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�e anaerobic treatment process is a complicated multivariable system that is nonlinear and time varying. Moreover, biogas
production rates are an important indicator for re�ecting operational performance of the anaerobic treatment system. In this
work, a novel model fuzzy wavelet neural network based on the genetic algorithm (GA-FWNN) that combines the advantages of
the genetic algorithm, fuzzy logic, neural network, and wavelet transform was established for prediction of e�uent quality and
biogas production rates in a full-scale anaerobic wastewater treatment process. Moreover, the dataset was preprocessed via a self-
adapted fuzzy c-means clustering before training the network and a hybrid algorithm for acquiring the optimal parameters of the
multiscale GA-FWNN for improving the network precision. �e analysis results indicate that the FWNN with the optimal
algorithm had a high speed of convergence and good quality of prediction, and the FWNNmodel wasmore advantageous than the
traditional intelligent coupling models (NN, WNN, and FNN) in prediction accuracy and robustness. �e determination co-
e�cients R2 of the FWNN models for predicting both the e�uent quality and biogas production rates were over 0.95. �e
proposed model can be used for analyzing both biogas (methane) production rates and e�uent quality over the operational time
period, which plays an important role in saving energy and eliminating pollutant discharge in the wastewater treatment system.

1. Introduction

Because of the economic advantages and low generation of
excess sludge, the anaerobic biological treatment process is
an e�cient process for treating high-concentration organic
wastewater, such as paper-mill wastewater, where the
complex organic contaminants can be converted into clean
energy (methane gas) in the anaerobic treatment process
[1–3]. However, the anaerobic treatment process is a
complicated multivariable system and is in�uenced by

various in�uent characteristics and operating conditions,
which is di�cult to be solved within a short time [4, 5].
�erefore, biogas (methane) production rates are also
in�uenced by various in�uent characteristics and operating
conditions [6].

Because of the nonlinearity, uncertainty, and posterity of
the anaerobic treatment process, it is di�cult to operate and
control that process. To increase the steadiness and re-
liability of the anaerobic treatment process, modeling is a
signi¡cant method, which can be used in controlling,
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operation, and optimization of the anaerobic treatment
process at a reasonable cost [7]. In recent years, numerous
studies have been carried out and various modeling methods
have been developed to control and simulate the anaerobic
treatment process [8–11]. However, because of the super-
ficial understanding of the mechanisms associated with the
anaerobic treatment process, it is difficult to analyze and
estimate more underlying phenomena in anaerobic di-
gestion using conventional mathematical models. .erefore,
to eliminate the complicacy, difficulty, and applicability,
more practical, secure, and simple models are needed to be
investigated [4, 12].

Because artificial intelligence has logic thought, fast
disposal capability, and nonlinear characteristics, it may
carry on the free precision to any continual nonlinear
function approaching. .e commonly used artificial in-
telligence methods are the neural network (NN), fuzzy
logic (FL), wavelet transform (WT), genetic algorithm
(GA), and metaheuristic algorithms [13, 14]. Hence, the
model based on artificial intelligence can achieve precise
simulation results in the wastewater treatment process.

In recent years, a variety of models based on the NN for
estimating the performance of the anaerobic treatment
process have been conducted by many researchers [15]. A
backpropagation neural network (BPNN) model integrating
the additional momentummethod with the adaptive learning
rate method was developed to estimate the operational status
of the upflow anaerobic sludge bed (UASB) [16]. .e results
indicated that the model can predict and optimize the control
parameters and propose strategies of the reactor. In addition,
another BPNN model based on the Levenberg–Marquardt
algorithm was designed by Sridevi et al. [17], which can be
used to successfully predict the biodegradation and bio-
hydrogen production in a hybrid UASB reactor treating the
distillery wastewater. Above all, the model based on the NN
can efficiently simulate and predict the nonlinear charac-
teristic of the anaerobic wastewater treatment system.
However, the NN has some defects, such as converging slowly
and immersing in local vibration frequently [18, 19].

.erefore, there are many neural network coupling al-
gorithms, such as the wavelet neural network (WNN) and
fuzzy neural network (FNN), to be proposed to solve the
problems faced by the ordinary NN [20–22]. .e FNN based
on fuzzy logic (FL) and NN can realize FL by the NN. In the
meantime, the coupled algorithm can capture fuzzy rules
effectively and realize fuzzy reasoning by using the NN
structure. So if the FNN is applied in the wastewater
treatment system, it will more effectively simulate the
wastewater treatment system.

