SUPPLEMENTARY MATERIAL

Appendix A. Proof of Theorem 1

Proof:

(1) Let

$$
\mu=f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right), \quad v=g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)
$$

To prove $q \operatorname{ROFAMM}{ }^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)=\langle\mu, v\rangle$, we need to prove

$$
\left(\frac{1}{n!} \bigoplus_{p \in P_{n}} \bigotimes_{i=1}^{n}\left(\Xi_{p(i)}^{\delta_{i}}\right)\right) \sum_{i=1}^{\frac{1}{n} \delta_{i}}=\langle\mu, v\rangle
$$

The proof process is as follow:
According to the power operation in Equation (4), we have

$$
\Xi_{p(i)}^{\delta_{i}}=\left\langle f^{-1}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right), g^{-1}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right\rangle
$$

According to the product operation in Equation (2), we can obtain

$$
\bigotimes_{i=1}^{n}\left(\Xi_{p(i)}^{\delta_{i}}\right)=\left\langle f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right), g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right)\right\rangle
$$

According to the sum operation in Equation (1), we have

$$
\bigoplus_{p \in \boldsymbol{P}_{n}} \bigotimes_{i=1}^{n}\left(\Xi_{p(i)}^{\delta_{i}}\right)=\left\langle g^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right), f^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right)\right)\right)\right\rangle
$$

According to multiplication operation in Equation (3), we can obtain

$$
\frac{1}{n!} \bigoplus_{p \in \boldsymbol{P}_{n}} \bigotimes_{i=1}^{n}\left(\Xi_{p(i)}^{\delta_{i}}\right)=\left\langle g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right), f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right)\right)\right)\right\rangle
$$

The following expression is obtained according to the power operation in Equation (4)

$$
\begin{aligned}
\left(\frac{1}{n!} \oplus_{p \in P_{n}} \bigotimes_{i=1}^{n}\left(\Xi_{p(i)}^{\delta_{i}}\right)\right)^{\frac{1}{n} \delta_{i=1}}= & \left(f ^ { - 1 } \left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right.\right. \\
& g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

(2) To prove $q \operatorname{ROFAMM} M^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)$ is a qROFN, we need to prove $0 \leq \mu \leq 1,0 \leq v \leq 1$, and $0 \leq \mu^{q}+v^{q} \leq 1$. We firstly prove $0 \leq \mu \leq 1$ and $0 \leq v \leq 1$. The proof process is as follow:

1) According to the definition of a qROFN in Definition 1, we have $0 \leq \mu_{p(i)} \leq 1$. Because $f(t)$ is monotonically decreasing, we further have

$$
\delta_{i} f(0) \geq \delta_{i} f\left(\mu_{p(i)}\right) \geq \delta_{i} f(1)
$$

and

$$
\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)=\sum_{i=1}^{n}\left(\delta_{i} f(0)\right) \geq \sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right) \geq \sum_{i=1}^{n}\left(\delta_{i} f(1)\right)=\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)
$$

Since $f^{-1}(t)$ is monotonically decreasing, we can obtain

$$
f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right) \leq f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right) \leq f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)
$$

Because $g(t)$ is monotonically increasing, we further have

$$
g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right) \leq g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right) \leq g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)
$$

and

$$
\begin{aligned}
& (n!) g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right)=\sum_{p \in P_{n}} g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right) \leq \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right) \leq \\
& \sum_{p \in P_{n}} g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)=(n!) g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)
\end{aligned}
$$

and

$$
g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right) \leq \frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right) \leq g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)
$$

Since $g^{-1}(t)$ is monotonically increasing, we can obtain

$$
\begin{aligned}
& f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)=g^{-1}\left(g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right)\right) \leq g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right) \leq \\
& g^{-1}\left(g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)\right)=f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)
\end{aligned}
$$

Because $f(t)$ is monotonically decreasing, we further have

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} \delta_{i}\right) f(0)=f\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right) \geq f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right) \geq \\
& f\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)=\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)
\end{aligned}
$$

and

$$
f(0) \geq \frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right) \geq f(1)
$$

Finally, since $f^{-1}(t)$ is monotonically decreasing, we can obtain

$$
0=f^{-1}(f(0)) \leq f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right) \leq f^{-1}(f(1))=1
$$

That is $0 \leq \mu \leq 1$. Similarly, we can prove $0 \leq v \leq 1$.
2) We then prove $0 \leq \mu^{q}+v^{q} \leq 1$. The proof process is as follow:

Since $0 \leq \mu \leq 1$ and $0 \leq v \leq 1$, we have $0 \leq \mu^{q} \leq 1$ and $0 \leq v^{q} \leq 1$, and thus $0 \leq \mu^{q}+v^{q} \leq 2$.
According to the definition of a qROFN in Definition 1, we have $\mu_{p(i)^{q}}+v_{p(i)}{ }^{q} \leq 1$ and $\mu_{p(i)}{ }^{q} \leq 1-v_{p(i)}{ }^{q}$. Since $f(t)$ is monotonically decreasing, we further have

$$
f\left(\mu_{p(i)}^{q}\right) \geq f\left(1-v_{p(i)}^{q}\right)
$$

Because $f(1-t)=g(t)$, we have

$$
f\left(\mu_{p(i)}^{q}\right) \geq g\left(v_{p(i)}^{q}\right)
$$

and

$$
\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right) \geq \sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)
$$

Since $f^{-1}(t)$ is monotonically decreasing, we can obtain

$$
f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right) \leq f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)
$$

