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q-Rung orthopair fuzzy number (qROFN) is a �exible and superior fuzzy information description tool which can provide stronger
expressiveness than intuitionistic fuzzy number and Pythagorean fuzzy number. Muirheadmean (MM) operator and its dual form
geometric MM (GMM) operator are two all-in-one aggregation operators for capturing the interrelationships of the aggregated
arguments because they are applicable in the cases in which all arguments are independent of each other, there are in-
terrelationships between any two arguments, and there are interrelationships among any three or more arguments. Archimedean
T-norm and T-conorm (ATT) are superior operations that can generate general and versatile operational rules to aggregate
arguments. To take advantage of qROFN, MM operator, GMM operator, and ATT in multicriteria group decision making
(MCGDM), an Archimedean MM operator, a weighted Archimedean MM operator, an Archimedean GMM operator, and a
weighted Archimedean GMM operator for aggregating qROFNs are presented to solve the MCGDM problems based on qROFNs
in this paper. �e properties of these operators are explored and their speci�c cases are discussed. On the basis of the presented
operators, a method for solving the MCGDM problems based on qROFNs is proposed. �e e�ectiveness of the proposed method
is demonstrated via a numerical example, a set of experiments, and qualitative and quantitative comparisons. �e demonstration
results suggest that the proposed method has satisfying generality and �exibility at aggregating q-rung orthopair fuzzy in-
formation and capturing the interrelationships of criteria and the attitudes of decision makers and is feasible and e�ective for
solving the MCGDM problems based on qROFNs.

1. Introduction

Multicriteria group decision making (MCGDM) or multi-
criteria group decision analysis is a process of �nding op-
timal alternatives in complex scenarios via synthetically
evaluating the values of multiple criteria of all alternatives
from a group of experts [1]. In this process, one of the
fundamental tasks is to accurately and e�ectively describe
the values of multiple criteria. For such description, there are
various available mathematical tools, where fuzzy set is one
of the most important and popular tools. To date, over

twenty di�erent types of fuzzy sets have been presented
within academia [2]. Among the presented fuzzy sets,
Zadeh’s fuzzy set (FS) [3] is a well-known type of fuzzy set
that quanti�es the satisfaction degree via a membership
degree whose range is [0, 1]. �e expressiveness of FS is
stronger enough for expressing the fuzzy information in
some applications. However, FS is incapable of describing
the complex fuzzy information that contains the dissatis-
faction and hesitancy degrees.

To describe complex fuzzy information, Atanassov [4]
presented the intuitionistic fuzzy set (IFS) theory. In this
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theory, an IFS has a membership degree and a non-
membership degree (both degrees and their sum are re-
stricted to [0, 1]), which can, respectively, quantify the
satisfaction and dissatisfaction degrees, and the hesitancy
degree is naturally obtained using one minus the sum of the
membership and nonmembership degrees. Because of such
expressiveness, IFSs have been widely used to express the
values of multiple criteria in MCGDM during the past few
decades. A variety of research topics about IFSs for
MCGDM, such as operational rules of intuitionistic fuzzy
numbers (IFNs) [5, 6], aggregation operators of IFNs [7–9],
intuitionistic preference relations [10, 11], intuitionistic
fuzzy calculus [12, 13], and multicriteria decision making
(MCDM) or MCGDMmethods based on IFSs [14–16], have
become hot topics in the research of MCGDM in this period.

Although IFSs have gained importance and popularity in
the field of MCGDM, their application is still limited by their
expressiveness. To be more specific, the sum of the mem-
bership and nonmembership degrees must be in [0, 1] in
IFSs. But in some practical applications, there may be some
values of criteria whose membership and nonmembership
degrees’ sum is greater than one. Such values cannot be
described via IFSs. To solve this issue, Yager [17] proposed
the Pythagorean fuzzy set (PFS) theory, in which the con-
dition is relaxed to the following: the sum of squares of the
membership and nonmembership degrees is restricted to [0,
1]. As a result, the values whose membership and non-
membership degrees’ sum is greater than one could be
expressed using PFSs. Because of stronger expressiveness
than IFSs, PFSs have also achieved a wide range of appli-
cations in MCGDM. A number of research topics regarding
PFSs for MCGDM, such as operational rules of Pythagorean
fuzzy numbers (PFNs) [18, 19], correlation and correlation
coefficient of PFSs [20], information measures of PFSs
[21–23], aggregation operators of PFNs [24–27], and
MCDM or MCGDM methods based on PFSs [28–30], have
received widespread attention during the past few years.

To further improve the expressiveness of PFSs, Yager
[31] presented the q-rung orthopair fuzzy set (qROFS)
theory, in which the condition is further relaxed to the
following: the sum of the q-th (q� 1, 2, 3, . . .) power of the
membership degree and the q-th power of the non-
membership degree is in [0, 1]. From this condition, it is not
difficult to find that qROFS is actually the generalization of
IFS and PFS since qROFS will reduce to IFS when q� 1 and
will reduce to PFS when q� 2. In addition, it can also be
found that as the value of the rung q increases, the ex-
pressiveness of qROFSs will continue to increase, which
provides more freedom for the quantification of fuzzy in-
formation. Due to such characteristic, qROFSs have also
received extensive attention in the field of MCGDM during
the past few years. Various research topics about qROFSs for
MCGDM, such as operational rules of q-rung orthopair
fuzzy numbers (qROFNs) (i.e., q-rung orthopair member-
ship grades) [32, 33], approximate reasoning in qROFSs
[34], aspects of qROFSs [35], correlation coefficient between
qROFSs [36], distance measures of qROFSs [37], and ag-
gregation operators of qROFNs [38–50], are gaining im-
portance and popularity within academia.

For solving MCGDM problems, there are usually two
ways. One way is to leverage traditional methods (e.g.,
TOPSIS, VIKOR, TODIM, ELECTRE, and PROMETHEE),
and the other way is to use aggregation operators [51–53]. In
general, aggregation operators can solve MCGDM problems
more effectively than traditional methods because they can
generate comprehensive values and rankings of alternatives,
while traditional methods can only provide rankings [42]. So
far, over twenty different aggregation operators of qROFNs
have been presented. Representative examples are the
weighted exponential (WE) operator presented by Peng et al.
[38], the weighted point (WP) operators presented by Xing
et al. [39], the weighted averaging (WA) operator and
weighted geometric (WG) operator presented by Liu and
Wang [40], the weighted Bonferroni mean (WBM) operator
and weighted geometric Bonferroni mean (WGBM) oper-
ator presented by Liu and Liu [41], the weighted Archi-
medean Bonferroni mean (WABM) operators presented by
Liu andWang [42], the weighted extended Bonferroni mean
(WEBM) operator presented by Liu et al. [43], the weighted
partitioned Bonferroni mean (WPBM) operator and
weighted partitioned geometric Bonferroni mean
(WPGBM) operator presented by Yang and Pang [44], the
weighted Heronian mean (WHM) operator and weighted
geometric Heronian mean (WGHM) operator presented by
Wei et al. [45], the WHM∗ operator (please note that this
operator is different from the WHM operator in [45] al-
though they have the same names) and weighted partitioned
Heronian mean (WPHM) operator presented by Liu et al.
[46], the weighted Maclaurin symmetric mean (WMSM)
operator and weighted geometric Maclaurin symmetric
mean (WGMSM) operator presented by Wei et al. [47], the
weighted power Maclaurin symmetric mean (WPMSM)
operator presented by Liu et al. [48], the weighted power
partitioned Maclaurin symmetric mean (WPPMSM) oper-
ator presented by Bai et al. [49], and the weighted Muirhead
mean (WMM) operator and weighted geometric Muirhead
mean (WGMM) operator presented by Wang et al. [50].
Each operator has its own features and application condi-
tions. However, there is not yet an operator that is both
versatile and flexible for capturing the interrelationships of
criteria and the attitudes of decision makers when solving
the MCGDM problems based on qROFNs.

In actual MCGDM problems, the interrelationships of
criteria and the attitudes of decision makers are likely to
change as the actual situation changes. An ideal aggregation
operator should provide desirable generality and flexibility
to adapt to these changes [42]. Among the aggregation
operators of qROFNs above, the WE, WP, WA, and WG
operators are only applicable for the qROFNs based
MCGDM problems where all criteria are independent of
each other. )e WBM, WGBM, WABM, WEBM, WPBM,
WPGBM, WHM, WGHM, WHM∗, and WPHM operators
are more general in capturing the interrelationships of
criteria than the WE,WP, WA, andWG operators. )ey can
be used to solve the problems in which there are no in-
terrelationships among criteria or there are interrelation-
ships between two criteria. )e WMSM, WGMSM,
WPMSM, WPPMSM, WMM, and WGMM operators are
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the most versatile in dealing with the interrelationships.
)ey are applicable for the problems where all criteria are
mutually independent or there are interrelationships be-
tween two or among more criteria. But their flexibility in
reflecting the attitudes of decision makers is limited because
the aggregations in these operators are based on the fixed
Algebraic T-norm and T-conorm operation. Based on this,
the motivations of this paper are summarized as follows:

(1) To develop aggregation operators of qROFNs that
are versatile in capturing the interrelationships of
criteria, the Muirhead mean (MM) and geometric
MM (GMM) operators [54] are introduced.)eMM
and GMM operators, which are the generalizations
of the generalized arithmetic averaging, generalized
geometric averaging, Bonferroni mean (BM), geo-
metric BM (GBM), Maclaurin symmetric mean
(MSM), and geometric MSM (GMSM) operators, are
two all-in-one aggregation operators for dealing with
the interrelationships of criteria because they are
suitable for the cases in which all criteria are in-
dependent of each other, there are interrelationships
between any two criteria, and there are in-
terrelationships among any multiple (more than
two) criteria [50, 55, 56].

(2) To improve the generality and flexibility in reflecting
decision makers’ attitudes of the aggregation oper-
ators, the Archimedean T-norm and T-conorm
(ATT) operations [57] are adopted to perform the
operations in them. )e ATT operations are im-
portant mathematical tools for constructing general
operational rules for fuzzy numbers. A fuzzy in-
formation aggregation operator based on them is
rather versatile and flexible for capturing the atti-
tudes of decision makers [42].

Based on the motivations above, the present paper
combines the MM and GMM operators with the ATT op-
erations under q-rung orthopair fuzzy environment to
construct Archimedean MM and GMM operators of
qROFNs for the MCGDM problems based on qROFNs. Due
to such combination, the constructed operators can achieve
satisfying generality and flexibility in capturing both the
interrelationships of criteria and the attitudes of decision
makers. )e major contributions of the paper are as follows:
(1) a q-rung orthopair fuzzy Archimedean MM (qRO-
FAMM) operator and a q-rung orthopair fuzzy weighted
Archimedean MM (qROFWAMM) operator are presented;
(2) a q-rung orthopair fuzzy Archimedean GMM (qRO-
FAGMM) operator and a q-rung orthopair fuzzy weighted
Archimedean GMM (qROFWAGMM) operator are pre-
sented; and (3) a MCGDM method based on the presented
operators is developed. Although there are already two
Muirhead aggregation operators of qROFNs (i.e., the WMM
and WGMM operators in [50]), the presented operators are
still of necessity because they are more general and flexible
than these two operators.)eWMM andWGMMoperators
are based on the Algebraic T-norm and T-conorm, one of
the many families of ATTs, while the Archimedean MM and

GMM operators can be applied to any families of ATTs and
theWMM andWGMMoperators are just their special cases,
respectively.

)e remainder of the paper is organized as follows. A
brief introduction of some related fundamental concepts is
provided Section 2. Sections 3, respectively, explains the
details of the presented Archimedean MM and GMM op-
erators. AMCGDMmethod based on the ArchimedeanMM
and GMM operators is designed in Section 4. Section 5
demonstrates and evaluates the presented operators and
designed method via a numerical example, a set of exper-
iments, and qualitative and quantitative comparisons. Sec-
tion 6 ends the paper with a conclusion.

2. Preliminaries

In this section, some prerequisites in the qROFS theory,
operational rules of qROFNs based on ATT, and MM and
GMM operators are briefly introduced to facilitate the
understanding of the present paper.

2.1. qROFS 4eory. qROFS [31] is the generalization of FS
[3], IFS [4], and PFS [17]. Its formal definition is as follows.

Definition 1 (see [31]). A qROFS S in a finite universe of
discourseX is S� {<x, μS(x), ]S(x)> | x∈X}, where μS:X⟶ [0,
1] is the membership degree of x∈X to S and ]S: X⟶ [0, 1]
is the nonmembership degree of x ∈X to S, such that
0≤ (μS(x))q + (]S(x))q ≤ 1 (q� 1, 2, 3, . . .). )e hesitancy
degree of x ∈X to S is πS(x) � (1 − (μS(x))q − (]S(x))q)1/q.

For convenience, a pair <μS(x), ]S(x)> is called a qROFN,
which is commonly simplified as Ξ�<μ, ]>. To compare two
qROFNs, their scores and accuracies are required, which can
be calculated according to the following definitions.

Definition 2 (see [40]). Let Ξ�<μ, ]> be a qROFN. )en its
score is S(Ξ)� μq − ]q. Obviously, − 1≤ S(Ξ)≤ 1.

Definition 3 (see [40]). Let Ξ�<μ, ]> be a qROFN. )en its
accuracy is A(Ξ)� μq+ ]q. Obviously, 0≤A(Ξ)≤ 1.

Using S(Ξ) and A(Ξ), two qROFNs can be compared via
the following definition.

Definition 4 (see [40]). Let Ξ1 �<μ1, ]1> andΞ2 �<μ2, ]2> be
any two qROFNs, S(Ξ1) and S(Ξ2) be, respectively, the scores
of Ξ1 and Ξ2, and A(Ξ1) and A(Ξ2) be, respectively, the
accuracies of Ξ1 and Ξ2. )en, (1) if S(Ξ1)> S(Ξ2), then
Ξ1>Ξ2; (2) if S(Ξ1)� S(Ξ2) and A(Ξ1)>A(Ξ2), then Ξ1>Ξ2;
and (3) if S(Ξ1)� S(Ξ2) and A(Ξ1)�A(Ξ2), then Ξ1 �Ξ2.

2.2. Operational Rules of qROFNs Based on ATT. Based on
ATT, a set of general and flexible operational rules of
qROFNs were presented in [42], which can be formally
defined as follows.

Definition 5 (see [42]). Let Ξ�<μ, ]>, Ξ1 �<μ1, ]1>, and
Ξ2 �<μ2, ]2> be any three qROFNs, and σ and τ be any two
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real numbers and σ, τ > 0. )en the sum, product, multi-
plication, and power operations of qROFNs based on the
Archimedean T-norm T(x, y)� f − 1(f(x) + f(y)) and its
T-conorm TC(x, y)� g− 1(g(x) +g(y)) can be, respectively,
defined as follows:

Ξ1 ⊕Ξ2 � 􏼊T
C μ1, μ2( 􏼁, T ]1, ]2( 􏼁􏼋

�〈g− 1
g μ1( 􏼁 + g μ2( 􏼁( 􏼁, f

− 1
f ]1( 􏼁 + f ]2( 􏼁( 􏼁􏼋,

(1)

Ξ1 ⊗Ξ2 � 􏼊T μ1, μ2( 􏼁, T
C ]1, ]2( 􏼁􏼋

� 􏼊f
− 1

f μ1( 􏼁 + f μ2( 􏼁( 􏼁, g
− 1

g ]1( 􏼁 + g ]2( 􏼁( 􏼁􏼋,

(2)

σΞ � 􏼊g
− 1

(σg(μ)), f
− 1

(σf(]))􏼋, (3)

Ξτ � 􏼊f
− 1

(τf(μ)), g
− 1

(τg(]))􏼋. (4)

2.3. MM and GMM Operators. )e MM operator was in-
troduced to aggregate crisp numbers by Muirhead [54]. It
has prominent characteristics in capturing the in-
terrelationships among multiple aggregated arguments and
providing a general form of a number of other aggregation
operators. )e formal definition of the MM operator is as
follows.

Definition 6 (see [54]). Let (Θ1,Θ2, . . .,Θn) be a collection of
crisp numbers, Δ� (δ1, δ2, . . ., δn) (where δ1, δ2, . . ., δn≥ 0
but not at the same time δ1 � δ2 � . . . � δn � 0) be a collection
of n real numbers, p(i) be a permutation of (1, 2, . . ., n), and
Pn be the set of all permutations of (1, 2, . . ., n). )en the
aggregation function,

MMΔ Θ1,Θ2, . . . ,Θn( 􏼁 �
1
n!

􏽘
p∈Pn

􏽙

n

i�1
Θδi

p(i)
⎞⎠

1/Σn
i�1δi

,⎛⎜⎝ (5)

is called the MM operator.
In this operator, whether the interrelationships are

considered depends on the values of δi (i� 1, 2, . . ., n): (1) if
δ1> 0 and δ2 � δ3 � . . . � δn � 0, then the interrelationships
are not considered; (2) if δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0,
then the interrelationships between two crisp numbers are
considered; and (3) if δ1, δ2, . . ., δk> 0 (k� 3, 4, . . ., n) and
δk+1 � δk+2 � . . . � δn � 0, then the interrelationships among k
crisp numbers are considered.

)e dual form of the MM operator is called the dual MM
or GMM operator. Its formal definition is as follows.