Many research studies about modeling the anaerobic
wastewater treatment process using the hybrid FNN have
been carried out in recent years [23–25]. Erdirencelebi and
Yalpir integrated FL andNN to develop a hybrid FNNmodel
for simulating the anaerobic wastewater treatment process
[2]. .e results illustrated the developed hybrid FNN model
could be used for forecasting the effluent quality accurately
in a UASB system. In order to monitor degradation of the
penicillin-G wastewater in an anaerobic hybrid reactor, a
hybrid FNNmodel was established byMullai et al. [26] using

the adaptive network-based fuzzy inference system (ANFIS).
.e simulation results exhibited that the developed hybrid
model was effective and the correlation coefficient (R2) of the
model for chemical oxygen demand (COD) values was high.
.erefore, clarification of the place of the present subject in
the scheme of the FNN methodology can be considered a
particular field of investigation to evaluate real-time effluent
quality and biogas (methane) production rates that are
necessary to control the anaerobic process and to establish
fault diagnosis. Nevertheless, the FNN also has drawbacks,
which are no time-frequency localization characteristics and
may easily cause the low convergence rate and accuracy..is
is exactly the advantage of the wavelet transform (WT).
Hanbay et al. [27] have successfully used wavelet packet
decomposition and NN for prediction of the anaerobic
wastewater treatment plant. Furthermore, on the basis of
kernel principal component analysis andWNN, a soft sensor
system could realize real-time detection of redox potential,
dissolved oxygen, pH, and COD in the wastewater treatment
process [28].

Hence, a new systemwith the fuzzywavelet neural network
(FWNN) was established by integrating advantages of various
intelligent techniques. .is network could effectively increase
the detection rate and reliability of themodel by improving the
discernment, generalization, and approximation capacities
[3, 29, 30]. Such an integrated intelligent system can overcome
the shortcomings mentioned above. .erefore, the hybrid
FWNN offers a more efficient method for modeling, simu-
lation, control, and operation optimization of the complex
process system, such as the wastewater treatment process.

.e performance of the anaerobic treatment process is
very complicated and makes remarkable changes based on
various influent characteristics and operating conditions,
such as organic loading rates (OLRs), pH, hydraulic re-
tention time (HRT), and toxic organic compounds. Various
potential advantages based on such an artificial intelligence-
based model for real-time evaluation of effluent quality and
biogas production rates would be fully demonstrated, such
as withstanding various shock loads caused by substantial
influent fluctuations, optimizing operational parameters of
the process for controlling operational cost, providing an
online evaluation and estimation of emissions on an ener-
getic basis, and building a continuous early-warning strategy
without requiring a complicated model structure. However,
studies on modeling biodegradation and biogas (methane)
production rates in a full-scale mesospheric internal cir-
culation (IC) anaerobic reactor treating paper-mill waste-
water using the FWNN are very limited.

Based on the relationship between the effluent COD and
the biogas flow rate under various operating parameters
such as influent COD (CODinf ), HRT, OLR, pH in the
reactor (pH), and alkalinity in the reactor (ALK), an FWNN
model is developed to predict and estimate the effluent
quality and biogas production rates based on the existing
historical data..e key objective of this study was to develop
a novel hybrid genetic algorithm evolving FWNN model for
simulating the functioning problem of a full-scale internal
circulation (IC) anaerobic wastewater treatment plant. .e
proposed hybrid model may be used for analyzing the biogas
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production rate and effluent quality over the operational
time period, which plays an important role in saving energy
and eliminating pollutant discharge in the wastewater
treatment system.

2. Materials and Methods

2.1. Reactor System. A full-scale IC anaerobic treatment plant
system was selected for a demonstration site. .is treatment
system used in the study is located in Guangdong, China. As
shown in Figure 1, the wastewater treatment process including
four IC reactors was operated to treat approximately
3×104m3 paper-mill wastewater streams per day. Each IC
reactor has a diameter of 9m and a volume of 1100m3. .e
treatment system is equipped with online flow, pH, DO, ORP,
temperature, COD, and gas flowmeter (HACH®) sensors..e
signals delivered from above parameters were also used to
control peristaltic pumps, stirrers, and air blower. .e model
used data from the full-scale sequential system that were
collected over a period of 150 days. Other chemical indexes
were determined according to standard methods [31, 32].