Because $f^{-1}(t)=1-g^{-1}(t)$, we have

$$
f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right) \leq 1-g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)
$$

Since $g(t)$ is monotonically increasing, we further have

$$
g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \leq g\left(1-g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

Because $g(1-t)=f(t)$, we can obtain

$$
g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \leq f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

and

$$
\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \leq \frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

Since $g^{-1}(t)$ is monotonically increasing, we have

$$
g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right) \leq g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)
$$

Because $g^{-1}(t)=1-f^{-1}(t)$, we further have

$$
g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right) \leq 1-f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)
$$

Since $f(t)$ is monotonically decreasing, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \geq \frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(1-f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)
$$

Because $f(1-t)=g(t)$, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \geq \frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)
$$

Since $f^{-1}(t)$ is monotonically decreasing, we have

$$
f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \leq f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right.
$$

Finally, because $f^{-1}(t)=1-g^{-1}(t)$, we can obtain

$$
f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right) \leq 1-g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)
$$

and

$$
f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)+g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \leq \leq \leq 1\right.
$$

When $q=1$, according to the above inequality, we have

$$
f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)+g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right) \leq 1
$$

That is, $\mu+v \leq 1$.
Now we need to prove that the inequality also holds when $q=2,3, \ldots$ Let $m=2,3, \ldots$. The purpose is transformed into proof of $\mu^{m}+v^{m} \leq 1$.
According to $\mu+v \leq 1$ and the binomial theorem, we can obtain

$$
(\mu+v)^{m}=\sum_{k=0}^{m}\left(C_{m}^{k} \mu^{m-k} v^{k}\right)=\mu^{m}+v^{m}+\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \leq 1
$$

Because $\mu \geq 0$ and $v \geq 0$, we have

$$
\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \geq 0
$$

Therefore, we can obtain $\mu^{m}+v^{m} \leq 1$. Now it can be concluded that $\mu^{q}+v^{q} \leq 1$ for $q=1,2,3, \ldots$.
Since we have proved $0 \leq \mu^{q}+v^{q} \leq 2$ and $\mu^{q}+v^{q} \leq 1$, we can obtain $0 \leq \mu^{q}+v^{q} \leq 1$.

Appendix B. Proof of Theorem 2

Proof:

Since $\mu_{i}=\mu$ and $p(i)$ is a permutation of $(1,2, \ldots, n)$, we have

$$
\delta_{i} f\left(\mu_{p(i)}\right)=\delta_{i} f(\mu)
$$

and

$$
\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)=\sum_{i=1}^{n}\left(\delta_{i} f(\mu)\right)=\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))
$$

Then we can obtain

$$
f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)=f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))\right)
$$

and

$$
g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)=g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))\right)\right)
$$

Further, we have

$$
\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)=\frac{1}{n!} \sum_{p \in P_{n}}\left(g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))\right)\right)\right)=g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))\right)\right)
$$

and

$$
g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)=g^{-1}\left(g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))\right)\right)\right)=f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))\right)
$$

Finally, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)=\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(f(\mu))\right)\right)=f(\mu)
$$

and

$$
f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)=f^{-1}(f(\mu))=\mu\right.
$$

Similarly, we can prove

$$
g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)=v
$$

Therefore, we can obtain $q \operatorname{ROFAMM} M^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)=\langle\mu, v\rangle$.
Appendix C. Proof of Theorem 3
Proof:
According to Theorem 1, we have

$$
q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right)=\left\langle\mu_{\mathrm{I}}, v_{\mathrm{I}}\right\rangle \text { and } q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)=\left\langle\mu_{\mathrm{I}}, v_{\mathrm{I}}\right\rangle
$$

where

$$
\mu_{\mathrm{I}}=f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(1, i)}\right)\right)\right)\right)\right)\right), \quad v_{\mathrm{I}}=g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(1, i)}\right)\right)\right)\right)\right)\right)\right)\right.
$$

$$
\mu_{\mathrm{II}}=f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)\right), \quad v_{\mathrm{II}}=g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(v_{p(2, i)}\right)\right)\right)\right)\right)\right)\right)\right.
$$

and $0 \leq \mu_{\mathrm{I}} \leq 1$ and $0 \leq \mu_{\mathrm{II}} \leq 1$. Since $\mu_{1, i} \geq \mu_{2, i}$ for all $i=1,2, \ldots, n$, we have $\mu_{p(1, i)} \geq \mu_{p(2, i)}$. Because $f(x)$ is monotonically decreasing, we can obtain

$$
\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(1, i)}\right)\right) \leq \sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(2, i)}\right)\right)
$$

Since $f^{-1}(x)$ is monotonically decreasing, we have

$$
f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(1, i)}\right)\right)\right) \geq f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(2, i)}\right)\right)\right)
$$

Because $g(x)$ is monotonically increasing, we can obtain

$$
\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(1, i)}\right)\right)\right) \geq \frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(2, i)}\right)\right)\right)\right)\right.
$$

Since $g^{-1}(x)$ is monotonically increasing, we have

$$
g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(1, i)}\right)\right)\right)\right)\right) \geq g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)
$$

Because $f(x)$ is monotonically decreasing, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(1, i)}\right)\right)\right)\right)\right)\right) \leq \frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)\right)
$$

Finally, since $f^{-1}(x)$ is monotonically decreasing, we have

$$
f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(1, i)}\right)\right)\right)\right)\right)\right) \geq f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)\right)\right)\right.
$$

