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SUPPLEMENTARY MATERIAL 

APPENDIX A. PROOF OF THEOREM 1 

Proof:  

(1) Let  
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To prove qROFAMMΔ(Ξ1, Ξ2, …, Ξn) = <μ, ν>, we need to prove  
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The proof process is as follow:  

According to the power operation in Equation (4), we have  
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According to the product operation in Equation (2), we can obtain 
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According to the sum operation in Equation (1), we have 
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According to multiplication operation in Equation (3), we can obtain 

     1

( )

1 1

(

1 1

)

1

( )
1

1 1 1
( ) ,  ( )

! ! !
i

n n n

n nn

p i i i
p i p i p i

p i p ig g f f f f g g
n n n

       

     

      
           



   

  
   
     

   
P P P

 

The following expression is obtained according to the power operation in Equation (4) 
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(2) To prove qROFAMMΔ(Ξ1, Ξ2, …, Ξn) is a qROFN, we need to prove 0 ≤ μ ≤ 1, 0 ≤ ν ≤ 1, and 0 ≤ μq + νq ≤ 1. We 

firstly prove 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1. The proof process is as follow:  

1) According to the definition of a qROFN in Definition 1, we have 0 ≤ μp(i) ≤ 1. Because f(t) is monotonically decreasing, 

we further have  
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Since g−1(t) is monotonically increasing, we can obtain 
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Because f(t) is monotonically decreasing, we further have 
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Finally, since f−1(t) is monotonically decreasing, we can obtain 
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That is 0 ≤ μ ≤ 1. Similarly, we can prove 0 ≤ ν ≤ 1.  

2) We then prove 0 ≤ μq + νq ≤ 1. The proof process is as follow: 

Since 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1, we have 0 ≤ μq ≤ 1 and 0 ≤ νq ≤ 1, and thus 0 ≤ μq + νq ≤ 2.  

According to the definition of a qROFN in Definition 1, we have μp(i)
q + νp(i)

q ≤ 1 and μp(i)
q ≤ 1 − νp(i)

q. Since f(t) is 

monotonically decreasing, we further have 
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Since g(t) is monotonically increasing, we further have 
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Because g(1−t) = f(t), we can obtain 
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Since g−1(t) is monotonically increasing, we have 
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Because g−1(t) = 1 − f−1(t), we further have  
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Since f(t) is monotonically decreasing, we can obtain  
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Because f(1−t) = g(t), we can obtain 
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Since f−1(t) is monotonically decreasing, we have 
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Finally, because f−1(t) = 1 − g−1(t), we can obtain 
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When q = 1, according to the above inequality, we have  
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That is, μ + ν ≤ 1.  

Now we need to prove that the inequality also holds when q = 2, 3, …. Let m = 2, 3, …. The purpose is transformed into 

proof of μm + νm ≤ 1.  

According to μ + ν ≤ 1 and the binomial theorem, we can obtain 
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Therefore, we can obtain μm + νm ≤ 1. Now it can be concluded that μq + νq ≤ 1 for q = 1, 2, 3, ….  

Since we have proved 0 ≤ μq + νq ≤ 2 and μq + νq ≤ 1, we can obtain 0 ≤ μq + νq ≤ 1. 

APPENDIX B. PROOF OF THEOREM 2 

Proof:  

Since μi = μ and p(i) is a permutation of (1, 2, …, n), we have 
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Finally, we can obtain 
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Similarly, we can prove  
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Therefore, we can obtain qROFAMMΔ(Ξ1, Ξ2, …, Ξn) = <μ, ν>. 

APPENDIX C. PROOF OF THEOREM 3 

Proof:  

According to Theorem 1, we have 
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and 0 ≤ μI ≤ 1 and 0 ≤ μII ≤ 1. Since μ1,i ≥ μ2,i for all i = 1, 2,…, n, we have μp(1,i) ≥ μp(2,i). Because f(x) is monotonically 

decreasing, we can obtain 
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Since g−1(x) is monotonically increasing, we have  
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Because f(x) is monotonically decreasing, we can obtain 
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Finally, since f−1(x) is monotonically decreasing, we have  
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That is μI ≥ μII. Similarly, we can prove νI ≤ νII. Since 

S(qROFAMMΔ(Ξ1,1, Ξ1,2, …, Ξ1,n)) = μI
q − νI

q and S(qROFAMMΔ(Ξ2,1, Ξ2,2, …, Ξ2,n)) = μII
q − νII

q 

and 1 ≥ μI ≥ μII ≥ 0 and 0 ≤ νI ≤ νII ≤ 1, we can obtain 

S(qROFAMMΔ(Ξ1,1, Ξ1,2, …, Ξ1,n)) ≥ S(qROFAMMΔ(Ξ2,1, Ξ2,2, …, Ξ2,n)) 

and thus qROFAMMΔ(Ξ1,1, Ξ1,2, …, Ξ1,n) ≥ qROFAMMΔ(Ξ2,1, Ξ2,2, …, Ξ2,n). 

