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Synchronization and control in high dimensional spatial-temporal systems have received increasing interest in recent years.
In this paper, the problem of complete synchronization for reaction-diffusion systems is investigated. Linear and nonlinear
synchronization control schemes have been proposed to exhibit synchronization between coupled reaction-diffusion systems.
Synchronization behaviors of coupled Lengyel-Epstein systems are obtained to demonstrate the effectiveness and feasibility of the
proposed control techniques.

1. Introduction

Synchronization of chaos is a phenomenon that may occur
when two, or more, chaotic systems adjust a given property
of their motion to a common behavior due to a coupling
or to a forcing. This phenomenon has attracted the interest
of many researchers from various fields due to its potential
applications in physics, biology, chemistry, and engineering
sciences since the pioneering work by Pecora and Carroll
[1]. Various synchronization types have been presented,
such as complete synchronization, phase synchronization,
lag synchronization, anticipated synchronization, function
projective synchronization, generalized synchronization, and
Q-S synchronization.

Most of the research efforts have been devoted to the
study of chaos control and chaos synchronization problems in
low-dimensional nonlinear dynamical systems [2–10]. Syn-
chronizing high dimensional systems in which state variables

depend not only on time but also on the spatial position
remains a challenge. These high dimensional systems are
generally modelled in spatial-temporal domain by partial
differential systems. Recently, the search for synchroniza-
tion has moved to high dimensional nonlinear dynamical
systems. Over the last years, some studies have investigated
synchronization of spatially extended systems demonstrating
spatiotemporal chaos such as the work presented in [11–32].
Synchronization dynamics of reaction-diffusion systems has
been studied in [11, 12] using phase reduction theory. It has
been shown that reaction-diffusion systems can exhibit syn-
chronization in a similar way to low-dimensional oscillators.
A general approach for synchronizing coupled partial differ-
ential equations with spatiotemporally chaotic dynamics by
driving the response system only at a finite number of space
points has been introduced in [13, 14]. Synchronization and
control for spatially extended systems based on local spatially
averaged coupling signals have been presented in [17]. The
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effect of asymmetric couplings in the synchronization of
spatially extended chaotic systems has been investigated in
[19].The effect of time-delay autosynchronization onuniform
oscillations in a general model described by the complex
Ginzburg-Landau equation has been presented in [20].
Furthermore, generalized synchronization [21], complete-
like synchronization [22], the backstepping synchronization
approach [26], the graph-theoretic synchronization approach
[27], pinning impulsive synchronization [30], and impulsive
type synchronization strategy [31] for coupled reaction-
diffusion systems have been introduced.

The main aim of the present paper is to study the
problem of complete synchronization in coupled reaction-
diffusion systems. Linear and nonlinear control schemes
have been proposed to realize complete synchronization for
partial differential systems. As a special case, we investigate
complete synchronization behaviors of coupled Lengyel-
Epstein systems.

2. Systems Description
and Problem Formulation

Reaction-diffusion systems have shown important roles in
modelling various spatiotemporal patterns that arise in
chemical and biological systems [33, 34]. Reaction-diffusion
systems can describe a wide class of rhythmic spatiotemporal
patterns observed in chemical and biological systems, such
as circulating pulses on a ring, oscillating spots, target waves,
and rotating spirals. Themost familiar way to study synchro-
nization is to use a controller to make the output of the slave
(response) system copy in some manner the master (drive)
system one. In this case, we design the controller in which
the difference of states of synchronized systems converges to
zero. This phenomenon is called complete synchronization.
Consider the master and the slave reaction-diffusion systems
as

𝑀𝑎𝑠𝑡𝑒𝑟
{{{{{{{{{{{

𝜕𝑢1 (𝑥, 𝑡)𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑢𝑗 + 2∑
𝑗=1

𝑎1𝑗𝑢𝑗 + 𝑓1 (𝑢1, 𝑢2) ,
𝜕𝑢2 (𝑥, 𝑡)𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑢𝑗 + 2∑
𝑗=1