2.2. Genetic Algorithm Evolving Fuzzy Wavelet Neural
Network (FWNN)

2.2.1. Identification of Model Parameters. .e identification
of model parameters is one of the key demands on modeling
the anaerobic wastewater treatment processes. .e most
appropriate choice of model components, which can exactly
display the running state of the anaerobic treatment process,
can help improve the management efficiency and reduce
functioning costs of the system [6].

OLR is used to measure the biological conversion ability.
.is parameter is a vital factor, which can significantly
influence microbial ecology and performance characteristics
of anaerobic treatment systems.

HRT is an important variable in the anaerobic treatment
system. It is used to measure the amount of time the
wastewater remains in the system. Retention time of the feed
in the system is too short, to complete the entire treatment
process, and biogas production will not be restrained.

pH is a chief parameter, which significantly affects the
performance characteristics of anaerobic treatment systems.
pH has a substantial effect on methanogenic bacteria.

ALK is reflected in the solution, to neutralize acids towards
the equivalence point of carbonate or bicarbonate in the an-
aerobic treatment system. In order to control pH in the an-
aerobic treatment system, it must ensure there is enough ALK,
which is effective in preventing the dramatic changes of pH.

COD is used to measure the organic compounds in
wastewater. .is parameter refers to substrate utilization
proficiency andmicrobial metabolic activity in the anaerobic
treatment systems.

Biogas production rate is usually used to refer to the
processing efficiency of the anaerobic treatment system. In
the anaerobic treatment system, the most significant oper-
ation is to control the effluent superiority and maximize the
rate of biogas production by breaking pollutants.

.erefore, influent COD (CODinf), HRT, OLR, pH in
the reactor (pH), and alkalinity in the reactor (ALK) were
selected as the input parameters of the proposed FWNN
model. Biogas production rates and effluent COD (CODeff)
were selected as the output parameters of the proposed
FWNN model.

2.2.2. Structure of the Proposed FWNN. .e architecture of
the FWNN for modeling the anaerobic treatment system is
illustrated in Figure 2. For the FWNN, the wavelet was used
for the neuron’s activation functions on the basis of the five-
layer NN, and fuzzy inference can be realized [33, 34]. .e
FWNN includes five layers as follows.

.e first layer consists of all input factors that act as the
input layer. .e layer data of input factors x1; x2; . . .; xn are
the input mode. In this layer, there are five input parameters
that are CODinf, HRT, OLR, pH, and ALK, so n� 5.

.e second layer is the fuzzy layer. .e fuzzy layer set
theory was employed to processing of linguistic variables, and
the selected membership function was the Gaussian function.
.e input characteristic variables were translated into fuzzy
variables in this layer, which can be defined as follows:

Fj xi( 􏼁 � exp
xi − cij􏼐 􏼑

2

2σ2ij

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, j � 1, 2, . . . , n, i � 1, 2, . . . , m,

(1)

where cij and σij are the center and width parameters of the
membership functions, respectively, and i and j are the
number of input parameters and linguistic variables in the
FWNN, respectively.

A self-adapted fuzzy c-means clustering has been used in
this work. It has been used to address the fuzzy factors, and
18 sets of fuzzy control rules have been established by an-
alyzing the actual database of knowledge. .e third layer is
the fuzzy rule layer. .is layer consists of numeral hidden
units representing fuzzy logic rules and numeral fuzzy
partitions. .e fuzzy rule base is generated from the given
input and output data, and the logical inference can be
realized, which can be given as follows:

μj(x) � 􏽙
n

j�1
Fj xi( 􏼁, i � 1, 2, . . . , n, (2)

where n is the number of fuzzy rules.
.e fourth layer is the wavelet network. In this layer, a

wavelet network is designed using wavelet functions as the
activation function of its nerve cells, based on the good local
performance of wavelet transformation..eWNNs are used
for the consequence of the FWNN. .e output of WNNs
with the jth wavelet neuron can be given as follows:

woj � wjψj(z),
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Corresponding FWNN schematic architecture
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Figure 1: Schematic diagram of the full-scale anaerobic process.
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where zij � (xi − bij)/aij, aij is the dilation of the WNNs, bij
is the translation of the WNNs, and wj is the weight of the
WNNs.