That is $\mu_{\mathrm{I}} \geq \mu_{\text {II }}$. Similarly, we can prove $v_{\mathrm{I}} \leq \nu_{\text {II }}$. Since

$$
S\left(q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right)\right)=\mu_{\mathrm{I}}^{q}-v_{\mathrm{I}}^{q} \text { and } S\left(q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)\right)=\mu_{\mathrm{II}}^{q}-v_{\mathrm{II}}{ }^{q}
$$

and $1 \geq \mu_{\mathrm{I}} \geq \mu_{\mathrm{II}} \geq 0$ and $0 \leq v_{\mathrm{I}} \leq v_{\mathrm{II}} \leq 1$, we can obtain
$\left.S\left(q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right)\right) \geq \operatorname{SqROFAMM}^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)\right)$
and thus $q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right) \geq q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)$.

Appendix D. Proof of Theorem 4

Proof:

According to Theorem 3, we have

$$
q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{\mathrm{LB}}, \Xi_{\mathrm{LB}}, \ldots, \Xi_{\mathrm{LB}}\right) \leq q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right) \leq q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{\mathrm{UB}}, \Xi_{\mathrm{UB}}, \ldots, \Xi_{\mathrm{UB}}\right)
$$

According to Theorem 2, we have

$$
q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{\mathrm{LB}}, \Xi_{\mathrm{LB}}, \ldots, \Xi_{\mathrm{LB}}\right)=\Xi_{\mathrm{LB}} \text { and } q \operatorname{ROFAMM}^{\Delta}\left(\Xi_{\mathrm{UB}}, \Xi_{\mathrm{UB}}, \ldots, \Xi_{\mathrm{UB}}\right)=\Xi_{\mathrm{UB}}
$$

Therefore, we can obtain $\Xi_{\mathrm{LB}} \leq q R \operatorname{OFAMM}^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right) \leq \Xi_{\mathrm{UB}}$.

Appendix E. Proof of Theorem 5

Proof:

(1) Let

$$
\begin{aligned}
& \mu=f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right), \\
& \nu=g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

To prove $q \operatorname{ROFWAMM}{ }^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)=\langle\mu, v\rangle$, we need to prove

$$
\left(\frac{1}{n!} \bigoplus_{p \in \boldsymbol{P}_{n}} \bigotimes_{i=1}^{n}\left(\left(n w_{p(i)}\right) \Xi_{p(i)}\right)^{\delta_{i}}\right)^{\frac{1}{\sum_{i=1}^{n} \delta_{i}}}=\langle\mu, v\rangle
$$

The proof process is as follow:
According to the multiplication operation in Equation (3), we have

$$
\left(n w_{p(i)}\right) \Xi_{p(i)}=\left\langle g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right), f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right\rangle
$$

According to the power operation in Equation (4), we can obtain

$$
\left(\left(n w_{p(i)}\right) \Xi_{p(i)}\right)^{\delta_{i}}=\left\langle f^{-1}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right), g^{-1}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right)\right)\right\rangle
$$

According to the product operation in Equation (2), we have

$$
\bigotimes_{i=1}^{n}\left(\left(n w_{p(i)}\right) \Xi_{p(i)}\right)^{\delta_{i}}=\left\langle f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right), g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right)\right)\right)\right\rangle
$$

According to the sum operation in Equation (1), we can obtain

$$
\begin{aligned}
\bigoplus_{p \in \boldsymbol{P}_{n}} \bigotimes_{i=1}^{n}\left(\left(n w_{p(i)}\right) \Xi_{p(i)}\right)^{\delta_{i}}= & \left\langle g^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right. \\
& \left.f^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

According to multiplication operation in Equation (3), we have

$$
\begin{aligned}
\frac{1}{n!} \bigoplus_{p \in \boldsymbol{P}_{n}} \bigotimes_{i=1}^{n}\left(\left(n w_{p(i)}\right) \Xi_{p(i)}\right)^{\delta_{i}}= & \left\langle g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right),\right. \\
& \left.f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

The following expression is obtained according to the power operation in Equation (4)

$$
\begin{aligned}
\left(\frac{1}{n!} \bigoplus_{p \in P_{n}} \bigotimes_{i=1}^{n}\left(\left(n w_{p(i)}\right) \Xi_{p(i)}\right)^{\delta_{i}}\right)^{\frac{1}{n} \sum_{i=1}^{n} \delta_{i}}= & \left\langle f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right. \\
& \left.g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

(2) To prove $q \operatorname{ROFWAMM}{ }^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)$ is a qROFN, we need to prove $0 \leq \mu \leq 1,0 \leq v \leq 1$, and $0 \leq \mu^{q}+v^{q} \leq 1$. We firstly prove $0 \leq \mu \leq 1$ and $0 \leq v \leq 1$. The proof process is as follow:

1) According to the definition of a qROFN in Definition 1, we have $0 \leq \mu_{p(i)} \leq 1$. Because $g(t)$ and $g^{-1}(t)$ are monotonically increasing, we further have

$$
\left(n w_{p(i)}\right) g(0) \leq\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right) \leq\left(n w_{p(i)}\right) g(1)
$$

and

$$
g^{-1}\left(\left(n w_{p(i)}\right) g(0)\right) \leq g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right) \leq g^{-1}\left(\left(n w_{p(i)}\right) g(1)\right)
$$

