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In this paper, we use fixed-point index to study the existence of positive solutions for a system of Hadamard fractional integral
boundary value problems involving nonnegative nonlinearities. By virtue of integral-type Jensen inequalities, some appropriate

concave and convex functions are used to depict the coupling behaviors for our nonlinearities f; (i = 1, 2).

1. Introduction

In this paper, we study the existence of positive solutions for
the system of Hadamard fractional integral boundary value
problems:

[ -EDu(t) = f, (t,u(t), v(t)),
“HD* () = f, (t,u(t), v(1)),
u® (1) = p () (1) =0,

te(1,e),

te(1,e),

u(e) = L h(Eu () ?

v(e) = jl hE (o) ?

where a€ (n—1,n] is a real number with n>3,
j=0,1,2, ..., n—2,and #D% is the Hadamard fractional
derivative. The nonlinearities f; € C([1,e] x R* x R",R"),
R* = [0, +00). Moreover, the function h on [1, e] satisfies
the condition:

(HO) h=0 with [ h(r)(logt)*! (dt/t) € [0, 1).

In recent years, the fractional calculus and fractional dif-
ferential equations are of importance in mathematics, physics,
electroanalytical chemistry, capacitor theory, electrical circuits,
biology, control theory, and fluid dynamics [1-20]. For

example, in [1], the author considered the fractional
(n -1, 1)-type conjugate boundary value problems:

{Dg‘+u(t)+/\f(t, u(t) =0, 0<t<l,

u@(0)=0, u(1) =0, @

0<j<n-2,

where a € (n - 1,n],n>3,and Dy, is the Riemann-Liouville’s
fractional derivative. By means of Leray-Schauder type and
Krasnosel'skii’s fixed-point theorems, the author derived an
interval of parameter A such that (2) has multiple positive
solutions when any A lies in the interval.

On the other hand, we note that coupled systems of
fractional differential equations have also been investigated by
many authors, see [21-32]. For example, in [21], the authors
used a fixed-point theorem of increasing ¢- (h,r)-concave
operators to establish the existence and uniqueness of solutions
for a system of four-point boundary value problems involving
Hadamard fractional derivatives:

UD%u(t) + f(t, v(t) =1y, te (L e),
HDPy(t) + g(t, u(®) =1, te (1,e)

u? (1) =v (1) =0, 0<j<n-2, (3
u(e) = av(f),

v(e) =bu(n), & ne(l,e),

where f,g € C([1,e] xR,R) and I;and/, are two posi-
tive parameters. In [22], the authors established positive
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solutions for the coupled Hadamard fractional integral
boundary value problems:

((ED%U(t) + Af (t, u(t), v(t)) =0, te (L,e), >0,
HDPy(t) +Ag(t, u(t), v(t) =0, te (1,e),1>0,
ut (1) =v (1) =0, 0<j<n-2,

- e d
u(e)=yLV(S)§,

€ d

kV(e)=VLu(S)?S,

(4)

where the nonlinearities fand g satisfy either of the fol-
lowing conditions:

(H)yang: there exists [6,,0,] c (1,e) such that
liminf, . min.g g,)(f (£, u,v)/u) = +00 and
liminf, ., min,g (g (tu,v)/v) = +oo.

(H)yang: there exists [6,,60,] c (1,e) such that
liminf, ., ming o)(f (tu,v)/v) = +00 and
lim inf, min g g,1(g (£, u,v)/u) = +0o.

Uu—>+00

Inspired by the aforementioned works, in this paper, we
use the fixed-point index to consider the existence of positive
solutions for system (1) of fractional integral boundary value
problems involving Hadamard-type fractional derivatives.
Based on integral-type Jensen inequalities, some appropriate
concave and convex functions are used to depict the cou-
pling behaviors for the nonlinearities f; (i = 1,2). Moreover,
our a priori estimates for positive solutions are derived by
developing some appropriate nonnegative matrices when
f;(i=1,2) grow sublinearly at co. These conditions here are
different from that in (H)y,pg and (H)y,ng-

2. Preliminaries

In this paper, we only provide some necessary definitions and
lemmas for the Hadamard fractional derivative. For more
details about Hadamard fractional calculus, see the book [33].

Definition 1. The Hadamard derivative of fractional order g
for a function g: [1,00) — R is defined as

d " a d

n—-1<qg<n,
(5

where n = [gq] + 1, [q] denotes the integer part of the real
number g, and log (-) = log, (-).