Definition 7 (see [55]). Let (Θ1,Θ2, . . .,Θn) be a collection of
crisp numbers, Δ� (δ1, δ2, . . ., δn) (where δ1, δ2, . . ., δn≥ 0
but not at the same time δ1 � δ2 � . . . � δn � 0) be a collection
of n real numbers, p(i) be a permutation of (1, 2, . . ., n), and
Pn be the set of all permutations of (1, 2, . . ., n). )en, the
aggregation function,

GMMΔ Θ1,Θ2, . . . ,Θn( 􏼁 �
1

􏽐
n
i�1δi

􏽙
p∈Pn

􏽘

n

i�1
δiΘp(i)􏼐 􏼑⎛⎝ ⎞⎠

1/n!

,

(6)

is called the GMM operator.
Similarly, in this operator, whether the interrelationships

are described also relies on the values of δi (i� 1, 2, . . ., n)
with the same cases as they are in the MM operator.

3. Archimedean Muirhead
Aggregation Operators

)is section consists of two subsections. In the first sub-
section, a qROFAMM operator and a qROFWAMM op-
erator are presented using the MM operator and the
operational rules of qROFNs based on ATT. )e properties
of these two operators are proved and their specific cases are
discussed. In the second subsection, the dual form of the
qROFAMM operator, i.e., a qROFAGMM operator, and the
dual form of the qROFWAMM operator, i.e., a qROF-
WAGMM operator, are presented using the GMM operator
and the operational rules of qROFNs based on ATT. )e
properties of these two operators are explored and their
specific cases are discussed.

3.1. Archimedean MM Operators

3.1.1. qROFAMM Operator. A qROFAMM operator is a
MM operator for aggregating qROFNs, in which the sum,
product, multiplication, and power operations are per-
formed using the operational rules of qROFNs based on
ATT. Its formal definition is as follows.

Definition 8. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . ., n)
be a collection of n qROFNs (q� 1, 2, 3, . . .), Δ� (δ1, δ2, . . .,
δn) (δ1, δ2, . . ., δn≥ 0 but not at the same time
δ1 � δ2 � . . . � δn � 0) be a collection of n real numbers, p(i)
be a permutation of (1, 2, . . ., n), Pn be the set of all per-
mutations of (1, 2, . . ., n), Ξi ⊕ Ξj and Ξi⊗Ξj (i, j� 1, 2, . . ., n)
be, respectively, the sum and product operations of Ξi and Ξj
based on ATT, and σΞr and Ξτs (r, s� 1, 2, . . ., n; σ, τ > 0) be,
respectively, the multiplication operation of Ξr and the
power operation of Ξs based on ATT. )en, the aggregation
function,

qROFAMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 �
1
n!
⊕

p∈Pn

⊗ni�1 Ξ
δi

p(i)􏼒 􏼓􏼠 􏼡

1/Σn
i�1δi

,

(7)

is called the qROFAMM operator.
According to equations (1)‒(4) and (7), the following

theorem is obtained.

Theorem 1. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . ., n)
be a collection of n qROFNs (q� 1, 2, 3, . . .). 4en
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qROFAMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪f
− 1 1

􏽐
n
i�1δi

f g
− 1 1

n!
􏽘

p∈Pn

g f
− 1

􏽘

n

i�1
δif μp(i)􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

g
− 1 1

􏽐
n
i�1δi

g f
− 1 1

n!
􏽘

p∈Pn

f g
− 1

􏽘

n

i�1
δig ]p(i)􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫,

(8)

and qROFAMMΔ(Ξ1, Ξ2, . . ., Ξn) is still a qROFN.

For the details of the proof of this theorem, please refer to
Appendix A. )e following three theorems, respectively,
state the idempotency, monotonicity, and boundedness of
the qROFAMM operator:

Theorem 2 (idempotency). Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>,
i� 1, 2, . . ., n) be a collection of n qROFNs (q� 1, 2, 3, . . .). If
Ξi �Ξ�<μ, ]> for all i� 1, 2, . . ., n, then qROFAMMΔ(Ξ1, Ξ2,
. . ., Ξn)�Ξ.

Theorem 3 (monotonicity). Let (Ξ1,1, Ξ1,2, . . ., Ξ1,n)
(Ξ1,i �<μ1,i, ]1,i>, i� 1, 2, . . ., n) and (Ξ2,1, Ξ2,2, . . ., Ξ2,n)
(Ξ2,i �<μ2,i, ]2,i>) be two collections of n qROFNs (q� 1, 2, 3,
. . .). If μ1,i≥ μ2,i and ]1,i≤ ]2,i for all i� 1, 2, . . ., n, then
qROFAMMΔ(Ξ1,1, Ξ1,2, . . ., Ξ1,n)≥ qROFAMMΔ(Ξ2,1, Ξ2,2,
. . ., Ξ2,n).

Theorem 4 (boundedness). Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi,
]i>, i � 1, 2, . . ., n) be a collection of n qROFNs (q � 1, 2, 3,
. . .), ΞUB �<max(μi), min(]i)>, and ΞLB �<min(μi),
max(]i)>. 4en ΞLB ≤ qROFAMMΔ(Ξ1, Ξ2, . . ., Ξn) ≤ΞUB.

For the details of the proofs of these three theorems,
please refer to Appendixes B–D, respectively.

Equation (8) is a generalized form of the qROFAMM
operator. If specific values are assigned to q and δ1, δ2, . . ., δn
and specific forms are assigned to f, then specific operators
can be obtained:

(1) If q� 1, then the qROFAMM operator will reduce to
an intuitionistic fuzzy Archimedean MM operator.

(2) If q� 2, then the qROFAMM operator will reduce to
a Pythagorean fuzzy Archimedean MM operator.

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFAMM operator will reduce to a q-rung
orthopair fuzzy Archimedean generalized arithmetic
averaging operator.

(4) If δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0, then the
qROFAMM operator will reduce to the q-rung
orthopair fuzzy Archimedean BM operator pre-
sented by Liu and Wang [42].

(5) If δ1 � δ2 � . . . � δk � 1 and δk+1 � δk+2 � . . . � δn � 0,
then the qROFAMM operator will reduce to a
q-rung orthopair fuzzy ArchimedeanMSMoperator.

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROFAMM
operator will reduce to a q-rung orthopair fuzzy

Archimedean generalized geometric averaging
operator.

(7) If f(t)� − Intq, then g(t) � − In(1 − tq), f − 1(t)� (e− t)1/q,
and g− 1(t)� (1 − e− t)1/q. According to equation (8),
a q-rung orthopair fuzzy Archimedean Algebraic MM
(qROFAAMM) operator is constructed as follows:

qROFAAMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

� 􏼪 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
μqδi

p(i)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

,

1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − ]q

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

􏼫.

(9)

)is operator is actually the q-rung orthopair fuzzy
MM operator presented by Wang et al. [50]. It has
the following special cases:

(1) If q� 1, then the qROFAAMM operator will
reduce to

􏼪 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
μδi

p(i)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σni�1δi

,

1 − 1 − 􏽙
p∈Pn

1 − 􏽙

n

i�1
1 − ]p(i)􏼐 􏼑

δi⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

􏼫,

(10)

which is the intuitionistic fuzzy MM operator
presented by Liu and Li [55].

(2) If q� 2, then the qROFAAMM operator will
reduce to

􏼪 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
μ2δi

p(i)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

,

1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − ]2p(i)􏼐 􏼑

δi⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

􏼫,

(11)

which is the Pythagorean fuzzy MM operator
presented by Zhu and Li [56].

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFAAMM operator will reduce to
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􏼪 1 − 􏽙
n

i�1
1 − μqδ

i􏼐 􏼑⎛⎝ ⎞⎠

1/n

⎛⎝ ⎞⎠

1/δ

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

, 1 − 1 − 􏽙
n

i�1
1 − 1 − ]q

i( 􏼁
δ

􏼒 􏼓⎛⎝ ⎞⎠

1/n

⎛⎝ ⎞⎠

1/δ

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

􏼫, (12)

which is a q-rung orthopair fuzzy generalized
arithmetic averaging operator.

(4) If δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0, then the
qROFAAMM operator will reduce to

〈 1 − 􏽙
n

i,j�1
j≠i

1 − μqδ1
i μqδ2

j􏼐 􏼑
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

, 1 − 1 − 􏽙
n

i,j�1
j≠i

1 − 1 − ]q
i( 􏼁

δ1 1 − ]q
j􏼐 􏼑

δ2
􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

〉,

(13)

which is the q-rung orthopair fuzzy Archime-
dean Algebraic BM operator presented by Liu
and Wang [42].

(5) If δ1 � δ2 � . . . � δk � 1 and δk+1 � δk+2 � . . . �

δn � 0, then the qROFAAMM operator will re-
duce to

􏼪⎛⎝􏼠1 − 􏽙
n

1≤i1<...<ik≤n
􏼠1 − 􏽙

k

j�1
μq

ij
􏼡

k!(n− k)!/n!

􏼡

1/k
⎞⎠

1/q

, ⎛⎝1 − 􏼠1 − 􏽙
n

1≤i1<...<ik≤n
􏼠1 − 􏽙

k

j�1
1 − ]q

ij
􏼒 􏼓􏼡

k!(n− k)!/n!

􏼡

1/k
⎞⎠

1/q

􏼫,

(14)

which is the q-rung orthopair fuzzy MSM op-
erator presented by Wei et al. [47] and Liu et al.
[48].

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROFAAMM
operator will reduce to

􏼪 1 − 1 − 􏽙
n

i�1
1 − 1 − μq

i( 􏼁
δ

􏼒 􏼓
1/n

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

1/q

,

1 − 􏽙
n

i�1
1 − ]qδ

i􏼐 􏼑
1/n

⎛⎝ ⎞⎠

1/δ

⎛⎜⎝ ⎞⎟⎠

1/q

􏼫,

(15)

which is a q-rung orthopair fuzzy generalized
geometric averaging operator.

(7) If f(t)� In[(2 − tq)/tq], then g(t) � In[(1 + tq)/
(1 − tq)], f − 1(t)� [2/(et+1)]1/q, and g− 1(t)�

[(et − 1)/(et+1)]1/q. According to equation (8), a
q-rung orthopair fuzzy Archimedean Einstein
MM (qROFAEMM) operator is constructed as
follows:

qROFAEMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

� 􏼪
2 μ′ − 1( 􏼁

1/ Σn
i�1δi( )

μ′ + 3( 􏼁
1/ Σn

i�1δi( )
+ μ′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

,

]′ + 3( 􏼁
1/ Σn

i�1δi( )
− ]′ − 1( 􏼁

1/ Σn
i�1δi( )

]′ + 3( 􏼁
1/ Σn

i�1δi( )
+ ]′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

􏼫,

(16)

where

μ′ � 􏽙
p∈Pn

􏽑
n
i�1 2 − μq

p(i)􏼒 􏼓/μq

p(i)􏼒 􏼓
δi

+ 3

􏽑
n
i�1 2 − μq

p(i)􏼒 􏼓/μq

p(i)􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽑
n
i�1 1 + ]q

p(i)􏼒 􏼓/ 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
δi

+ 3

􏽑
n
i�1 1 + ]q

p(i)􏼒 􏼓/ 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(17)
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(8) If f(t)� In{[λ+ (1 − λ)tq]/tq} (λ> 0), then g(t) �

In{[λ+ (1 − λ)(1 − tq)]/(1 − tq)}, f − 1(t)� [λ/(et+
λ − 1)]1/q, and g− 1(t)� [(et − 1)/(et+ λ − 1)]1/q.
According to equation (8), a q-rung orthopair
fuzzy Archimedean Hamacher MM (qRO-
FAHMM) operator is constructed as follows:

qROFAHMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

� 􏼪
λ μ′ − 1( 􏼁

1/ Σni�1δi( )

μ′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
+(λ − 1) μ′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

,

]′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
− ]′ − 1( 􏼁

1/ Σn
i�1δi( )

]′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
+(λ − 1) ]′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

􏼫,

(18)

where

μ′ � 􏽙
p∈Pn

􏽑
n
i�1 λ+(1 − λ)μq

p(i)􏼒 􏼓/μq

p(i)􏼒 􏼓
δi

+λ2 − 1

􏽑
n
i�1 λ+(1 − λ)μq

p(i)􏼒 􏼓/μq

p(i)􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽑
n
i�1 λ+(1 − λ) 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓/ 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
δi

+λ2 − 1

􏽑
n
i�1 λ+(1 − λ) 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓/ 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(19)

(9) If f(t)� − In[(ε − 1)/(εy − 1)] (y� tq; ε> 1), then
g(t) � − In[(ε − 1)/(ε1− y − 1)], f − 1(t)� {logε[(ε −

1 + e− t)/e− t]}1/q, and g− 1(t)� {1 − logε[(ε − 1 + e− t)
/e− t]}1/q. According to equation (8), a q-rung
orthopair fuzzy Archimedean Frank MM
(qROFAFMM) operator is constructed as
follows:

qROFAFMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

� 􏼪 logε 1 +
εμ″ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1)1/ Σ
n
i�1δi( )− 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

,

1 − logε 1 +
ε1− ]″ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1)1/ Σ
n
i�1δi( )− 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

􏼫,

(20)

where

μ″ � 1 − logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ ε1− μ′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ ε1− μ′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑

1/n!
,

]″ � logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ ε]′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ ε]′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑

1/n!
,

μ′ � logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ εμ

q

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

􏽑
n
i�1 (ε − 1)/ εμ

q

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

,

]′ � 1 − logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ ε1− ]q

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

􏽑
n
i�1 (ε − 1)/ ε1− ]q

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

.

(21)

3.1.2. qROFWAMM Operator. )e qROFAMM operator
has advantages in having desirable generality and flexibility
and capturing the interrelationships among multiple ag-
gregated qROFNs. But it does not consider the relative
importance of each aggregated qROFN. To make up for this
deficiency, weights are introduced and a qROFWAMM
operator is presented. )e formal definition of the presented
operator is as follows.

Definition 9. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . ., n)
be a collection of n qROFNs (q� 1, 2, 3, . . .), Δ� (δ1, δ2, . . .,
δn) (δ1, δ2, . . ., δn≥ 0 but not at the same time
δ1 � δ2 � . . . � δn � 0) be a collection of n real numbers, p(i)
be a permutation of (1, 2, . . ., n), Pn be the set of all per-
mutations of (1, 2, . . ., n), Ξi ⊕ Ξj and Ξi⊗Ξj (i, j� 1, 2, . . ., n)
be, respectively, the sum and product operations of Ξi and Ξj
based on ATT, σΞr and Ξτs (r, s� 1, 2, . . ., n; σ, τ > 0) be,
respectively, the multiplication operation of Ξr and the
power operation of Ξs based on ATT, and w1, w2, . . ., wn be,
respectively, the weights of Ξ1, Ξ2, . . ., Ξn such that 0≤w1,
w2, . . ., wn ≤ 1 and w1 +w2 + . . .+wn � 1. )en, the aggre-
gation function

qROFWAMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

�
1
n!
⊕

p∈Pn

⊗ni�1 nwp(i)􏼐 􏼑Ξp(i)􏼐 􏼑
δi

􏼠 􏼡

1/Σn
i�1δi , (22)

is called the qROFWAMM operator.
According to equations (1)‒(4) and (22), the following

theorem is obtained.

Theorem 5. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . ., n)
be a collection of n qROFNs (q� 1, 2, 3, . . .). 4en
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qROFWAMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

� 􏼪f
− 1 1

􏽐
n
i�1δi

f g
− 1 1

n!
􏽘

p∈Pn

g f
− 1

􏽘

n

i�1
δif g

− 1
nwp(i)􏼐 􏼑g μp(i)􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

g
− 1 1

􏽐
n
i�1δi

g f
− 1 1

n!
􏽘

p∈Pn

f g
− 1

􏽘

n

i�1
δig f

− 1
nwp(i)􏼐 􏼑f ]p(i)􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫,

(23)

and qROFWAMMΔ(Ξ1, Ξ2, . . ., Ξn) is still a qROFN.

For the details of the proof of this theorem, please refer to
Appendix E. In addition, it is similar to prove that the
qROFWAMM operator has the properties of monotonicity
and boundedness (Please note that the qROFWAMM op-
erator no longer has idempotency).

Like equation (8), equation (23) is a generalized form of
the qROFWAMM operator. If specific values are assigned to
q and δ1, δ2, . . ., δn and specific forms are assigned to f, then
specific operators can be obtained:

(1) If q� 1, then the qROFWAMM operator will reduce
to an intuitionistic fuzzy weighted Archimedean
MM operator.

(2) If q� 2, then the qROFWAMM operator will reduce
to a Pythagorean fuzzy weighted Archimedean MM
operator.

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFWAMM operator will reduce to a q-rung

orthopair fuzzy weighted Archimedean generalized
arithmetic averaging operator.

(4) If δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0, then the
qROFAMM operator will reduce to the q-rung
orthopair fuzzy weighted Archimedean BM operator
presented by Liu and Wang [42].

(5) If δ1 � δ2 � . . . � δk � 1 and δk+1 � δk+2 � . . . � δn � 0,
then the qROFWAMM operator will reduce to a
q-rung orthopair fuzzy weighted ArchimedeanMSM
operator.

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROFWAMM
operator will reduce to a q-rung orthopair fuzzy
weighted Archimedean generalized geometric av-
eraging operator.

(7) If f(t)� − Intq, then g(t) � − In(1 − tq), f − 1(t)� (e− t)1/q,
and g− 1(t) � (1 − e− t)1/q. According to equation (23),
a q-rung orthopair fuzzy weighted Archimedean
Algebraic MM (qROFWAAMM) operator is con-
structed as follows:

qROFWAAMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓
δi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

,

1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − ]qnwp(i)

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

􏼫.