Since $f(t)$ and $f^{-1}(t)$ are monotonically decreasing, we can obtain

$$
\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g(0)\right)\right)\right) \geq \sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right) \geq \sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g(1)\right)\right)\right)
$$

and

$$
f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g(0)\right)\right)\right)\right) \leq f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right) \leq f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g(1)\right)\right)\right)\right)\right.
$$

Because $g(t)$ and $g^{-1}(t)$ are monotonically increasing, we have

$$
\begin{aligned}
& g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right)=\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g(0)\right)\right)\right)\right)\right) \leq \frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right) \leq\right. \\
& \frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g(1)\right)\right)\right)\right)=g\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)\right.
\end{aligned}
$$

and

$$
f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right) \leq g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right) \leq f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)
$$

Finally, since $f(t)$ and $f^{-1}(t)$ are monotonically decreasing, we can obtain

$$
\begin{aligned}
& f(0)=\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(0)\right)\right) \geq\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right) \geq \\
& \left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(f^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) f(1)\right)\right)=f(1)
\end{aligned}
$$

and

$$
0=f^{-1}(f(0)) \leq f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right) \leq f^{-1}(f(1))=1
$$

That is $0 \leq \mu \leq 1$. Similarly, we can prove $0 \leq v \leq 1$.
2) We then prove $0 \leq \mu^{q}+\nu^{q} \leq 1$. The proof process is as follow:

Since $0 \leq \mu \leq 1$ and $0 \leq v \leq 1$, we have $0 \leq \mu^{q} \leq 1$ and $0 \leq v^{q} \leq 1$, and thus $0 \leq \mu^{q}+v^{q} \leq 2$.
According to the definition of a qROFN in Definition 1, we have $\mu_{p(i)}{ }^{q}+v_{p(i)}{ }^{q} \leq 1$ and $\mu_{p(i)}{ }^{q} \leq 1-v_{p(i)}{ }^{q}$. Because $g(t)$ is monotonically increasing and $g(1-t)=f(t)$, we further have

$$
g\left(\mu_{p(i)}^{q}\right) \leq g\left(1-v_{p(i)}^{q}\right)=f\left(v_{p(i)}^{q}\right)
$$

and

$$
\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right) \leq\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)
$$

Because $g^{-1}(t)$ is monotonically increasing and $g^{-1}(t)=1-f^{-1}(t)$, we can obtain

$$
g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right) \leq g^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)=1-f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)
$$

Since $f(t)$ is monotonically decreasing and $f(1-t)=g(t)$, we have

$$
f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right) \geq f\left(1-f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)=g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)
$$

and

$$
\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \geq \sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

Because $f^{-1}(t)$ is monotonically decreasing and $f^{-1}(t)=1-g^{-1}(t)$, we can obtain

$$
f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right) \leq f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)=1-g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)
$$

Since $g(t)$ is monotonically increasing and $g(1-t)=f(t)$, we have

$$
\begin{aligned}
& g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \leq g\left(1-g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)= \\
& f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right.
\end{aligned}
$$

and

$$
\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \leq \frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)
$$

Because $g^{-1}(t)$ is monotonically increasing and $g^{-1}(t)=1-f^{-1}(t)$, we can obtain

$$
\begin{aligned}
& g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right) \leq g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)= \\
& 1-f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Since $f(t)$ is monotonically decreasing and $f(1-t)=g(t)$, we have

$$
\begin{aligned}
& f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right) \geq f\left(1-f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)= \\
& g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right) \geq \\
& \left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Finally, because $f^{-1}(t)$ is monotonically decreasing and $f^{-1}(t)=1-g^{-1}(t)$, we can obtain

$$
f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)\right) \leq
$$

$$
\begin{aligned}
& f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)\right)= \\
& 1-g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

When $q=1$, according to the above inequality, we have

$$
\begin{aligned}
& f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)+ \\
& g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right) \leq 1
\end{aligned}
$$

That is, $\mu+v \leq 1$.
Now we need to prove that the inequality also holds when $q=2,3, \ldots$ Let $m=2,3, \ldots$. The purpose is transformed into proof of $\mu^{m}+\nu^{m} \leq 1$.
According to $\mu+v \leq 1$ and the binomial theorem, we can obtain

$$
(\mu+v)^{m}=\sum_{k=0}^{m}\left(C_{m}^{k} \mu^{m-k} v^{k}\right)=\mu^{m}+v^{m}+\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \leq 1
$$

Because $\mu \geq 0$ and $v \geq 0$, we have

$$
\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \geq 0
$$

Therefore, we can obtain $\mu^{m}+v^{m} \leq 1$. Now it can be concluded that $\mu^{q}+v^{q} \leq 1$ for $q=1,2,3, \ldots$.
Since we have proved $0 \leq \mu^{q}+v^{q} \leq 2$ and $\mu^{q}+v^{q} \leq 1$, we can obtain $0 \leq \mu^{q}+v^{q} \leq 1$.