"Dg(t) =

Definition 2. 'The Hadamard fractional integral of order g
for a function g is defined as

¢ . d
Arig(t) = e )J (log t —log s)? lg(s)?s q>0. (6)

Complexity

Lemma 1. Let q>0 and u € C[1,00) N L'[1,00). Then, the
Hadamard fractional differential equation " Du(t) = 0 has
the solution

u(t) = c,(logt)" +¢,(logt)1> + .-+ ¢, (log)T™,  (7)

where c; e R, n—1<gq<nn=[ql+1,andi=12,...,n

Lemma 2. Let q>0 and u € C[1,00) N L'[1,00). Then, we
have the following formula:

A1 Dy (t) = u(t) + ¢, (logt)T™ + ¢, (log )2 +

+¢,(logt)T™, ®

where ¢; and n are as in Lemma 1 and i =1,2,...,n.

Lemma 3. Suppose that (HO) holds. Let f € C[1,e]. Then,
the boundary value problems

HDsy () = f (8),
u) (1) =0, 9)
u(e) = Ji h(t)u(t) ?,

t e (Le),

has a unique solution

w = [ 6.9 Fo% (10)
1 S
where
_ (log )" “ dt
Ghs)=Gi 69+ — [ h(t) (log)* " dt/t L (DG (5975

(logt)* " (1-logs)* " —(logt—logs)*™",

G (t S)_m 1<s<t<e,
(logt)*" (1-logs)* ", 1<t<s<e.

(11)

Proof. Using Lemma 2, we have

u(t) = ¢, (logt)* ™" + ¢, (logt)* > + -+ + ¢, (logt)* ™"

1 ds (12)
1 -1 =
F( )J (logt —logs)*” f(s) S
where ¢; €R, i=1,2,...,n By ud(1)=0,j=0,1,...,
n—2, we have ¢; =0, i=2,3,...,n Hence,
a 1 ds
u(t) =c (logt) F( )J (logt —logs)™ f(s)?.
(13)

Then, we know u(e) = ¢, — (1/T(«)) Ii (1-1logs)*" £ (s)
(dsls). Using the condition u (e) = jeh (t)u(t) (dt/t), we have

j (1 -logs)* 1f(s)—

=

T(a)
wopdt
=c1J h(t)(logt) 1? (14)

t a1 ds dt
F( ) j h(t)J1 (logt —logs)™ " f (s )——.
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Then, (HO) implies that

1
T (a)(1- [ h(t) (logt)™ ' (dt/t))

€ =

j (1-logs)™ 1f(s)—

1 a1 ds dt
B | (oge-1 =2
“T(@(1- [T h() (logh™ 1(dt/t)),[ ()J (logt ~logs) S ()7
(15)
! J (1 -logs)* 1f(s
T T(@)(1- [ A6 (og ) (dt/e)) 89)
_ ! J (1-logs)™ ‘f(s)—
T (@(1= [ h(t) (logt)™ (dern)) §
As a result, we have
(log )™ a1
-1
YO (1 T he logt)“l(dt/t))J (1~logs) f(s
(logt)*! a1 dtds 1 (! i ds
log# - 1 aras log# - 1 a
F(Of)(l_jlh(f)(logt)“l(dt/t))-[h(t)J (ogt ~1ogs™ /(97 =5 | togt =log o™ 19
(logt)*!

-1 ol 1 a-1 1 a—1
TT@(1- [T R logt)“l(dt/t))J (- 1o (9 s r()J (logt)*™" (1 - logs) f(s

(logt)*™! w1 . dtds 1
logt — 1 atas
F(oc)(l — [Th(t) (logt)* " (dt/t)) j (t)J (logt ~log )™ /9"~ 1

J (logt —logs)* 1f(s)—

e J (log )™ (1 - log s)*" 1f(s)—

[ h( t)(logt‘“ (dt/t)
T (a)(1- [} h(t)(logt)* (dt/1))

e d
- JlGI (t,s)f(s)?s j (logt)“ 1(1 —logs)“ 1f(5)7

dt ds

1 a—1 e
(Ogt) )j ()J (logt IOgS)a 1f( _?

