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Recently, collaborative representation-based classi�cation (CRC) and its many variations have been widely applied for various
classi�cation tasks in pattern recognition. To further enhance the pattern discrimination of CRC, in this article we propose a novel
extension of CRC, entitled discriminative, competitive, and collaborative representation-based classi�cation (DCCRC). In the
proposed DCCRC, the class discrimination information is fully utilized for promoting the true class of each testing sample to
dominantly represent the testing sample during collaborative representation. �e class discrimination information is well
considered in the newly designed discriminative l2-norm regularization that can decrease the ability of representation from the
interclasses of each testing sample. Simultaneously, a competitive l2-norm regularization is introduced to the DCCRCmodel with
the class discrimination information with the aim of enhancing the competitive ability of representation from the true class of each
testing sample.�e e�ectiveness of the proposed DCCRC is explored by extensive experiments on the several public face databases
and some real numerical UCI data sets. �e experimental results demonstrate that the proposed DCCRC achieves the superior
performance over the state-of-the-art representation-based classi�cation methods.

1. Introduction

Nowadays, the linear representation-based classi�cation
(RBC) often including sparse representation-based classi-
�cation (SRC) [1] and collaborative representation-based
classi�cation (CRC) [2] has attracted more and more at-
tention in pattern recognition. In both SRC and CRC, each
testing sample is linearly represented by all the training
samples and always classi�ed by the class-speci�c repre-
sentation residuals. Due to the excellent representation-
based classi�cation performance, the RBC methods have
been widely used in many classi�cation tasks, such as image
classi�cation [3–10] and face recognition [11–19].

It has been well known that SRC with the l1-norm reg-
ularization of representation coe�cients is a very promising

kind of RBC owing to its good property of sparsity and natural
discrimination [1, 20, 21]. However, it has been argued that
the representation-based pattern discrimination originated
from the l2-norm collaborative representation of all the
training samples instead of the l1-norm sparse representation
of a few training samples, and then the standard CRCwas �rst
proposed as a general extension of SRC [2]. Speci�cally, using
the l2-norm regularization of representation coe�cients, the
e�ective discrimination bene�ts from the collaborative rep-
resentation from all the class-speci�c training samples. Be-
cause of the e�cient closed-form solution of CRC for the
e�ective classi�cation performance, a great many CRC ex-
tensions have been developed in recent years
[6, 15, 17–19, 22–35]. Moreover, the possible reasons of the
natural discrimination from CRC were detailedly analyzed
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from the perspective of class separability of data [18] and the
probability [22]. Among the CRC methods, the general ex-
tensions are the weighted CRC using the localities of data as
the weights that constrained the collaborative representation
coefficients [17, 27–29, 31]. Since collaborative representation
has the efficient and effective classification performance,
several two-phase collaborative representation-based classi-
fication methods have been designed in [30–33, 36]. More-
over, such two-phase collaborative representation-based
classification also has the property of sparsity for enhancing
the ability of pattern discrimination [30]. Using the superi-
orities of sparse representation and collaborative represen-
tation, the extensions of combining both were proposed for
classification in [34, 35, 37, 38]. Besides, due to good latent
discrimination contained in the representation, sparse rep-
resentation and collaborative representation were utilized to
design the effective nearest neighbor classification [39–41].

In many latest extensions of CRC, the class discrimi-
nation information of data in fact was fully employed for
strengthening the power of the pattern classification [42–
47]. From the point of view of probability, a probabilistic
CRC (ProCRC) was developed by using the discriminative
regularization of the representations between all the classes
and each class [22]. Using the prior information of data the
extended ProCRC (EProCRC) was proposed in [43], and
using the coarse to fine representation the two-phased
ProCRC was proposed in [33]. *rough designing the
discriminative regularization of pairs of the representations
of any two classes, the new discriminative sparse repre-
sentation method for classification (DSRC) was proposed in
[44]. On the basis of DSRC and ProCRC, a novel dis-
criminative CRC method was proposed to extend DSRC
[45]. To overcome the issue that the phases of representation
and classification in the most CRC variations are not in-
tegrated into a unified model, a collaborative and compet-
itive representation-based classifier (CCRC) was proposed
in [46]. CCRC directly includes the classification decision in
its model and can enhance the training sample from each
class to competitively represent each testing sample. With
the aim of obtaining the similar competitive representations
among all the classes, the discriminative l2-norm regulari-
zation of the representations of all the classes except any one
class was designed for proposing the competitive and col-
laborative representation classification method (Co-CRC)
[47]. As argued in these discriminative CRC extensions
above, the discriminative representation was achieved for
favorable classification.