Appendix F. Proof of Theorem 6

Proof:

(1) Let

$$
\mu=g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right), \quad v=f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)
$$

To prove $q \operatorname{ROFAGMM}{ }^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)=\langle\mu, v\rangle$, we need to prove

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}}\left(\bigotimes_{p \in \boldsymbol{P}_{n}} \bigoplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}\right)\right)^{\frac{1}{n!}}=\langle\mu, v\rangle
$$

The proof process is as follow:
According to the multiplication operation in Equation (3), we have

$$
\delta_{i} \Xi_{p(i)}=\left\langle g^{-1}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right), f^{-1}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right\rangle
$$

According to the sum operation in Equation (1), we can obtain

$$
\bigoplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}\right)=\left\langle g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right), f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right)\right\rangle
$$

According to the product operation in Equation (2), we have

$$
\underset{p \in \boldsymbol{P}_{n}}{\bigoplus} \bigoplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}\right)=\left\langle f^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right), g^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right)\right)\right)\right\rangle
$$

According to power operation in Equation (4), we can obtain

$$
\left(\bigotimes_{p \in \boldsymbol{P}_{n}} \bigoplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}\right)\right)^{\frac{1}{n!}}=\left\langle f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right), g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right)\right)\right)\right\rangle
$$

The following expression is obtained according to the multiplication operation in Equation (3)

$$
\begin{aligned}
\frac{1}{\sum_{i=1}^{n} \delta_{i}}\left(\underset{p \in \boldsymbol{P}_{n}}{ } \oplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}\right)\right)^{\frac{1}{n!}}= & \left(g ^ { - 1 } \left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right),\right.\right. \\
& f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

(2) To prove $q \operatorname{ROFAGMM}{ }^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)$ is a qROFN, we need to prove $0 \leq \mu \leq 1,0 \leq v \leq 1$, and $0 \leq \mu^{q}+v^{q} \leq 1$. We firstly prove $0 \leq \mu \leq 1$ and $0 \leq v \leq 1$. The proof process is as follow:

1) According to the definition of a qROFN in Definition 1, we have $0 \leq \mu_{p(i)} \leq 1$. Because $g(t)$ is monotonically increasing, we further have

$$
\delta_{i} g(0) \leq \delta_{i} g\left(\mu_{p(i)}\right) \leq \delta_{i} g(1)
$$

and

$$
\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)=\sum_{i=1}^{n}\left(\delta_{i} g(0)\right) \leq \sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right) \leq \sum_{i=1}^{n}\left(\delta_{i} g(1)\right)=\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)
$$

Since $g^{-1}(t)$ is monotonically increasing, we can obtain

$$
g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right) \leq g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right) \leq g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)
$$

Because $f(t)$ is monotonically decreasing, we further have

$$
f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right) \geq f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right) \geq f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)
$$

and

$$
\begin{aligned}
& (n!) f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right)=\sum_{p \in P_{n}} f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right) \geq \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right) \geq\right. \\
& \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)=(n!) f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)
\end{aligned}
$$

and

$$
f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right) \geq \frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right) \geq f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)
$$

Since $f^{-1}(t)$ is monotonically decreasing, we can obtain

$$
\begin{aligned}
& g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)=f^{-1}\left(f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right)\right) \leq f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right) \leq\right. \\
& f^{-1}\left(f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)\right)=g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)
\end{aligned}
$$

Because $g(t)$ is monotonically increasing, we further have

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} \delta_{i}\right) g(0)=g\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right) \leq g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right) \leq\right. \\
& g\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)=\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)
\end{aligned}
$$

and

$$
g(0) \leq \frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right) \leq g(1)
$$

Finally, since $g^{-1}(t)$ is monotonically increasing, we can obtain

$$
0=g^{-1}(g(0)) \leq g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right) \leq g^{-1}(g(1))=1\right.
$$

That is $0 \leq \mu \leq 1$. Similarly, we can prove $0 \leq v \leq 1$.
2) We then prove $0 \leq \mu^{q}+\nu^{q} \leq 1$. The proof process is as follow:

Since $0 \leq \mu \leq 1$ and $0 \leq v \leq 1$, we have $0 \leq \mu^{q} \leq 1$ and $0 \leq v^{q} \leq 1$, and thus $0 \leq \mu^{q}+v^{q} \leq 2$.
According to the definition of a qROFN in Definition 1, we have $\mu_{p(i)^{q}}{ }^{q}+v_{p(i)^{q}} \leq 1$ and $\mu_{p(i)^{q}} \leq 1-v_{p(i)^{q}}$. Since $g(t)$ is monotonically increasing, we further have

$$
g\left(\mu_{p(i)}^{q}\right) \leq g\left(1-v_{p(i)}^{q}\right)
$$

Because $g(1-t)=f(t)$, we have

$$
g\left(\mu_{p(i)}^{q}\right) \leq f\left(v_{p(i)}^{q}\right)
$$

and

$$
\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right) \leq \sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)
$$

Since $g^{-1}(t)$ is monotonically increasing, we can obtain

$$
g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right) \leq g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)
$$

Because $g^{-1}(t)=1-f^{-1}(t)$, we have

$$
g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right) \leq 1-f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)
$$

Since $f(t)$ is monotonically decreasing, we further have

$$
f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \geq f\left(1-f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

Because $f(1-t)=g(t)$, we can obtain

$$
f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \geq g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

and

$$
\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \geq \frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

Since $f^{-1}(t)$ is monotonically decreasing, we have

$$
f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right) \leq f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)
$$

Because $f^{-1}(t)=1-g^{-1}(t)$, we further have

$$
f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right) \leq 1-g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)
$$

Since $g(t)$ is monotonically increasing, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \leq \frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(1-g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)
$$

Because $g(1-t)=f(t)$, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \leq \frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)
$$

Since $g^{-1}(t)$ is monotonically increasing, we have

$$
g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right) \leq g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)
$$