APPENDIX D. PROOF OF THEOREM 4 

Proof:  

According to Theorem 3, we have 

qROFAMMΔ(ΞLB, ΞLB, …, ΞLB) ≤ qROFAMMΔ(Ξ1, Ξ2, …, Ξn) ≤ qROFAMMΔ(ΞUB, ΞUB, …, ΞUB) 

According to Theorem 2, we have 

qROFAMMΔ(ΞLB, ΞLB, …, ΞLB) = ΞLB and qROFAMMΔ(ΞUB, ΞUB, …, ΞUB) = ΞUB 

Therefore, we can obtain ΞLB ≤ qROFAMMΔ(Ξ1, Ξ2, …, Ξn) ≤ ΞUB.  
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APPENDIX E. PROOF OF THEOREM 5 

Proof:  

(1) Let  

   (

1 1 1

)

1

( )

1 1

1
1 ( ) ( ) ,

!
      

  

     
             

 
  

  
  

n

p i

n n

i i p i

i p i

f f g g f f g nw g
n P

  

   1 1 1 1

( )

1

( )

1

1
1 ( ) ( )

!
      

  

     
              

 
 

 



  
n

n n

i i p i

i p i

ipg g f f g g f nw f
n P

 

To prove qROFWAMMΔ(Ξ1, Ξ2, …, Ξn) = <μ, ν>, we need to prove  
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The proof process is as follow:  

According to the multiplication operation in Equation (3), we have  
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According to multiplication operation in Equation (3), we have 
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The following expression is obtained according to the power operation in Equation (4) 
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(2) To prove qROFWAMMΔ(Ξ1, Ξ2, …, Ξn) is a qROFN, we need to prove 0 ≤ μ ≤ 1, 0 ≤ ν ≤ 1, and 0 ≤ μq + νq ≤ 1. We 

firstly prove 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1. The proof process is as follow:  

1) According to the definition of a qROFN in Definition 1, we have 0 ≤ μp(i) ≤ 1. Because g(t) and g−1(t) are monotonically 

increasing, we further have 
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!
       

   

    
   

     
       

 
 
       

   
n
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f f g g f f nw g fg f
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Finally, since f(t) and f−1(t) are monotonically decreasing, we can obtain 

   1 1 1 1

1

(( )

1 1 1

1

1 1

)

1
(0) 1 (0) 1 ( ) ( )
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1 (1) (1)
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n
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i i p i

i p i

if f f f g g f f nw g f f
n

g
P

 

That is 0 ≤ μ ≤ 1. Similarly, we can prove 0 ≤ ν ≤ 1.  

2) We then prove 0 ≤ μq + νq ≤ 1. The proof process is as follow: 

Since 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1, we have 0 ≤ μq ≤ 1 and 0 ≤ νq ≤ 1, and thus 0 ≤ μq + νq ≤ 2.  

According to the definition of a qROFN in Definition 1, we have μp(i)
q + νp(i)

q ≤ 1 and μp(i)
q ≤ 1 − νp(i)

q. Because g(t) is 

monotonically increasing and g(1−t) = f(t), we further have 

     ( ) ( ) ( )1    p i p

qq

i p i

qg g f  

and 

   ( ) ( )( ) ( )( ) ( ) q q

p i p ip i p inw g nw f  
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Because g−1(t) is monotonically increasing and g−1(t) = 1 − f−1(t), we can obtain 

        1 1 1

( ) ( ) ( ) (( ) )) (( ) ( ) 1 ( )      q q q

pp i p i i p ip i p ig nw g g nw f f nw f  

Since f(t) is monotonically decreasing and f(1−t) = g(t), we have 

           )

1 1 1

( ) (( ( ) ( )) ( )( ) 1 ( ) ( )      q q q

pp ii pp i p ii p if g nw g f f nw f g f nw f  

and 

         1 1
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1
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n n

q q
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i

p i p ii p i

i

f g nw g g f nw f  

Because f−1(t) is monotonically decreasing and f−1(t) = 1 − g−1(t), we can obtain 

              1

( ) ( )

1 1 1 1 1

( ) ( ) ( )

1 1 1

( )( ) ( ) 1 ( )          