Based on the fact that the discrimination information of
data can be explored for enhancing the power of pattern
discrimination in collaborative representation, in this article
we proposed a novel discriminative competitive and collab-
orative representation-based classification method (DCCRC)
by using the discriminative representation among all the
classes. *e proposed DCCRC assumes that each class can
discriminatively and competitively represent the testing
samples. *e discriminative and competitive collaborative
representations among all the classes can be realized by two
l2-norm regularizations in the DCCRC model. One is the
newly designed l2-norm regularization of the pairs of

representation from all the classes and representations from
all the classes excluding any one class. *e other is the
competitive l2-norm regularization of representations from
all the classes excluding any one class [47]. To experimentally
verify the classification performance of the proposed DCCRC,
we compare it to the state-of-the-art RBC methods on several
face databases and some real numerical UCI data sets. *e
conducted experiments show that the proposed method is
effective with better classification results than the competing
RBC methods. In summary, our main contributions in this
article are given as follows:

(1) A new discriminative l2-norm regularization is
designed by using the representations from all the
classes excluding any one class

(2) A novel discriminative, competitive, and collabo-
rative representation is proposed for classification by
considering the discrimination information of data

(3) *e experimental analyses are reported for well
demonstrating the effectiveness of the proposed
DCCRC

*e rest of this article is organized as follows. Section 2
briefly describes the related work. Section 3 detailedly
presents the proposed DCCRC and then analyzes it. Section
4 reports extensive experiments to evaluate the effectiveness
of the proposed DCCRC. Finally, the conclusions of this
article are given in Section 5.

2. The Related Work

In this section, we briefly review some related RBC models.
First of all, some commonly used notations are denoted here.
We suppose that the set of all the training samples from C
classes is denoted as X � [x1, x2, . . . , xN] � [X1, . . . , XC] ∈
Rd×N, where d is the dimensionality of the feature space and
N and Ni are the numbers of all the training samples from all
the classes and class i, respectively. Note that the ith column
vector of X represents the training sample xi and the subset
of the training samples from class i is Xi ∈ Rd×Ni . Besides, we
also assume y ∈ Rd is a given testing sample used for
classification. In the liner representation-based classifica-
tion, the testing sample y is approximately represented as
y ≈ x1s1 + x2s2 + · · · + xNsN � XS, where S � [s1, s2, . . . ,

sN]T � [ST
1 , . . . , ST

C]T ∈ RN is the vector of all the repre-
sentation coefficients corresponding to all the training
samples of X and Si is the subvector of the representation
coefficients from class i.

2.1. CRC. CRC is a typical linear representation-based
classifier proposed recently [2]. In the CRC, a given testing
sample y is collaboratively represented by all the training
samples for classification. *e CRC model is defined as

min
S

‖y − XS‖
2
2 + λ‖S‖

2
2 , (1)

where λ is a positive regularization parameter. Clearly, CRC
can learn the closed-form solution of S as
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S � H1y, (2)

where H1 � (XTX + λI)− 1XT with an identity matrix I.
Using the learned S � (XTX + λI)− 1XTy, the class-specific
representation residuals are determined as ‖y − XiSi‖2/‖Si‖2.
Finally, the given testing sample y is classified into the class
with the minimum representation residual among all the
classes.

2.2. DSRC. DSRC [44] is a discriminative sparse repre-
sentation method with a l2-norm regularization of the
pairs of any two class-specific representations. It can
achieve the good pattern discrimination among the
different classes with sparsity. *e DSRC model is defined
as

min
S

‖y − XS‖
2
2 + c 

C

i�1


C

j�1
XiSi + XjSj

�����

�����
2

2

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
, (3)

where c is a positive regularization parameter. *rough
some algebra operations, the efficient solution of S can be
obtained as

S � H2y, (4)

where H2 � ((1 + 2c)XTX + 2cLM)− 1XT and

M �

XT
1 X1 · · · 0
⋮ ⋱ ⋮
0 · · · XT

CXC

⎡⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎦. Using the learned S � ((1 + 2c)

XTX + 2cLM)− 1XTy, we compute the class-specific repre-
sentation residuals with XiSi − y2

2 and classify y into the class
with the minimum representation residual among all the
classes.