T(@(1 - [$h0) (logt)* (dtlt)

e ds (logt)“l[jlh(t ) (log t)*™" (dt/t) [ (1 -logs)™" £ (s)(dsls) - [{ h(t) [ (logt —logs)* f (s) (dt/t) (dsls)]
-[aeares =
I s T(a)(1- [} h(t)(logt)* (dt/1))

€ ds (logt)"“1 je r dt ds
=| G = _ h(H)G, (t,s)— f (s) —
Jiewaroy L= 10 ogey ey Ju ), MO BT
= r G(t,s)f (s) é
1 N
(16)
This completes the proof. O Di,u(t)+h(t)=0, 0<t<l,2<n-1<a<n,
(17)
In what follows, we study some useful inequalities for u(0)=u(1)=0, 0<j<n-2,

Green’s functions in (11). We first provide a result in [1].
Let h(t) € C[0,1], and then the Riemann-Liouville

has a unique solution u(¢) = [~ H t, s)h (s)ds, where
boundary-value problem 1 (®) I o H{t,9)h(s)
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P [ a9t = -9, 0ss<is<,
H(t,s) = ——
I'(a) $91 (1 = 5)271, 0<t<s<l
(18)

Moreover, Green’s function H satisfies the inequalities:

[(a)k(t)q(s)<H(t,s)< (a—1)q(s), fort,se [0,1],

(19)
where k (t) = (t*71 (1-1)/T («)) and q(s) = (s(1 — ) YT ().
Comparing G, with H, using logtandlogs to replace

tands, from (11) and (19), we obtain the function G, satisfies
the inequalities:

(logt)** (1 —logt) (logs) (1 —log s)*"
T'(a)

<G (t,s)
(20)
(a—1)(logs) (1 - logs)"‘_1
T'(a) ’

t,s € [1,e].

This, for all t,s € [1,e], implies that

(logt)*!
1- [ h(t)(logt)* (dt/t)

€ d
J h(t)G, (t, S)Tt

1

3 (a=1) [ h(t)(dt/t)
TT(@)(1- [ h(t) (logt)™ (dt/t)

) (logs) (1 —logs)* ™,

(21)

and

(logt)*! J

¢ dt
h(t)G, (t,5)—
1- [ h(t)(log )™ (dt/t) (0G5

1 t

y (logt)*! ﬁh(t) (logt)*™' (1 —logt)(dt/t)  (22)
T(a)(1 - [} h(t)(logt)* (dt/t))

- (logs) (1 —logs)*™".

Lemma 4. Let ¢(t) = (logt)(1 - logt)“_l, where t € [1,e].
Then there exist

o T | T(@) [ h(£)(logt)*™" (1 - log ) (dt/t)
' TQa+2) 2Q2a)  1- [ k(1) (logt)* ! (dt/t)

a1 [ [ h(6)(dtit)
PT@+2) | 1- [T k() (og)* (dtit)]
(23)
such that
K¢ (s)< J'j G(t,s)qS(t)?s kK, (s), forse [Le].

(24)

Complexity

Proof. Using (20)-(22), for all s € [1,e], we have

¢ (a=1)¢(s)

e dt dt
LG‘“"“”TSL T PO

N J (a—1) [ h(t)(dt/t)
1T (a)(1= [ () (logt)™" (dt/t))

9P % =409,

¢ (logt)™ ' (1 - logt)¢(s)

e dt dt
LG(t,s)(/)(t)TZL I'(ax) t

t

¢ (1)

r (logt)*™* ﬁ h(t) (logt)* ' (1 - logt) (dt/t)
1 T(a)(1- [ h(t)(logt)* (dt/t))

-¢(S)¢(t)? = K4 (s).
(25)

This completes the proof. O

From Lemma 3, we know (1) is equivalent to the fol-
lowing Hammerstein-type integral equations:

’ ds
<u(t) ) _ J'IG(t,s)fl(s,u(s),v(s))? .
v(t) JEG(t’S)fZ (5>U(S),V(s))é

! s

Let E:= C[le], |u| == max,c(; |u(t)], and P = {u €
E:u(t)=0, Vt € [1,e]}. Then (E, |-||) becomes a real Banach
space and P a cone on E. Moreover, E x E is a Banach space
with the norm (x, y) = ||x|| + [|yl|, and P x P is a cone on
E x E. Therefore, we define operators A; (i = 1,2) and A as
follows:

A ) (0) = L G(t.5)f, (5,14(),v(s)) %

e d
Ay (u,9) (1) = L Gt f (5w v ()

A(u,v)(t) = (A, Ay) (u,v) (t),  foru,ve Pt e [l,e]

(27)

Note that Gand f; (i = 1,2) are nonnegative continuous
functions, so the operators A;: Px P — P(i=1,2)and A:
P x P — P x P are three completely continuous operators.
Moreover, if (u,v) € (PxP)\{0} is a fixed point of A,
then (u,v) is a positive solution for (1). Therefore, in what
follows, we turn to study the existence of fixed points of the
operator A.