𝑎2𝑗𝑢𝑗 + 𝑓2 (𝑢1, 𝑢2) ,
(1)

and

𝑆𝑙𝑎V𝑒
{{{{{{{{{{{

𝜕V1 (𝑥, 𝑡)𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗ΔV𝑗 + 2∑
𝑗=1

𝑎1𝑗V𝑗 + 𝑓1 (V1, V2) + U1,
𝜕V2 (𝑥, 𝑡)𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗ΔV𝑗 + 2∑
𝑗=1

𝑎2𝑗V𝑗 + 𝑓2 (V1, V2) + U2,
(2)

where (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡))𝑇 and (V1(𝑥, 𝑡), V2(𝑥, 𝑡))𝑇 are the cor-
responding states, 𝑥 ∈ Ω is a bounded domain in R𝑛 with
smooth boundary 𝜕Ω, Δ is the Laplacian operator on Ω,(𝑑𝑖𝑗) ∈ R2 are the diffusivity constants, 𝐴 = (𝑎𝑖𝑗) ∈ R2, 𝑓1
and 𝑓2 are nonlinear continuous functions, and U1 and U2
are controllers to be designed. We impose the homogeneous
Neumann boundary conditions

𝜕𝑢𝑖𝜕𝜂 = 𝜕V𝑖𝜕𝜂 = 0, 𝑖 = 1, 2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝜕Ω. (3)

where 𝜂 is the unit outer normal to 𝜕Ω. The aim of the
synchronization process is to force the error between the
master and slave systems, defined as

𝑒𝑖 = V𝑖 − 𝑢𝑖, 𝑖 = 1, 2, (4)

to zero. We assume that the diffusivity constants (𝑑𝑖𝑗) satisfy
𝑑11, 𝑑22 ≥ 0,

𝑑12 = −𝑑21, (5)

and the error system satisfies the homogeneous Neumann
boundary condition

𝜕𝑒1𝜕𝜂 = 𝜕𝑒2𝜕𝜂 = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝜕Ω. (6)

To realize complete synchronization between the master sys-
tem given in (1) and the slave system given in (2), we discuss
the asymptotical stable of zero solution of synchronization
error system given in (4). That is, in the following sections,
we find the controllers U1 and U2, in linear and nonlinear
forms, such that the solution of the error system 𝑒𝑖 = V𝑖 − 𝑢𝑖
go to 0, 𝑖 = 1, 2, as 𝑡 goes to +∞.

3. Synchronization via Nonlinear Controllers

In this section, we outline the issue of controlling the master-
slave reaction-diffusion system given in (1) and (2) via
nonlinear controllers. The time partial derivatives of the error
system given in (4) can derived as

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

𝑎1𝑗𝑒𝑗 + 𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)
+ U1,

𝜕𝑒2𝜕𝑡 = 2∑
𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

𝑎2𝑗𝑒𝑗 + 𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)
+ U2.

(7)

That is,

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑐1𝑗) 𝑒𝑗 + 𝑅1 + U1,
𝜕𝑒2𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑐2𝑗) 𝑒𝑗 + 𝑅2 + U2,
(8)

where 𝐶 = (𝑐𝑖𝑗)2×2 is a control matrix to be determined later
and

𝑅1 = 2∑
𝑗=1

𝑐1𝑗 (V𝑗 − 𝑢𝑗) + 𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2) ,

𝑅2 = 2∑
𝑗=1

𝑐2𝑗 (V𝑗 − 𝑢𝑗) + 𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2) .
(9)
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Theorem 1. If the control matrix 𝐶 is chosen such that 𝐴 − 𝐶
is a negative definite matrix, then the master-slave reaction-
diffusion system given in (1) and (2) can be synchronized under
the following nonlinear control law

U𝑖 = −𝑅𝑖, 𝑖 = 1, 2. (10)