(24)

)is operator is actually the q-rung orthopair fuzzy
weighted MM operator presented by Wang et al. [50]. It has
the following special cases:

(1) If q� 1, then the qROFWAAMM operator will re-
duce to

􏼪 1 − 􏽙
p∈Pn

1 − 􏽙

n

i�1
1 − 1 − μp(i)􏼐 􏼑

nwp(i)
􏼐 􏼑

δi⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

, 1 − 1 − 􏽙
p∈Pn

1 − 􏽙

n

i�1
1 − ]nwp(i)

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

􏼫, (25)

which is the intuitionistic fuzzy weighted MM op-
erator presented by Liu and Li [55].

(2) If q� 2, then the qROFWAAMM operator will re-
duce to
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􏼪 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − 1 − μ2p(i)􏼐 􏼑

nwp(i)
􏼐 􏼑

δi⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

, 1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − ]2nwp(i)

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

􏼫, (26)

which is the Pythagorean fuzzy weighted MM op-
erator presented by Zhu and Li [56].

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFWAAMM operator will reduce to

􏼪 1 − 􏽙
n

i�1
1 − 1 − 1 − μq

i( 􏼁
nwi􏼐 􏼑

δ
􏼒 􏼓⎛⎝ ⎞⎠

1/n

⎛⎝ ⎞⎠

1/δ

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

, 1 − 1 − 􏽙
n

i�1
1 − 1 − ]qnwi

i( 􏼁
δ

􏼒 􏼓⎛⎝ ⎞⎠

1/n

⎛⎝ ⎞⎠

1/δ

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

􏼫, (27)

which is a q-rung orthopair fuzzy weighted gener-
alized arithmetic averaging operator.

(4) If δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0, then the
qROFWAAMM operator will reduce to

􏼪 1 − 􏽙
n

i,j�1

j≠i

1 − 1 − 1 − μq
i( 􏼁

nwi􏼐 􏼑
δ1 1 − 1 − μq

j􏼐 􏼑
nwj

􏼐 􏼑
δ2

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

,

1 − 1 − 􏽙
n

i,j�1

j≠i

1 − 1 − ]qnwi

i( 􏼁
δ1 1 − ]qnwj

j􏼐 􏼑
δ2

􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n(n− 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

􏼫,

(28)

which is the q-rung orthopair fuzzy weighted
Archimedean Algebraic BM operator presented by
Liu and Wang [42].

(5) If δ1 � δ2 � . . . � δk � 1 and δk+1 � δk+2 � . . . � δn � 0,
then the qROFAAMM operator will reduce to

􏼪 1 − 􏽙
n

1≤i1<...<ik≤n
1 − 􏽙

k

j�1
1 − 1 − μq

ij
􏼒 􏼓

nwij

􏼒 􏼓⎛⎝ ⎞⎠

k!(n− k)!/n!

⎛⎜⎝ ⎞⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

,

1 − 1 − 􏽙

n

1≤i1<...<ik≤n
1 − 􏽙

k

j�1
1 − ]

qnwij

ij
􏼒 􏼓⎛⎝ ⎞⎠

k!(n− k)!/n!

⎛⎜⎝ ⎞⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

􏼫,

(29)

which is the q-rung orthopair fuzzy weighted MSM
operator presented byWei et al. [47] and Liu et al. [48].

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROFWAAMM
operator will reduce to
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􏼪⎛⎝1 − 􏼠1 − 􏽙
n

i�1
1 − 1 − μqnwi

i( 􏼁
δ

􏼒 􏼓
1/n

􏼡

1/δ
⎞⎠

1/q

, ⎛⎝⎛⎝1 − 􏽙
n

i�1
1 − 1 − 1 − ]q

i( 􏼁
nwi􏼐 􏼑

δ
􏼒 􏼓

1/n
⎞⎠

1/δ

⎞⎠

1/q

􏼫,
(30)

which is a q-rung orthopair fuzzy weighted gener-
alized geometric averaging operator.

(7) If f(t)� In[(2 − tq)/tq], then g(t) � In[(1 + tq)/(1 − tq)],
f − 1(t)� [2/(et+1)]1/q, and g− 1(t)� [(et − 1)/(et+1)]1/q.

According to equation (23), a q-rung orthopair fuzzy
weighted Archimedean Einstein MM (qROF-
WAEMM) operator is constructed as follows:

qROFWAEMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪
2 μ′ − 1( 􏼁

1/ Σn
i�1δi( )

μ′ + 3( 􏼁
1/ Σn

i�1δi( )
+ μ′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

,
]′ + 3( 􏼁

1/ Σn
i�1δi( )

− ]′ − 1( 􏼁
1/ Σn

i�1δi( )

]′ + 3( 􏼁
1/ Σn

i�1δi( )
+ ]′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

􏼫,

(31)

where

μ′ � 􏽙
p∈Pn

􏽑
n
i�1 1 + μq

p(i)􏼒 􏼓
nwp(i)

+ 3 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓/ 1 + μq

p(i)􏼒 􏼓
nwp(i)

− 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓􏼒 􏼓
δi

+ 3

􏽑
n
i�1 1 + μq

p(i)􏼒 􏼓
nwp(i)

+ 3 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓/ 1 + μq

p(i)􏼒 􏼓
nwp(i)

− 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽑
n
i�1 2 − ]q

p(i)􏼒 􏼓
nwp(i)

+ 3]qnwp(i)

p(i)􏼒 􏼓/ 2 − ]q

p(i)􏼒 􏼓
nwp(i)

− ]qnwp(i)

p(i)􏼒 􏼓􏼒 􏼓
δi

+ 3

􏽑
n
i�1 2 − ]q

p(i)􏼒 􏼓
nwp(i)

+ 3]qnwp(i)

p(i)􏼒 􏼓/ 2 − ]q

p(i)􏼒 􏼓
p(i)

− ]qnwp(i)

p(i)􏼠 􏼡􏼠 􏼡

δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(32)

(8) If f(t)� In{[λ+ (1 − λ)tq]/tq} (λ> 0), then g(t) � In
{[λ+ (1 − λ)(1 − tq)]/(1 − tq)}, f − 1(t)� [λ/(et+ λ − 1)]1/q,
and g− 1(t)� [(et − 1)/(et+ λ − 1)]1/q. According to

equation (23), a q-rung orthopair fuzzy weighted
Archimedean Hamacher MM (qROFWAHMM) op-
erator is constructed as follows:

qROFWAHMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪 λ μ′ − 1( 􏼁
1/ Σni�1δi( )

μ′ + λ2 − 1􏼐 􏼑
1/ Σni�1δi( )

+(λ − 1) μ′ − 1( 􏼁
1/ Σn

i�1δi( )
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

,

]′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
− ]′ − 1( 􏼁

1/ Σn
i�1δi( )

]′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
+(λ − 1) ]′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

􏼫,

(33)

where
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μ′ � 􏽙
p∈Pn

􏽑
n
i�1 λ +(1 − λ) 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓/ λ +(1 − λ) 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

− 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓
δi

+ λ2 − 1

􏽑
n
i�1 λ +(1 − λ) 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓/ λ +(1 − λ) 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

− 1 − μq

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽑
n
i�1 λ +(1 − λ)]q

p(i)􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑]
qnwp(i)

p(i)􏼒 􏼓/ λ +(1 − λ)]q

p(i)􏼒 􏼓
nwp(i)

− ]qnwp(i)

p(i)􏼒 􏼓􏼒 􏼓
δi

+ λ2 − 1

􏽑
n
i�1 λ +(1 − λ)]q

p(i)􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑]
qnwp(i)

p(i)􏼒 􏼓/ λ +(1 − λ)]q

p(i)􏼒 􏼓
nwp(i)

− ]qnwp(i)

p(i)􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(34)

(9) If f(t)� − In[(ε − 1)/(εy − 1)] (y� tq; ε> 1), then
g(t)�− In[(ε − 1)/(ε1− y − 1)], f − 1(t)�{logε[(ε − 1+e− t)/
e− t]}1/q, and g− 1(t)�{1 − logε[(ε − 1+e− t)/e− t]}1/q.

According to equation (23), a q-rung orthopair fuzzy
weighted Archimedean Frank MM (qROF-
WAFMM) operator is constructed as follows:

qROFWAFMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

� 􏼪 logε 1 +
(ε − 1) εμ‴ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1)1/ Σ
n
i�1δi( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

, 1 − logε 1 +
(ε − 1) ε1− ]‴ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1)1/ Σ
n
i�1δi( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

􏼫,

(35)

where

μ‴ � 1 − logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ ε1− μ″ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ ε1− μ″ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑

1/n!
,

]‴ � logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ ε]″ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ ε]″ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑

1/n!
,

μ″ � logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ εμ′ − 1􏼐 􏼑􏼐 􏼑

δi

􏽑
n
i�1 (ε − 1)/ εμ′ − 1􏼐 􏼑􏼐 􏼑

δi
,

]″ � 1 − logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ ε1− ]′ − 1􏼐 􏼑􏼐 􏼑

δi

􏽑
n
i�1 (ε − 1)/ ε1− ]′ − 1􏼐 􏼑􏼐 􏼑

δi
,

μ′ � 1 − logε 1 +
ε1− μq

p(i) − 1􏼒 􏼓
nwp(i)

(ε − 1)nwp(i)− 1
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

]′ � logε 1 +
ε]

q

p(i) − 1􏼒 􏼓
nwp(i)

(ε − 1)nwp(i)− 1
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(36)

3.2. Archimedean GMM Operators

3.2.1. qROFAGMM Operator. A qROFAGMM operator is a
GMM operator for aggregating qROFNs, in which the sum,
product, multiplication, and power operations are per-
formed using the operational rules of qROFNs based on
ATT. Its formal definition is as follows.

Definition 10. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . .,
n) be a collection of n qROFNs (q� 1, 2, 3, . . .), Δ� (δ1, δ2,
. . ., δn) (δ1, δ2, . . ., δn≥ 0 but not at the same time
δ1 � δ2 � . . . � δn � 0) be a collection of n real numbers, p(i)
be a permutation of (1, 2, . . ., n), Pn be the set of all per-
mutations of (1, 2, . . ., n), Ξi ⊕ Ξj and Ξi⊗Ξj (i, j� 1, 2, . . ., n)
be, respectively, the sum and product operations of Ξi and Ξj
based on ATT, and σΞr and Ξτs (r, s� 1, 2, . . ., n; σ, τ > 0) be,
respectively, the multiplication operation of Ξr and the
power operation of Ξs based on ATT. )en the aggregation
function

qROFAGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 �
1
Σni�1δi

⊗
p∈Pn

⊕
n

i�1
δiΞp(i)􏼐 􏼑􏼠 􏼡

1/n!

,

(37)

is called the qROFAGMM operator.
According to equations (1)‒(4) and (37), the following

theorem is obtained.

Theorem 6. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . ., n)
be a collection of n qROFNs (q� 1, 2, 3, . . .). 4en
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qROFAGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪g
− 1 1

􏽐
n
i�1δi

g f
− 1 1

n!
􏽘

p∈Pn

f g
− 1

􏽘

n

i�1
δig μp(i)􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

f
− 1 1

􏽐
n
i�1δi

f g
− 1 1

n!
􏽘

p∈Pn

g f
− 1

􏽘

n

i�1
δif ]p(i)􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫,

(38)

and qROFAGMMΔ(Ξ1, Ξ2, . . ., Ξn) is still a qROFN.

For the details of the proof of this theorem, please refer to
Appendix F. )e following three theorems, respectively,
state the idempotency, monotonicity, and boundedness of
the qROFAGMM operator.

Theorem 7 (idempotency). Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>,
i� 1, 2, . . ., n) be a collection of n qROFNs (q� 1, 2, 3, . . .). If
Ξi �Ξ�<μ, ]> for all i� 1, 2, . . ., n, then qROFAGMMΔ(Ξ1,
Ξ2, . . ., Ξn)�Ξ.

Theorem 8 (monotonicity). Let (Ξ1,1, Ξ1,2, . . ., Ξ1,n)
(Ξ1,i �<μ1,i, ]1,i>, i� 1, 2, . . ., n) and (Ξ2,1, Ξ2,2, . . ., Ξ2,n)
(Ξ2,i �<μ2,i, ]2,i>) be two collections of n qROFNs (q� 1, 2, 3,
. . .). If μ1,i≥ μ2,i and ]1,i≤ ]2,i for all i� 1, 2, . . ., n, then
qROFAGMMΔ(Ξ1,1, Ξ1,2, . . ., Ξ1,n)≥ qROFAGMMΔ(Ξ2,1,
Ξ2,2, . . ., Ξ2,n).

Theorem 9 (boundedness). Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi,
]i>, i � 1, 2, . . ., n) be a collection of n qROFNs (q � 1, 2, 3,
. . .), ΞUB �<max(μi), min(]i)>, and ΞLB �<min(μi),
max(]i)>. 4en ΞLB ≤ qROFAGMMΔ(Ξ1, Ξ2, . . ., Ξn) ≤ΞUB.

For the details of the proofs of these three theorems,
please refer to Appendixes G–I, respectively.

Equation (38) is a generalized form of the qROFAGMM
operator. If specific values are assigned to q and δ1, δ2, . . ., δn
and specific forms are assigned to f, then specific operators
can be obtained:

(1) If q� 1, then the qROFAGMM operator will reduce
to an intuitionistic fuzzy Archimedean GMM
operator.

(2) If q� 2, then the qROFAGMM operator will reduce
to a Pythagorean fuzzy Archimedean GMM
operator.

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFAGMM operator will reduce to a q-rung
orthopair fuzzy Archimedean generalized geometric
averaging operator.

(4) If δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0, then the
qROFAGMM operator will reduce to a q-rung
orthopair fuzzy Archimedean GBM operator.

(5) If δ1 � δ2 � . . . � δk � 1 and δk+1 � δk+2 � . . . � δn � 0,
then the qROFAGMM operator will reduce to a
q-rung orthopair fuzzy Archimedean GMSM
operator.

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROFAGMM
operator will reduce to a q-rung orthopair fuzzy
Archimedean generalized arithmetic averaging
operator.

(7) If f(t)� − Intq, then g(t) � − In(1 − tq), f − 1(t)� (e− t)1/q,
and g− 1(t)� (1 − e− t)1/q. According to equation (38),
a q-rung orthopair fuzzy Archimedean Algebraic
GMM (qROFAAGMM) operator is constructed as
follows:

qROFAAGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪 1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − μq

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σni�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

,

1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
]qδi

p(i)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

􏼫.

(39)

)is operator is actually the q-rung orthopair fuzzy
GMM operator presented by Wang et al. [50]. It has the
following special cases:

(1) If q� 1, then the qROFAAGMMoperator will reduce
to

􏼪1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − μp(i)􏼐 􏼑

δi⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

,

1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
]δi

p(i)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

􏼫,

(40)
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which is the intuitionistic fuzzy GMM operator
presented by Liu and Li [55].

(2) If q� 2, then the qROFAAGMMoperator will reduce
to

􏼪 1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − μ2p(i)􏼐 􏼑

δi⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

, 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
]2δi

p(i)
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

􏼫, (41)

which is the Pythagorean fuzzy GMM operator
presented by Zhu and Li [56].

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFAAGMM operator will reduce to the operator
in equation (15).

(4) If δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0, then the
qROFAAGMM operator will reduce to

􏼪 1 − 1 − 􏽙
n

i,j�1
j≠i

1 − 1 − μq
i( 􏼁

δ1 1 − μq
j􏼐 􏼑

δ2
􏼒 􏼓

1/n(n− 1)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

, 1 − 􏽙
n

i,j�1
j≠i

1 − ]qδ1
i ]qδ2

j􏼐 􏼑
1/n(n− 1)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

􏼫,
(42)

which is a q-rung orthopair fuzzy Archimedean
Algebraic GBM operator.

(5) If δ1 � δ2 � . . . � δk � 1 and δk+1 � δk+2 � . . . � δn � 0,
then the qROFAAGMM operator will reduce to

􏼪 1 − 1 − 􏽙
n

1≤i1<···<ik≤n
1 − 􏽙

k

j�1
1 − μq

ij
􏼒 􏼓⎛⎝ ⎞⎠

k!(n− k)!/n!

⎛⎜⎝ ⎞⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

, 1 − 􏽙
n

1≤i1<···<ik≤n
1 − 􏽙

k

j�1
]q

ij
⎛⎝ ⎞⎠

k!(n− k)!/n!

⎛⎜⎝ ⎞⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

􏼫, (43)

which is the q-rung orthopair fuzzy GMSM operator
presented by Wei et al. [47].

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROFAAGMM
operator will reduce to the operator in equation (12).