.e fifth layer is the output layer. .e total output of the
FWNN (y) in this layer is defined as follows:

yk �
􏽐

n
j�1μj(x)woj

􏽐
n
j�1μj(x)

. (4)

In this proposed design, to monitor the anaerobic
treatment system’s operational status, effluent COD and
production rates of biogas (methane) were chosen as the
network outputs.

2.2.3. Training Algorithm to Optimize the Proposed FWNN.
Ahybrid learning algorithmwas applied to train and optimize
the network parameters to further improve the prediction
capabilities of the network. It has integrated genetic algorithm
(GA) into gradient descent algorithm (GDA) to enhance the
efficiency and robustness of the network.

GA is a kind of well-rounded global optimization
method that owns the features with strong robustness and
broad applicability [35]. Since the GDA easily falls into the
optimum local and is sensitive to the initial values, the initial
values of the network’s parameters are first determined by a
real-coded GA, and then the GDA is used to train the
network, thereby greatly accelerating its convergence. In this
work, the formulation of the objective function can be
defined as follows:

E �
1
2

􏽘

n

k�1
ydk − yk( 􏼁

2
, (5)

where ydk is the desired value, yk is the output value of the
FWNN, and n is the sample number. .e output of the
FWNN according to the s-th chromosome with yk(L) can be
defined as follows:
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GA is an artificial intelligence method, which simulates
natural evolution using the three main operations: selection,
crossover, and mutation, to produce better fitness for in-
dividuals. .e goal of the GA for the selection operation is to

give population members (or solutions) more reproductive
opportunities with better fitness values. Crossover and
mutation operations produce new individuals in combining
the information contained in two parents, and they can
ensure that the new initial chromosomes are always feasible.
.e selection of the tournament is used to get the new
generation. For the next generation, the member with the
better fitness is selected.

Hence, the chromosome can be operated according to
the following real-coded set:

Xn
s
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ij bs

ij ws
j􏽨 􏽩, (8)
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.us, the optimal initial variables of the FWNN would
be finally obtained with the three genetic operations of
selection, crossover, and mutation. .e initial population
sizeNpop is 100 in this design, the crossover rate Pc is 0.7, and
the mutation interval Pm is 0.01.

2.2.4. Parameter Updation through Gradient Descent
Algorithm. As the parameters of the network were initial-
ized by the GA, the parameters of the FWNN and model
were verified and revised by the GDA [36]. Finally, all the
parameters of the developed FWNN were made up of the
center and width parameters of Gaussian functions, and the
dilation, translation, and weight parameters of WNNs were
simultaneously optimized according to the following:

E �
1
2

yd(t) − y(t)( 􏼁
2

􏽨 􏽩, (10)

where yd is the desired value and y is the output value of the
FWNN. Accordingly, the parameter values of the FWNN
can be given as follows:

wj(t + 1) � wj(t) + η
zE

zwj

+ ξ wj(t) − wj(t − 1)􏼐 􏼑,

aij(t + 1) � aij(t) + η
zE

zaij

+ ξ aij(t) − aij(t − 1)􏼐 􏼑,

bij(t + 1) � bij(t) + η
zE

zbij
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σij(t + 1) � σij(t) + η
zE

zσij

+ ξ σij(t) − σij(t − 1)􏼐 􏼑,

cij(t + 1) � cij(t) + η
zE
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(11)
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where η and ξ are the learning rate and the FWNN de-
veloped momentum factor, respectively.

2.3. Self-Adapted Fuzzy c-Means Clustering. In this work,
according to the characteristics of the anaerobic treatment
system, a self-adapted fuzzy c-means (FCM) clustering al-
gorithmwas proposed to deal with the fuzzy factors and thus
determine the number of the FWNN’s fuzzy rules. Objects
are strictly divided into clusters based on the fuzzy clustering
method, and the best class number is obtained by the valid
analysis of clustering [37]. .e calculating equations are
designed as follows:

B(K) �
􏽐

K
i�1􏽐

n
j�1u

m
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����
����
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u

m
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2
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􏽘

K

i�1
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(12)

where B(K) represents the sum of weighted Euclidean
distances, Jm(U, V) is the objective function representing
the minimum square sum of weighted Euclidean distances,
K is the number of clusters, n is the number of objects, xj is
the observed value, and m is the weighted exponent.