Finally, because $g^{-1}(t)=1-f^{-1}(t)$, we can obtain

$$
g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right) \leq 1-f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)
$$

and

$$
g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)+f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right) \leq 1
$$

When $q=1$, according to the above inequality, we have

$$
g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)+f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right) \leq 1
$$

That is, $\mu+v \leq 1$.
Now we need to prove that the inequality also holds when $q=2,3, \ldots$ Let $m=2,3, \ldots$. The purpose is transformed into
proof of $\mu^{m}+v^{m} \leq 1$.
According to $\mu+v \leq 1$ and the binomial theorem, we can obtain

$$
(\mu+v)^{m}=\sum_{k=0}^{m}\left(C_{m}^{k} \mu^{m-k} v^{k}\right)=\mu^{m}+v^{m}+\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \leq 1
$$

Because $\mu \geq 0$ and $v \geq 0$, we have

$$
\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \geq 0
$$

Therefore, we can obtain $\mu^{m}+v^{m} \leq 1$. Now it can be concluded that $\mu^{q}+v^{q} \leq 1$ for $q=1,2,3, \ldots$.
Since we have proved $0 \leq \mu^{q}+v^{q} \leq 2$ and $\mu^{q}+v^{q} \leq 1$, we can obtain $0 \leq \mu^{q}+v^{q} \leq 1$.

Appendix G. Proof of Theorem 7

Proof:

Since $\mu_{i}=\mu$ and $p(i)$ is a permutation of $(1,2, \ldots, n)$, we have

$$
\delta_{i} g\left(\mu_{p(i)}\right)=\delta_{i} g(\mu)
$$

and

$$
\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)=\sum_{i=1}^{n}\left(\delta_{i} g(\mu)\right)=\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))
$$

Then we can obtain

$$
g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)=g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))\right)
$$

and

$$
f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)=f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))\right)\right)
$$

Further, we have

$$
\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)=\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}}\left(f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))\right)\right)\right)=f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))\right)\right)
$$

and

$$
f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)=f^{-1}\left(f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))\right)\right)\right)=g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))\right)
$$

Finally, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)=\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right)(g(\mu))\right)\right)=g(\mu)
$$

and

$$
g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)=g^{-1}(g(\mu))=\mu
$$

Similarly, we can prove

$$
f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(i)}\right)\right)\right)\right)\right)\right)=v\right.
$$

Therefore, we can obtain $q R O F A G M M M^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)=\langle\mu, v\rangle$.

Appendix H. Proof of Theorem 8

Proof:

According to Theorem 6, we have

$$
q \operatorname{ROFAGMM}^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right)=\left\langle\mu_{\mathrm{I}}, v_{\mathrm{I}}\right\rangle \text { and } q \operatorname{ROFAGMM}^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)=\left\langle\mu_{\mathrm{II}}, v_{\mathrm{II}}\right\rangle
$$

where

$$
\begin{aligned}
& \mu_{\mathrm{I}}=g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(1, i)}\right)\right)\right)\right)\right)\right), \quad v_{\mathrm{I}}=f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(1, i)}\right)\right)\right)\right)\right)\right)\right)\right. \\
& \mu_{\mathrm{II}}=g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)\right), \quad v_{\mathrm{II}}=f^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(v_{p(2, i)}\right)\right)\right)\right)\right)\right)\right)\right.
\end{aligned}
$$

and $0 \leq \mu_{\mathrm{I}} \leq 1$ and $0 \leq \mu_{\mathrm{II}} \leq 1$. Since $\mu_{1, i} \geq \mu_{2, i}$ for all $i=1,2, \ldots, n$, we have $\mu_{p(1, i)} \geq \mu_{p(2, i)}$. Because $g(x)$ is monotonically increasing, we can obtain

$$
\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(1, i)}\right)\right) \geq \sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(2, i)}\right)\right)
$$

Since $g^{-1}(x)$ is monotonically increasing, we have

$$
g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(1, i)}\right)\right)\right) \geq g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(2, i)}\right)\right)\right)
$$

Because $f(x)$ is monotonically decreasing, we can obtain

$$
\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(1, i)}\right)\right)\right)\right) \leq \frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(2, i)}\right)\right)\right)\right)
$$

Since $f^{-1}(x)$ is monotonically decreasing, we have

$$
f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(1, i)}\right)\right)\right)\right)\right) \geq f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)
$$

Because $g(x)$ is monotonically increasing, we can obtain

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(1, i)}\right)\right)\right)\right)\right)\right) \geq \frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)\right)
$$

Finally, since $g^{-1}(x)$ is monotonically increasing, we have

$$
g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(1, i)}\right)\right)\right)\right)\right)\right)\right) \geq g^{-1}\left(\frac{1}{\sum_{i=1}^{n} \delta_{i}} g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(\mu_{p(2, i)}\right)\right)\right)\right)\right)\right)\right)
$$

That is $\mu_{\mathrm{I}} \geq \mu_{\text {II }}$. Similarly, we can prove $v_{\mathrm{I}} \leq v_{\text {II }}$. Since
$\operatorname{S}\left(q \operatorname{ROFAGMM} M^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right)\right)=\mu_{\mathrm{I}}^{q}-v_{\mathrm{I}}^{q}$ and $\operatorname{S}\left(q \operatorname{ROFAGMM}{ }^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)\right)=\mu_{\mathrm{II}}{ }^{q}-v_{\mathrm{II}}{ }^{q}$ and $1 \geq \mu_{\mathrm{I}} \geq \mu_{\mathrm{II}} \geq 0$ and $0 \leq v_{\mathrm{I}} \leq v_{\mathrm{II}} \leq 1$, we can obtain

$$
S\left(q R O F A G M M M^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right)\right) \geq S\left(q R O F A G M M^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)\right)
$$

and thus $q \operatorname{ROFAGMM}^{\Delta}\left(\Xi_{1,1}, \Xi_{1,2}, \ldots, \Xi_{1, n}\right) \geq q \operatorname{ROFAGMM}{ }^{\Delta}\left(\Xi_{2,1}, \Xi_{2,2}, \ldots, \Xi_{2, n}\right)$.