(7) If f(t)� In[(2 − tq)/tq], then g(t) � In[(1 + tq)/(1 − tq)],
f − 1(t)� [2/(et+1)]1/q, and g− 1(t)� [(et − 1)/(et+1)]1/q.
According to equation (38), a q-rung orthopair fuzzy
Archimedean Einstein GMM (qROFAEGMM) oper-
ator is constructed as follows:

qROFAEGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪
μ′ + 3( 􏼁

1/ Σn
i�1δi( )

− μ′ − 1( 􏼁
1/ Σn

i�1δi( )

μ′ + 3( 􏼁
1/ Σn

i�1δi( )
+ μ′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

,
2Σ ]′ − 1( 􏼁

1/ Σn
i�1δi( )

]′ + 3( 􏼁
1/ Σn

i�1δi( )
+ ]′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

􏼫,

(44)
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where

μ′ � 􏽙
p∈Pn

􏽑
n
i�1 1 + μq

p(i)􏼒 􏼓/ 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
δi

+ 3

􏽑
n
i�1 1 + μq

p(i)􏼒 􏼓/ 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽑
n
i�1 2 − ]q

p(i)􏼒 􏼓/]q

p(i)􏼒 􏼓
δi

+ 3

􏽑
n
i�1 2 − ]q

p(i)􏼒 􏼓/]q

p(i)􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(45)

(8) If f(t)� In{[λ+ (1 − λ)tq]/tq} (λ> 0), then g(t) � In
{[λ+ (1 − λ)(1 − tq)]/(1 − tq)}, f − 1(t)� [λ/(et+ λ − 1)]1/q,
and g− 1(t)� [(et − 1)/(et+ λ − 1)]1/q. According to
equation (38), a q-rung orthopair fuzzy Archimedean
Hamacher GMM (qROFAHGMM) operator is con-
structed as follows:

qROFAHGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪
μ′ + λ2 − 1􏼐 􏼑

1/ Σn
i�1δi( )

− μ′ − 1( 􏼁
1/ Σn

i�1δi( )

μ′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
+(λ − 1) μ′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

,

λ ]′ − 1( 􏼁
1/ Σni�1δi( )

]′ + λ2 − 1􏼐 􏼑
1/ Σni�1δi( )

+(λ − 1) ]′ − 1( 􏼁
1/ Σni�1δi( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

􏼫,

(46)

where

μ′ � 􏽙
p∈Pn

􏽑
n
i�1 λ +(1 − λ) 1 − μq

p(i)􏼒 􏼓􏼒 􏼓/ 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
δi

+ λ2 − 1

􏽑
n
i�1 λ +(1 − λ) 1 − μq

p(i)􏼒 􏼓􏼒 􏼓/ 1 − μq

p(i)􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽑
n
i�1 λ +(1 − λ)]q

p(i)􏼒 􏼓/]q

p(i)􏼒 􏼓
δi

+ λ2 − 1

􏽑
n
i�1 λ +(1 − λ)]q

p(i)􏼒 􏼓/]q

p(i)􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(47)

(9) If f(t)� − In[(ε − 1)/(εy − 1)] (y� tq; ε> 1), then
g(t)�− In[(ε − 1)/(ε1− y − 1)], f − 1(t)�{logε[(ε − 1+e− t)/
e− t]}1/q, and g− 1(t)�{1 − logε[(ε − 1+e− t)/e− t]}1/q.

According to equation (38), a q-rung orthopair fuzzy
Archimedean Frank GMM (qROFAFGMM) oper-
ator is constructed as follows:

qROFAFGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪 1 − logε 1 +
ε1− μ″ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1) 1/ Σn
i�1δi( )( )− 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

, logε 1 +
ε]″ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1) 1/ Σn
i�1δi( )( )− 1

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

􏼫,

(48)
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where

μ″ � logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ εμ′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ εμ′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑

1/n!
,

]″ � 1 − logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ ε1− ]′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ ε1− ]′ − 1􏼐 􏼑􏼐 􏼑􏼐 􏼑

1/n!
,

μ′ � 1 − logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ ε1− μq

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

􏽑
n
i�1 (ε − 1)/ ε1− μq

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

,

]′ � logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ ε]

q

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

􏽑
n
i�1 (ε − 1)/ ε]

q

p(i) − 1􏼒 􏼓􏼒 􏼓
δi

.

(49)

3.2.2. qROFWAGMM Operators. )e qROFAGMM oper-
ator has advantages in having desirable generality and
flexibility and capturing the interrelationships among
multiple aggregated qROFNs. But it does not consider the
relative importance of each aggregated qROFN. To make up
for this deficiency, weights are introduced and a

qROFWAGMMoperator is presented.)e formal definition
of the presented operator is as follows:

Definition 11. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . .,
n) be a collection of n qROFNs (q� 1, 2, 3, . . .), Δ� (δ1, δ2,
. . ., δn) (δ1, δ2, . . ., δn≥ 0 but not at the same time
δ1 � δ2 � . . . � δn � 0) be a collection of n real numbers, p(i)
be a permutation of (1, 2, . . ., n), Pn be the set of all per-
mutations of (1, 2, . . ., n), Ξi ⊕ Ξj and Ξi⊗Ξj (i, j� 1, 2, . . ., n)
be, respectively, the sum and product operations of Ξi and Ξj
based on ATT, σΞr and Ξτs (r, s� 1, 2, . . ., n; σ, τ > 0) be,
respectively, the multiplication operation of Ξr and the
power operation of Ξs based on ATT, and w1, w2, . . ., wn be,
respectively, the weights of Ξ1, Ξ2, . . ., Ξn such that 0≤w1,
w2, . . ., wn ≤ 1 and w1 +w2 + . . .+wn � 1. )en the aggre-
gation function,

qROFWAGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁

�
1

􏽐
n
i�1δi

⊗
p∈Pn

⊕
n

i�1
δiΞ

nwp(i)

p(i)􏼒 􏼓􏼠 􏼡

1/n!

,

(50)

is called the qROFWAGMM operator.
According to equations (1)‒(4) and (50), the following

theorem is obtained.

Theorem 10. Let (Ξ1, Ξ2, . . ., Ξn) (Ξi �<μi, ]i>, i� 1, 2, . . .,
n) be a collection of n qROFNs (q� 1, 2, 3, . . .). 4en

qROFWAGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪g
− 1 1

􏽐
n
i�1δi

g f
− 1 1

n!
􏽘

p∈Pn

f g
− 1

􏽘

n

i�1
δig f

− 1
nwp(i)􏼐 􏼑f μp(i)􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠,

f
− 1 1

􏽐
n
i�1δi

f g
− 1 1

n!
􏽘

p∈Pn

g f
− 1

􏽘

n

i�1
δif g

− 1
nwp(i)􏼐 􏼑g ]p(i)􏼐 􏼑􏼐 􏼑􏼐 􏼑􏼐 􏼑⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎛⎝ ⎞⎠􏼫,

(51)

and qROFWAGMMΔ(Ξ1, Ξ2, . . ., Ξn) is still a qROFN.

For the details of the proof of this theorem, please refer to
Appendix J. In addition, it is similar to prove that the
qROFWAGMMoperator has the properties of monotonicity
and boundedness (please note that the qROFWAGMM
operator no longer has idempotency).

Like equation (38), equation (51) is a generalized form of
the qROFWAGMM operator. If specific values are assigned
to q and δ1, δ2, . . ., δn and specific forms are assigned to f,
then specific operators can be constructed:

(1) If q� 1, then the qROFWAGMM operator will re-
duce to an intuitionistic fuzzy weighted Archime-
dean GMM operator.

(2) If q� 2, then the qROFWAGMM operator will re-
duce to a Pythagorean fuzzy weighted Archimedean
GMM operator.

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFWAGMM operator will reduce to a q-rung
orthopair fuzzy weighted Archimedean generalized
geometric averaging operator.

(4) If δ1, δ2> 0 and δ3� δ4� . . . � δn� 0, then the
qROFWAGMM operator will reduce to a q-rung
orthopair fuzzy weighted ArchimedeanGBMoperator.

(5) If δ1� δ2� . . . � δk� 1 and δk+1� δk+2� . . . � δn� 0,
then the qROFWAGMM operator will reduce to a
q-rung orthopair fuzzy weighted Archimedean GMSM
operator.

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROFWAGMM
operator will reduce to a q-rung orthopair fuzzy
weighted Archimedean generalized arithmetic av-
eraging operator.

(7) If f(t)� − Intq, then g(t) � − In(1 − tq), f − 1(t)� (e− t)1/q,
and g− 1(t)� (1 − e− t)1/q. According to equation (51), a
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q-rung orthopair fuzzy weighted Archimedean Al-
gebraic GMM (qROFWAAGMM) operator is con-
structed as follows:

qROFWAAGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪 1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − μqnwp(i)

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σni�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

,

1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓
δi

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σni�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

􏼫.

(52)

)is operator is actually the q-rung orthopair fuzzy
weighted GMM operator presented by Wang et al. [50]. It
has the following special cases:

(1) If q� 1, then the qROFWAAGMM operator will
reduce to

〈1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − μnwp(i)

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

, 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − 1 − ]p(i)􏼐 􏼑

nwp(i)
􏼐 􏼑

δi⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σn
i�1δi

〉,
(53)

which is the intuitionistic fuzzy weighted GMM
operator presented by Liu and Li [55].

(2) If q� 2, then the qROFWAAGMM operator will
reduce to

〈 1 − 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − μ2nwp(i)

p(i)􏼒 􏼓
δi

⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σni�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

, 1 − 􏽙
p∈Pn

1 − 􏽙
n

i�1
1 − 1 − ]2p(i)􏼐 􏼑

nwp(i)
􏼐 􏼑

δi⎛⎝ ⎞⎠

1/n!

⎛⎜⎝ ⎞⎟⎠

1/Σni�1δi

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/2

〉,

(54)

which is the Pythagorean fuzzy weighted GMM
operator presented by Zhu and Li [56].

(3) If δ1 � δ > 0 and δ2 � δ3 � . . . � δn � 0, then the
qROFWAAGMM operator will reduce to the op-
erator in equation (30).

(4) If δ1, δ2> 0 and δ3 � δ4 � . . . � δn � 0, then the
qROFWAAGMM operator will reduce to

〈 1 − 1 − 􏽙
n

i,j�1
j≠i

1 − 1 − μqnwi

i( 􏼁
δ1 1 − μqnwj

j􏼐 􏼑
δ2

􏼒 􏼓
1/n(n− 1)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

,

1 − 􏽙
n

i,j�1
j≠i

1 − 1 − 1 − ]q
i( 􏼁

nwi􏼐 􏼑
δ1 1 − 1 − ]q

j􏼐 􏼑
nwj

􏼐 􏼑
δ2

􏼒 􏼓
n(n− 1)⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/ δ1+δ2( )
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/q

〉,

(55)
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which is a q-rung orthopair fuzzy weighted Archi-
medean Algebraic GBM operator.

(5) If δ1 � δ2 � . . . � δk � 1 and δk+1 � δk+2 � . . . � δn � 0,
then the qROFWAAGMM operator will reduce to

􏼪 1 − 1 − 􏽙
n

1≤i1<...<ik≤n
1 − 􏽙

k

j�1
1 − μ

qnwij

ij
􏼒 􏼓⎛⎝ ⎞⎠

k!(n− k)!

⎛⎜⎝ ⎞⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

, 1 − 􏽙
n

1≤i1<...<ik≤n
1 − 􏽙

k

j�1
1 − 1 − ]q

ij
􏼒 􏼓

nwij

􏼒 􏼓⎛⎝ ⎞⎠

k!(n− k)!/n!

⎛⎜⎝ ⎞⎟⎠

1/k

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

1/q

􏼫,

(56)

which is the q-rung orthopair fuzzy weighted GMSM
operator presented by Wei et al. [47].

(6) If δ1 � δ2 � . . . � δn � δ > 0, then the qROF-
WAAGMM operator will reduce to the qROFW-
GAA operator in equation (27).

(7) If f(t)� In[(2 − tq)/tq], then g(t) � In[(1 + tq)/(1 − tq)],
f − 1(t)� [2/(et+1)]1/q, and g− 1(t)� [(et − 1)/(et+ 1)]1/
q. According to equation (51), a q-rung orthopair
fuzzy weighted Archimedean Einstein GMM
(qROFWAEGMM) operator is constructed as
follows:

qROFWAEGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪
μ′ + 3( 􏼁

1/ Σn
i�1δi( )

− μ′ − 1( 􏼁
1/ Σn

i�1δi( )

μ′ + 3( 􏼁
1/ Σn

i�1δi( )
+ μ′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

,
2 ]′ − 1( 􏼁

1/ Σn
i�1δi( )

]′ + 3( 􏼁
1/ Σn

i�1δi( )
+ ]′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎝ ⎞⎠

1/q

􏼫,

(57)

where

μ′ � 􏽙
p∈Pn

􏽑
n
i�1 2 − μq

p(i)􏼒 􏼓
nwp(i)

+ 3μqnwp(i)

p(i)􏼒 􏼓/ 2 − μq

p(i)􏼒 􏼓
nwp(i)

− μqnwp(i)

p(i)􏼒 􏼓􏼒 􏼓
δi

+ 3

􏽑
n
i�1 2 − μq

p(i)􏼒 􏼓
nwp(i)

+ 3μqnwp(i)

p(i)􏼒 􏼓/ 2 − μq

p(i)􏼒 􏼓
nwp(i)

− μqnwp(i)

p(i)􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽑
n
i�1 1 + ]q

p(i)􏼒 􏼓
nwp(i)

+ 3 1 − ]q

p(i)􏼒 􏼓
p(i)

􏼠 􏼡/ 1 + ]q

p(i)􏼒 􏼓
nwp(i)

− 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓􏼠 􏼡

δi

+ 3

􏽑
n
i�1 1 + ]q

p(i)􏼒 􏼓
nwp(i)

+ 3 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓/ 1 + ]q

p(i)􏼒 􏼓
nwp(i)

− 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(58)

(8) If f(t)� In{[λ+ (1 − λ)tq]/tq} (λ> 0), then g(t) � In
{[λ+ (1− λ)(1 − tq)]/(1 − tq)}, f − 1(t)� [λ/(et+ λ − 1)]1/q,
and g− 1(t)� [(et − 1)/(et+ λ − 1)]1/q. According to

equation (51), a q-rung orthopair fuzzy weighted
Archimedean Hamacher GMM (qROFWAHGMM)
operator is constructed as follows:

qROFWAHGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪
μ′ + λ2 − 1􏼐 􏼑

1/ Σn
i�1δi( )

− μ′ − 1( 􏼁
1/ Σn

i�1δi( )

μ′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
+(λ − 1) μ′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

,

λ ]′ − 1( 􏼁
1/ Σn

i�1δi( )

]′ + λ2 − 1􏼐 􏼑
1/ Σn

i�1δi( )
+(λ − 1) ]′ − 1( 􏼁

1/ Σn
i�1δi( )

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

1/q

􏼫,

(59)

where
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μ′ � 􏽙
p∈Pn

􏽙
n

i�1 λ +(1 − λ)μq

p(i)􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑μ
qnwp(i)

p(i)􏼒 􏼓/ λ +(1 − λ)μq

p(i)􏼒 􏼓
nwp(i)

− μqnwp(i)

p(i)􏼒 􏼓􏼒 􏼓
δi

+ λ2 − 1

􏽙
n

i�1 λ +(1 − λ)μq

p(i)􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑μ
qnwp(i)

p(i)􏼒 􏼓/ λ +(1 − λ)μq

p(i)􏼒 􏼓
nwp(i)

− μqnwp(i)

p(i)􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

,

]′ � 􏽙
p∈Pn

􏽙
n

i�1 λ +(1 − λ) 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓/ λ +(1 − λ) 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

− 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓􏼒 􏼓
δi

+ λ2 − 1

􏽙
n

i�1 λ +(1 − λ) 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

+ λ2 − 1􏼐 􏼑 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓/ λ +(1 − λ) 1 − ]q

p(i)􏼒 􏼓􏼒 􏼓
nwp(i)

− 1 − ]q

p(i)􏼒 􏼓
nwp(i)

􏼒 􏼓􏼒 􏼓
δi

− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1/n!

.

(60)

(9) If f(t)� − In[(ε − 1)/(εy − 1)] (y� tq; ε>1), then
g(t) � − In[(ε − 1)/(ε1− y − 1)], f − 1(t)� {logε[(ε − 1+ e− t)/
e− t]}1/q, and g− 1(t)� {1 − logε[(ε − 1+ e− t)/e− t]}1/q.

According to equation (51), a q-rung orthopair fuzzy
weighted Archimedean Frank GMM (qROF-
WAFGMM) operator is constructed as follows:

qROFWAFGMMΔ Ξ1,Ξ2, . . . ,Ξn( 􏼁 � 􏼪 1 − logε 1 +
(ε − 1) ε1− μ‴ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1)1/ Σ
n
i�1δi( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

, logε 1 +
(ε − 1) ε]‴ − 1􏼐 􏼑

1/ Σn
i�1δi( )

(ε − 1)1/ Σ
n
i�1δi( )

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

1/q

􏼫,

(61)

where

μ‴ � logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ εμ″ − 1􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ εμ″ − 1􏼐 􏼑􏼐 􏼑

1/n!
,

]‴ � 1 − logε
ε − 1 + 􏽑p∈Pn

(ε − 1)/ ε1− ]″ − 1􏼐 􏼑􏼐 􏼑
1/n!

􏽑p∈Pn
(ε − 1)/ ε1− ]″ − 1􏼐 􏼑􏼐 􏼑

1/n!
,

μ″ � 1 − logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ ε1− μ′ − 1􏼐 􏼑􏼐 􏼑

δi

􏽑
n
i�1 (ε − 1)/ ε1− μ′ − 1􏼐 􏼑􏼐 􏼑

δi
,

]″ � logε
ε − 1 + 􏽑

n
i�1 (ε − 1)/ ε]′ − 1􏼐 􏼑􏼐 􏼑

δi

􏽑
n
i�1 (ε − 1)/ ε]′ − 1􏼐 􏼑􏼐 􏼑

δi
,

μ′ � logε 1 +
εμ

q

p(i) − 1􏼒 􏼓
nwp(i)

(ε − 1)nwp(i)− 1
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,

]′ � 1 − logε 1 +
ε1− ]q

p(i) − 1􏼒 􏼓
nwp(i)

(ε − 1)nwp(i)− 1
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠.

(62)

4. MCGDM Method

In this section, a MCGDM method based on the qROF-
WAMM operator and the qROFWAGMM operator is
proposed to solve theMCGDMproblems based on qROFNs.