2.3. Co-CRC. Co-CRC [47] is a new extension of CRC that
can induce each training class to discriminatively and
competitively represent each testing sample. *e Co-CRC
model is defined as

min
S

‖y − XS‖
2
2 + β

C

i�1
X− iS− i

����
����
2
2

⎧⎨

⎩

⎫⎬

⎭, (5)

where β is a positive regularization parameter. *e second
term in equation (5) is the competitive representation
constraint. According to the way of solving S [47], the
learned solution of S is achieved as

S � H3y, (6)

where H3 � (XTX + β
C
i�1P

T
− iX

T
− iX− iP− i)

− 1XT and

PT
− i �

I1 · · · 0
⋮ ⋱ ⋮
0 · · · In

⎡⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎦. Using S � (XTX + β

C
i�1P

T
− iX

T
− iX− i

P− i)
− 1XTy, the class-specific representation residuals are

calculated as ‖XiSi − y‖22 and the testing sample y is classified
into the class with the minimum representation residual
among all the classes.

3. The Proposed DCCRC

In this section, we detailedly present the proposed DCCRC
method.*e basic idea of DCCRC is first given, and then the
DCCRC model and its solving procedure are described,
finally the essential properties that DCCRC holds are
analyzed.

3.1. Idea of DCCRC. *e proposed DCCRC contains two
assumptions that are originally inspired by the competitive
and collaborative representation [47]. For clear descriptions,
the collaborative representation of the given testing sample y
using all training samples is rewritten as y ≈ XS � X1S1 +

X2S2 + · · · + XCSC � XiSi + X− iS− i, where X− i represents the
training samples excluding samples from class i with the
corresponding vector S− i of the representation coefficients.
*e one assumption originates from the expectation that the
true class of given testing sample y can dominantly represent
y and the other classes have little contribution to repre-
senting it (i.e., ‖X− iS− i‖

2
2 � 0). Unfortunately, the true class

of the testing sample y is not known and any one of all the
training classes could be chosen as the true class of y. In fact,
we only make the training samples from one class to
competitively represent the testing sample y as soon as
possible and the contribution to representing y from other
classes is as poor as possible in ideal case. Accordingly, with
this good expectation, the testing sample y is well repre-
sented as XiSi from class i by simultaneously minimizing the
representation X− iS− i from other classes. *us, in the pro-
posed method we introduce the competitive constraint
‖X− iS− i‖

2
2 that was first designed in [47].

In collaborative representation, all the training samples
approximately represent the testing sample y as soon as
possible, i.e., y ≈ XS. During the process of representation, if
y belongs to class i with dominant representation XiSi, the
representation X− iS− i from the other classes tends to be very
small. In specific, XiSi tends to be equivalent to the rep-
resentation XS in some degree. In such an ideal case, the
approximate equalities can be learned, y ≈ XiSi ≈ XS.
Borrowing the idea of degrading the correlations among
classes by minimizing the discriminative constraint ‖XiSi +

XjSj‖
2
2 [44], we also assume that the correlation between the

representation XiSi from class i and the representation
X− iS− i from the other classes is as small as possible.*at is to
say, if class i can dominantly represent ywith XiSi and all the
training samples can well represent y with XS, the corre-
lation between XS and X− iS− i should be small. Similar to the
definition of ‖XiSi + XjSj‖

2
2 [44], we design the another

new discriminative constraint ‖XS + X− iS− i‖
2
2. It is obvious

that to minimize ‖XS + X− iS− i‖
2
2 can minimize ‖XS‖22,

‖X− iS− i‖
2
2, and (XS)TX− iS− i. Minimizing ‖X− iS− i‖

2
2 satisfies

the first assumption. If y ≈ XiSi ≈ XS, minimizing
(XS)TX− iS− i approximately equals to minimize (XiSi)

TX− iS− i

that canwell degrade the correlation between the representation
from one class and the representation from the other classes.

3.2. Model of DCCRC. In this section, we first introduce the
objective function of the proposed DCCRC model and then
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present the procedures of solving it in details. *e given
testing sample y is represented by collaborative represen-
tation of all the training samples, and the DCCRC model on
the basis of its idea is defined as follows:

min
S

‖y − XS‖
2
2 + λ1 

C

i�1
X− iS− i

����
����
2
2 + λ2

⎧⎨

⎩

· 
C

i�1
XS + X− iS− i

����
����
2
2 + λ3‖S‖

2
2
⎫⎬

⎭,

(7)

where λ1, λ2, and λ3 is the positive regularization parame-
ters. In equation (7), the second term 

C
i�1‖X− iS− i‖

2
2, first

designed in [47], is the competitive constraint that can make
each class competitively and discriminatively represent the
testing sample y among all the classes. *e third term


C
i�1‖XS + X− iS− i‖

2
2 is the discriminative constraint that not

only makes each class competitively represent the testing
sample y but also degrades the representation correlations
between one class and the other classes for more discrim-
ination. Note that when λ1 � λ2 � 0, DCCRC is the same as
CRC, and when λ2 � λ3 � 0, DCCRC is the same as Co-CRC.