Lemma 5. Let p be a continuous concave function. Then, if ¢
is an integrable function on [0, 1], we have

1 1
p(j (p(tmt) > | plo (28)
0 0
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Proof. Let0 =t <t <t,<-.--<t, <t,=1forallneN,
and At; =t; —t;_,d = max{At;},i = 1,2,...,n. Then, note
that YL ,At; =1, for all & € [t;_;,t;], wherei =1,2,...,n,
we have

1 n n
P(JO ‘P(t)dt> = P(dh_n}();(/’(fi)mi> = dh_n}op< Z ‘P(fz‘)Aﬁ)

n 1
> dlinoizzlp(cp(&))mi = Jop(q)(t))dt.
(29)
This completes the proof. O

Remark 1. 1f p is a continuous convex function in Lemma 5,
then (28) can be changed into the inverse inequality:

1 1
p(j ¢(t)dt> < | plownar (30)
0 0

Lemma 6 (see [34]). Let E be a real Banach space and P
a cone on E. Suppose that Q) C E is a bounded open set and
that A: Q NP — P is a continuous compact operator. If
there exists a w, € P\{0} such that

w-Aw#lw,, VA=0,0€0QNP, (31)

then i (A, QN P, P) = 0, where i denotes the fixed-point index
on P.

(log ) (1 - log t)¢ (s) , og )" [T h(t) (log )™ (1 —logt) (dt/t)

Lemma 7 (see [34]). Let E be a real Banach space and P
a cone on E. Suppose that Q) C E is a bounded open set with
0€Q and that A: QNP — P is a continuous compact
operator. If

w—-Aw#0, VAe[0,1],w€0QnP, (32)

then i(A,QN P,P) = 1.

3. Main Results

Lemma 8. Let Py={ucP: [[u(t)p(t)(dt/t)=w,lul}.
Then Bu € P, where

(Bu) (£) = Jl Gt s)u(s) ?, ueP, (33)

where

B T2 (a) )
YT - Drat2)|

e -1
' [1 . RAGICED ] .

1— [ h(t) (logt)*” (dt/t)

[ R(6)(logt)*™" (1 - logt) (dt/t)
1- [{h(t)(logt)* (dt/t)

(34)

Proof. From the definition of G, for all ¢,7,s € [1,e], we
have

G(t,s)> T'(a)

T(a)(1- [{h(t)(logt)*" (dt/t))

[ h(t)(logt)*" (1 - logt) (dt/t)

(s)

. (logt)* ! (1 - log?) [1 N
I'(x)

1- [ h(t)(log )™ (dt/t)

o

~ (logt)*' (1 -logt) X
- T'(a)

[ h(t)(logt)*" (1 - logt) (dt/t)]
+ e a—1 (35)
1- [ h(t)(logt)*" (dt/t)

a-1 [ h@) (atir) I'(a) [ h@) (atin) o
. 1+ > (s) - 1+ -
T(@) [ 1- [ h()(ogt)* (dt/t) a=1]  1- [ h(t)(logt)*" (dt/t)
. (log )" (1 - log £) L [ heo (leogt)a—l (1- l_ogt) (dt/t) L e [ih®) (dt/t_) (s
a-1 1- [ h(t)(logt)* (dt/t) 1- [ h(t)(logt)* (dt/t)



Then if u € P, we have

e dt e e ds dt
jl (Bu) (09 (1) = L 6 (1) L Gt (9

t

Complexity

1 a—1

[ [$h@o) (dtin) r
1+ 7
1—Lhuxbg0*%mﬁ)

e e a—-1 _
> [ g [ g0 l°g”[1+f
1

Th(t) (logt)™" (1 - logt) (dt/t)
1- [ h(t)(logt)*" (dt/t)

ds dt

G(1,8)u (s)? "