Generally, a MCGDMproblem based on qROFNs can be
described via a set of alternatives A� {A1, A2, . . ., Am}, a set
of criteria C� {C1, C2, . . ., Cn}, a vector of weights of criteria
w� [w1, w2, . . ., wn] (0≤w1, w2, . . ., wn ≤ 1,
w1 +w2 + . . .+wn � 1, and each element, respectively, stands
for the relative importance of the criteria C1, C2, . . ., Cn), a
set of experts E� {E1, E2, . . ., EN}, a vector of weights of
experts ˆ � [ϖ1, ϖ2, . . ., ϖN] (0≤ϖ1, ϖ2, . . ., ϖN≤ 1,
ϖ1 +ϖ2+ . . .+ϖN � 1, and each element, respectively, stands
for the relative importance of the expert E1, E2, . . ., EN), and
N q-rung orthopair fuzzy decision matrices Mk � [Ξk,i,j]m×n
(k� 1, 2, . . ., N; i� 1, 2, . . ., m; j� 1, 2, . . ., n; Ξk,i,j �<μk,i,j,
]k,i,j> is a qROFN that stands for the evaluation value of
criterion Cj with respect to alternative Ai provided by expert
Ek). Based on these components, the MCGDM problem can
be described as follows: determining the optimal alternative
with the help of a ranking of the elements of A based onMk,
w, and ˆ. Using the qROFWAMM operator or the
qROFWAGMM operator, the problem is solved according
to the following steps:

(1) Normalize the q-rung orthopair fuzzy decision
matrices. In general, a MCGDM problem may
contain two different types of criteria, i.e., benefit and
cost criteria. )ey affect the aggregation results
positively and negatively, respectively. To eliminate
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such effects, the q-rung orthopair fuzzy decision
matrices Mk � [Ξk,i,j]m×n are normalized as

MN,k �
〈μk,i,j, ]k,i,j〉􏽨 􏽩

m×n
, if Cj is a benefit criterion,

〈]k,i,j,μk,i,j〉􏽨 􏽩
m×n

, if Cj isa cost criterion.

⎧⎪⎨

⎪⎩

(63)

(2) Calculate the collective evaluation value of each
criterion of each alternative. Taking the normalized
q-rung orthopair fuzzy decision matrices MN,k and
the expert weight vector ˆ as input, the collective
evaluation value of criterion Cj of alternative Ai is
computed using the following equation:

Ξi,j �〈μi,j, ]i,j〉 � qROFWAMMΔ

· Ξ1,i,j,Ξ2,i,j, . . . ,ΞN,i,j􏼐 􏼑,
(64)

or

Ξi,j �〈μi,j, ]i,j〉 � qROFWAGMMΔ

· Ξ1,i,j,Ξ2,i,j, . . . ,ΞN,i,j􏼐 􏼑,
(65)

where qROFWAMM is an arbitrary specific
qROFWAMM operator, such as the qROFWAAMM
operator in equation (24), the qROFWAEMM op-
erator in equation (31), the qROFWAHMMoperator
in equation (33), and the qROFWAFMMoperator in
equation (35); qROFWAGMM is an arbitrary spe-
cific qROFWAGMM operator, such as the qROF-
WAAGMM operator in equation (52), the
qROFWAEGMM operator in equation (57), the
qROFWAHGMM operator in equation (59), and the
qROFWAFGMM operator in equation (61); and the
values of the elements in Δ� (δ1, δ2, . . ., δn) are
determined via judging whether the evaluation re-
sults of all experts are mutually independent, there
are interrelationships between the evaluation results
of any two experts, or there are interrelationships
among the evaluation results of any three or more
experts. Generally, the evaluation results of all ex-
perts should be independent. )erefore, δ1> 0 and
δ2 � δ3 � . . . � δn � 0.

(3) Establish a collective q-rung orthopair fuzzy decision
matrix. According to the collective evaluation value
of each criterion of each alternative Ξi,j, the collective
q-rung orthopair fuzzy decision matrix is established
as M� [Ξi,j]m×n.

(4) Calculate the collective overall preference of each al-
ternative. Taking the collective q-rung orthopair fuzzy
decision matrixM and the criterion weight vector w as
input, the collective overall preference of alternative Ai
is computed using the following equation:

Ξi �〈μi, ]i〉 � qROFWAMMΔ Ξi,1,Ξi,2, . . . ,Ξi,n􏼐 􏼑,

(66)

or

Ξi �〈μi, ]i〉 � qROFWAGMMΔ Ξi,1,Ξi,2, . . . ,Ξi,n􏼐 􏼑,

(67)

where qROFWAMM is the same specific qROF-
WAMM operator used in equation (64), qROF-
WAGMM is the same specific qROFWAGMM
operator used in equation (65), and the values of
the elements in Δ� (δ1, δ2, . . ., δn) are determined
via judging whether all criteria are mutually in-
dependent, there are interrelationships between
any two criteria, or there are interrelationships
among any three or more criteria. When all cri-
teria are mutually independent, then δ1 > 0 and
δ2 � δ3 � . . . � δn � 0; when there are in-
terrelationships between any two criteria, δ1,
δ2 > 0 and δ3 � δ4 � . . . � δn � 0; and when there are
interrelationships among any r (r � 3, 4, . . ., n)
criteria, δ1, δ2, . . ., δr > 0 and δr+1 �

δr+2 � . . . � δn � 0.
(5) Calculate the score and accuracy of the collective

overall preference of each alternative. )e score and
accuracy of the collective overall preference of al-
ternative Ai is, respectively, computed using the
equations in Definitions 2 and 3.

(6) Generate a ranking of all alternatives and determine
the optimal one. On the basis of the scores and
accuracies of the collective overall preferences of all
alternatives, a ranking of these alternatives can be
generated according to the comparison rules in
Definition 4. )e optimal alternative is determined
with the help of the ranking.

5. Example, Experiments, and Comparisons

In this section, a numerical example is firstly leveraged to
illustrate the working process of the proposed MCGDM
method. )en a set of experiments are carried out to ex-
plore the effects of different specific operators and different
parameter values on the aggregation results. Finally,
qualitative and quantitative comparisons between the
proposed method and some existing methods are made to
demonstrate the feasibility and effectiveness of the pro-
posed method.

5.1. Example. A numerical example about the determination
of the best company for investment from five possible
companies (cited from Reference [58]) is used to demon-
strate the proposed MCGDM method. In this example, the
five possible companies are A1, A2, A3, A4, and A5. )ere are
four determination criteria of these companies, which are
the risk analysis (C1), the growth analysis (C2), the social-
political impact analysis (C3), and the environmental impact
analysis (C4). )e relative importance of these criteria is
measured by the weight vector w� [0.2, 0.1, 0.3, 0.4]. )e
evaluation group consists of three different experts E1, E2,
and E3 whose relative importance is quantified by the weight
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vectorˆ � [0.35, 0.40, 0.25]. To providemore freedom in the
evaluation of the values of the four criteria of each company,
experts were allowed to use qROFNs. )e evaluation results
of the three experts are, respectively, given in the following
three matrices:

M1 �

<0.5, 0.4> <0.5, 0.3> <0.2, 0.6> <0.4, 0.4>

<0.7, 0.3> <0.7, 0.3> <0.6, 0.2> <0.6, 0.2>

<0.5, 0.4> <0.6, 0.4> <0.6, 0.2> <0.5, 0.3>

<0.8, 0.2> <0.7, 0.2> <0.4, 0.2> <0.5, 0.2>

<0.4, 0.3> <0.4, 0.2> <0.4, 0.5> <0.4, 0.6>

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M2 �

<0.4, 0.5> <0.6, 0.2> <0.5, 0.4> <0.5, 0.3>

<0.5, 0.4> <0.6, 0.2> <0.6, 0.3> <0.7, 0.3>

<0.4, 0.5> <0.3, 0.5> <0.4, 0.4> <0.2, 0.6>

<0.5, 0.4> <0.7, 0.2> <0.4, 0.4> <0.6, 0.2>

<0.6, 0.3> <0.7, 0.2> <0.4, 0.2> <0.7, 0.2>

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M3 �

<0.4, 0.2> <0.5, 0.2> <0.5, 0.3> <0.5, 0.2>

<0.5, 0.3> <0.5, 0.3> <0.6, 0.2> <0.7, 0.2>

<0.4, 0.4> <0.3, 0.4> <0.4, 0.3> <0.3, 0.3>

<0.5, 0.3> <0.5, 0.3> <0.3, 0.5> <0.5, 0.2>

<0.6, 0.2> <0.6, 0.4> <0.4, 0.4> <0.6, 0.3>

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(68)

With the q-rung orthopair fuzzy decision matrices M1, M2,
andM3, the expert weight vector ˆ, and the criterion weight
vector w, the determination of the best company for in-
vestment can be carried out using the proposed MCGDM
method. )e process of the determination consists of the
following six steps:

(i) Normalize the q-rung orthopair fuzzy decision
matrices. Since the four criteria are all benefit cri-
teria, normalization is not required. In other words,
each normalized q-rung orthopair fuzzy decision
matrix MN,k (k� 1, 2, 3) is equal to Mk, i.e.,
MN,k �Mk.

(ii) Calculate the collective evaluation value of each
criterion of each company. Taking MN,k and ˆ as
input, the collective evaluation value of Cj (j� 1, 2, 3,
4) of Ai (i� 1, 2, 3, 4, 5) can be computed according
to equation (64) or equation (65). Without loss of
generality, the qROFWAHMM operator in equa-
tion (33) and the qROFWAHGMM operator in

equation (59) (it is worth nothing that if λ� 1 and
λ� 2, the Hamacher operators will reduce to the
Algebraic and Einstein operators, respectively) are,
respectively, used in equations (64) and (65).

(a) When the qROFWAHMM operator (it is as-
sumed that the evaluation results of the three
experts are independent. )erefore, Δ is
assigned as Δ� (δ1, δ2, δ3)� (1, 0, 0). Further, λ
and q are, respectively, assigned as λ� 3 and
q� 1) is used, the computed results are as
follows:
Ξ1,1 �<0.4359, 0.3748>, Ξ1,2 �<0.5415, 0.2313>,
Ξ1,3 �<0.3994, 0.4357>, and Ξ1,4 �<0.4659,
0.3024>
Ξ2,1 �<0.5774, 0.3376>, Ξ2,2 �<0.6149, 0.2561>,
Ξ2,3 �<0.6000, 0.2361>, and Ξ2,4 �<0.6673,
0.2361>
Ξ3,1 �<0.4359, 0.4385>, Ξ3,2 �<0.4127, 0.4385>,
Ξ3,3 �<0.4745, 0.2952>, and Ξ3,4 �<0.3331,
0.4052>
Ξ4,1 �<0.6270, 0.2952>, Ξ4,2 �<0.6562, 0.2220>,
Ξ4,3 �<0.3754, 0.3385>, and Ξ4,4 �<0.5415,
0.2000>
Ξ5,1 �<0.5348, 0.2719>, Ξ5,2 �<0.5815, 0.2403>,
Ξ5,3 �<0.4000, 0.3356>, and Ξ5,4 �<0.5815,
0.3374>

(b) When the qROFWAHGMM operator (Δ� (δ1,
δ2, δ3)� (1, 0, 0), λ� 3, and q� 1) is used, the
computed results are as follows:
Ξ1,1�<0.4335, 0.3929>, Ξ1,2�<0.5391, 0.2350>,
Ξ1,3�<0.3730, 0.4511>, and Ξ1,4�<0.4636, 0.3106>
Ξ2,1 �<0.5673, 0.3404>, Ξ2,2 �<0.6084, 0.2600>,
Ξ2,3 �<0.6000, 0.2400>, and Ξ2,4 �<0.6646,
0.2400>
Ξ3,1 �<0.4335, 0.4409>, Ξ3,2 �<0.3909, 0.4409>,
Ξ3,3 �<0.4652, 0.3057>, and Ξ3,4 �<0.3118,
0.4283>
Ξ4,1 �<0.6006, 0.3057>, Ξ4,2 �<0.6481, 0.2250>,
Ξ4,3 �<0.3731, 0.3575>, and Ξ4,4 �<0.5391,
0.2000>
Ξ5,1 �<0.5255, 0.2750>, Ξ5,2 �<0.5632, 0.2505>,
Ξ5,3 �<0.4000, 0.3582>, and Ξ5,4 �<0.5632,
0.3741>

(iii) Establish a collective q-rung orthopair fuzzy de-
cision matrix. According to the calculated Ξi,j, the
collective q-rung orthopair fuzzy decision matrix
can be established:

(a) When qROFWAHMM is used, the collective
q-rung orthopair fuzzy decision matrix is as
follows:
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MMM �

<0.4359, 0.3748> <0.5415, 0.2313> <0.3994, 0.4357> <0.4659, 0.3024>

<0.5774, 0.3376> <0.6149, 0.2561> <0.6000, 0.2361> <0.6673, 0.2361>

<0.4359, 0.4385> <0.4127, 0.4385> <0.4745, 0.2952> <0.3331, 0.4052>

<0.6270, 0.2952> <0.6562, 0.2220> <0.3754, 0.3385> <0.5415, 0.2000>

<0.5348, 0.2719> <0.5815, 0.2403> <0.4000, 0.3356> <0.5815, 0.3374>

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (69)

(b) When qROFWAHGMM is used, the collective
q-rung orthopair fuzzy decision matrix is as
follows:

MGMM �

<0.4335, 0.3929> <0.5391, 0.2350> <0.3730, 0.4511> <0.4636, 0.3106>
<0.5673, 0.3404> <0.6084, 0.2600> <0.6000, 0.2400> <0.6646, 0.2400>
<0.4335, 0.4409> <0.3909, 0.4409> <0.4652, 0.3057> <0.3118, 0.4283>
<0.6006, 0.3057> <0.6481, 0.2250> <0.3731, 0.3575> <0.5391, 0.2000>
<0.5255, 0.2750> <0.5632, 0.2505> <0.4000, 0.3582> <0.5632, 0.3741>

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (70)

(iv) Calculate the collective overall preference of each
company. Taking MMM or MGMM and w as input,
the collective overall preference of Ai can be
computed according to equation (66) or (67). Since
qROFWAHMM and qROFWAHGMM are, re-
spectively, used in the second step, they are, re-
spectively, used in equations (66) and (67) to
calculate the collective overall preference of Ai:

(a) When qROFWAHMM (it is assumed that there
are interrelationships among the four criteria.
)erefore, Δ is assigned as Δ� (δ1, δ2, δ3,
δ4)� (1, 2, 3, 4). Further, λ and q are, re-
spectively, assigned as λ� 3 and q� 1) is used,
the computed results are as follows:
Ξ1 �<0.4424, 0.3722>, Ξ2 �<0.5991, 0.2999>,
Ξ3 �<0.4030, 0.3995>, Ξ4 �<0.5170, 0.3065>,
and Ξ5 �<0.5047, 0.3299>

(b) When qROFWAHGMM (Δ� (δ1, δ2, δ3,
δ4)� (1, 2, 3, 4), λ� 3, and q� 1) is used, the
computed results are as follows:
Ξ1 �<0.4493, 0.3558>, Ξ2 �<0.6213, 0.2601>,
Ξ3 �<0.4179, 0.3903>, Ξ4 �<0.5235, 0.2670>,
and Ξ5 �<0.5121, 0.3274>

(v) Calculate the score and accuracy of the collective
overall preference of each company. According to
the calculated Ξi, the score and accuracy of the
collective overall preference of Ai can be computed
using the equations in Definitions 2 and 3:

(a) When qROFWAHMM is used, the score and
accuracy of Ξi are, respectively, as follows:

S(Ξ1)� 0.0702, S(Ξ2)� 0.2992, S(Ξ3)� 0.0034,
S(Ξ4)� 0.2105, and S(Ξ5)� 0.1748
A(Ξ1)� 0.8146, A(Ξ2)� 0.8990, A(Ξ3)� 0.8025,
A(Ξ4)� 0.8235, and A(Ξ5)� 0.8346

(b) When qROFWAHGMM is used, the score and
accuracy of Ξi are, respectively, as follows:
S(Ξ1)� 0.0934, S(Ξ2)� 0.3612, S(Ξ3)� 0.0276,
S(Ξ4)� 0.2565, and S(Ξ5)� 0.1847

A(Ξ1)� 0.8051, A(Ξ2)� 0.8814, A(Ξ3)� 0.8082,
A(Ξ4)� 0.7905, and A(Ξ5)� 0.8394

(vi) Generate a ranking of all companies and determine
the optimal one. On the basis of the calculated S(Ξi)
and A(Ξi), a ranking of the five companies can be
generated according to the comparison rules in
Definition 4:

(a) When qROFWAHMM is used, the generated
ranking is A2≻A4≻A5≻A1≻A3

(b) When qROFWAHGMM is used, the generated
ranking is A2≻A4≻A5≻A1≻A3

With the help of the generated ranking, the optimal
company is determined as company A2.

5.2. Experiments. To explore the effect of using different
groups of specific operators and assigning different values to
parameters on the aggregation results, the following four
experiments were carried out.

5.2.1. Experiment 1. It was carried out to show the influence
of the use of different groups of specific operators on the
aggregation results. In this experiment,MNk (k� 1, 2, 3), ˆ,
and w in the example were used as the input of the presented
eight groups of Archimedean Muirhead aggregation oper-
ators (when adapting the eight groups of operators, Δ� (δ1,
δ2, δ3)� (1, 0, 0) (for equation (64) or equation (65)), Δ� (δ1,
δ2, δ3, δ4)� (1, 2, 3, 4) (for equation (66) or equation (67)),
λ� ε� 3, and q� 1). )e results of the experiment are the
calculated scores of the collective overall preferences of the
five companies and the generated rankings of the five
companies, which are listed in Table 1. As can be seen from
the table, there are slight differences among the scores of
the same company calculated by the four groups of
weighted ArchimedeanMM operators or the four groups of
weighted Archimedean GMM operators. But the scores of
each group of GMM operators are obviously greater than
the scores of the corresponding group of MM operators.
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)is indicates that the GMM operators tend to provide
optimistic expectations, while the MM operators tend to
generate pessimistic results relatively. Nevertheless, the
rankings remain the same with respect to the eight groups
of specific operators. )is suggests that the use of different
groups of specific operators has no obvious effect on the
aggregation results.