In order to achieve the solution of the representation
coefficient vector S, equation (7) should be further refor-
mulated as

min
S

‖y − XS‖
2
2 + λ1 

C

i�1

�X− iS
����

����
2
2 + λ2

⎧⎨

⎩

· 
C

i�1
XS + �X− iS

����
����
2
2 + λ3‖S‖

2
2
⎫⎬

⎭,

(8)

where Xi � [0, 0 . . . 0, Xi, 0 . . . 0] and �X− i � X − Xi � [X1,

X2, . . . , Xi− 1, 0, Xi+1, . . . , XC]. To simply solve S, let F1(S) �

‖y − XS‖22 + λ1
C
i�1‖

�X− iS‖
2
2 + λ3‖S‖22 and F2(S) � λ2

C
i�1

‖XS + �X− iS‖
2
2. Firstly, the derivative of F1(S) with respect to

S is calculated as

zF1(S)

zS
�

‖y − XS‖22 + λ1
C
i�1

�X− iS
����

����
2
2 + λ3‖S‖22 

zS

� − 2X
T
(y − XS) + 2λ1 

C

i�1

�X
T

− i
�X− iS  + 2λ3S.

(9)

Since 
C
i�1(

�X
T

− i
�X− iS) can be rewritten as



C

i�1

�X
T

− i
�X− iS  � 

C

i�1
X − Xi 

T
X − Xi S

� 

C

i�1
X

T
X − 2X

T Xi + X
T

i
Xi S

� CX
T
X − 

C

i�1

X
T

i
Xi

⎛⎝ ⎞⎠S

� CX
T
X − G S,

(10)

where XT Xi � X
T

i
Xi, and G is defined as

G �

XT
1 X1 . . . 0

⋮ ⋱ ⋮

0 . . . XT
CXC

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11)

Using equations (9) and (10), zF1(S)/zS is reformulated
as

zF1(S)

zS
� − 2X

T
(y − XS) + 2λ1 CX

T
X − G S + 2λ3S.

(12)

*en, the derivative of F2(S) with respect to S is cal-
culated as

zF2(S)

zS
�

z λ2
C
i�1 XS + �X− iS

����
����
2
2 

zS

� 2λ2 

C

i�1
X + �X− i 

T
X + �X− i  S

� 2λ2 

C

i�1
X

T
X + 2

C

i�1
X

T �X− i + 

C

i�1

�X
T

− i
�X− i ⎛⎝ ⎞⎠S.

(13)

In equation (13), using �X− i � X − Xi, 
C
i�1

�X
T �X− i can be

reformulated as



C

i�1
X

T �X− i � X
T

CX − X1 + X2 + · · · + XC  

� (C − 1)X
T
X.

(14)

Using equations (10) and (14), equation (13) can be fi-
nally rewritten as

zF2(S)

zS
�

z λ2
C
i�1 XS + �X− iS

����
����
2
2 

zS

� 2λ2 2(2C − 2)X
T
X − G S.

(15)

Clearly, the objective function of DCCRC is
F1(S) + F2(S). Using equations (10) and (15), the derivative
of the proposed function with respect to S is

z F1(S) + F2(S)( 

zS
� − 2X

T
(y − XS) + 2λ1 CX

T
X − G S

+ 2λ2 2(2C − 2)X
T
X − G S

+ 2λ3S.

(16)
Finally, we set z(F1(S) + F2(S))/zS � 0, and the solution

of the representation coefficient vector S in equation (7) is
obtained as

S � 1 − λ1 + 4λ2( C + 4λ2( X
T
X + λ1 + λ2( G + λ3I 

− 1
X

T
y.

(17)
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After obtaining the representation coefficient vector S,
we calculate the class-specific representation residuals and
determine the class label cy of the testing sample y as

cy � argmin
ci

y − XiSi

����
����2, i � 1, 2, . . . , C. (18)

*at is to say, the given testing sample y is classified into
the class with the minimal representation residuals among
all the classes. According to the descriptions of the proposed
DCCRC model above, the proposed DCCRC is briefly
summarized in Algorithm 1.

3.3. Analysis of DCCRC. In this section, we first further
analyze the terms 

C
i�1‖X− iS− i‖

2
2 and 

C
i�1‖XS + X− iS− i‖

2
2 in

the proposed DCCRC method, in order to explain the more
power of pattern discrimination. And then, the analyses of
differences between the proposed DCCRC and Co-CRC,
DSRC are emphasized.