Appendix I. Proof of Theorem 9

Proof:

According to Theorem 8, we have

$$
q \operatorname{ROFAGMM}^{\Delta}\left(\Xi_{\mathrm{LB}}, \Xi_{\mathrm{LB}}, \ldots, \Xi_{\mathrm{LB}}\right) \leq q \operatorname{ROFAGMM}^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right) \leq q \operatorname{ROFAGMM}^{\Delta}\left(\Xi_{\mathrm{UB}}, \Xi_{\mathrm{UB}}, \ldots, \Xi_{\mathrm{UB}}\right)
$$

According to Theorem 7, we have

$$
q R O F A G M M^{\Delta}\left(\Xi_{\mathrm{LB}}, \Xi_{\mathrm{LB}}, \ldots, \Xi_{\mathrm{LB}}\right)=\Xi_{\mathrm{LB}} \text { and } q R O F A G M M^{\Delta}\left(\Xi_{\mathrm{UB}}, \Xi_{\mathrm{UB}}, \ldots, \Xi_{\mathrm{UB}}\right)=\Xi_{\mathrm{UB}}
$$

Therefore, we can obtain $\Xi_{\mathrm{LB}} \leq q \operatorname{ROFAGMM} M^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right) \leq \Xi_{\mathrm{UB}}$.

Appendix J. Proof of Theorem 10

Proof:

(1) Let

$$
\begin{aligned}
& \mu=g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right), \\
& v=f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

To prove $q \operatorname{ROFWAGMM} M^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)=\langle\mu, v\rangle$, we need to prove

$$
\frac{1}{\sum_{i=1}^{n} \delta_{i}}\left(\underset{p \in \boldsymbol{P}_{n}}{\bigoplus} \bigoplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}^{n p_{p}(i)}\right)\right)^{\frac{1}{n!}}=\langle\mu, v\rangle
$$

The proof process is as follow:
According to the power operation in Equation (4), we have

$$
\Xi_{p(i)}^{n v_{p(i)}}=\left\langle f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right), g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right\rangle
$$

According to the multiplication operation in Equation (3), we can obtain

$$
\delta_{i} \Xi_{p(i)}^{n w_{p(i)}}=\left\langle g^{-1}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right), f^{-1}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right)\right)\right\rangle
$$

According to the sum operation in Equation (1), we have

$$
\bigoplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}^{n w_{p(i)}}\right)=\left\langle g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right), f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right)\right)\right)\right\rangle
$$

According to the product operation in Equation (2), we can obtain

$$
\begin{aligned}
\underset{p \in \boldsymbol{P}_{n}}{\otimes} \bigoplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}^{n w_{p(i)}}\right)=\langle & f^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right), \\
& \left.g^{-1}\left(\sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

According to power operation in Equation (4), we have

$$
\begin{aligned}
\left(\underset{p \in P_{n}}{ } \oplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}^{n w_{p(i)}}\right)\right)^{\frac{1}{n!}}= & \left\langle f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right),\right. \\
& g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

The following expression is obtained according to the multiplication operation in Equation (3)

$$
\begin{aligned}
\frac{1}{\sum_{i=1}^{n} \delta_{i}}\left(\bigotimes_{p \in \boldsymbol{P}_{n}} \oplus_{i=1}^{n}\left(\delta_{i} \Xi_{p(i)}^{n w_{p(i)}}\right)\right)^{\frac{1}{n!}}= & \left\langle g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right. \\
& \left.f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)\right\rangle
\end{aligned}
$$

(2) To prove $q \operatorname{ROFWAGMM}{ }^{\Delta}\left(\Xi_{1}, \Xi_{2}, \ldots, \Xi_{n}\right)$ is a qROFN, we need to prove $0 \leq \mu \leq 1,0 \leq v \leq 1$, and $0 \leq \mu^{q}+v^{q} \leq 1$. We firstly prove $0 \leq \mu \leq 1$ and $0 \leq \nu \leq 1$. The proof process is as follow:

1) According to the definition of a qROFN in Definition 1, we have $0 \leq \mu_{p(i)} \leq 1$. Because $f(t)$ and $f^{-1}(t)$ are monotonically decreasing, we further have

$$
\left(n w_{p(i)}\right) f(0) \geq\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right) \geq\left(n w_{p(i)}\right) f(1)
$$

and

$$
f^{-1}\left(\left(n w_{p(i)}\right) f(0)\right) \leq f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right) \leq f^{-1}\left(\left(n w_{p(i)}\right) f(1)\right)
$$

Since $g(t)$ and $g^{-1}(t)$ are monotonically increasing, we can obtain

$$
\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f(0)\right)\right)\right) \leq \sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right) \leq \sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f(1)\right)\right)\right)
$$

and

$$
g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f(0)\right)\right)\right)\right) \leq g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right) \leq g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f(1)\right)\right)\right)\right)
$$