5.2.2. Experiment 2. It was carried out to show the influence
of the assignment of different values to the rung q on the
aggregation results. In this experiment, MMM and w and
MGMM and w in the example were, respectively, used as the
input of the qROFWAHMM operator (Δ� (δ1, δ2, δ3,
δ4)� (1, 2, 3, 4), λ� 3, and q� 1, 2, . . ., 10) in equation (66)
and the qROFWAHGMM operator (Δ� (δ1, δ2, δ3, δ4)� (1,
2, 3, 4), λ� 3 and q� 1, 2, . . ., 10) in equation (67) (it is worth
nothing that only the most generalized Hamacher operators
were included in this and the subsequent experiments for the
sake of simplicity). )e results of the experiment are the
calculated scores of the collective overall preferences of the
five companies, which are depicted in Figure 1. From the
figure, it can be found that the scores and ranking of the five
companies will change as the value of q changes. When q� 1,
2, 3, 4, 5, the rankings generated by the two operators are all
A2≻A4≻A5≻A1≻A3. )e best company has always been
A2. When q� 6, 7, 8, 9, 10, the rankings generated by
qROFWAHMMare difficult to distinguish, and the rankings
generated by qROFWAHGMM are all
A4≻A2≻A5≻A1≻A3. )e best company has changed to A4.
Obviously, if q� 1, the qROFNs will become IFNs; if q� 2,
the qROFNs will become PFNs. From the experiment results
in Figure 1, it is recommended that the smallest q that can
satisfy 0≤ μq+ ]q≤ 1 is assigned in practical applications. For
example, if the value of a criterion is <0.9, 0.6>, then q is
assigned 3 since 0.92 + 0.62> 1 and 0.93 + 0.63< 1. All of the
values inMMM andMGMM can satisfy μ+ ]≤ 1, and thus, the
value of q in the experiment can be assigned from 1.

5.2.3. Experiment 3. It was carried out to show the influence
of the assignment of different values to the parameter λ on
the aggregation results. In this experiment,MMM and w and
MGMM and w in the example were, respectively, used as the
input of the qROFWAHMM operator (Δ� (δ1, δ2, δ3,
δ4)� (1, 2, 3, 4), q� 1, and λ whose value ranges from 0.0001

to 20) in equation (66) and the qROFWAHGMM operator
(Δ� (δ1, δ2, δ3, δ4) � (1, 2, 3, 4), q � 1, and λ whose value
ranges from 0.0001 to 20) in equation (67). )e results of
the experiment are the calculated scores of the collective
overall preferences of the five companies, which are
depicted in Figure 2. It can be seen from the figure that the
scores of the five companies computed by qROFWAHMM
gradually increase, the scores computed by qROF-
WAHGMM gradually decrease, and the rankings generated
by the two operators remain the same, as the value of λ
gradually increases. )us, the parameter λ can be seen as an
optimistic factor for the qROFWAHMM operator, while a
pessimistic factor for the qROFWAHGMM operator.
Generally, if the attitude is neutral, a small λ (1, 2, or 3) is
recommended. If the attitude is optimistic enough, a bigger
(smaller) λ can be assigned when qROFWAHMM
(qROFWAHGMM) is used. Otherwise, a smaller (bigger) λ
is recommended.

5.2.4. Experiment 4. It was carried out to show the influence
of the assignment of different values to the parameters δ1, δ2,
δ3, and δ4 on the aggregation results. In this experiment,
MMM and w and MGMM and w in the example were, re-
spectively, used as the input of the qROFWAHMM operator
(Δ� (δ1, δ2, δ3, δ4)� (1, 0, 0, 0); (1, 2, 0, 0); (1, 2, 3, 0); (1, 2, 3,
4), q� 1, and λ� 3) in equation (66) and the qROF-
WAHGMM operator (Δ� (δ1, δ2, δ3, δ4)� (1, 0, 0, 0); (1, 2, 0,
0); (1, 2, 3, 0); (1, 2, 3, 4), q� 1, and λ� 3) in equation (67).
)e results of the experiment are the calculated scores of the
collective overall preferences of the five companies and the
generated rankings of the five companies, which are listed in
Table 2. As can be seen from the table, the rankings of the five
companies generated by the two operators remain the same,
in the cases where (1) all of the four criteria are independent
of each other, (2) there are interrelationships between any
two criteria, (3) there are interrelationships between any
three criteria, and (4) there are interrelationships between all
of the four criteria. From such results, it is difficult to see the
differences of how the four cases affect the aggregation
results. Even so, this does not mean that such differences do
not exist, since the numerical example is a very simple
example that includes only four criteria. For complex ex-
amples with more criteria, the differences may be more
obvious.

Table 1: )e results of Experiment 1.

Specific operator used in equation
(64) or equation (65)

Specific operator used in equation
(66) or equation (67)

Calculated scores of the collective overall
preferences of the five companies Generated ranking
S1 S2 S3 S4 S5

qROFWAAMM qROFWAAMM 0.0431 0.2400 − 0.0460 0.1834 0.1430 A2≻A4≻A5≻A1≻A3
qROFWAEMM qROFWAEMM 0.0554 0.2718 − 0.0172 0.1950 0.1580 A2≻A4≻A5≻A1≻A3
qROFWAHMM qROFWAHMM 0.0702 0.2992 0.0034 0.2105 0.1748 A2≻A4≻A5≻A1≻A3
qROFWAFMM qROFWAFMM 0.0525 0.2636 − 0.0227 0.1913 0.1541 A2≻A4≻A5≻A1≻A3
qROFWAAGMM qROFWAAGMM 0.1508 0.3815 0.0698 0.3077 0.2321 A2≻A4≻A5≻A1≻A3
qROFWAEGMM qROFWAEGMM 0.1155 0.3696 0.0464 0.2760 0.2033 A2≻A4≻A5≻A1≻A3
qROFWAHGMM qROFWAHGMM 0.0934 0.3612 0.0276 0.2565 0.1847 A2≻A4≻A5≻A1≻A3
qROFWAFGMM qROFWAFGMM 0.1217 0.3712 0.0510 0.2812 0.2076 A2≻A4≻A5≻A1≻A3
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5.3. Comparisons

5.3.1. Comparisons with Muirhead Aggregation Operators of
IFNs and PFNs. It is of necessity to make comparisons with
the MCGDM methods based on Muirhead aggregation
operators of IFNs and PFNs because these methods are very
relevant to the proposed MCGDM method. At present, a
number of Muirhead aggregation operators of IFNs and
PFNs have been presented. Representative examples are the
intuitionistic fuzzy MM (IFMM) and intuitionistic fuzzy
GMM (IFGMM) operators presented by Liu and Li [55] and
the Pythagorean fuzzy MM (PFMM) and Pythagorean fuzzy

GMM (PFGMM) operators presented by Zhu and Li [56]. In
this subsection, the following qualitative and quantitative
comparisons between the methods based on these operators
and the proposed method were carried out.

(1) Qualitative Comparison. In general, a qualitative com-
parison among different MCGDM methods can be made by
comparing their characteristics. For the four existing
methods and the proposed method, the application range
from the perspective of the values of criteria, the generality
and flexibility in the aggregation of the values of criteria, and
the capability to capture the attitudes of decision makers are
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Figure 2: )e results of Experiment 3. Scores of the five companies calculated by (a) qROFWAHMM and (b) qROFWAHGMM.
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Figure 1: )e results of Experiment 2. Scores of the five companies calculated by (a) qROFWAHMM and (b) qROFWAHGMM.
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selected as the comparison characteristics. )e results of the
comparison are shown in Table 3. )e details of the com-
parison are explained as follows:

(1) Application range from the perspective of the values
of criteria: the methods based on the IFMM and
IFGMM operators are applicable when the values of
all criteria are in IFNs. )e methods based on the
PFMM and PFGMM operators can be applied when
the values of all criteria are in PFNs, which include
IFNs. )e proposed method is applicable when the
values of all criteria are in qROFNs, which include
both IFNs and PFNs. )e relationships among IFNs,
PFNs, and qROFNs are depicted in Figure 3. From
the figure, it can be seen intuitively that the proposed
method has the widest application range among all
comparison methods. In other words, the methods
based on the IFMM, IFGMM, PFMM, and PFGMM
operators are just the special cases of the proposed
method (to be more specific, qROFWAMM
(qROFWAGMM) will reduce to IFMM (IFGMM) if
f(t)� − Intq and q� 1 and will reduce to PFMM
(PFGMM) if f(t)� − Intq and q� 2).

(2) Generality and flexibility in the aggregation: the
generality and flexibility of the proposed method are
desirable because the aggregations in it are based on
the operations of any family of ATTs. )e

aggregations in the remaining methods are based on
the fixed Algebraic T-norm and T-conorm opera-
tion. )ese methods relatively have limited gener-
ality and flexibility.

(3) Capability to capture the attitudes: the proposed
method has this capability because the aggregations
in it are based on the operations of any family of
ATTs and some families of ATTs (e.g., Hamacher

Table 2: )e results of Experiment 4.

Values of the
elements of Δ
in equation
(66) or

equation (67)

Specific operator used in equation (66) or equation
(67)

Calculated scores of the collective overall
preferences of the five companies Generated ranking

δ1 δ2 δ3 δ4 S1 S2 S3 S4 S5
1 0 0 0 qROFWAHMM 0.1033 0.3688 0.0262 0.2686 0.2084 A2≻A4≻A5≻A1≻A3

qROFWAHGMM 0.0735 0.3576 − 0.0100 0.2363 0.1665 A2≻A4≻A5≻A1≻A3
1 2 0 0 qROFWAHMM 0.1161 0.3495 0.0596 0.2505 0.2206 A2≻A4≻A5≻A1≻A3

qROFWAHGMM 0.0220 0.3239 − 0.0327 0.1831 0.1063 A2≻A4≻A5≻A1≻A3
1 2 3 0 qROFWAHMM 0.1130 0.3590 0.0621 0.2538 0.2219 A2≻A4≻A5≻A1≻A3

qROFWAHGMM 0.0227 0.3273 − 0.0254 0.1927 0.1196 A2≻A4≻A5≻A1≻A3
1 2 3 4 qROFWAHMM 0.0702 0.2992 0.0034 0.2105 0.1748 A2≻A4≻A5≻A1≻A3

qROFWAHGMM 0.0934 0.3612 0.0276 0.2565 0.1847 A2≻A4≻A5≻A1≻A3

Table 3:)e results of the qualitative comparison with the MCGDMmethods based onMuirhead aggregation operators of IFNs and PFNs.

MCGDM method Application range from the perspective
of the values of criteria

Generality and flexibility in the
aggregation

Capability to capture the
attitudes

IFMM [55] When the values of all criteria are in IFNs Limited No
IFGMM [55] When the values of all criteria are in IFNs Limited No
PFMM [56] When the values of all criteria are in IFNs or PFNs Limited No
PFGMM [56] When the values of all criteria are in IFNs or PFNs Limited No

qROFWAMM When the values of all criteria are in IFNs or PFNs or
qROFNs Satisfying Yes

qROFWAGMM When the values of all criteria are in IFNs or PFNs or
qROFNs Satisfying Yes

1

0 1 v

µ

PFNs

qROFNs

IFNs

0 ≤ µ2 +
v2 ≤ 1
0 ≤ µq +
vq ≤ 1

0 ≤ µ +
v ≤ 1

Figure 3: )e relationships among IFNs, PFNs, and qROFNs.
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T-norm and T-conorm, and Frank T-norm and
T-conorm) can provide flexible parameters to de-
scribe the attitudes of decision makers. )e
remaining methods do not have the capability since
the aggregations in them are based on the fixed
Algebraic T-norm and T-conorm operation.

As can be summarized from the qualitative comparison,
the proposed method can provide more flexible application
range and more desirable generality and flexibility in the
aggregation of the values of criteria and the capturing of the
attitudes of decision makers over the methods based on
Muirhead aggregation operators of IFNs and PFNs.

(2) Quantitative Comparison. Generally, a quantitative
comparison among different MCGDM methods can be
carried out using the same numerical example. )e nu-
merical example in Subsection 5.1 is used to quantitatively
compare the MCGDM methods based on the IFMM,
IFGMM, PFMM, and PFGMM operators and the proposed
MCGDM method. )e results of this comparison are the
calculated scores of the collective overall preferences of the
five companies and the generated rankings of the five
companies, which are listed in Table 4. As can be seen from
the table, all of the comparison methods can be used to solve
the MCGDM problem in the example and the rankings
generated by them are exactly the same. )is is because the
values of all criteria in the example are in IFNs (i.e., the
values of all criteria can satisfy μ+ ]≤ 1). From these results,
it is difficult to see the superiority of the proposed method
over other comparison methods.

To show the superiority, suppose the value of Ξ1,4,1 inM1
is changed to <0.8, 0.7> (such value is entirely possible in
practical MCGDM problems) and the same methods are
applied to solve the changed MCGDM problem. )e results
are also listed in Table 4. It can be seen from the table that
only the proposed method is applicable and can generate
results. )e reason is that <0.8, 0.7> cannot satisfy μ+ ]≤ 1
and μ2 + ]2≤1, but can satisfy μq+ ]q≤ 1 (q� 3, 4, 5, . . .).)is
means that the application range of the proposed method
from the perspective of the values of criteria can be adjusted
by setting an appropriate value to the flexible parameter q.
)us, it can be concluded that the proposed method can
provide more flexible application range over the methods
based onMuirhead aggregation operators of IFNs and PFNs.

5.3.2. Comparisons with Aggregation Operators of qROFNs.
It is also of necessity to make comparisons with the
MCGDM methods based on aggregation operators of
qROFNs, since both these methods and the proposed
MCGDM method are for qROFNs. As mentioned in the
introduction, more than twenty different aggregation op-
erators of qROFNs have been presented so far. )e repre-
sentative aggregation operators are the WE [38], WP [39],
WA and WG [40], WBM and WGBM [41], WABM [42],
WEBM [43], WPBM andWPGBM [44], WHM andWGHM
[45], WHM∗ and WPHM [46], WMSM and WGMSM [47],

WPMSM [48], WPPMSM [49], and WMM and WGMM
[50] operators. In this subsection, the following qualitative
and quantitative comparisons between the methods based on
these operators and the proposed method were carried out.

(1) Qualitative Comparison. For the twenty existing methods
and the proposed method, the generality and flexibility in
the aggregation of qROFNs, the capability to deal with the
cases where all criteria are independent of each other, there
are interrelationships between any two criteria, and there are
interrelationships among any multiple (more than two)
criteria, and the capability to capture the attitudes of de-
cision makers are selected as the comparison characteristics.
)e results of the comparison are shown in Table 5. )e
details of the comparison are explained as follows:

(1) Generality and flexibility in the aggregation: for the
method based on the WP operator, any one of the
twenty WP operators that have different operations
can be used in the aggregation. )us, its generality
and flexibility can be seen as moderate. )e gener-
ality and flexibility of the methods based on the
WABM operator and the proposed method are
desirable because the aggregations in them are based
on the operations of any family of ATTs. )e ag-
gregations in the remaining methods are based on
based on the fixed Algebraic T-norm and T-conorm
operation. )ese methods relatively have limited
generality and flexibility.

(2) When all criteria are independent of each other: it is
no doubt that all methods can deal with this case.

(3) When there are interrelationships between any two
criteria: the methods based on theWE,WP,WA, and
WG operators are only suitable for the independent
case. Except these methods, all methods can handle
this situation.

(4) When there are interrelationships among any mul-
tiple criteria: among all methods, the methods based
on the WMSM, WGMSM, WPMSM, WPPMSM,
WMM, and WGMM operators can process this case
due to the use of the MSM or MM operator in them.

(5) Capability to capture the attitudes: the methods
based on the WABM operator and the proposed
method have this capability because the aggregations
in them are based on the operations of any family of
ATTs and some families of ATTs (e.g., Hamacher
T-norm and T-conorm, and Frank T-norm and
T-conorm) can provide flexible parameters to de-
scribe the attitudes of decision makers. )e
remaining methods do not have the capability since
aggregations in them are based on the fixed Alge-
braic T-norm and T-conorm operation.

As can be summarized from the qualitative comparison,
the proposed method has desirable generality and flexibility
at both aggregating the values of criteria and capturing the
interrelationships of criteria and the attitudes of decision
makers.
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(2) Quantitative Comparison. )e numerical example in
Subsection 5.1 is used to quantitatively compare the
MCGDM methods based on the WA, WG, WBM, WGBM,

WABM, WHM, WGHM, WHM∗, WMSM, WGMSM,
WMM, and WGMM operators (please note that the
methods based on the WE, WP, WEBM, WPBM, WPGBM,

Table 4: )e results of the quantitative comparison with the MCGDM methods based on Muirhead aggregation operators of IFNs and
PFNs. Notes: when comparing the proposed method, the qROFWAHMM and qROFWAHGMM operators were selected. When adapting
the groups of IFMMs, IFGMMs, PFMMs, and PFGMMs, Δ� (δ1, δ2, δ3)� (1, 0, 0) for IFMM and PFMM in equation (64) and IFGMM and
PFGMM in equation (65), andΔ� (δ1, δ2, δ3)� (1, 2, 3, 4) for IFMM and PFMM in equation (66) and IFGMMand PFGMM in equation (67).
When adapting the groups of qROFWAHMMs and qROFWAHGMMs, q� 3, λ� 3, and Δ� (δ1, δ2, δ3)� (1, 0, 0) for qROFWAHMM in
equation (64) and qROFWAHGMM in equation (65), and q� 1, λ� 3, and Δ� (δ1, δ2, δ3)� (1, 2, 3, 4) for qROFWAHMM in equation (66)
and qROFWAHGMM in equation (67).