dij represent the Euclidean distance and can be designed
as follows:

dij � xj − vi

�����

�����. (13)

uij are the membership function values and can be
represented as follows:

u
(k)
ij �

1

􏽐
c
r�1 d

(k)
ij /d(k)

rj􏼐 􏼑
2/(m− 1)

. (14)

vi are the cluster centers, and the formula for their
specific calculation is as follows:

v
(k+1)
i �

􏽐
n
j�1 u

(k)
ij􏼐 􏼑

m
xj

􏽐
n
j�1 u

(k)
ij􏼐 􏼑

m . (15)

3. Results and Discussion

3.1. Data Collection and Preprocessing. In order to evaluate
the hybrid FWNN model for the anaerobic wastewater
process, 150 datasets were collected, the network was trained
with 120 datasets, and 30 sets were proved. Standardization,
which eliminates data redundancies and effectively orga-
nizes the data, has been used to improve the FWNN’s
performance. In this work, all datasets were converted to the
range between 0 and 1 through scaling.

3.2. FWNN Development. Using all these data, the effluent
COD and biogas (methane) production rates were predicted
using an FWNN model. In addition, the datasets were
analyzed using a self-adapted fuzzy c-means clustering, and
the optimal clustering number with 18 sets was identified.
.e structure model shown in Figure 2 was determined
based on the analysis of technology and experimental data as
well as the forecast target. It included three models of the
FWNN (FWNNCOD, FWNNQ, and FWNNCH4) for COD,
Qgas, and CH4 prediction, respectively. For eachmodel, there
was a separate rule basis, but the models’ input parameters
were the same.

A hybrid learning algorithmwas applied after initializing
the model structure and parameter to train and optimize
network parameters. Because the GDA easily falls into local
optimum and is sensitive to the initial values, the initial
values of parameters of the network were firstly determined
by a real-coded GA, and then the GDA was used to train the
network, thereby greatly accelerating its convergence.

3.3.SimulationofFWNNModel. .ree FWNN-basedmodels
were simulated and verified by the experimental data using
the MATLAB program. .e initial population size Npop,
crossover rate Pc, interval of mutation Pm, maximum
number of generations, learning rate η, and momentum
factor ξ are 100, 0.7, 0.01, 200, 0.02, and 0.5, respectively.
Figure 3 sketches the training process of the developed
FWNN (taking FWNNCOD for example). From Figure 3, it
can be easily understood that this network has virtues of
good memory, fast convergence ability, and strongly stable
capability. Consequently, the new parameters of FWNN
models were obtained by repeated training and studying
through the hybrid learning algorithm, as shown in Tables 1
and 2.

Figure 4(a) shows the predictive values of the FWNN
models according to the testing datasets. As shown in
Figure 4(a), it is easily found that the predicted values are in
good conformity with those observed values. In this work, in
order to assess the performance of models, various in-
dicators were used to analyze and estimate the developed
FWNN models, such as the determination coefficient (R2),
correlation coefficient (R), root mean square error (RMSE),
mean square error (MSE), and mean absolute percentage
error (MAPE). As shown in Table 3, the performance in-
dicators of the proposed FWNN models were acquired by
comparing the predicted results with real values.

Table 3 clearly shows that using the FWNN, the MAPE
values of 2.9083%, 3.3563%, and 4.0660% for COD,Qgas, and
CH4 could be achieved. R2 values were 0.9647, 0.9681, and
0.9501, respectively, for COD, Qgas, and CH4. R values of
COD, Qgas, and CH4 were 0.9822, 0.9839, and 0.9747, re-
spectively. .e RMSE values of 28.7439, 199.2556, and
155.0499 for COD, Qgas, and CH4 could also be achieved.
Simulations on the proposed model showed that this pro-
posed model not only could accomplish parameter cali-
bration rapidly and find out the optimal solutions of
parameters accurately but also could improve the con-
verging rate and the stability of the models. .e results
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Table 1: Parameters of the FNNCOD.

