
B(t)

kb

􏼠 􏼡 + ηδV(t) −
αB(t)

1 + βB2(t)
− q1 � 0,

B(t) � ET.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(28)

Solving equations (28) with respect to V(t) and B(t)

yields

E
T
1 �

αET/ 1 + βET2( 􏼁( 􏼁 − rb 1 − ET/kb( 􏼁( 􏼁

ηδ
,ET􏼠 􏼡,

E
T
2 �

q1 + αET/ 1 + βET2( 􏼁( 􏼁 − rb 1 − ET/kb( 􏼁( 􏼁

ηδ
,ET􏼠 􏼡.

(29)

4. Numerical Simulation

In this section, four cases of sliding bifurcations for Filippov
system (7) with different equilibria of subsystems S1 and S2
are investigated, which are summarized in Table 1.

4.1. CaseA. Subsystem S1 has an unstable equilibrium point,
and there exist stable limit cycles. *ere are three cases of
subsystem S2:

(i) Subsystem S2 has only an unstable equilibrium
point and stable limit cycles

(ii) Subsystem S2 is a bistable state
(iii) Subsystem S2 has only one stable equilibrium point

Figure 1(a) shows that there is only one unstable
equilibrium E11 and stable limit cycles in subsystem S1.
Figure 1(b) shows that subsystem S2 is similar to subsystem
S1 in that there is only one unstable equilibrium E21 and
stable limit cycles. Figure 1(c) shows that there are three
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equilibria (i.e., E21, E22 and E23) in subsystem S2. E21 and E23
are stable, i.e., subsystem S2 is a bistable state. Figure 1(d)
shows that there is only one stable equilibrium E23, a stable
refuge equilibrium point, in subsystem S2.

*e sliding mode phenomena in the three subcases of
Case A are discussed as follows.

Case A.1: subsystem S2 has only one unstable equi-
librium point and stable limit cycles.
Figure 2(a) shows the sliding bifurcation of the Filippov
system when the value of ET varies in the range [3.8,
5.8]. V1 and V2 are two endpoints of the sliding seg-
ment. Moreover, sliding limit cycles appear.
Figures 2(b)–2(d) present the three cases of Figure 2(a).
In Figure 2(b), if B11 >B21 >ET (ET � 3.9), Filippov
system (7) has limit cycles and stabilizes to the larger
limit cycle and virtual equilibria EV

11 of subsystem S1. In
Figure 2(c), if B11 >ET>B21 (ET � 4.8), the Filippov
system has a pseudoequilibrium EP and stabilizes on
the sliding segment with EP. In Figure 2(d), if
ET>B11 >B21 (ET � 5.9), there are limit cycles. Fili-
ppov system (7) stabilizes to the larger limit cycle and
virtual equilibria EV

21 of subsystem S2.
*e results show that the Filippov system has limit
cycles regardless of the initial values (V(t) and B(t))
and stabilizes to the larger limit cycle. In other words,
when q1 � 0.2, the pest population density stabilizes in
a relatively small range, i.e., no pest outbreaks will
occur. Other interesting problems can be considered,
for example, how to decide the time and choose
strategies for controlling pests, how to determine the
equilibria of the Filippov system, and how to find re-
gions of pseudoequilibrium when there is sliding bi-
furcation. To solve these problems, sliding bifurcation
diagrams with nullclines of the Filippov system for
different situations are investigated.
Case A.2: subsystem S2 is a bistable state.
In Figure 3, V1V2 is the sliding segment. In this section,
for the Filippov system, red, black and magenta dashed

lines, respectively, indicate nullclines fS1
/fS2

, gS1
, and

gS2
. *e points of intersection between the nullclines

are equilibria of the Filippov system. In Figure 3(a),
when the ET is set as different values in the range [2, 9],
the Filippov system shows sliding bifurcation and limit
cycles. *e difference compared with Figure 2(a) is that
there is only one larger limit cycle. Subsystem S1 has the
equilibrium E11 while subsystem S2 has the three
equilibria E21, E22, and E23. In particular, E21 and E23
are stable. *erefore, subsystem S2 is a bistable state.
Figures 3(b)–3(d) present the three cases of Figure 3(a),
i.e., if B11 >B21 >ET>B22 >B23 (ET � 3), regardless of
the initial values, the Filippov system is stable at E21.
E21 is regular and denoted by ER