Because $f(t)$ and $f^{-1}(t)$ are monotonically decreasing, we have

$$
\begin{aligned}
& f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right)=\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f(0)\right)\right)\right)\right)\right) \geq \frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right) \geq\right. \\
& \frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f(1)\right)\right)\right)\right)=f\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)\right.
\end{aligned}
$$

and

$$
g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right) \leq f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right) \leq g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)
$$

Finally, since $g(t)$ and $g^{-1}(t)$ are monotonically increasing, we can obtain

$$
\begin{aligned}
& g(0)=\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(0)\right)\right) \leq\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right) \leq\right. \\
& \left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(g^{-1}\left(\left(\sum_{i=1}^{n} \delta_{i}\right) g(1)\right)\right)=g(1)
\end{aligned}
$$

and

$$
0=g^{-1}(g(0)) \leq g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right) \leq g^{-1}(g(1))=1
$$

That is $0 \leq \mu \leq 1$. Similarly, we can prove $0 \leq v \leq 1$.
2) We then prove $0 \leq \mu^{q}+v^{q} \leq 1$. The proof process is as follow:

Since $0 \leq \mu \leq 1$ and $0 \leq v \leq 1$, we have $0 \leq \mu^{q} \leq 1$ and $0 \leq v^{q} \leq 1$, and thus $0 \leq \mu^{q}+v^{q} \leq 2$.
According to the definition of a qROFN in Definition 1, we have $\mu_{p(i)}{ }^{q}+v_{p(i)}{ }^{q} \leq 1$ and $\mu_{p(i)}{ }^{q} \leq 1-v_{p(i)}{ }^{q}$. Because $f(t)$ is monotonically decreasing and $f(1-t)=g(t)$, we further have

$$
f\left(\mu_{p(i)}^{q}\right) \geq f\left(1-v_{p(i)}^{q}\right)=g\left(v_{p(i)}^{q}\right)
$$

and

$$
\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right) \geq\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)
$$

Because $f^{-1}(t)$ is monotonically decreasing and $f^{-1}(t)=1-g^{-1}(t)$, we can obtain

$$
f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right) \leq f^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)=1-g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)
$$

Since $g(t)$ is monotonically increasing and $g(1-t)=f(t)$, we have

$$
g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right) \leq g\left(1-g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)=f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)
$$

and

$$
\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right) \leq \sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)
$$

Because $g^{-1}(t)$ is monotonically increasing and $g^{-1}(t)=1-f^{-1}(t)$, we can obtain

$$
g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right) \leq g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)=1-f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)
$$

Since $f(t)$ is monotonically decreasing and $f(1-t)=g(t)$, we have

$$
\begin{aligned}
& f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \geq f\left(1-f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)=\right. \\
& g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

and

$$
\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right) \geq \frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)
$$

Because $f^{-1}(t)$ is monotonically decreasing and $f^{-1}(t)=1-g^{-1}(t)$, we can obtain

$$
f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right) \leq f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)=
$$

$$
1-g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)
$$

Since $g(t)$ is monotonically increasing and $g(1-t)=f(t)$, we have

$$
\begin{aligned}
& g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right) \leq g\left(1-g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)= \\
& f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right) \leq \\
& \left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Finally, because $g^{-1}(t)$ is monotonically increasing and $g^{-1}(t)=1-f^{-1}(t)$, we can obtain

$$
\begin{aligned}
& g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)\right) \leq \\
& g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)\right)= \\
& 1-f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in \boldsymbol{P}_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}^{q}\right)\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

When $q=1$, according to the above inequality, we have

$$
\begin{aligned}
& g^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) g\left(f^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} f\left(g^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} g\left(f^{-1}\left(\left(n w_{p(i)}\right) f\left(\mu_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right)+ \\
& f^{-1}\left(\left(1 / \sum_{i=1}^{n} \delta_{i}\right) f\left(g^{-1}\left(\frac{1}{n!} \sum_{p \in P_{n}} g\left(f^{-1}\left(\sum_{i=1}^{n}\left(\delta_{i} f\left(g^{-1}\left(\left(n w_{p(i)}\right) g\left(v_{p(i)}\right)\right)\right)\right)\right)\right)\right)\right)\right) \leq 1
\end{aligned}
$$

That is, $\mu+v \leq 1$.
Now we need to prove that the inequality also holds when $q=2,3, \ldots$ Let $m=2,3, \ldots$. The purpose is transformed into proof of $\mu^{m}+v^{m} \leq 1$.
According to $\mu+v \leq 1$ and the binomial theorem, we can obtain

$$
(\mu+v)^{m}=\sum_{k=0}^{m}\left(C_{m}^{k} \mu^{m-k} v^{k}\right)=\mu^{m}+v^{m}+\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \leq 1
$$

Because $\mu \geq 0$ and $v \geq 0$, we have

$$
\sum_{k=1}^{m-1}\left(C_{m}^{k} \mu^{m-k} v^{k}\right) \geq 0
$$

Therefore, we can obtain $\mu^{m}+v^{m} \leq 1$. Now it can be concluded that $\mu^{q}+v^{q} \leq 1$ for $q=1,2,3, \ldots$.
Since we have proved $0 \leq \mu^{q}+v^{q} \leq 2$ and $\mu^{q}+v^{q} \leq 1$, we can obtain $0 \leq \mu^{q}+v^{q} \leq 1$.