Rules
COD (t) HRT (t) OLR (t) pH (t) ALK (t)

c σ c σ c σ c σ c σ
1 0.0136 0.1607 0.5268 − 0.7421 − 0.3635 − 0.5529 − 0.3051 − 0.9233 0.4253 0.1944
2 − 0.7069 0.7358 − 0.3188 − 0.3580 0.3703 − 0.2483 − 0.3542 1.1877 − 0.7381 0.6980
3 − 0.7367 − 0.6604 1.3965 0.2865 − 0.6298 0.9426 − 0.0589 1.0751 − 0.5281 0.3233
4 − 0.1518 1.7925 − 0.5607 − 1.2634 0.4315 9.6476 0.0743 0.0939 − 0.5717 0.1826
5 − 1.2089 0.2705 0.0115 − 1.0385 0.6881 − 1.9966 0.0109 30.2334 0.3907 − 0.1104
6 0.6641 − 0.2334 − 0.4112 0.6708 0.0439 0.8663 − 0.3301 − 0.2831 0.4050 − 0.5511
7 0.0064 0.9719 − 0.7012 − 4.8530 0.9405 − 0.6621 0.7832 − 0.0767 0.4281 0.7108
8 0.3419 0.1058 0.8441 1.1613 1.1604 − 74.1843 − 0.1981 0.8107 0.5553 0.4536
9 − 0.5602 0.5057 1.1063 − 26.4556 0.0843 − 7.2215 − 0.8100 − 6.8183 − 1.7993 0.3474
10 0.4907 − 0.5534 − 0.0703 − 0.4569 − 0.2704 0.9582 − 0.3745 0.5942 − 3.0162 1525.6060
11 − 0.6621 − 0.4266 0.5657 1.0340 0.1292 − 0.1692 − 0.2571 − 2.6569 − 0.4486 − 8.9554
12 0.2888 − 0.3405 − 0.0953 − 0.3502 0.5470 − 83.4372 − 0.6050 2.0040 0.3772 − 13.0426
13 − 0.2228 1.3588 0.3659 0.7005 − 0.1630 − 0.4162 0.4636 − 0.6097 − 1.0012 1.0308
14 − 0.4807 − 0.4252 − 0.0355 − 0.6217 0.1970 0.6718 0.0845 − 0.5032 − 0.1502 0.9260
15 − 0.8972 − 0.8169 0.1483 − 1.4908 − 0.1679 0.9453 0.4577 − 0.8348 − 0.1577 − 0.7370
16 0.2736 − 0.3070 0.3224 − 0.5635 0.3254 7.5609 0.1766 0.6113 0.5786 − 3.1036
17 − 0.4311 3.5123 0.4850 − 0.9749 0.3135 − 0.6053 − 1.1362 1.8104 − 0.4111 − 0.4197
18 0.1273 0.6391 − 0.2829 4.1239 0.1948 0.6960 0.5902 0.2422 0.0614 0.0985

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

Generation

Su
m

-s
qu

ar
ed

 er
ro

r

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

Generation

Fi
tn

es
s

0 50 100 150 200 250 300
0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Epoch

Su
m

-s
qu

ar
ed

 er
ro

r

Figure 3: Training performance of the FWNN based on hybrid GA-GDA algorithms.
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showed a good concordance with the experimental values
predicted. As shown in Table 3, for the three FWNNmodels,
the predictive performance of the proposed FWNN models
on effluent quality and production rates for biogas was
satisfactory with a very high determination coefficient (R2),
which were all over 0.95. In other words, a high R2 showed
that only 3.53%, 3.19%, and 4.91% of the total variations for
COD, Qgas, and CH4 were not explained by the proposed
FWNN models. In addition, a high R for the three FWNN
models illustrates that there was a good concordance of the
predicted values with the experimental ones. Accordingly,
based on the other small evaluation indicators (MAPE,
RMSE, and MSE), it also shows that the predicted model
developed had high predictive accuracy and satisfied ro-
bustness and fitness, making the system highly adaptable.

3.4. Comparisons with FNN, WNN, and NN. .e developed
FWNN models were compared with FNN, WNN, and NN
models to demonstrate the correctness, efficiency, and
benefits of the hybrid network. Based on the comparison of
results, as shown in Table 3, it can be seen that FWNN
models have lower RMSE (or MSE) and MAPE values and
higher R2 and R values. Taking CODeff for example, when
predicting, R, R2, MAPE, RMSE, and MSE values were
0.9822, 0.9647, 2.9083%, 28.7439, and 826.2142 using the
FWNN, respectively. However, when using the FNN, WNN,
and NN models, R values were 0.9645, 0.9351, and 0.8222,
respectively; R2 values were 0.9302, 0.7697, and 0.6760,
respectively; MAPE values were 4.077%, 4.4575%, and
8.3163%, respectively; RMSE values were 41.1297, 55.8223,
and 88.2468, respectively; and MSE values were 1.6917E+ 3,
3.1161 E+ 3, and 7.7875E+ 3, respectively.