Using the way of analyzing the competitive represen-
tation [47], ‖X− iS− i‖

2
2 in term 

C
i�1‖X− iS− i‖

2
2 can be rewritten

as ‖XS − XiSi‖
2
2, and we can obtain the equality as

XS − XiSi

����
����
2
2 � ‖XS‖

2
2 − 2(XS)

T
XiSi(  + XiSi

����
����
2
2 ≥ ‖XS‖

2
2

+ XiSi

����
����
2
2 − 2‖XS‖2 XiSi

����
����2.

(19)

Assume the angle between XS and XiSi is α. Using
equation (19), cos(α) can be obtained as

cos(α) �
(XS)T XiSi( 

‖XS‖2 XiSi

����
����2
≤ 1. (20)

According to equation (20), when cos(α) � 1, XS ap-
proaches XiSi with the same direction. In this ideal case, the
given testing sample y is dominantly represented by XiSi

from class i that y truly belongs to. *us, to minimize


C
i�1‖X− iS− i‖

2
2 could have two advantages. One is that each

class competitively represents the testing sample y. Another
one is that the true class of y could competitively represent it
and the other classes poorly represent it.

Moreover, ‖XS + X− iS− i‖
2
2 in term 

C
i�1‖XS + X− iS− i‖

2
2

can be reformulated as ‖XS − 2XiSi‖
2
2. *rough simple al-

gebra of ‖XS − 2XiSi‖
2
2, we can also achieve equation (20).

*is fact means that to minimize 
C
i�1‖XS + X− iS− i‖

2
2 has the

very similar superiorities of minimizing 
C
i�1‖X− iS− i‖

2
2. And

also, we can rewrite ‖XS + X− iS− i‖
2
2 as ‖XiSi + 2X− iS− i‖

2
2 �

‖XiSi‖
2
2 + 4‖X− iS− i‖

2
2 + 4(XiSi)

T(X− iS− i). To minimize ‖XS

+ X− iS− i‖
2
2 is to simultaneously minimize ‖XiSi‖

2
2, ‖X− iS− i‖

2
2,

and (XiSi)
T(X− iS− i). We can see that except minimizing

‖X− iS− i‖
2
2, minimizing (XiSi)

T(X− iS− i) can degrade the
correlation between XiSi and X− iS− i [44]. *at is to say, to
minimize 

C
i�1‖XS + X− iS− i‖

2
2 could degrade the correlation

between one class and the other classes, in order to enhance
the power of pattern discrimination and competitive rep-
resentations among all the classes. *us, the terms 

C
i�1

‖X− iS− i‖
2
2 and

C
i�1‖XS + X− iS− i‖

2
2 can obtain the competitive

and discriminative collaborative representation for favorable
classification. Besides, the pattern discrimination among all
the classes can be intuitively verified in the next section.

*e differences between the proposed DCCRC and Co-
CRC, DSRC can be analyzed by comparing their corre-
sponding models (i.e., equation (7) for DCCRC, equation (5)
for Co-CRC, and equation (3) for DSRC). According to
equations (3) and (7), DCCRC is very different from DSRC,
but both have similar discriminative terms. *e term
‖XiSi + XjSj‖

2
2 in DSRC can degrade the correlations be-

tween any two classes for favorable pattern discrimination,
but the term ‖XS + X− iS− i‖

2
2 in DCCRC can degrade the

correlations between any one class and the other classes for
competitively enhancing the discriminative representation
from each class for classification. Besides, compared to
DSRC, the proposed DCCRC also has the competitive
constraint and the regularization of the representation co-
efficients. Furthermore, the proposed DCCRC is the ex-
tension of Co-CRC because DCCRC and Co-CRC have the
same competitive constraint 

C
i�1‖X− iS− i‖

2
2. In contrast with

Co-CRC, the proposed DCCRC also has the designed dis-
criminative constraint ‖XS + X− iS− i‖

2
2 and the regularization

of the representation coefficients, in order that DCCRC
further enhances the competitive representations among all
the classes. *us, the proposed DCCRC has more pattern
discrimination than DSRC and Co-CRC that can be ex-
perimentally verified in the next experimental section.

4. Experiments

In this section, the extensive experiments on several face
databases and some real numerical UCI data sets are con-
ducted. In the experiments, we compare the proposed
DCCRC with the state-of-the-art RBC methods including
SRC [1], CRC [2], CCRC [46], Co-CRC [47], DSRC [44],
ProCRC [22], and EProCRC [43]. It should be noted that all
regularized parameters in the competing methods are preset
as the range [10− 3, 10− 2, . . . , 1, 10, 100] for fair comparisons
in the experiments. *e optimal classification results of each
competing method are obtained among the range of its
parameters.