Proof. Substituting the control parameters given in (10) into
(8) yields

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑐1𝑗) 𝑒𝑗,
𝜕𝑒2𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑐2𝑗) 𝑒𝑗.
(11)

We may, now, construct our Lyapunov functional as

𝑉 = 12 ∫
Ω
𝑒𝑇𝑒, (12)

where 𝑒 = (𝑒1, 𝑒2)𝑇, then𝜕𝑉𝜕𝑡 = ∫
Ω
(𝑒1 𝜕𝑒1𝜕𝑡 + 𝑒2 𝜕𝑒2𝜕𝑡 )

= ∫
Ω

[
[𝑒1( 2∑

𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑐1𝑗) 𝑒𝑗)

+ 𝑒2( 2∑
𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑐2𝑗) 𝑒𝑗)]
]

= 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗𝑒𝑗 (Δ𝑒𝑗) + ∫

Ω
𝑑12𝑒1Δ𝑒2 + ∫

Ω
𝑑21𝑒2Δ𝑒1

+ ∫
Ω
𝑒𝑇 (𝐴 − 𝐶) 𝑒.

(13)

By using Green formula, we can get

𝜕𝑉𝜕𝑡 = − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2

+ ∫
𝜕Ω

(𝑑12 𝜕𝑒2𝜕𝜂 𝑒1 + 𝑑21 𝜕𝑒1𝜕𝜂 𝑒2)𝑑𝜎
− ∫
Ω
(𝑑21 + 𝑑12) ∇𝑒1∇𝑒2 + ∫

Ω
𝑒𝑇 (𝐴 − 𝐶) 𝑒,

(14)

where∇ is the gradient vector, 𝜂 is the is the unit outer normal
to 𝜕Ω, and 𝜎 is an auxiliary variable for integration. Then,
using the assumption given in (6), the condition given in (5),
and the fact that 𝐴−𝐶 is a negative definite matrix, we obtain

𝜕𝑉𝜕𝑡 = − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐶 − 𝐴) 𝑒 < 0. (15)

FromLyapunov stability theory, we can conclude that the zero
solution of the error system (11) is globally asymptotically
stable and therefore, the master system (1) and the slave
system (2) are globally synchronized.

4. Synchronization via Linear Controllers

In this section, we outline the issue of controlling the master-
slave reaction-diffusion system given in (1) and (2) via linear
controllers. In this case, we assume that󵄨󵄨󵄨󵄨𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨 ≤ 𝛼1 󵄨󵄨󵄨󵄨V1 − 𝑢1󵄨󵄨󵄨󵄨 + 𝛼2 󵄨󵄨󵄨󵄨V2 − 𝑢2󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨 ≤ 𝛽1 󵄨󵄨󵄨󵄨V1 − 𝑢1󵄨󵄨󵄨󵄨 + 𝛽2 󵄨󵄨󵄨󵄨V2 − 𝑢2󵄨󵄨󵄨󵄨 , (16)

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 are positive constants.
Theorem 2. If there exists a control matrix 𝐿 = (𝑙𝑖𝑗)2×2 such
that 𝐴 − 𝐿 is a definite negative matrix, then the master-
slave reaction-diffusion system given in (1) and (2) can be
synchronized under the following linear control law

U1 = − 2∑
𝑗=1

𝑙1𝑗𝑒𝑗 − (𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒1,

U2 = − 2∑
𝑗=1

𝑙2𝑗𝑒𝑗 − (𝛽2 + 1) 𝑒2.
(17)

Proof. Substituting (17) into the error system given in (7)
yields

𝜕𝑒1𝜕𝑡 = 2∑
𝑗=1

𝑑1𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + 𝑓1 (V1, V2)

− 𝑓1 (𝑢1, 𝑢2) − (𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒1,
𝜕𝑒2𝜕𝑡 = 2∑

𝑗=1

𝑑2𝑗Δ𝑒𝑗 + 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗 + 𝑓2 (V1, V2)
− 𝑓2 (𝑢1, 𝑢2) − (𝛽2 + 1) 𝑒2.