Value of
Ξ1,4,1

Specific operator used in
equation (64) or equation

(65)

Specific operator used in
equation (66) or equation

(67)

Calculated scores of the collective overall
preferences of the five companies Generated ranking
S1 S2 S3 S4 S5

<0.8, 0.2> IFMM [55] IFMM [55] 0.0431 0.2400 − 0.0460 0.1834 0.1430 A2≻A4≻A5≻A1≻A3
<0.8, 0.2> IFGMM [55] IFGMM [55] 0.1508 0.3815 0.0698 0.3077 0.2321 A2≻A4≻A5≻A1≻A3
<0.8, 0.2> PFMM [56] PFMM [56] 0.0353 0.2196 − 0.0545 0.1525 0.1277 A2≻A4≻A5≻A1≻A3
<0.8, 0.2> PFGMM [56] PFGMM [56] 0.1410 0.3447 0.0696 0.2830 0.2038 A2≻A4≻A5≻A1≻A3
<0.8, 0.2> qROFWAMM qROFWAMM 0.0863 0.3024 0.0303 0.2186 0.1871 A2≻A4≻A5≻A1≻A3
<0.8, 0.2> qROFWAGMM qROFWAGMM 0.0713 0.3519 0.0052 0.2414 0.1458 A2≻A4≻A5≻A1≻A3
<0.8, 0.7> IFMM [55] IFMM [55] Cannot be calculated Cannot generate
<0.8, 0.7> IFGMM [55] IFGMM [55] Cannot be calculated Cannot generate
<0.8, 0.7> PFMM [56] PFMM [56] Cannot be calculated Cannot generate
<0.8, 0.7> PFGMM [56] PFGMM [56] Cannot be calculated Cannot generate
<0.8, 0.7> qROFWAMM qROFWAMM 0.0863 0.3024 0.0303 0.1830 0.1871 A2≻A5≻A4≻A1≻A3
<0.8, 0.7> qROFWAGMM qROFWAGMM 0.0713 0.3519 0.0052 0.1976 0.1458 A2≻A4≻A5≻A1≻A3

Table 5: )e results of the qualitative comparison with the MCGDM methods based on aggregation operators of qROFNs.

MCGDM method Generality and flexibility in the
aggregation

Capability to deal with the interrelationships of
criteria Capability to capture the

attitudes
Independent Any two

criteria
Any multiple

criteria
qROFWE [38] Limited Yes No No No
qROFWP [39] Moderate Yes No No No
qROFWA [40] Limited Yes No No No
qROFWG [40] Limited Yes No No No
qROFWBM [41] Limited Yes Yes No No
qROFWGBM [41] Limited Yes Yes No No
qROFWABM [42] Satisfying Yes Yes No Yes
qROFWEBM [43] Limited Yes Yes No No
qROFWPBM [44] Limited Yes Yes No No
qROFWPGBM
[44] Limited Yes Yes No No

qROFWHM [45] Limited Yes Yes No No
qROFWGHM [45] Limited Yes Yes No No
qROFWHM∗ [46] Limited Yes Yes No No
qROFWPHM [46] Limited Yes Yes No No
qROFWMSM [47] Limited Yes Yes Yes No
qROFWGMSM
[47] Limited Yes Yes Yes No

qROFWPMSM
[48] Limited Yes Yes Yes No

qROFWPPMSM
[49] Limited Yes Yes Yes No

qROFWMM [50] Limited Yes Yes Yes No
qROFWGMM
[50] Limited Yes Yes Yes No

qROFWAMM Satisfying Yes Yes Yes Yes
qROFWAGMM Satisfying Yes Yes Yes Yes
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WPHM, WPMSM, and WPPMSM operators were not in-
cluded in the quantitative comparison because of the fol-
lowing: the WE operator was presented to deal with the case
in which the values of criteria are expressed by a fuzzy
number in Zadeh’s FS and the values of weights are de-
scribed by qROFNs; the WP operator was presented to
control the uncertainty of the evaluation results of some
experts; the WEBM operator was presented to handle the
heterogeneous relationship among criteria and unknown
criterion weights; the WPBM, WPGBM, and WPHM op-
erators were presented to handle heterogeneous in-
terrelationships of criteria; the WPMSM operator was
presented to reduce the influence of biased evaluation
values on the aggregation result; the WPPMSM operator
was presented to deal with the situation with heterogeneous
interrelationships of criteria and some biased evaluation
values; and the proposed method does not consider these
characteristics) and the proposed MCGDM method. )e
results of this comparison are the calculated scores of the
collective overall preferences of the five companies and the
generated rankings of the five companies, which are listed
in Table 6.

As can be seen from Table 6, the rankings of the pro-
posed method are exactly the same as the rankings of the
methods based on the WA, WG, WBM, WGBM, WABM,
WGHM, WMSM, WGMSM, WMM, and WGMM opera-
tors, and it just has differences at the fourth and fifth places
with the rankings of the methods based on the WHM and
WHM∗ operators. )ese results indicate its feasibility and
effectiveness in solving the MCGDM problems based on

qROFNs. However, because of such results, it is difficult to
see the differences of the comparison methods intuitively.

To show the differences more intuitively, the elements
Ξk,2,4 (k� 1, 2, 3) inMN,k were constantly adjusted according
to Table 7. It is easy to guess that such adjustments will affect
the ranking of A2, which may probably be changed from the
best company to the worst one because the membership
degree becomes smaller and smaller and the nonmember-
ship degree becomes larger and larger. To confirm this
conjecture, Figures 4–8, respectively, depict the change of
the places of A2 in the rankings generated by the methods
based on the group ofWAs and the group ofWGs, the group
of WBMs and the group of WGBMs, the group of WHMs
and the group of WGHMs, the group of WMSMs and the
group of WGMSMs, and the group of WAMMs and the
group of WAGMMs. From these figures, it can be seen that
the results generated by all of the ten comparison methods
are consistent with the conjecture. )is also demonstrates
the effectiveness of the proposed method. Further, it can also
be seen that the ten methods have different sensitivities to
the changes in the input values of criteria, which is reflected
in the difference in the backward speed of the ranking of A2.
Among the methods based on WAs, WBMs, WHMs,
WMSMs, and WAMMs, the backward speed of WMSMs is
the fastest, while the backward speed of WAs and WHMs is
the slowest. Among the methods based on WGs, WGBMs,
WGHMs, WGMSMs, and WAGMMs, the methods based
on WGs and WGHMs have the fastest backward speed,
while the method based on the WAGMMs has the slowest
backward speed, and the backward speed of WGMSMs is

Table 6: )e results of the quantitative comparison with the MCGDMmethods based on aggregation operators of qROFNs. Notes: for easy
comparison, all the methods used the same score function (see Definition 2). When comparing the method based on WABM, the most
generalized q-rung orthopair fuzzy weighted Archimedean Hamacher Bonferroni mean (WAHBM) operator was selected. When com-
paring the proposed method, the most generalizedWAHMM andWAHGMM operators were selected. When adapting the fourteen groups
of operators, q� 1 for all groups of operators; λ� 3 for the groups of WAHBMs, WAHMMs, and WAHGMMs. s� 1 (a� 1) and t� 0 (b� 0)
for WBM and WAHBM (WHM and WHM∗) in equation (64) and WGBM (WGHM) in equation (65); s� 1 (a� 1) and t� 2 (b� 2) for
WBM and WAHBM (WHM and WHM∗) in equation (66) and WGBM (WGHM) in equation (67); k� 1 (Δ� (δ1, δ2, δ3)� (1, 0, 0)) for
WMSM (WMM andWAHMM) in equation (64) andWGMSM (WGMM andWAHGMM) in equation (65); and k� 4 (Δ� (δ1, δ2, δ3)� (1,
2, 3, 4)) for WMSM (WMM and WAHMM) in equation (66) and WGMSM (WGMM and WAHGMM) in equation (67).

Specific operator used in
equation (64) or equation (65)

Specific operator used in
equation (66) or equation (67)

Calculated scores of the collective overall
preferences of the five companies Generated ranking

S1 S2 S3 S4 S5
qROFWA [40] qROFWA [40] 0.1144 0.3724 0.0417 0.2810 0.2244 A2≻A4≻A5≻A1≻A3
qROFWG [40] qROFWG [40] 0.0592 0.3523 − 0.0261 0.2212 0.1455 A2≻A4≻A5≻A1≻A3
qROFWBM [41] qROFWBM [41] − 0.8638 − 0.8114 − 0.8753 − 0.8295 − 0.8437 A2≻A4≻A5≻A1≻A3
qROFWGBM [41] qROFWGBM [41] 0.8917 0.9342 0.8789 0.9149 0.9058 A2≻A4≻A5≻A1≻A3
qROFWABM [42] qROFWABM [42] 0.1161 0.3495 0.0596 0.2505 0.2206 A2≻A4≻A5≻A1≻A3
qROFWHM [45] qROFWHM [45] − 0.3015 − 0.0385 − 0.2834 − 0.0923 − 0.2129 A2≻A4≻A5≻A3≻A1
qROFWGHM [45] qROFWGHM [45] 0.3455 0.6063 0.3428 0.5258 0.4046 A2≻A4≻A5≻A1≻A3
qROFWHM∗ [46] qROFWHM∗ [46] − 0.8509 − 0.7779 − 0.8495 − 0.7931 − 0.8298 A2≻A4≻A5≻A3≻A1
qROFWMSM [47] qROFWMSM [47] 0.9035 0.9383 0.8908 0.9200 0.9159 A2≻A4≻A5≻A1≻A3
qROFWGMSM [47] qROFWGMSM [47] − 0.8696 − 0.8179 − 0.8839 − 0.8407 − 0.8590 A2≻A4≻A5≻A1≻A3
qROFWMM [50] qROFWMM [50] 0.0431 0.2400 − 0.0460 0.1834 0.1430 A2≻A4≻A5≻A1≻A3
qROFWGMM [50] qROFWGMM [50] 0.1508 0.3815 0.0698 0.3077 0.2321 A2≻A4≻A5≻A1≻A3
qROFWAMM qROFWAMM 0.0702 0.2992 0.0034 0.2105 0.1748 A2≻A4≻A5≻A1≻A3
qROFWAGMM qROFWAGMM 0.0934 0.3612 0.0276 0.2565 0.1847 A2≻A4≻A5≻A1≻A3
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Table 7: Seven groups of Ξk,2,4 (k� 1, 2, 3) in MN,k.

Number Ξ1,2,4 Ξ2,2,4 Ξ3,2,4
0 <0.6, 0.2> <0.7, 0.3> <0.7, 0.2>
1 <0.5, 0.3> <0.6, 0.4> <0.6, 0.3>
2 <0.4, 0.4> <0.5, 0.5> <0.5, 0.4>
3 <0.3, 0.5> <0.4, 0.6> <0.4, 0.5>
4 <0.2, 0.6> <0.3, 0.7> <0.3, 0.6>
5 <0.1, 0.7> <0.2, 0.8> <0.2, 0.7>
6 <0.1, 0.7> <0.1, 0.9> <0.1, 0.8>
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Figure 4: )e change of the places of A2 in the rankings of the group of WAs [40] and the group of WGs [40]. Scores of the five companies
computed by the group of (a) qROFWAs and (b) qROFWGs.
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Figure 5: )e change of the places of A2 in the rankings of the group of WBMs [41] and the group of WGBMs [41]. Scores of the five
companies computed by the group of (a) qROFWBMs and (b) qROFWGBMs.
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also slow. From these results, it can be seen that the sen-
sitivities of WAs, WBMs, WHMs, WMSMs, and WAMMs
and the sensitivities of their dual forms are opposite,
respectively.

Finally, it should be noted that the purpose of the
quantitative comparison is not to illustrate that the proposed
method is better than the comparison methods, but to verify

its feasibility and effectiveness and show the differences of
these methods. In general, it is difficult to say that one
MCGDM method is better than another one because dif-
ferent methods have different characteristics, which de-
termines their different application scenarios. What users
have to do is choose suitable methods for specific application
scenarios.
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Figure 6: )e change of the places of A2 in the rankings of the group of WHMs [45] and the group of WGHMs [45]. Scores of the five
companies computed by the group of (a) qROFWHMs and (b) qROFWGHMs.
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Figure 7: )e change of the places of A2 in the rankings of the group of WMSMs [47] and the group of WGMSMs [47]. Scores of the five
companies computed by the group of (a) qROFWMSMs and (b) qROFWGMSMs.
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6. Conclusion

In this paper, a qROFAMM operator, a qROFWAMM
operator, a qROFAGMM operator, and a qROFWAGMM
operator have been presented to aggregate q-rung orthopair
fuzzy information for solving the MCGDM problems based
on qROFNs. )e idempotency, monotonicity, and bound-
edness of these operators have been proved and their four
specific operators have been constructed using the Algebraic,
Einstein, Hamacher, and Frank families of ATTs and their
additive generators. On the basis of the presented operators,
a method for solving the MCGDM problems based on
qROFNs has been proposed. )e paper has also provided a
numerical example to show how the method works, carried
out a set of experiments to explore the characteristics of the
method, and made qualitative and quantitative comparisons
to verify the advantages, feasibility, and effectiveness of the
method. )e results of the experiments and comparisons
suggest that the presented operators and the proposed
method are general and flexible at both the aggregation of
q-rung orthopair fuzzy information and the capturing of the
interrelationships of criteria and the attitudes of decision
makers and are feasible and effective for solving the
MCGDM problems based on qROFNs.

Future work will focus especially on extending the
presented operators from the aspect of dealing with more
complex interrelationships of criteria and reducing the in-
fluence of biased evaluation values on the aggregation result.
)e partitioned averaging operator and the power averaging
operator will probably be introduced and combined with the
presented operators to construct new aggregation operators.
Further, the application of the proposed method in solving
practical decision-making problems in manufacturing en-
vironment, such as determination of additive manufacturing

processes, planning of part build directions in additive
manufacturing, and selection of automated inspection sys-
tems, will also be studied in the future work.

Acronyms

ATT: Archimedean T-norm and T-conorm
BM: Bonferroni mean
FS: Fuzzy set
GBM: Geometric Bonferroni mean
GMM: Geometric Muirhead mean
GMSM: Geometric Maclaurin symmetric mean
IFGMM: Intuitionistic fuzzy geometricMuirhead

mean
IFMM: Intuitionistic fuzzy Muirhead mean
IFN: Intuitionistic fuzzy number
IFS: Intuitionistic fuzzy set
MCDM: Multicriteria decision making
MCGDM: Multicriteria group decision making
MM: Muirhead mean
MSM: Maclaurin symmetric mean
PFGMM: Pythagorean fuzzy geometric Muirhead

mean
PFMM: Pythagorean fuzzy Muirhead mean
PFN: Pythagorean fuzzy number
PFS: Pythagorean fuzzy set
qROFAGMM: q-rung orthopair fuzzy Archimedean

geometric Muirhead mean
qROFAMM: q-rung orthopair fuzzy Archimedean

Muirhead mean
qROFN: q-rung orthopair fuzzy number
qROFS: q-rung orthopair fuzzy set
qROFAAMM: q-rung orthopair fuzzy Archimedean

Algebraic Muirhead mean
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Figure 8:)e change of the places of A2 in the rankings of the group of WAMMs and the group of WAGMMs. Scores of the five companies
computed by the group of (a) qROFWAMMs and (b) qROFWAGMMs.
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qROFAEMM: q-rung orthopair fuzzy Archimedean
Einstein Muirhead mean

qROFAFMM: q-rung orthopair fuzzy Archimedean
Frank Muirhead mean

qROFAHMM: q-rung orthopair fuzzy Archimedean
Hamacher Muirhead mean

qROFWAAMM: q-rung orthopair fuzzy weighted
Archimedean Algebraic Muirhead
mean

qROFAAGMM: q-rung orthopair fuzzy Archimedean
Algebraic geometric Muirhead mean

qROFAEGMM: q-rung orthopair fuzzy Archimedean
Einstein geometric Muirhead mean

qROFAFGMM: q-rung orthopair fuzzy Archimedean
frank geometric Muirhead mean

qROFAHGMM: q-rung orthopair fuzzy Archimedean
Hamacher geometric Muirhead mean

qROFWAAGMM: q-rung orthopair fuzzy weighted
Archimedean Algebraic geometric
Muirhead mean

qROFWAEGMM: q-rung orthopair fuzzy weighted
Archimedean Einstein geometric
Muirhead mean

qROFWAFGMM: q-rung orthopair fuzzy weighted
Archimedean Frank geometric
Muirhead mean

qROFWAHGMM: q-rung orthopair fuzzy weighted
Archimedean Hamacher geometric
Muirhead mean

qROFWAEMM: q-rung orthopair fuzzy weighted
Archimedean Einstein Muirhead mean

qROFWAFMM: q-rung orthopair fuzzy weighted
Archimedean Frank Muirhead mean

qROFWAHMM: q-rung orthopair fuzzy weighted
Archimedean Hamacher Muirhead
mean

qROFWAMM: q-rung orthopair fuzzy weighted
Archimedean Muirhead mean

qROFWAGMM: q-rung orthopair fuzzy weighted
Archimedean geometric Muirhead
mean

(qROF)WA: (q-rung orthopair fuzzy) weighted
averaging

(qROF)WABM: (q-rung orthopair fuzzy) weighted
Archimedean Bonferroni mean

(qROF)WBM: (q-rung orthopair fuzzy) weighted
Bonferroni mean

(qROF)WE: (q-rung orthopair fuzzy) weighted
exponential

(qROF)WEBM: (q-rung orthopair fuzzy) weighted
extended Bonferroni mean

(qROF)WG: (q-rung orthopair fuzzy) weighted
geometric

(qROF)WGBM: (q-rung orthopair fuzzy) weighted
geometric Bonferroni mean

(qROF)WGHM: (q-rung orthopair fuzzy) weighted
geometric Heronian mean

(qROF)WGMM: (q-rung orthopair fuzzy) weighted
geometric Muirhead mean

(qROF)WGMSM: (q-rung orthopair fuzzy) weighted
geometric Maclaurin symmetric mean

(qROF)WHM: (q-rung orthopair fuzzy) weighted
Heronian mean

(qROF)WMM: (q-rung orthopair fuzzy) weighted
Muirhead mean

(qROF)WMSM: (q-rung orthopair fuzzy) weighted
Maclaurin symmetric mean

(qROF)WP: (q-rung orthopair fuzzy) weighted
point

(qROF)WPBM: (q-rung orthopair fuzzy) weighted
partitioned Bonferroni mean

(qROF)WPGBM: (q-rung orthopair fuzzy) weighted
partitioned geometric Bonferroni mean

(qROF)WPHM: (q-rung orthopair fuzzy) weighted
partitioned Heronian mean

(qROF)WPMSM: (q-rung orthopair fuzzy) weighted
power Maclaurin symmetric mean

(qROF)
WPPMSM:

(q-rung orthopair fuzzy) weighted
power partitioned Maclaurin
symmetric mean.