4.1. Data Sets. In this section, we briefly describe the used
data sets including the AR, YaleB, IMM, Yale, and PIE29 face
databases and the real UCI data sets. *e YaleB database
(http://vision.ucsd.edu/leekc/ExtYaleDatabase/ExtYaleB.
html) was taken under different poses and uncontrolled
illumination conditions. *e Yale database (http://cvc.
yale.edu/projects/yalefaces/yalefaces.html) was taken by
different facial expressions. *e AR database (http://
www2.ece.ohio-state.edu/aleix/ARdatabase.html) was taken
by various facial expressions and illumination conditions, and
we use a subset of AR with 1400 image from 100 subjects.*e
IMM database (http://www.imm.dtu.dk/∼aam/datasets/
datasets.html) contains 240 annotated monocular im-
ages from 40 subjects. *e PIE29 database (http://www.
intbox.com/public/project/4742/) was taken in different
conditions including 13 postures, 43 lights, and 4
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expressions. In the experiments, each image is cropped
and resized into 32 × 32 with 256 gray levels per pixel and
also the gray level values are normalized to [0, 1]. *e
numbers of total samples, classes, samples per class, and
chosen training samples per class are shown in Table 1. As
an example, the image samples of one subject from each
face data base are shown in Figure 1.

*e real used eight UCI data sets were downloaded
from UC Irvine Machine Learning Repository (UCI)
(http://archive.ics.uci.edu/ml). *ey are “Wine,” “Vehicle,”
“Auto MPG,” “Statlog (Heart),” “Statlog (Australian Credit
Approval),” “Credit Approval,” “Isolet,” and “Ionosphere.”
Note that “Auto MPG,” “Statlog (Heart),” “Statlog (Aus-
tralian Credit Approval),” “Credit Approval,” and “Iono-
sphere” are abbreviated as “Auto,” “Heart,” “SCredit,”
“Credit,” and “Iono,” respectively. *e numbers of total
samples, classes, attributes, and training samples per class
are displayed in Table 2. In the experiments, each sample on
these UCI data sets is also normalized to [0, 1]. Further-
more, on these face and UCI data sets, they are randomly
divided into the sets of the training and testing samples ten
times, and the training samples chosen from each class are
shown in Tables 1 and 2.

4.2. Experiment 1. In this section, we first conduct the ex-
periments to analyze the competitive term λ1‖X− iS− i‖

2
2 and

the discriminative term λ2
C
i�1‖XS + X− iS− i‖

2
2 by varying the

values of the parameters λ1 and λ2 in the proposed DCCRC
on the five face databases. *e values of the parameters λ1,
λ2, and λ3 are preset as [10− 3, 10− 2, . . . , 1, 10, 100], and the
numbers of training samples per class are chosen as l � 4 on
AR, l � 4 on IMM, l � 18 on YaleB, l � 2 on Yale, and l � 6
on PIE29. For visual comparisons, the model min

S
‖y−

XS‖22 + λ1
C
i�1‖X− iS− i‖

2
2 + λ3S22} without λ2

C
i�1‖XS+

X− iS− i‖
2
2 is denoted as DCCRC1, and the model min

S
‖y−

XS‖22 + λ2
C
i�1‖XS + X− iS− i‖

2
2 + λ3‖S‖22} without λ1‖X− iS− i‖

2
2

is denoted as DCCRC2. Accordingly, we compare DCCRC1
with DCCRC to demonstrate the discrimination of the term
λ2

C
i�1‖XS + X− iS− i‖

2
2 by varying the values of the parameter

λ1. And we compare DCCRC2 with DCCRC to demonstrate
the discrimination of the term λ1X− iS

2
− i2 by varying the

values of the parameter λ2. It should be noted that the values
of the parameters λ2 and λ3 are optimal with best classifi-
cation accuracies when DCCRC1 is compared with DCCRC,
and the values of the parameters λ1 and λ3 are optimal with
best classification accuracies when DCCRC2 is compared

with DCCRC. For conveniently presenting the values of λ1
and λ2 in the figures, we use p1 � lg (λ1) and p2 � lg (λ2)
(i.e., the values of p1 and p2 correspond to that of λ1 and λ2,
respectively).