21 (see Figure 3(b)). If
B11 >ET>B21 >B22 >B23 (ET � 4.7), the Filippov
system has a pseudoequilibrium EP but no sliding limit
cycle, and it stabilizes on the V1V2 with EP (see
Figure 3(c)). If ET>B11 >B21 >B22 >B23 (ET � 6.45),
the Filippov system has only one sliding limit cycle and
stabilizes to this limit cycle (see Figure 3(d)). *erefore,
when q1 � 0.45, the pest population density will be
stable in a larger range than in the case of q1 � 0.2 as
shown in Figure 1.
We conclude that the equilibria (E11, E21, E22, and E23)
are the points of intersection of nullclines (i.e., fS1

/fS2
,

gS1
, and gS2

) for the Filippov system.*e endpoints (V1
and V2) of the sliding segment are located on two
nullclines (i.e., gS1

and gS2
). *e pseudoequilibrium is

the point of intersection of the sliding segment and
nullclines of the Filippov system. In addition, the
pseudoequilibrium exists on the sliding segment
(E11E21). *ese findings are also confirmed in the
following discussions.
Case A.3: subsystem S2 has only one stable refuge
equilibrium point.
Figure 4(a) presents the sliding bifurcation of the Fili-
ppov system for the different values of ET in the range
[0.5, 7.8]. Subsystem S2 has only one stable equilibrium
E21. Figures 4(b)–4(d) present the three cases of
Figure 4(a). If B11 >ET>B21 (ET � 1.54), the Filippov
system has a pseudoequilibrium EP and stabilizes on the
sliding segment V1V2 with EP. *ere exists EP on the
E11E21 (see Figure 4(b)). If B11 >B21 >ET (ET � 0.5),
the ET is sufficiently small for the Filippov system to be
stable at a refuge equilibrium point (see Figure 4(c)). If
ET>B11 >B21 (ET � 6.76), regardless of the initial
values, there is a sliding limit cycle and the Filippov
system stabilizes to the limit cycle as shown in
Figure 4(d). Hence, when q1 � 0.6, the pest population
density will be stable in a smaller range than in the case
of q1 � 0.45 as shown in Figure 3.

*erefore, when q1 � 0.45, the range of pests that can be
controlled is largest. At the same time, the strategy is the
most suitable for controlling pests.

4.2. Case B. Subsystem S1 has a stable equilibrium point
while there are three cases of subsystem S2.

Table 1: *e summary of numerical simulation.

Case Subsystem Description of the equilibria

A
S1

An unstable equilibrium point, stable limit
cycles

An unstable equilibrium point, stable limit
cycles

& S2
A bistable state

Only one stable refuge equilibrium point

B
S1

Only one stable equilibrium point
Only one stable equilibrium point

& S2
A bistable state

A stable refuge equilibrium point

C
S1

*ree equilibrium points (two stable
equilibrium points)

& S2
A bistable state

A stable refuge equilibrium point

D S1 & S2
*ree equilibrium points (only a stable refuge

equilibrium point)
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Figure 1: Existence of equilibria for Case A of Filippov system (7). Parameters are rb � 1, kb � 20, η � 0.06, δ � 0.5, α � 6, β � 1, rv � 3, and
kv � 100. (a) q1 � 0; (b) q1 � 0.15; (c) q1 � 0.35; (d) q1 � 0.5.
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Figure 2: Continued.
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(i) Subsystem S2 has only one stable equilibrium point

(ii) Subsystem S2 has two stable equilibrium points (i.e.,
Subsystem S2 is a bistable state)

(iii) Subsystem S2 has only one stable refuge equilibrium
point

In Figure 5(a), only one stable equilibrium E11 emerges
in subsystem S1. In Figure 5(b), subsystem S2 has only one

stable equilibrium E21. In Figure 5(c), subsystem S2 has two
stable equilibria E21 and E23, which is a bistable state. In
Figure 5(d), subsystem S2 has a stable equilibrium E23 that
becomes a stable refuge equilibrium point with relatively
small number of pests.