B oa?T? (a) )
T (a- DI Q2a+2)

Note that the arbitrariness of 7 € [0, 1], we have
€ dt
| B@s > wlsa (37)
This completes the proof. O

Let % = (a—1T(@)[1+ ([R(e)(@t/t)/1- [ h(t)
(logt)*™' (dt/t))]. Then, max, ;G (¢ s) <H. Now, we
list our assumptions for f;(i = 1,2):

(H1) f; e C([1,e] xR* x R",R"),i =1,2.
(H2) There exist p;,q, € C(R*,R*) and ¢, >0 such
that

(i) p; is a strictly increasing concave function on R*
and lim, ,, p,(z) =+o0

(i) (fl “’“’”)z(f’l(”_“ > V(tu,v) € [1,e] x

fz (t) u, V) ql (M)—Cl
R* x R*
(iii) Jy, € (x;% +00) such that p, (#q, (2)) =y, Kz —
¢, Vz e R*
(H3) There exist p,,q, € C(R*,R*) and r, >0 such
that
(i) p, is a strictly increasing convex function on R*
and p,(0) =0
[ f1(tuw) P (v)
(ii) (fz(t,u,v) < o (1) YV (tu,v) e[l el x [0,7]x
[0,7]
(iii) Iy, € (0,,%) such that p,(Hq,(2) <y, Hz,
Vz € [0,7]

(H4) There exist p;,g; € C(R*,R*) and r, > 0 such that
(i) ps is a strictly increasing concave function on R*

o [ f1(tuy) Ps(v)
(i) <f; (t,u,v))2<qj(u)>’V(t’u’v)e [1,e] x [0,7,]%

[03 72]
(iii) Jy; € (x;% +00) such that p;(Hq;(2)) >y;Hz,
Vz € [0,7,]

(H5) There exist a,,,b,;,a,,,b,, >0 and [;,1, >0 such
that

N [ (£)(logt)*™" (1 - logt) (dt/t) - [ h(t) (dtit)
1- [{h(t)(logt)*" (dt/t)

1- [{h(t)(logt)*™ (dt/t)j| (B
(36)

1-ax,

—apk,
a; k, < 1,b,k, < 1, det >0,
“buk, 1-bpk,

t,u,v apu+ap,v+l
<fl( )>£< 1 12 1>, YV(t,u,v) € [1,e] x R" x R™.
fo(t,u,v) bu+b,v+1,

(38)
Define B, ={z € E: ||z <p} for p>0. We adopt the

convention in the sequel that ¢;,c,,... stand for different
positive constants.

Theorem 1. Suppose that (H1)-(H3) hold. Then, (1) has at
least one positive solution.

Proof. Let M, ={(u,v) e PxP: (u,v) = A(u,v) +u (u*,v*),
u>0}, where u*,v* € P, are two given elements. Then, we
claim that M, is a bounded set in P x P. We define operators
f,: PxP— P(i=1,2) as follows:

foru,v € P,t € [1,e],i =1,2.
(39)

f,(u,v)(t) = f;(t,u(t),v(t)),

Now, if there exists (u,v) € M,, then we have u =
A, (u,v) + pu* = Bf | (u,v) + pu* and v =A,(u,v) + uv* =
Bf, (1, v) + uv*. From Lemma 8, we have

u,v € Py. (40)

Moreover, together with (H2) (ii), we can obtain that

W(8) 2 A, (,v) (£) > JjG(t,s)(pl (v(s)) —cl)?,
e ds
v(t)zAz(u,v)(t)zLc(t,s)(ql(u(s))—cl)? (41)

e d
> L G(t,5)q; (u(s)) ?s -Gy

Using (H2) (i) and (iii), we have
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piv®) = p(v(t) +¢;,) - py(cy)

>p < ﬁ G(t,5)q, (u (Q)?) -pi(c)
-p( [, 60 @eNar ) -pi(e)
- f p (G(t.e%)a (u(e")))dx — py (c,)

1 G 8 X p G , X
[ 255 e o(1-252) 0 Jax- )

p1(Haq, (u(e)))dx-p; (c;)

e d
>y, Jl G(t,s)u(s){—g.
(42)

Therefore, we have

u(t)= L G(t,s)<y1 J Gs, T)u(T)—— c3)‘f e,

: sd
zhj J G(t, s)G(s,r)u(r)—{—ax

(43)