*e classification accuracies of DCCRC1 and DCCRC
with varying λ1 are shown in Figure 2, and the ones of
DCCRC2 andDCCRCwith varying λ2 are shown in Figure 3.
From the experimental results in Figure 2, we can see that
DCCRC with λ2

C
i�1‖XS + X− iS− i‖

2
2 significantly performs

better than DCCRC1 without λ2
C
i�1‖XS + X− iS− i‖

2
2, and

DCCRC is more robust to the variations of λ1 than DCCRC1.
As shown in Figure 3, we can also observe that DCCRC with
λ1‖X− iS− i‖

2
2 significantly performs better than DCCRC2

without λ1‖X− iS− i‖
2
2 and DCCRC is more robust to the

variations of λ2 than DCCRC2. In addition, the classification
performance of DCCRC1 with variations of λ1 and DCCRC2

with variations of λ2 shows that the terms λ1‖X− iS− i‖
2
2 and

λ2
C
i�1‖XS + X− iS− i‖

2
2 can improve the power of the pattern

discrimination. *e experimental results in two figures
imply that the proposed DCCRC has effective and robust
classification performance. As a consequence, the more
pattern discrimination of the proposed DCCRC originated
from the competitive and discriminative terms is well
verified.

And then, we visually verify the discriminative ability of
the proposed DCCRC method in comparison with the
competitive CRC method (i.e., Co-CRC). As discussed in
Section 3.3, we define the class-specific representation
contribution for the given testing sample y as

coni
y �

XiSi

����
����
2
2


C
i�1 XiSi

����
����
2
2

. (21)

Clearly, both DCCRC and Co-CRC classify each testing
sample into the class with the largest coni

y among all the
classes. *en, the pattern discrimination ability of both is
intuitively represented by the representation reconstructive
images for the given testing samples from class 26 in IMM
and class 9 in AR. *e first five representation re-
constructive images of the testing samples corresponding
to the top five largest representation contributions are il-
lustrated in Figure 4. Note that the numbers in the bracket
under each reconstructive image are the class and its
representation contribution coni

y. For example, (26, 10.74)

under the reconstructive image means the class 26 has the
representation contribution con26y � 10.74. As can be seen

Input: *e given training set X � [X1, X2, . . . , XC] and testing sample y with three regularized parameters λ1, λ2, and λ3.
Output: Determine the class label of y.

(1) Normalize each sample of X and y.
(2) Calculate XTX and G with equation (11).
(3) Solve the representation vector with equation (17).
(4) Calculate the class-specific representation residuals with ‖y − XiS‖i2.
(5) Predict the label of y with equation (18).

ALGORITHM 1: *e proposed DCCRC method.
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in Figure 4, the proposed DCCRC correctly represents and
classifies the testing samples, but Co-CRC wrongly represents
and classifies them. Moreover, we can observe that the first
reconstructive image that is reconstructed by the class with
the largest representation contribution in Co-CRC is very
similar to the testing image on each face database. *rough
the experimental illustrations in Figure 4, the proposed
DCCRC is more discriminative than Co-CRC for classifica-
tion. *is means the designed term λ2

C
i�1‖XS + X− iS− i‖

2
2 is

discriminative. *erefore, it can be concluded that the pro-
posed DCCRC has the effective and robust classification due
to the competitive and discriminative constraints.

4.3. Experiment 2. In this section, we compare the proposed
DCCRC to the competingmethods on the face databases and
the UCI data sets. *e experimental results of each

competing method are the averages of the classification
accuracies on ten division of each data set. *e best clas-
sification accuracies of each method are achieved among the
range of its parameter, and the preset class-specific training
samples on each data set are shown in Tables 1 and 2.

*e classification accuracies of all the competing
methods are shown in Table 3 on face databases and Table 4
on the UCI data sets. Note that the best classification per-
formance among all the methods on each data set is in-
dicated in bold face. As shown in two tables, the
classification accuracies of each competing method almost
ascend with the increase of the class-specific training
samples on all the data sets. On the face databases, we can see
that the proposed DCCRC nearly achieves the best classi-
fication accuracies among all the competing methods, but it
could not significantly improve very much in comparison
with some methods. As displayed in Table 4, the proposed

(a) (b)

(c) (d) (e)

Figure 1: *e example of the facial images of one individual from five face database. (a) YaleB. (b) PIE29. (c) IMM. (d) Yale. (e) AR.

Table 2: *e main information about the used UCI data set.

Data Total samples Classes Attributes Training samples per class
Wine 178 3 13 7, 8
Vehicle 846 4 18 10, 11
Auto 392 3 8 10, 14
Credit 690 2 15 8, 10
Heart 270 2 13 6, 8
SCredit 690 2 14 35, 50
Isolet 1560 2 617 21, 26
Iono 351 2 34 15, 20

Table 1: *e main information about the used face databases.