*e sliding mode phenomena in the three subcases of
Case B are discussed as follows:

Case B.1: subsystem S2 has a stable equilibrium point.

V1 EP

V2

0

2

4

6

8

B

0 20 30 40 50 60 70 8010
V

(c)

EV21

V1

V2

0
0

2

4

6

8

B

20 30 40 50 60 70 80 9010
V

(d)

Figure 2: Sliding bifurcation for Case A.1 of Filippov system (7). Subsystem S2 has only one unstable equilibrium point, and stable limit
cycles exist. q1 � 0.2, the other parameters are the same as those in Figure 1. (a) ET ∈ [3.8, 5.8]; (b) ET � 3.9; (c) ET � 4.8; (d) ET � 5.9.
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Figure 3: Sliding bifurcation for Case A.2 of Filippov system (7). Subsystem S2 is a bistable state. q1 � 0.45, the other parameters are the same
as those in Figure 1. (a) ET ∈ [2, 9]; (b) ET � 3; (c) ET � 4.7; (d) ET � 6.45.
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Figure 4: Sliding bifurcation for Case A.3 of Filippov system (7). Subsystem S2 has only one stable refuge equilibrium point. q1 � 0.6, the
other parameters are the same as those in Figure 1. (a) ET ∈ [0.5, 7.8]; (b) ET � 1.54; (c) ET � 0.5; (d) ET � 6.76.
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Figure 5: Continued.
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Figure 6(a) shows that there is sliding bifurcation of
Filippov system (7) when the ET is set as the different
values in [2, 9.07].*ere is only one stable equilibriumE11
of subsystem S1 and a stable equilibrium E21 of subsystem
S2. *e three cases of Figure 6(a) are presented in

Figures 6(b)–6(d). If B11 >B21 >ET (ET � 4), the Fili-
ppov system stabilizes at the equilibrium E21, which is
regular and denoted by ER

21 (see Figure 6(b)). If
ET>B11 >B21 (ET � 8), the Filippov system stabilizes at
E11. E11 is virtual and defined by ER

11 (see Figure 6(c)). If

S2 subsystem, q1 = 0.5
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Figure 5: Existence of equilibria for Case B of Filippov system (7). Parameters are fixed as rb � 0.5, kb � 10, η � 0.4, δ � 0.15, α � 5.7, β � 1,
rv � 2, and kv � 45. (a) q1 � 0; (b) q1 � 0.05; (c) q1 � 0.5; (d) q1 � 0.9.
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Figure 6: Sliding bifurcation for Case B.1 of Filippov system (7). Both subsystem S1 and subsystem S2 have one stable equilibrium point.
q1 � 0.6, the other parameters are rb � 0.6, kb � 10, η � 0.06, δ � 0.5, α � 3, β � 1, rv � 3, and kv � 150. (a) ET ∈ [2, 9.07]; (b) ET � 4; (c)
ET � 8; (d) ET � 5.
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B11 >ET>B21 (ET � 5), the Filippov system has a
pseudoequilibrium EP and stabilizes on the sliding seg-
ment V1V2 with EP (see Figure 6(d)). In particular, there
exists a pseudoequilibrium on the E11E21. While there
is no limit cycle in this case, there are no pest
outbreaks and the system stabilizes within a relatively
small range.
Case B.2: subsystem S2 is a bistable state.
Figure 7(a) shows the sliding bifurcation of the Filippov
system for the value of ET varying in the range [4.2,
11.8]. Subsystem S1 has only one stable equilibrium E11,
subsystem S2 is a bistable state where E21 and E23 are
stable. Figures 7(b)–7(d) presents the three cases of
Figure 7(a). In Figure 7(b), if B11 >B21 >ET>B22 >B23
(ET � 5.29), the Filippov system always stabilizes at
E21, which is real and denoted by ER