(18)

Constructing a Lyapunov function in the form 𝑉 = (1/2) ∫
Ω
𝑒𝑇𝑒 gives

𝜕𝑉𝜕𝑡 = ∫
Ω
(𝑒1 𝜕𝑒1𝜕𝑡 + 𝑒2 𝜕𝑒2𝜕𝑡 ) = 2∑

𝑗=1

∫
Ω
𝑑1𝑗𝑒1Δ𝑒𝑗 + ∫

Ω
𝑒1

⋅ 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + ∫
Ω
𝑒1 [𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)]

− ∫
Ω
(𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒21 + 2∑

𝑗=1

∫
Ω
𝑑2𝑗𝑒2Δ𝑒𝑗

+ ∫
Ω
𝑒2 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗 + ∫
Ω
𝑒2 [𝑓2 (V1, V2)

− 𝑓2 (𝑢1, 𝑢2)] − ∫
Ω
(𝛽2 + 1) 𝑒22 = 2∑

j=1
∫
Ω
𝑑𝑗𝑗𝑒𝑗Δ𝑒𝑗

+ ∫
Ω
(𝑑12𝑒1Δ𝑒2 + 𝑑21𝑒2Δ𝑒1)
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+ ∫
Ω

[
[𝑒1 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + 𝑒2 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗]]
+ ∫
Ω
[𝑒1 (𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2))

+ 𝑒2 (𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2))] − ∫
Ω
(𝛼1

+ (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫
Ω
(𝛽2 + 1) 𝑒22

≤ 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗𝑒𝑗Δ𝑒𝑗 + ∫

Ω
(𝑑12𝑒1Δ𝑒2 + 𝑑21𝑒2Δ𝑒1)

+ ∫
Ω

[
[𝑒1 2∑
𝑗=1

(𝑎1𝑗 − 𝑙1𝑗) 𝑒𝑗 + 𝑒2 2∑
𝑗=1

(𝑎2𝑗 − 𝑙2𝑗) 𝑒𝑗]]
+ ∫
Ω
[󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑒2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨] − ∫
Ω
(𝛼1

+ (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫
Ω
(𝛽2 + 1) 𝑒22.

(19)

By using Green formula, we get

𝜕𝑉𝜕𝑡 ≤ − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

+ ∫
Ω
[󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨𝑒2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨] − ∫
Ω
(𝛼1

+ (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫
Ω
(𝛽2 + 1) 𝑒22,

(20)

and by using the conditions given in (16), we obtain

𝜕𝑉𝜕𝑡 ≤ − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

+ ∫
Ω
(𝛼1𝑒21 + (𝛼2 + 𝛽1) 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒2󵄨󵄨󵄨󵄨 + 𝛽2𝑒22)

− ∫
Ω
(𝛼1 + (𝛽1 + 𝛼2)24 ) 𝑒21 − ∫

Ω
(𝛽2 + 1) 𝑒22

= − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

− ∫
Ω
[(𝛽1 + 𝛼2)24 𝑒21 − (𝛽1 + 𝛼2) 󵄨󵄨󵄨󵄨𝑒2󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 + 𝑒22]

= − 2∑
𝑗=1

∫
Ω
𝑑𝑗𝑗 (∇𝑒𝑗)2 − ∫

Ω
𝑒𝑇 (𝐿 − 𝐴) 𝑒

− ∫
Ω
(𝛽1 + 𝛼22 󵄨󵄨󵄨󵄨𝑒1󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨𝑒2󵄨󵄨󵄨󵄨)2 < 0.

(21)

Therefore, since 𝜕𝑉/𝜕𝑡 < 0, we can conclude that the master
system (1) and the slave system (2) are globally synchronized.