  

     
       

     
  p i p i

i

p

n n n
q q q

i p i i p ii i p i

i i

f f g nw g f g f nw f g g f nw f

Since g(t) is monotonically increasing and g(1−t) = f(t), we have 

         

    

1 1 1 1
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1
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1 1

( )

1

( ) 1 ( )
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g f f g nw g f g g f nw f
n nP P

 

Because g−1(t) is monotonically increasing and g−1(t) = 1 − f−1(t), we can obtain 

         

    

1 1 1 1 1 1
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n n

n

n n
q q

i p i i p i

p i p i

p

p i p i

p i

n
q

i p i

i

g g f f g nw g g f g g f nw f
n n

f f g g f nw f
n
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Since f(t) is monotonically decreasing and f(1−t) = g(t), we have 
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Finally, because f−1(t) is monotonically decreasing and f−1(t) = 1 − g−1(t), we can obtain 
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1
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When q = 1, according to the above inequality, we have  

    

    

1 1 1 1
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That is, μ + ν ≤ 1.  

Now we need to prove that the inequality also holds when q = 2, 3, …. Let m = 2, 3, …. The purpose is transformed into 

proof of μm + νm ≤ 1.  

According to μ + ν ≤ 1 and the binomial theorem, we can obtain 

     
1

0 1

1
m m

m k m k k m m k m k k

m m

k k

C C       


 

 

        

Because μ ≥ 0 and ν ≥ 0, we have 

 
1

1

0
m

k m k k

m

k

C  






  

Therefore, we can obtain μm + νm ≤ 1. Now it can be concluded that μq + νq ≤ 1 for q = 1, 2, 3, ….  

Since we have proved 0 ≤ μq + νq ≤ 2 and μq + νq ≤ 1, we can obtain 0 ≤ μq + νq ≤ 1. 

APPENDIX F. PROOF OF THEOREM 6 

Proof:  

(1) Let  
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(

1 1

1

1
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1 1
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!
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To prove qROFAGMMΔ(Ξ1, Ξ2, …, Ξn) = <μ, ν>, we need to prove  

 

1

!

( )
1

1

1
,    

  



 
  

 


 n

n n

i p in
p i

i

i

P

 

The proof process is as follow:  

According to the multiplication operation in Equation (3), we have  

   )

1 1

( ) ( ( )( ) ,  ( )       p ii p i i ii pg g f f  

According to the sum operation in Equation (1), we can obtain 

     (

1 1

( ) (

1 1

)
1

)( ) ,  ( )     

  

   
   
 


 

 
n nn

i p i i i
i

p i p i

i i

g g f f  

According to the product operation in Equation (2), we have 
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     1 1 1 1
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p
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According to power operation in Equation (4), we can obtain 
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The following expression is obtained according to the multiplication operation in Equation (3) 

   

 

1

!
1 1

1

( )

1

( )
1 1

1

1 1

)

1

1

(

1 1 1
( ) ,

!

1 1
                                                ( )

!

  

 

 



  

   

 

  





 
      
                



 









 
 



n n

nn n

i p i in n
p i p i

i i

i i

in
i

i

i

i

p i

p

g g f f g g
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n
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(2) To prove qROFAGMMΔ(Ξ1, Ξ2, …, Ξn) is a qROFN, we need to prove 0 ≤ μ ≤ 1, 0 ≤ ν ≤ 1, and 0 ≤ μq + νq ≤ 1. We 

firstly prove 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1. The proof process is as follow:  

1) According to the definition of a qROFN in Definition 1, we have 0 ≤ μp(i) ≤ 1. Because g(t) is monotonically increasing, 

we further have  

( )(0) ( ) (1)    ii i ipg g g  

and 

     
1 1 1 1 1

( )(0) (0) ( ) (1) (1)     
    

   
      

   
    

n n n n n

i i i i i

i i i

i

i i

pg g g g g  

Since g−1(t) is monotonically increasing, we can obtain 

 1 1 1

1 1 1

( )(0) ( ) (1)     

  

        
         

        
  

n n n

i i i

i i

p i

i

g g g g g g  

Because f(t) is monotonically decreasing, we further have  

 1 1 1

1 1 1
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Since f−1(t) is monotonically decreasing, we can obtain 
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Because g(t) is monotonically increasing, we further have 
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1 1 1
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1
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Finally, since g−1(t) is monotonically increasing, we can obtain 

     1 1 1 1 1
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That is 0 ≤ μ ≤ 1. Similarly, we can prove 0 ≤ ν ≤ 1.  