Data Availability

)e Java implementation code of all quantitative compar-
ison methods and related data used to support the findings
of this study have been deposited in the GitHub repository
(https://github.com/YuchuChingQin/AOsOfqROFNs).

Conflicts of Interest

)e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

)e authors would like to acknowledge the financial sup-
ports by the National Natural Science Foundation of China
(nos. 51765012 and 61562016) and the Key Laboratory
Project of Guangxi (no. GIIP1805).

Supplementary Materials

)e supplementary material associated with the present
paper consists of ten sections: Appendixes A–J, which
provide the proofs of )eorems 1− 10, respectively. (Sup-
plementary Materials)

References

[1] S. Greco, J. Figueira, and M. Ehrgott, Multiple Criteria De-
cision Analysis: State of the Art Surveys, Springer-Verlag New
York, New York, USA, 2016.

[2] H. Bustince, E. Barrenechea, M. Pagola et al., “A historical
account of types of fuzzy sets and their relationships,” IEEE

Complexity 31

https://github.com/YuchuChingQin/AOsOfqROFNs
http://downloads.hindawi.com/journals/complexity/2019/3103741.f1.pdf
http://downloads.hindawi.com/journals/complexity/2019/3103741.f1.pdf


Transactions on Fuzzy Systems, vol. 24, no. 1, pp. 179–194,
2016.

[3] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8,
no. 3, pp. 338–353, 1965.

[4] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and
Systems, vol. 20, no. 1, pp. 87–96, 1986.

[5] S. K. De, R. Biswas, and A. R. Roy, “Some operations on
intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 114,
no. 3, pp. 477–484, 2000.

[6] E. B. Jamkhaneh and H. Garg, “Some new operations over the
generalized intuitionistic fuzzy sets and their application to
decision-making process,” Granular Computing, vol. 3, no. 2,
pp. 111–122, 2018.

[7] P. Liu and S.-M. Chen, “Group decision making based on
Heronian aggregation operators of intuitionistic fuzzy
numbers,” IEEE Transactions on Cybernetics, vol. 47, no. 9,
pp. 2514–2530, 2017.

[8] P. Liu, J. Liu, and S.-M. Chen, “Some intuitionistic fuzzy
Dombi Bonferroni mean operators and their application to
multi-attribute group decision making,” Journal of the Op-
erational Research Society, vol. 69, no. 1, pp. 1–24, 2018.

[9] H. Garg and D. Rani, “Some generalized complex intui-
tionistic fuzzy aggregation operators and their application to
multicriteria decision-making process,” Arabian Journal for
Science and Engineering, vol. 44, no. 3, pp. 2679–2698, 2019.

[10] Z. Zhang and W. Pedrycz, “Models of mathematical pro-
gramming for intuitionistic multiplicative preference re-
lations,” IEEE Transactions on Fuzzy Systems, vol. 25, no. 4,
pp. 945–957, 2017.

[11] F. Meng, J. Tang, and H. Fujita, “Linguistic intuitionistic fuzzy
preference relations and their application to multi-criteria
decision making,” Information Fusion, vol. 46, pp. 77–90,
2019.

[12] Q. Lei and Z. Xu, “Chain and substitution rules of intui-
tionistic fuzzy calculus,” IEEE Transactions on Fuzzy Systems,
vol. 24, no. 3, pp. 519–529, 2016.

[13] Z. Ai and Z. Xu, “Multiple definite integrals of intuitionistic
fuzzy calculus and isomorphic mappings,” IEEE Transactions
on Fuzzy Systems, vol. 26, no. 2, pp. 670–680, 2018.

[14] H. Garg, “Novel intuitionistic fuzzy decision making method
based on an improved operation laws and its application,”
Engineering Applications of Artificial Intelligence, vol. 60,
pp. 164–174, 2017.

[15] P. Liu and X. Liu, “Multiattribute group decision making
methods based on linguistic intuitionistic fuzzy power Bon-
ferroni mean operators,” Complexity, vol. 2017, Article ID
3571459, 15 pages, 2017.

[16] J. Xu, J. Dong, S. Wan, D. Yang, and Y. Zeng, “A hetero-
geneous multiattribute group decision-making method based
on intuitionistic triangular fuzzy information,” Complexity,
vol. 2019, Article ID 9846582, 18 pages, 2019.

[17] R. R. Yager, “Pythagorean membership grades in multicriteria
decision making,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 4, pp. 958–965, 2014.

[18] R. R. Yager, “Properties and applications of pythagorean fuzzy
sets,” in Imprecision and Uncertainty in Information Repre-
sentation and Processing, P. Angelov and S. Sotirov, Eds.,
vol. 332, Springer, Studies in Fuzziness and Soft Computing,
pp. 119–136, Springer, 2016.

[19] S. Dick, R. R. Yager, and O. Yazdanbakhsh, “On Pythagorean
and complex fuzzy set operations,” IEEE Transactions on
Fuzzy Systems, vol. 24, no. 5, pp. 1009–1021, 2016.

[20] T. Y. Chen, “An effective correlation-based compromise
approach for multiple criteria decision analysis with

pythagorean fuzzy information,” Journal of Intelligent &
Fuzzy Systems, vol. 35, no. 3, pp. 3529–3541, 2018.

[21] Z. Li and M. Lu, “Some novel similarity and distance
measures of pythagorean fuzzy sets and their applications,”
Journal of Intelligent & Fuzzy Systems, vol. 37, no. 2,
pp. 1781–1799, 2019.

[22] X. Peng, “New similarity measure and distance measure for
Pythagorean fuzzy set,” Complex & Intelligent Systems, vol. 5,
no. 2, pp. 101–111, 2019.

[23] X. T. Nguyen, V. D. Nguyen, V. H. Nguyen, and H. Garg,
“Exponential similarity measures for pythagorean fuzzy sets
and their applications to pattern recognition and decision-
making process,” Complex & Intelligent Systems, vol. 5, no. 2,
pp. 217–228, 2019.

[24] W. Yang, J. Shi, Y. Liu, Y. Pang, and R. Lin, “Pythagorean
fuzzy interaction partitioned bonferroni mean operators and
their application in multiple-attribute decision-making,”
Complexity, vol. 2018, Article ID 3606245, 25 pages, 2018.

[25] R. Zhang, J. Wang, X. Zhu, M. Xia, and M. Yu, “Some
generalized Pythagorean fuzzy Bonferroni mean aggregation
operators with their application to multiattribute group de-
cision-making,” Complexity, vol. 2017, Article ID 5937376,
16 pages, 2017.

[26] W. Yang and Y. Pang, “New pythagorean fuzzy interaction
maclaurin symmetric mean operators and their application in
multiple attribute decision making,” IEEE Access, vol. 6,
pp. 39241–39260, 2018.

[27] M. S. A. Khan, S. Abdullah, A. Ali, and F. Amin, “Pythagorean
fuzzy prioritized aggregation operators and their application
to multi-attribute group decision making,” Granular Com-
puting, vol. 4, no. 2, pp. 249–263, 2019.

[28] P. Ren, Z. Xu, and X. Gou, “Pythagorean fuzzy TODIM
approach to multi-criteria decision making,” Applied Soft
Computing, vol. 42, pp. 246–259, 2016.

[29] T. Y. Chen, “Remoteness index-based Pythagorean fuzzy
VIKOR methods with a generalized distance measure for
multiple criteria decision analysis,” Information Fusion,
vol. 41, pp. 129–150, 2018.

[30] D. Liang, Z. Xu, D. Liu, and Y. Wu, “Method for three-way
decisions using ideal TOPSIS solutions at Pythagorean fuzzy
information,” Information Sciences, vol. 435, pp. 282–295,
2018.

[31] R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE
Transactions on Fuzzy Systems, vol. 25, no. 5, pp. 1222–1230,
2017.

[32] X. Shu, Z. Ai, Z. Xu, and J. Ye, “Integrations of q-rung
orthopair fuzzy continuous Information,” IEEE Transactions
on Fuzzy Systems, vol. 27, no. 10, pp. 1974–1985, 2019.

[33] J. Gao, Z. Liang, J. Shang, and Z. Xu, “Continuities, derivatives
and differentials of q-rung orthopair fuzzy functions,” IEEE
Transactions on Fuzzy Systems, vol. 27, no. 8, pp. 1687–1699,
2019.

[34] R. R. Yager and N. Alajlan, “Approximate reasoning with
generalized orthopair fuzzy sets,” Information Fusion, vol. 38,
pp. 65–73, 2017.

[35] B. P. Joshi, A. Singh, P. K. Bhatt, and K. S. Vaisla, “Interval
valued q-rung orthopair fuzzy sets and their properties,”
Journal of Intelligent & Fuzzy Systems, vol. 35, no. 5,
pp. 5225–5230, 2018.

[36] S. Sharma and S. Singh, “On some generalized correlation
coefficients of the fuzzy sets and fuzzy soft sets with appli-
cation in cleanliness ranking of public health centres,” Journal
of Intelligent & Fuzzy Systems, vol. 36, no. 4, pp. 3671–3683,
2019.

32 Complexity



[37] P. Wang, J. Wang, G. Wei, and C. Wei, “Similarity measures
of q-rung orthopair fuzzy sets based on cosine function and
their applications,” Mathematics, vol. 7, no. 4, p. 340, 2019.

[38] X. Peng, J. Dai, and H. Garg, “Exponential operation and
aggregation operator for q-rung orthopair fuzzy set and their
decision-making method with a new score function,” In-
ternational Journal of Intelligent Systems, vol. 33, no. 11,
pp. 2255–2282, 2018.

[39] Y. Xing, R. Zhang, Z. Zhou, and J. Wang, “Some q-rung
orthopair fuzzy point weighted aggregation operators for
multi-attribute decision making,” Soft Computing, 2019.

[40] P. Liu and P. Wang, “Some q-rung orthopair fuzzy aggre-
gation operators and their applications to multiple-attribute
decision making,” International Journal of Intelligent Systems,
vol. 33, no. 2, pp. 259–280, 2018.

[41] P. Liu and J. Liu, “Some q-rung orthopair fuzzy Bonferroni
mean operators and their application to multi-attribute group
decision making,” International Journal of Intelligent Systems,
vol. 33, no. 2, pp. 315–347, 2018.

[42] P. Liu and P. Wang, “Multiple-attribute decision making
based on Archimedean Bonferroni operators of q-rung
orthopair fuzzy numbers,” IEEE Transactions on Fuzzy Sys-
tems, vol. 27, no. 5, pp. 834–848, 2019.

[43] Z. Liu, P. Liu, and X. Liang, “Multiple attribute decision-
making method for dealing with heterogeneous relationship
among attributes and unknown attribute weight information
under q-rung orthopair fuzzy environment,” International
Journal of Intelligent Systems, vol. 33, no. 9, pp. 1900–1928,
2018.

[44] W. Yang and Y. Pang, “New q-rung orthopair fuzzy parti-
tioned Bonferroni mean operators and their application in
multiple attribute decision making,” International Journal of
Intelligent Systems, vol. 34, no. 3, pp. 439–476, 2019.

[45] G. Wei, H. Gao, and Y. Wei, “Some q-rung orthopair fuzzy
Heronian mean operators in multiple attribute decision
making,” International Journal of Intelligent Systems, vol. 33,
no. 7, pp. 1426–1458, 2018.

[46] Z. Liu, S. Wang, and P. Liu, “Multiple attribute group decision
making based on q-rung orthopair fuzzy Heronian mean
operators,” International Journal of Intelligent Systems, vol. 33,
no. 12, pp. 2341–2363, 2018.

[47] G. Wei, C. Wei, J. Wang, H. Gao, and Y. Wei, “Some q-rung
orthopair fuzzy Maclaurin symmetric mean operators and
their applications to potential evaluation of emerging tech-
nology commercialization,” International Journal of In-
telligent Systems, vol. 34, no. 1, pp. 50–81, 2019.

[48] P. Liu, S. M. Chen, and P. Wang, “Multiple-attribute group
decision-making based on q-rung orthopair fuzzy power
Maclaurin symmetric mean operators,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2018.

[49] K. Bai, X. Zhu, J. Wang, and R. Zhang, “Some partitioned
Maclaurin symmetric mean based on q-rung orthopair fuzzy
information for dealing with multi-attribute group decision
making,” Symmetry, vol. 10, no. 9, p. 383, 2018.

[50] J. Wang, R. Zhang, X. Zhu, Z. Zhou, X. Shang, and W. Li,
“Some q-rung orthopair fuzzy Muirhead means with their
application to multi-attribute group decision making,”
Journal of Intelligent & Fuzzy Systems, vol. 36, no. 2,
pp. 1599–1614, 2019.

[51] M. Grabisch, J. L. Marichal, R. Mesiar, and E. Pap, Ency-
clopedia of Mathematics and its Applications 127, Aggregation
Functions, Cambridge University Press, Cambridge, UK,
2009.

[52] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap, “Aggre-
gation functions: means,” Information Sciences, vol. 181, no. 1,
pp. 1–22, 2011.

[53] M. Grabisch, J.-L. Marichal, R. Mesiar, and E. Pap, “Aggre-
gation functions: construction methods, conjunctive, dis-
junctive and mixed classes,” Information Sciences, vol. 181,
no. 1, pp. 23–43, 2011.

[54] R. F. Muirhead, “Some methods applicable to identities and
inequalities of symmetric algebraic functions of n letters,”
Proceedings of the Edinburgh Mathematical Society, vol. 21,
pp. 144–162, 1902.

[55] P. Liu and D. Li, “Some Muirhead mean operators for
intuitionistic fuzzy numbers and their applications to group
decision making,” PLoS One, vol. 12, no. 1, Article ID
e0168767, 2017.

[56] J. Zhu and Y. Li, “Pythagorean fuzzy Muirhead mean oper-
ators and their application in multiple-criteria group de-
cision-making,” Information, vol. 9, no. 6, p. 142, 2018.

[57] E. P. Klement, R. Mesiar, and E. Pap, Triangular Norms,
Kluwer Academic Publishers, Dordrecht, Netherlands, 2000.

[58] G. Wei, “Some induced geometric aggregation operators with
intuitionistic fuzzy information and their application to group
decision making,” Applied Soft Computing, vol. 10, no. 2,
pp. 423–431, 2010.

Complexity 33



Hindawi
www.hindawi.com Volume 2018

Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems 
in Engineering

Applied Mathematics
Journal of

Hindawi
www.hindawi.com Volume 2018

Probability and Statistics
Hindawi
www.hindawi.com Volume 2018

Journal of

Hindawi
www.hindawi.com Volume 2018

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi
www.hindawi.com Volume 2018

Optimization
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering  
 Mathematics

International Journal of

Hindawi
www.hindawi.com Volume 2018

Operations Research
Advances in

Journal of

Hindawi
www.hindawi.com Volume 2018

Function Spaces
Abstract and 
Applied Analysis
Hindawi
www.hindawi.com Volume 2018

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018Volume 2018

Numerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical AnalysisNumerical Analysis
Advances inAdvances in Discrete Dynamics in 

Nature and Society
Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com

Di�erential Equations
International Journal of

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Decision Sciences
Advances in

Hindawi
www.hindawi.com Volume 2018

Analysis
International Journal of

Hindawi
www.hindawi.com Volume 2018

Stochastic Analysis
International Journal of

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/jmath/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/jam/
https://www.hindawi.com/journals/jps/
https://www.hindawi.com/journals/amp/
https://www.hindawi.com/journals/jca/
https://www.hindawi.com/journals/jopti/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/aor/
https://www.hindawi.com/journals/jfs/
https://www.hindawi.com/journals/aaa/
https://www.hindawi.com/journals/ijmms/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ana/
https://www.hindawi.com/journals/ddns/
https://www.hindawi.com/journals/ijde/
https://www.hindawi.com/journals/ads/
https://www.hindawi.com/journals/ijanal/
https://www.hindawi.com/journals/ijsa/
https://www.hindawi.com/
https://www.hindawi.com/