Recall that ¢ () = (logt)(1 - log £)*, wheret € [1,e].
Therefore, we multiply both sides of the above by ¢(t),
integrate over [1,e], and use Lemma 4 to obtain

ds dT dt

[Cuwsoron o0 | [ cta96EmmE L

dt ¢, (a)

_c4j s >V1"1J w0 F -

(44)

Solving this inequality, from (40), we have

w51c41"((x)
- DI (a+2)

] < wj j u(t)¢(t) (45)

e
On the other hand, we estimate the norm of v. Multi-

plying both sides of the first inequality of (41) by ¢(¢),
integrating over [1,e], and using Lemma 4, we obtain

r w (s Lok, J o) (p V() -c) ™ (46)
1 t 1 t
This implies that

x;'cyl (@)
(yrd = DI (a +2)

I (a)
T'(ax+2)
(47)

e d
J </>(t)p1(V(t))—t_
1 t

Without loss of generality, we may assume v (t)#0, then
v>0. Note that v € P,, we have

VI Jl v(eY)

o v 1 (VD¢ (e¥)dx

1 e dt
<2~ J oo wop1 (V)

vl

~ wopy (VD) J 0 pi(v(e"))g(e")dx,

1! s 1 (e d
pDs o [ P ENPEx= o [ p g0 T

Si [ : KIIC4F(0()

o T'(a)
yii = DI (o +2)

T(a+2)|
(48)
Combining (H2) (i) (lim,_, ., p; (2) = +00), there ex-
ists /', such that ||v||< /.
Up to now, we have proved the boundedness of M.
Taking R, > + (wy'c T (a)/ (y;62 = DI (¢ +2)) and
R, >r, (r, is defined by (H3)), we have

(u,v)#A(u,v) +pu(u”,v"), for (u,v)€0Bg N (P x P),u=0.
(49)
Then, Lemma 6 enables us to obtain
i(A,Bg, N (PxP),PxP)=0. (50)
Next, we show that
(u,v) £ uA (u,v), for (u,v) € E)Brl N (PxP),u e [0,1].
(51)

If this claim is not true, then there exist (u,v) € aBr1 n
(P x P),u € [0,1] such that

(u,v) = uA(u,v). (52)
Combining (H3) (ii), we obtain

w(t) < A, (u,v) () < L G (L, )py (v(s)) %
(53)

e d
v(t) < A, (u,v) (£) < L G(t,9)q, (u(s))f.

From (H3) (i) and (iii), we have

Py (v(t) < p2< Ji G(t,5)q, (u(s)) ?)

< [ p:(G ., (w(e))ax

1 G , X M G , X

= J.0p2< (;e )%qz(u(e ))+(l - (;; )> .0>dx
G t, e~ »

< [ CCp, (s u(e)))ax

<7, Jj G(t,s)u(s) ?

(54)



Consequently, we have

u(t) <y, L j G(t,9)G (s, T)u(T)—T% (55)

Multiplying both sides of the above by ¢ (), integrating
over [1,e], and using Lemma 4, we obtain

r w6 (O <y J uOp) %, (56)
1 t 1 t

Note that y, € (0,x,%), we have 'ﬁ u () (t) (dt/t) =
and u(t) =0 for t € [1,e]. Moreover, using (54), we have
p,(v(t)) =0 for t € [1,e]. From (H3) (i), we have v(t) =
for t € [1,e]. Therefore, this contradicts to (u,v) €9B, N
(PxP), r;>0. This also implies that (51) holds. Then,
Lemma 7 enables us to obtain

i(A,B, N (PxP),PxP)=1 (57)

From (50) and (57), we have
i(A, (Bg \B,,)N (PxP),PxP)=i(A,Bg N (PxP),PxP)
—i(A,B, N (PxP),PxP)=0-1=-1

(58)

Therefore, the operator A has at least one fixed point on
(Bg,\B, )N (P x P). Equivalently, (1) has at least one pos-
itive solution. This completes the proof. O

Theorem 2. Suppose that (H1) and (H4)-(H5) hold. Then,
(1) has at least one positive solution.