21. In Figure 7(c), if
B11 >ET>B21 >B22 >B23 (ET � 8.54), the Filippov
system has a pseudoequilibrium EP and stabilizes on
the sliding segment V1V2 with EP. *ere is a pseu-
doequilibrium on the E11E21. In Figure 7(d), if
ET>B11 >B21 >B22 >B23 (ET � 11.8), Filippov system
(7) is stable at E11 with different initial values. E11 is
regular and denoted by ER

11. In this case, when q1 � 0.5,
the pest population density will stabilize within a rel-
atively large range.

Case B.3: subsystem S2 has only one stable refuge
equilibrium point.
Figure 8(a) presents the sliding mode phenomena for
the different values of ET (ET ∈ [0.1, 12]). Subsystem S1
has only one stable equilibrium E11 while subsystem S2
has only one stable equilibrium E21, which is a stable
refuge equilibrium point. Figures 8(b)–8(d) present the
three cases of Figure 8(a). In Figure 8(b), if
B11 >B21 >ET (ET � 0.1), no matter how large the
initial values are, the Filippov system stabilizes at E21
(i.e., a stable refuge equilibrium point). In Figure 8(c), if
B11 >ET>B21 (ET � 6.9), the Filippov system has a
pseudoequilibrium EP and stabilizes on the V1V2 (i.e.,
the sliding segment) with EP. Moreover, EP emerges on
the E11E21. In Figure 8(d), if ET � B11 >B21
(ET � 10.6), the equilibrium E11 becomes a stable
refuge equilibrium point.*e Filippov system stabilizes
on the V1V2 with E11. E11 is virtual and denoted by EV

11.
When q1 � 0.9, the pest population density stabilizes
within a smaller range than in the case of q1 � 0.5 as
shown in Figure 7. *is means that the proper strategy
can better control pests.

4.3. Case C. Subsystem S1 has three equilibrium points, two
of which are stable. *ere are two subcases for subsystem S2.
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Figure 7: Sliding bifurcation for Case B.2 of Filippov system (7). Subsystem S1 has one stable equilibrium point and subsystem S2 is a
bistable state. q1 � 0.5 and the other parameters are fixed as rb � 0.5, kb � 10, η � 0.4, δ � 0.15, α � 5.7, β � 1, rv � 2, and kv � 45. (a)
ET ∈ [4.2, 11.8]; (b) ET � 5.29; (c) ET � 8.54; (d) ET � 11.8.
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(i) Subsystem S2 is a bistable state
(ii) Subsystem S2 has a stable refuge equilibrium point

*e sliding mode phenomena in the two subcases of
Case C are discussed as follows:

Case C.1: Subsystem S2 is bistable.
Figure 9(a) presents the sliding bifurcation of the
Filippov system for the different values of ET in the
range [6.4, 13.6]. Both subsystem S1 and subsystem S2
have three equilibrium points, namely E11, E12, E13,
E21, E22 and E23. E11, E13, E21 and E23 are stable.
Subsystems S1 and S2 are bistable states. *e three cases
of Figure 9(a) are presented in Figures 9(b)–9(d). If
ET>B11 >B21 >B22 >B12 >B13 >B23 (ET � 15), the
Filippov system stabilizes at E11, which is called a
regular equilibrium of subsystem S1 and denoted by ER

11
(see Figure 9(b)). If B11 >ET>B21 >B22 >B12 >
B13 >B23 (ET � 10.5), the Filippov system has a
pseudoequilibrium EP and stabilizes on the sliding
segment V1V2 with EP (see Figure 9(c)). If
B11 >B21 >ET>B22 >B13 >B23 (ET � 6.4), the Filippov
system stabilizes at E21, which is called a regular
equilibrium of subsystem S2 and denoted by ER

21 (see
Figure 9(d)). *erefore, in this case, if the density of the
pest population is high, the pest population can be well

controlled; if the initial values is relatively small, the
Filippov system stabilize at a refuge equilibrium point.
Case C.2: Subsystem S2 has only one stable refuge
equilibrium point.
Figure 10(a) shows the sliding bifurcation of the Fili-
ppov system under the different values of ET in the
range [5.3, 13.8]. Subsystem S1 has three equilibrium
points, namely E11, E12 and E13. Subsystem S2 has an
equilibrium E21. *ere is a pseudoequilibrium on the
E11E12. Figure 10(b) shows that a pseudoequilibrium
EP emerges if B11 >ET>B12 >B13 >B21 (ET � 6.5).
When the value of B is large, the Filippov system is
stable on the V1V2 with EP. When the value of B is
small, the Filippov system stabilizes at a refuge equi-
librium point. *erefore, when q1 � 0.6, the pest
population density can be controlled in a larger range
than in the case of q1 � 0.4 as shown in Figure 9.