2) We then prove 0 ≤ μq + νq ≤ 1. The proof process is as follow: 

Since 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1, we have 0 ≤ μq ≤ 1 and 0 ≤ νq ≤ 1, and thus 0 ≤ μq + νq ≤ 2.  

According to the definition of a qROFN in Definition 1, we have μp(i)
q + νp(i)

q ≤ 1 and μp(i)
q ≤ 1 − νp(i)

q. Since g(t) is 

monotonically increasing, we further have 

   ( ) ( )1  q q

p i p ig g  

Because g(1−t) = f(t), we have 

   ( ) ( ) q q

p i p ig f  

and 

    ( ) (

1 1

)( )   
 

 p i p i

n n
q q

i i

i i

g f  

Since g−1(t) is monotonically increasing, we can obtain 
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1

(

1

)

1 1
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q q

i i

i

i

i

p p ig g g f  

Because g−1(t) = 1 − f−1(t), we have  

    
1

( ) ( )

1 1

1

) 1(    
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Since f(t) is monotonically decreasing, we further have 

    
1
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(

1

)
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Because f(1−t) = g(t), we can obtain 
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Since f−1(t) is monotonically decreasing, we have 
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Because f−1(t) = 1 − g−1(t), we further have  
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Since g(t) is monotonically increasing, we can obtain  
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Because g(1−t) = f(t), we can obtain 
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Since g−1(t) is monotonically increasing, we have 
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Finally, because g−1(t) = 1 − f−1(t), we can obtain 
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When q = 1, according to the above inequality, we have  
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That is, μ + ν ≤ 1.  

Now we need to prove that the inequality also holds when q = 2, 3, …. Let m = 2, 3, …. The purpose is transformed into 
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proof of μm + νm ≤ 1.  

According to μ + ν ≤ 1 and the binomial theorem, we can obtain 
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Because μ ≥ 0 and ν ≥ 0, we have 
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Therefore, we can obtain μm + νm ≤ 1. Now it can be concluded that μq + νq ≤ 1 for q = 1, 2, 3, ….  

Since we have proved 0 ≤ μq + νq ≤ 2 and μq + νq ≤ 1, we can obtain 0 ≤ μq + νq ≤ 1. 

APPENDIX G. PROOF OF THEOREM 7 

Proof:  

Since μi = μ and p(i) is a permutation of (1, 2, …, n), we have 
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Finally, we can obtain 
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Similarly, we can prove  
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Therefore, we can obtain qROFAGMMΔ(Ξ1, Ξ2, …, Ξn) = <μ, ν>. 

APPENDIX H. PROOF OF THEOREM 8 

Proof:  

According to Theorem 6, we have 
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and 0 ≤ μI ≤ 1 and 0 ≤ μII ≤ 1. Since μ1,i ≥ μ2,i for all i = 1, 2,…, n, we have μp(1,i) ≥ μp(2,i). Because g(x) is monotonically 

increasing, we can obtain 

   (1, ) ,

1 1

(2 )( ) ( )   
 

 p i

n n

i i

i i

p ig g  

Since g−1(x) is monotonically increasing, we have  

   (1, ) (2

1

,

1

)

1

1

( ) ( )    

 

   
   

   
 

n n

i

i i

p i p iig g g g  

Because f(x) is monotonically decreasing, we can obtain 
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Since f−1(x) is monotonically decreasing, we have  

   (1, ) (

1

2,

1 1 1 1

1

)

1 1
( ) ( )

! !
      

   

      
         

   


      
  

   
   

n n

p p

n n

i i

p i

i

i

i

p

f f g g f f g g
n nP P

 

Because g(x) is monotonically increasing, we can obtain 
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Finally, since g−1(x) is monotonically increasing, we have  
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That is μI ≥ μII. Similarly, we can prove νI ≤ νII. Since 

S(qROFAGMMΔ(Ξ1,1, Ξ1,2, …, Ξ1,n)) = μI
q − νI

q and S(qROFAGMMΔ(Ξ2,1, Ξ2,2, …, Ξ2,n)) = μII
q − νII

q 

and 1 ≥ μI ≥ μII ≥ 0 and 0 ≤ νI ≤ νII ≤ 1, we can obtain 

S(qROFAGMMΔ(Ξ1,1, Ξ1,2, …, Ξ1,n)) ≥ S(qROFAGMMΔ(Ξ2,1, Ξ2,2, …, Ξ2,n)) 

and thus qROFAGMMΔ(Ξ1,1, Ξ1,2, …, Ξ1,n) ≥ qROFAGMMΔ(Ξ2,1, Ξ2,2, …, Ξ2,n). 