Proof. For r, in (H4), we first show that
(u,v)#A(u,v) +p(u’,v"), for (u,v) €0B, N (PxP),u=0,
(59)

where u*, v* € P are two given elements. Indeed, if this claim
is false, there exist (u,v) € aBr2 N (P x P),u >0 such that

(u,v) = A, v) +u(u™,v"). (60)
This, together with (H4) (ii), implies that

u(t)=A; (u,v)(t)= Ji G(t,s)p; (v(s) ?, v(t) = A, (u,v)(t)

e d
> JIG(t,s)%(u(s))f.

(61)
Similar to (42), we have
e d
Py (v(1) p3(j1 G(t,)qs (u(s)) f)
(62)
> [ E0p, (s o) 2

From (H4) (iii), we have

Complexity

e d
u()> jlc(t,s)p3(v(s>)§

(63)
2Y3J J G(t, S)G(S,T)u(‘[’)é d_TT

Multiplying both sides of the above by ¢ (t), integrating
over [1,e], and using Lemma 4, we obtain

| w40 % 2y jeumcp(t)ﬂ (64)

where o(t) = (logt)(l —logt)* Lielel Consequently,
Wl > 1 implies that [} u(t)¢(t) (dt/t) = 0 and u(t) = 0 for
€ [1,e]. Note that (65), should be

rG(t,s)p3 (v(s))%gpt(t) =0, Vt € [1,e]. (65)
1

From (H4) (i), this indicates that p;(v(s)) =0 and
v(s) =0 for s € [1,e]. Therefore, ||u|| = ||v|| = 0 contradicts
to (u,v) »EaBr2 N (P x P) and (59) holds. Then, Lemma 6
enables us to obtain

i(A,B,,n (PxP),PxP)=0. (66)
Let M, ={(u,v) € PxP: (u,v) = pA(u,v),u € [0,1]}.

Then, we prove that M, is a bounded set in Px P. If
(u,v) € M,, then we have

u=uA, (u,v),
pA; (u,v) (67)
v =uA, (u,v), for (u,v) € Px P.
From Lemma 8, we have
u,v € P, (68)
Moreover, by (H5), we have
e ds
< u(t) > ) L G(t,s)(a;u(s) +apv(s) + ZI)T
1] e ds
v(t) L G(6,5) (b (5) + byv(s) + 1)
(69)

Multiplying both sides of the above by ¢ (t), integrating
over [1,e], and using Lemma 4, we obtain

Jeu(t)qﬁ(t)é K, r</>(t)(a11u(t)+a12v(t)+ll)ﬂ
1 t 1 t
r voem® )\ J o (1) (b1 (8) + by () + 1) L
1 t 1 t
(70)
Consequently, we have
¢ dt 1,1, T ()
1) (1) — 211
<1—a11K2 —a,,K, > Jlu()¢() t B I'(a+2)
-by 1k, 1-bpx e a | | LT (a)
11K2 12K2 le(f)¢(t)7 1"2(;_,_2)
(71)

Solving this matrix inequality, we have
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o dt
1 t

1-byk, apk, w1, T (a)/T (a + 2)
bk, 1-apk, 1,1, T (a)/T (e + 2)
< :

e dt (1 _‘111"2)(1_blz’fz)_alzbn"%
[ vwsos
1 t
(72)

This implies that

e dt _ (1L (a)/T (e +2)) [(1 = byyk,)1; + agyi650,]
Jl el t = (1 - ‘111"2)(1 - blZKZ) - alzbn"%

>

e dt _ (L ()T (e +2)) [byy1y]y + (1 - ayyx,)], ]
JlV(t)¢(t) t = (1_5111"2)(1 _b12"2)_“12b11"§ ‘

Taking R, > (wy'%,I' (a)/T (a+2)) [(1=byy,,)l; +ap,k,l, +
bl + (1—ay k)L (1-ay k) (1-byyk,) —agnby k5 and
R,>r, (r, is defined by (H4)), we have

(u,v) #uA(u,v), for (u,v) € aBR2 N (P xP),u e [0,1].
(75)
Then, Lemma 7 enables us to obtain
i(A,Bg, N (PxP),PxP)=1 (76)

From (66) and (76), we have
i(A, (Bg,\B,,)n (P x P),P x P)
=i(A,Bg N (PxP),PxP)-i(A B, N (PxP),PxP)