4.4. Case D. Subsystem S1 and subsystem S2 have three
equilibrium points. Only one is a stable refuge equilibrium
point.

In Figure 11(a), subsystem S1 has the three equilibria E11,
E12, and E13. E11 and E12 are unstable and colored black.
Only the red E13 is stable. In Figure 11(b), subsystem S1 has
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Figure 8: Sliding bifurcation for Case B.3 of Filippov system (7). Subsystem S1 has a stable equilibrium point. Subsystem S2 has only one
stable refuge equilibrium point. q1 � 0.9, the other parameters are the same as those in Figure 7. (a) ET ∈ [0.1, 12]; (b) ET � 0.1; (c) ET � 6.9;
(d) ET � 10.6.
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the three equilibria E21, E22 and E23. *e black E21 and E22
are unstable, and only the smallest red dot E23 is stable.

*e sliding mode phenomena of Case D are discussed as
follows.

Figure 12(a) shows the sliding bifurcation of the Filippov
system for the ET in the range [3.6, 16.4]. Both subsystem S1
and subsystem S2 have three equilibrium points. Only one is
a stable refuge equilibrium point. Figures 12(b)–12(d)
present the three cases of Figure 12(a). If B11 >ET>
B21 >B22 >B12 >B13 >B23 (ET � 9.1), the Filippov system
has a pseudoequilibrium EP and stabilizes on the sliding
segment V1V2 with EP (see Figure 12(b)). If
ET>B11 >B21 >B22 >B12 >B13 >B23 (ET � 12.7), Filippov
system (7) has a stable sliding limit cycle and stabilizes on it
(see Figure 12(c)). Figure 12(d) has no limit cycle in contrast
with Figure 12(c).*erefore, regardless of their initial values,
the Filippov system stabilizes at a stable refuge equilibrium
point as shown in Figures 12(b)–12(d). In this case, when
q1 � 0.4, the pest population remains stable within a rela-
tively large range.

Overall, in Cases A–D, the value of q1 is large and the
number of beetles is controlled within a certain range that is
better. Taking spraying pesticides as an example, from the
perspective of economic costs, there is no desire to use more
pesticides. In addition, from a biomathematical point of
view, the spraying of pesticides (i.e., a chemical measure) is

performed frequently to kill beetles, which creates pollution.
*erefore, the results show that it is crucial to choose a
optimal strategy (or the dosage of pesticide) if the pest
density reaches the ET.

5. Conclusion

A novel Filippov forest-pest system with TPC concerning
IPM was proposed.*e system comprises two subsystems S1
and S2. Our aim is to find the best time and strategy for
successful pest control. *e conditions for the existence and
stability of equilibria of subsystems were addressed.
Moreover, the sliding segment was determined. Several types
of equilibria of the proposed system were defined, i.e., the
regular equilibrium, virtual equilibrium, pseudoequilibrium,
boundary equilibrium, and a special point called the tangent
point. Meanwhile, nullclines of the Filippov systemwere also
defined, which were related to the equilibria of these two
susystems and used to determine their existence. *at is, the
points of intersection between nullclines were these equi-
librium points of the system, and the two endpoints of the
sliding segment (V1V2) were on the nullclines.