5. Application and Numerical Simulation

In this section, numerical simulations are given to illustrate
and validate the synchronization schemes derived in the
previous sections. We take the Lengyel-Epstein system [35]
as a special case of reaction-diffusion systems. Consider the
following coupled master-slave systems:

𝜕𝑢1 (𝑡, 𝑥)𝜕𝑡 = 𝜕2𝑢1𝜕𝑥2 + 5𝛾 − 𝑢1 − 4𝑢1𝑢21 + 𝑢21 ,
𝜕𝑢2 (𝑡, 𝑥)𝜕𝑡 = 𝛿(𝑑𝜕2𝑢2𝜕𝑥2 + 𝑢1 − 𝑢1𝑢21 + 𝑢21) ,

(22)

and

𝜕V1 (𝑡, 𝑥)𝜕𝑡 = 𝜕2V1𝜕𝑥2 + 5𝛾 − V1 − 4V1V21 + 𝑢21 + U1,
𝜕V2 (𝑡, 𝑥)𝜕𝑡 = 𝛿(𝑑𝜕2V2𝜕𝑥2 + V1 − V1V21 + V21

) + U2,
(23)

where > 0, 𝑥 ∈ (0, 𝜃), (𝛿, 𝛾, 𝜃, 𝑑) = (9.7607, 2.7034, 13.03,1.75), and (U1,U2)𝑇 is the control law to be determined. The
reaction-diffusion system given in (22) is called the Lengyel-
Epstein system. When the initial conditions associated with
system (22) are given by (𝑢1(0, 𝑥), 𝑢2(0, 𝑥)) = (𝜃 +0.2 cos(5𝜋𝑥), 1 + 𝜃2 + 0.6 cos(5𝜋𝑥)) then the solutions 𝑢1 and𝑢2 are shown in Figures 1 and 2. For the uncontrolled system
(23) (i.e., U1 = U2 = 0), if the initial conditions are given by(V1(0, 𝑥), V2(0, 𝑥)) = (𝜃 + 0.2 cos(4𝜋𝑥), 1 + 𝜃2 + 0.6 cos(4𝜋𝑥))
then the solutions V1 and V2 are shown in Figures 3 and 4.
The approximation and calculation of the solutions to the
Lengyel-Epstein systems given in (22) and (23) are obtained
using the Matlab function “pdepe”.

Comparing with the master-slave reaction-diffusion sys-
tems given (1) and (2), the constants (𝑑𝑖𝑗)2×2 and 𝐴 = (𝑎𝑖𝑗)2×2
can be given as

(𝑑𝑖𝑗)2×2 = (1 0
0 𝛿𝑑) , (24)

and
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Figure 1: Dynamic behavior of solution 𝑢1.

0 1 2 3 4 5
0

200

400
−5

0

5

10

15

20

 x

 t

u2

Figure 2: Dynamic behavior of solution 𝑢2.

𝐴 = (𝑎𝑖𝑗)2×2 = (−1 0
𝛿 0) . (25)

It is clear that our assumption (5) is satisfied. Also, the
homogeneous Neumann boundary condition for systems
(22) and (23) is described as

𝜕𝑢1𝜕𝑥 = 𝜕𝑢2𝜕𝑥 = 𝜕V1𝜕𝑥 = 𝜕V2𝜕𝑥 = 0, 𝑥 = 0, 𝜃 𝑎𝑛𝑑 𝑡 > 0. (26)

5.1. Case 1: Nonlinear Control. According to the control
scheme proposed in Section 3, if we choose the controlmatrix𝐶 as

𝐶 = (0 0
𝛿 2) , (27)

then the controllers U1 and U2 can be designed as

U1 = 4V1V21 + V21
− 4𝑢1𝑢21 + 𝑢21 ,
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Figure 3: Dynamic behavior of solution V1.
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Figure 4: Dynamic behavior of solution V2.

U2 = −𝛿 (V1 − 𝑢1) − 2 (V2 − 𝑢2) + 𝛿V1V21 + V21
− 𝛿𝑢1𝑢21 + 𝑢21 ,

(28)

and so, simply, we can show that 𝐴 − 𝐶 is a negative definite
matrix. Therefore, based onTheorem 1, systems (22) and (23)
are globally synchronized. The time evolution of the error
system states 𝑒1 and 𝑒2, in this case, is shown in Figures 5 and
6.