Table 3 shows that FWNN models have higher esti-
mation accuracy and better robustness than FNN, WNN,
and NN models, showing that FWNN models are more
accurate than FNN, WNN, and NN models for predicting

effluent quality and biogas (methane) production rates. .e
results of this study suggest that the FWNN model was
highly capable of extracting the dynamic IC system changes.
Considering the nonlinearity, complexity, and randomness
of the anaerobic treatment process, such a good predictive
performance of FWNN models was particularly important
for modeling the wastewater treatment process. .e FWNN
is a good choice for modeling the IC anaerobic treatment
process. .e simulated models based on the FWNN model
can be effectively applied to a full-scale IC anaerobic reactor
to cope with influent variations. .e results show that an-
aerobic wastewater treatment can be better described with
the FWNN than the FNN, WNN, and NN. Maintaining
environmental standards, FWNN models can effectively
achieve the IC anaerobic system’s environmental and eco-
nomic goals in real time. In the future, in order to optimize
the anaerobic treatment system, a control system will be
developed to monitor and control the system based on the
FWNN model.

3.5. Multidimensional Graphs of Affecting Factors and Reg-
ulating Strategies of IC. Using the partitioning connection
weights (PCW) method, the importance of the influencing
factors could generally be analyzed. In this work, four-di-
mensional graphs with two outputs were used for analyzing
the importance of input parameters to outputs.

3.5.1. Influence of pH and OLR on COD Removal Rate and
CH4 Production Rate. Figure 5(a) shows the influence of pH
and OLR on the COD removal rate and the CH4 production
rate. From Figure 5(a), when pH and OLR values varied
from 6.8 to 7.4 and from 5 to 15 kg COD/m3·d, the rate of
COD removal and the rate of production of CH4 increased,
respectively. .e treatment system was particularly sensitive
to changes in pH when the OLR was high. However, when
the OLR was above 15 kg COD/m3·d, changes in pH values

Table 2: Wavelet layer parameters of the FWNNCOD.

Rules w
COD (t) HRT (t) OLR (t) pH (t) ALK (t)

a b a b a b a b a b
1 1.5886 − 0.1273 − 1.1428 1.6123 0.7959 2.1101 1.6534 1.7961 1.8034 − 0.0412 − 1.4770
2 − 1.4397 − 1.0635 0.3172 0.3292 1.8075 1.8048 1.9308 − 0.5009 − 3.3946 − 0.1592 − 1.6507
3 − 3.2344 8.8674 8.2901 8.6132 8.6776 0.0000 − 0.6094 0.4513 − 3.3283 − 0.0012 − 1.2749
4 − 2.8787 9.4875 8.8757 9.3742 9.3019 9.4737 8.7495 − 0.5562 − 3.8668 0.3150 − 2.7147
5 − 0.1198 − 0.2082 − 1.9909 − 0.5800 − 2.8096 − 0.1405 − 1.7493 − 0.3507 − 2.4843 − 0.0722 − 4.1235
6 0.5239 − 1.1138 − 0.4318 − 2.4781 − 36.4693 0.2082 − 0.3899 − 0.0686 − 1.7075 − 0.1363 − 2.8063
7 − 2.0347 − 0.0948 − 1.5617 − 0.1529 − 1.9035 − 0.2736 − 2.4728 6.3255 6.7699 − 0.1353 − 1.7480
8 0.1759 0.1584 − 1.1703 1.0586 0.1860 − 0.8765 − 1.1716 − 0.2192 − 2.1848 0.4971 0.2769
9 − 1.4778 5.4539 4.8521 − 0.1985 − 2.1011 5.4583 4.7566 − 0.5334 − 3.6407 − 0.2719 − 4.3257
10 − 0.7646 − 0.0413 1.3235 − 1.3483 − 3.2882 0.0383 3.1448 1.4188 0.8019 − 1.3864 − 1.4296
11 − 2.4920 6.0096 5.4610 0.2843 − 2.6436 0.2806 − 2.5572 0.3079 − 2.6510 5.5745 5.5132
12 − 0.6872 − 0.2137 − 2.5483 0.0607 − 2.2885 0.0257 − 1.1678 0.3778 − 2.3892 − 0.4407 − 1.8772
13 0.6707 1.4191 0.8041 − 0.1416 − 1.7496 0.0004 − 1.3015 − 0.1572 − 2.8354 0.1461 2.4996
14 − 2.5713 8.8880 8.2832 − 0.0014 − 2.1207 8.9002 8.1486 − 0.3254 − 5.0826 8.7261 8.5458
15 − 1.2637 − 0.9244 − 12.2623 1.1685 0.0916 1.8175 0.6263 − 0.4936 − 3.2684 − 0.3105 − 2.5201
16 0.9024 − 1.6801 − 6.3276 0.9363 0.5837 1.7794 1.7951 − 0.1902 − 1.2803 0.9617 0.0144
17 0.0526 − 0.5795 0.7473 − 1.0763 − 1.2789 − 6.9178 − 96.1241 0.7802 2.6923 0.7286 2.7465
18 − 0.0466 − 0.5801 − 1.5784 − 0.3502 − 2.5046 − 0.3109 − 1.3356 0.9269 2.3812 1.0120 0.8650
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Figure 4: FWNN performance of the estimation of effluent concentrations and biogas (methane) production rate.
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rarely affected the performance of the treatment system.
When the OLR exceeded 15 kg COD/m3·d or pH was above
7.5, there was a negative effect on the rate of COD removal
and the rate of production of CH4, and the negative effect on
the rate of COD removal and the rate of production of CH4
caused by the increased OLR was lower than that caused by
low pH. Hence, when the OLR of the treatment system was
enhanced by shortening HRT or increasing the influent
COD, it was conducive to the stability of the treatment
system through adding alkali to improve pH values.