Four cases of the sliding bifurcations of the Filippov
system with respect to different types of equilibrium points
of subsystems were discussed. Details are given in Table 1.
In Case A.1, both subsystem S1 and subsystem S2 had only
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Figure 9: Sliding bifurcation for Case C.1 of Filippov system (7). Both subsystem S1 and subsystem S2 are bistable states. q1 � 0.4,
parameters are rb � 0.8, kb � 15, η � 0.4, δ � 0.1, α � 6, β � 1, rv � 1.5, and kv � 40. (a) ET ∈ [6.4, 11.6]; (b) ET � 15; (c) ET � 10.5; (d)
ET � 6.4.
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an unstable equilibrium point (see Figures 1(a) and 1(b)),
the system had limit cycles and stabilized to the larger limit
cycle regardless of the initial values (V and B) (see
Figure 2).

Subsystem S2 was a bistable state in Cases A.2, B.2, and
C.1 (see Figures 3, 7, and 9). For instance, in Cases A.2 and

B.2, subsystem S1 had an unstable equilibrium point (see
Figure 1(a)) and subsystem S1 had a stable equilibrium point
(see Figure 5(a)), subsystem S2 had three equilibria (i.e., E21,
E22, and E23) and equilibria (i.e., E21 and E23) were stable
(see Figures 1(c) and 5(c)). In Case C.1, both subsystem S1
and subsystem S2 are bistable states.
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Figure 10: Sliding bifurcation for Case C.2 of Filippov system (7). Subsystem S2 has only one refuge equilibrium point. q1 � 0.6, the other
parameters are the same as those in Figure 9. (a) ET ∈ [5.3, 13.8]; (b) ET � 6.5.
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Figure 11: Existence of equilibria for Case D of Filippov system (7). Parameters are fixed as rb � 0.1, kb � 10, η � 0.15, σ � 0.2, α � 6, β � 1,
rv � 2, and kv � 100. (a) q1 � 0; (b) q1 � 0.4.
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Subsystem S2 had only one stable refuge equilibrium
point in Cases A.3, B.3, C.2, and D. For example, in Case A.3,
subsystem S1 had only an unstable equilibrium point. In
Case B.3, subsystem S1 had only a stable equilibrium point.
When the number of pests and forests was relatively small,
subsystem S2 had only one stable refuge equilibrium point
(see Figures 1(d) and 5(d)), the system was stable at it (see
Figures 4 and 8). In Case C.2, subsystem S1 was the bistable
state and only one stable refuge equilibrium point existed in
subsystem S2. Moreover, the system stabilized on the V1V2
with pseudoequilibrium EP (see Figure 10). In Case D, both
subsystems S1 and S2 had three equilibrium points (see
Figure 11) and only one was a stable refuge equilibrium
point. *e Filippov system stabilized at a stable refuge
equilibrium point with ET in the range [3.6, 16.4] (see
Figure 12). A stable equilibrium point appeared in sub-
system S1 and subsystem S2 (see Figures 5(a) and 5(b)).
Especially, in Case A, the stable limit cycles existed in
subsystem S1.

In addition, it was verified that the pseudoequili-
brium was the point of intersection of the sliding seg-
ment and nullclines of the Filippov system, and the
pseudoequilibrium existed on the V1V2. In Case A, when
q1 � 0.45, it was the most suitable for controlling pests. In
Case B, the results revealed that the proper use of pes-
ticides can effectively control pests. In Case C, when

q1 � 0.6, the effects of pest control were the best.
*erefore, to some extent, the more the pesticides were
used, the better the number of beetles will be controlled
within a certain range so that the aim of IPM strategies
was achieved.

In summary, the Filippov system had sliding limit
cycles, a bistable state, and a stable refuge equilibrium
point by means of sliding bifurcation analysis. From the
perspective of practical biological significance, when the
pest density reached the ET, the optimal strategy should be
used, namely, the proper number of pests was captured,
transferred, or killed by using the cultural and chemical
strategies (i.e., the right amount of pesticide needed to be
sprayed). From an economic point of view, it was bene-
ficial to reduce the use of manpower, material resources,
and financial resources and protected the environment. In
the future, different control policies in which the threshold
is also a linear or nonlinear function about forests and
pests deserve investigation.

Data Availability

No data were used to support this study. In our study, there
are only some numerical simulations to support our main
result, and some parameter values to support the result of
this paper are included within the article.
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