5.2. Case 2: Linear Control. First, the assumption given in (16)
for controlling the master-slave reaction-diffusion system
given in (1) and (2) via linear controllers is satisfied. One can
easily verify that󵄨󵄨󵄨󵄨𝑓1 (V1, V2) − 𝑓1 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨V1 − 𝑢1󵄨󵄨󵄨󵄨 + 4 󵄨󵄨󵄨󵄨V2 − 𝑢2󵄨󵄨󵄨󵄨 ,󵄨󵄨󵄨󵄨𝑓2 (V1, V2) − 𝑓2 (𝑢1, 𝑢2)󵄨󵄨󵄨󵄨 ≤ 󵄨󵄨󵄨󵄨V1 − 𝑢1󵄨󵄨󵄨󵄨 + 𝛿 󵄨󵄨󵄨󵄨V2 − 𝑢2󵄨󵄨󵄨󵄨 . (29)

According to the control scheme proposed in Section 4, if we
choose the control matrix 𝐿 as

𝐿 = (0 0
𝛿 1) , (30)
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Figure 5: Time evolution of the nonlinear synchronization control
error 𝑒1.
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Figure 6: Time evolution of the nonlinear synchronization control
error 𝑒2.

then the controllers U1 and U2 can be designed as

U1 = −294 (V1 − 𝑢1) ,
U2 = −𝛿 (V1 − 𝑢1) − (𝛿 + 2) (V2 − 𝑢2) ,

(31)

and so, simply, we can show that 𝐴 − 𝐿 is a negative definite
matrix.Therefore, based onTheorem 2, systems (22) and (23)
are globally synchronized. The time evolution of the error
system states 𝑒1 and 𝑒2, in this case, is shown in Figures 7 and
8.

As a result form the performed numerical simulations,
we can observe that the addition of the designed linear
and nonlinear controllers to the controlled Lengyel-Epstein
system, given in (23), updates the coupled systems, given in
(22) and (23), dynamics such that the systems states become
synchronized. In both cases, the proposed control schemes
stabilize the synchronization error states where the zero
solution of the error system becomes globally asymptotically
stable.
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Figure 7: Time evolution of the linear synchronization control error𝑒1.
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Figure 8: Time evolution of the linear synchronization control error𝑒2.

6. Conclusion

The study investigates the synchronization control for a class
of reaction-diffusion systems. First, a spatial-time coupling
protocol for the synchronization is suggested, then novel
control methods, that include linear and nonlinear con-
trollers, are proposed to realize complete synchronization
between coupled reaction-diffusion systems. The synchro-
nization results are derived based on Lyapunov stability
theory and using the drive-response concept.

Suitable sufficient conditions for achieving synchroniza-
tion of coupled Lengyel-Epstein systems via suitable linear
and nonlinear controllers applied to the response system
are derived. For this purpose, we design the controllers so
that the zero solution of the error system becomes globally
asymptotically stable. Numerical simulations consisting of
displaying synchronization behaviors of coupled Lengyel-
Epstein systems are given, using Matlab function “pdepe”,
to verify the effectiveness of the proposed synchronization
schemes. Comparing the numerical simulations shown in
Figures 5, 6, 7, and 8, we can easily observe that the
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linear control scheme realizes synchronization faster than the
nonlinear case. Also, the nonlinear control scheme requires
the removal of nonlinear terms from the response system,
which may increase the cost of the controllers. So, the cost
of the controllers in the nonlinear case is more than the cost
in the linear case.

The study confirms that the problem of complete syn-
chronization in coupled high dimensional spatial-temporal
systems can be realized using linear and nonlinear con-
trollers. Also, we can easily see that the research results
obtained in this paper can be extended to many other types
of spatial-temporal systems with reaction-diffusion terms.
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