(73)
=1-0=1
Note that u, v € P,, we have
(77)
[ul| < (walkzr(“)/r(“ + 2)) [(l _ blZKZ)ll + alZKZlZ]’ Th_erefore, the operator A has at least one fixed point on
(1-ayx,) (1= biyky) — appbyii; (Bg,\B,,) N (P x P). Equivalently, (1) has at least one pos-
itive solution. This completes the proof.
1 T ()T MNIb. %l 1- I . In(l),letn=3, a= 2.5,eandh(t) =logt,t € [1,e]. Then,
||‘V||S(w0 Ky 1(05) ((X‘f'l))[bllKZ 1+( : a121K2) 2]. J‘lh(t) (logt)a—l(dt/t) — _[1 (logt)a (dt/t) — (2/7)6 [0’1)
(1= ani) (1-biws) —anbnx and (H0) holds. Moreover, we can calculate %, ,, and x, as
(74)  follows:
- “h(t)(dt/t _ * (logt) (dt/t
o ejl () ( 7)1 _ s [ jle(og)(25 U D
I'(a) 1- [ h(t)(logt)*" (dt/t)] T(2.5) 1- [ (logt)* (dt/t)
@T(@)  T(@) [ h®)og)*" (1-logt)(dt/t) (25T (2.5) T(25)T(35)7
K, = + . — = + 220,014, (78)
FQa+2) 2I'(20) 1 [ h(t)(ogt)*" (dt/t) L) 2I(5) I'(5.5) 5
a-1 [ h@) (@t 15 [ [, (ogt)(dtrt) o
Ky = e = e = U.
DT+ | 1-[Th()og)*(dtir)] TAS) [ 1- [ (logt)** (dt/t)
O
Example 1. Let f,(t,u,v)= (u+v)", f,(t,u,v)= (u+v)", (vi) lim sup, o (p,(Fq,(2))/z) =lim sup,__,+ (F*22/

P (M =vq, (W) =u*, p,(v)=v*and q, (u) =u, for (t,u,v)€
[1,e] xR*xR", where y, >2andy,>4. Then, we have

(i) im inf,_  (f;(tu, v)/p; (v)) = liminf,_
((u+ )" WB)>lim inf, ,  (W"1/v'?) = +o0,
for all (t,u) € [1,e] x R*

(ii) lim inf, o (f5 (61, v)/q, (W) = lim inf,
((u+v)2/u*) >1lim inf (u"/u*) = +00, for
all (t,v) € [1,e] x R*

(111) hm supu+v—>0* (f1 (t) u, V)/PZ (V)) = hm Supu_'_v_)OJr
((u+v)"/v*) =0, forall t € [1,e]

(iv) lim sup,,,_ - (f5 (t,u,v)/q, (1)) = lim sup,,,,_ -
((u+v)"/u) =0, for all t € [1,e]

() lim inf, ., (p, (¥4, (2))/z) = lim inf
N Hz*31z) = +o0

Uu—>=+00

Z—>+00

z)=0
Therefore, (H2)-(H3) hold.

Example 2. Let a,, =0.05,a,, =0.6,b;, = 0.4, and
b, =0.08, then we calculate a,;x, =0.011<1, b,k, =
0.0176 <1, and

L—ayx, -—apk,

= 0.96. (79)

0.989 -0.132
—-0.088 0.9824

bk, 1-bpk,

Let  f,(t,u,v) = (aju+ap)?, f, ¢ u,v) = (b ut
b,V py(v) = /v, and q; (u) = v/, for (t,u,v) € [1,€] x

R* x R*, where y; € (0, (1/2)) and y, € (0, (3/4)). Then for
all t € [1,e], we have
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L (t,u,v) L a,u+ap,v)? L a,, )"
lim inf filtbwy) = liminf % >  liminf % = 400,
ajuta;,v— 0% P3 (V) aputa,,v—s 0% 1% aputa,,v— 0% 1%
o (t,u,v) o b, u + by, o b, u)"
lim inf filtbwy) = liminf w >  liminf % = 400,
byutbyy—0t gy (1) by utby,v—s 0F ud by utb,v— 0t 1
V3
. f] (t u V) . allu‘l'alzv
limsup ———>=limsup g =0, (80)

ayutapv—+oo AU T ARV a)ura,v—+oo

t) >
lim sup Solbwy) =

lim sup
by u+b,v— +00 bllu + blZV

by u+b,v— +00

limin
z—>0* z z—>0t

As a result, (H4)-(H5) hold.
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