3.5.2. Influence of pH and ALK on COD Removal Rate and
CH4 Production Rate. Figure 5(b) shows the influence of pH
and influent COD on the COD removal rate and CH4
production rate. Whatever pH was in the system, when ALK
was low, it is not good for the rate of COD removal and the
rate of production of CH4. .e treatment system also be-
came immovable at low pH. When the ALK exceeded
2500mg/L and the pH in the treatment system exceeded 7.5,
the rate of COD removal and the production of CH4 in-
creased. .erefore, when the influent concentration of COD
was high, pH and ALK values were kept higher than 7.5 and
2500mg/L, respectively.

3.5.3. Influence of OLR and ALK on COD Removal Rate and
CH4 Production Rate. Figure 5(c) shows the influence of
OLR and ALK on the treatment system. When the OLR was
lower than 15 kg COD/m3·d, the treatment system was rarely
affected by ALK, and the CH4 production rate was low.
When ALK was higher than 2500mg/L, especially when it
increased from 3000mg/L to 3500mg/L, the CH4 pro-
duction rate decreased dramatically with the changes of
ALK. .e COD removal rate was low when the OLR was
over 18 kg COD/m3·d. If the OLR continuously remained
higher, the worsening trend in the treatment system would
have occurred. If the OLR remained constant, the COD
removal rate rules were obtained with the change of ALK.
Moreover, it was shown that the optimal influent OLR was
about 15 kg COD/m3·d when the treatment system ran in the
operating conditions with a pH of 7.5 and alkalinity of
3000mg/L.

4. Conclusion

.e proposed research was to establish an artificial in-
telligence-based model for modeling a full-scale anaerobic
wastewater treatment system. Combining the benefits of the
NN, FL, and WT, the FWNN could be used successfully to
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Figure 5: Impact of the parameters (a) pH and OLR, (b) ALK and pH, and (c) ALK and OLR on COD removal and CH4 production rates.
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predict effluent quality and the rate of production of biogas
according to the strong nonlinear ship between its inputs
and outputs. .e FWNN model showed higher estimation
accuracy and better robustness compared to FNN, WNN,
and NN models and achieved better performance in pre-
dicting effluent quality and production rates of biogas with
high determination coefficients R2 over 0.95. Meanwhile, the
FWNN model can be used for analyzing the importance of
the affecting factors. .e proposed hybrid approach will
provide a very impactful and cost-effective tool for modeling
the anaerobic process that helps engineers monitor opera-
tional parameters to improve the performance of anaerobic
treatment.
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