APPENDIX I. PROOF OF THEOREM 9 

Proof:  

According to Theorem 8, we have 

qROFAGMMΔ(ΞLB, ΞLB, …, ΞLB) ≤ qROFAGMMΔ(Ξ1, Ξ2, …, Ξn) ≤ qROFAGMMΔ(ΞUB, ΞUB, …, ΞUB) 

According to Theorem 7, we have 

qROFAGMMΔ(ΞLB, ΞLB, …, ΞLB) = ΞLB and qROFAGMMΔ(ΞUB, ΞUB, …, ΞUB) = ΞUB 

Therefore, we can obtain ΞLB ≤ qROFAGMMΔ(Ξ1, Ξ2, …, Ξn) ≤ ΞUB.  

APPENDIX J. PROOF OF THEOREM 10 

Proof:  

(1) Let  
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To prove qROFWAGMMΔ(Ξ1, Ξ2, …, Ξn) = <μ, ν>, we need to prove  
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The proof process is as follow:  

According to the power operation in Equation (4), we have  
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According to the multiplication operation in Equation (3), we can obtain  
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According to the sum operation in Equation (1), we have 

         ( ) 1

( ) (

1 1 1

( ) ( ) ( )
1 1

)

1

( ) ( ) ,  ( ) ( )       

  

   
   



  

 
p i

n nn
nw

i p i i p i i p i

i

p i p

i

i
i

g g nw f f f gf nw g  

According to the product operation in Equation (2), we can obtain 
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According to power operation in Equation (4), we have 
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The following expression is obtained according to the multiplication operation in Equation (3) 
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(2) To prove qROFWAGMMΔ(Ξ1, Ξ2, …, Ξn) is a qROFN, we need to prove 0 ≤ μ ≤ 1, 0 ≤ ν ≤ 1, and 0 ≤ μq + νq ≤ 1. We 

firstly prove 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1. The proof process is as follow:  

1) According to the definition of a qROFN in Definition 1, we have 0 ≤ μp(i) ≤ 1. Because f(t) and f−1(t) are monotonically 

decreasing, we further have 
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Since g(t) and g−1(t) are monotonically increasing, we can obtain 
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Because f(t) and f−1(t) are monotonically decreasing, we have 
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Finally, since g(t) and g−1(t) are monotonically increasing, we can obtain 
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That is 0 ≤ μ ≤ 1. Similarly, we can prove 0 ≤ ν ≤ 1.  

2) We then prove 0 ≤ μq + νq ≤ 1. The proof process is as follow: 

Since 0 ≤ μ ≤ 1 and 0 ≤ ν ≤ 1, we have 0 ≤ μq ≤ 1 and 0 ≤ νq ≤ 1, and thus 0 ≤ μq + νq ≤ 2.  

According to the definition of a qROFN in Definition 1, we have μp(i)
q + νp(i)

q ≤ 1 and μp(i)
q ≤ 1 − νp(i)

q. Because f(t) is 

monotonically decreasing and f(1−t) = g(t), we further have 

     ( ) ( ) ( )1    p i p

qq

i p i

qf f g  

and 

   ( ) ( )( ) ( )( ) ( ) q q

p i p ip i p inw f nw g  

Because f−1(t) is monotonically decreasing and f−1(t) = 1 − g−1(t), we can obtain 
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Since g(t) is monotonically increasing and g(1−t) = f(t), we have 
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Because g−1(t) is monotonically increasing and g−1(t) = 1 − f−1(t), we can obtain 
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Since f(t) is monotonically decreasing and f(1−t) = g(t), we have 
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Because f−1(t) is monotonically decreasing and f−1(t) = 1 − g−1(t), we can obtain 
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Since g(t) is monotonically increasing and g(1−t) = f(t), we have 
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Finally, because g−1(t) is monotonically increasing and g−1(t) = 1 − f−1(t), we can obtain 
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When q = 1, according to the above inequality, we have  
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That is, μ + ν ≤ 1.  

Now we need to prove that the inequality also holds when q = 2, 3, …. Let m = 2, 3, …. The purpose is transformed into 

proof of μm + νm ≤ 1.  

According to μ + ν ≤ 1 and the binomial theorem, we can obtain 
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Because μ ≥ 0 and ν ≥ 0, we have 
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Therefore, we can obtain μm + νm ≤ 1. Now it can be concluded that μq + νq ≤ 1 for q = 1, 2, 3, ….  

Since we have proved 0 ≤ μq + νq ≤ 2 and μq + νq ≤ 1, we can obtain 0 ≤ μq + νq ≤ 1.  