Data Total samples Classes Samples per class Training samples per class
YaleB 2432 38 64 12, 18, 24, 30
Yale 165 15 11 2, 3, 4, 5
AR 1400 100 14 2, 4, 6, 8
IMM 240 40 6 2, 3, 4, 5
PIE29 1632 68 24 2, 4, 6, 8
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Figure 2: Continued.
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Figure 2: *e comparisons of DCCRC and DCCRC1 with varying values of parameter λ1 on each face database. (a) AR (l� 4). (b) IMM
(l� 4). (c) YaleB (l� 18). (d) Yale (l� 2). (e) PIE29 (l� 6).
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Figure 3: Continued.
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DCCRC significantly performs better than the other com-
petingmethods. In addition, from the classification results in
two tables, we can observe that CCRC, Co-CRC, DSRC,

ProCRC, and EProCRC obtain the similar competitive
classification performance. *e possible reason is that these
methods can fully employ the class-specific representations
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Figure 3: *e comparisons of DCCRC and DCCRC2 with varying values of parameter λ2 on each face database. (a) AR (l� 4). (b) IMM
(l� 4). (c) YaleB (l� 18). (d) Yale (l� 2). (e) PIE29 (l� 6).
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+
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≈

+ + + +≈
……

+ ……

(a)

DCCRC

Co-CRC

≈ + + + +

≈ + + + +

(9, 3.99) (99, 3.57) (83, 3.26) (2, 2.77) (80, 2.53)

(99, 3.56) (9, 2.97) (83, 2.84) (2, 2.48) (80, 2.22)

+ ……
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(b)

Figure 4: *e reconstructive images of the given testing samples by the classes with the top five largest representation contributions via
DCCRC and Co-CRC on the face databases (a) IMM and (b) AR.
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in the collaborative representation to improve the pattern
discrimination among all the classes. As a consequence, we
can conclude that our DCCRC method is a promising
representation-based classifier in pattern classification with
effectiveness and robustness.

4.4. Experiment 3. In this section, we conduct the experi-
ments on IMM and Yale to compare the proposed DCCRC
with the competing methods under the situations of the
testing samples with the corruptions. In the experiments, the
numbers l of the class-specific training samples are preset as

l � 3 on IMM and l � 6 on Yale, and the remaining samples
per class are regarded as the testing samples. And the
classification results of each competing method are the
averages of recognition accuracies on ten training and
testing divisions of data. Moreover, the testing samples per
class are randomly corrupted by randomly adding the pixels
and the block occlusion with a panda.*at is to say, the pixel
corruptions are that some pixels of each testing image are
randomly replaced by the uncertain gray scale values be-
tween 0 and 255, and some part of each testing image is
randomly occluded by the panda.*e ratios of the corrupted
size to the original size of each testing image are from 0.1 to

Table 3:*e classification accuracies (%) of the competing methods with the corresponding standard deviations with different class-specific
training samples on each face database.

Data l SRC CRC CCRC ProCRC EProCRC Co-CRC DSRC DCCRC

YaleB

12 91.770.95 93.58± 0.58 93.78± 0.63 94.34± 0.51 93.72± 0.67 94.53± 0.40 94.05± 0.53 94.61 ± 0.38
18 95.48± 0.45 96.21± 0.41 96.55± 0.46 96.63± 0.51 96.51± 0.49 96.52± 0.46 96.09± 0.54 96.91 ± 0.38
24 96.81± 0.43 97.31± 0.42 97.62± 0.23 97.69± 0.23 97.59± 0.22 97.54± 0.29 97.13± 0.30 97.93 ± 0.24
30 97.57± 0.47 97.64± 0.38 98.12± 0.46 98.13± 0.48 98.12± 0.46 97.63± 0.43 97.46± 0.47 98.25 ± 0.45

AR

2 84.99± 0.90 86.71± 0.77 89.92± 0.70 90.15± 0.77 89.89± 0.68 90.10± 0.79 85.46± 0.80 90.18 ± 0.77
4 94.18± 0.49 94.48± 1.16 96.55± 0.78 96.60± 0.73 96.50± 0.80 96.48± 0.50 94.93± 0.63 96.72 ± 0.78
6 96.67± 0.94 96.25± 0.75 98.04± 0.87 98.02± 0.89 97.85± 0.90 97.78± 0.58 97.35± 0.46 98.08 ± 0.80
8 98.00± 0.87 98.00± 0.88 99.08± 0.55 99.17 ± 0.51 99.06± 0.64 98.38± 0.34 98.22± 0.62 99.17 ± 0.43

Yale

2 73.21± 4.23 71.60± 4.68 77.53± 4.36 77.53± 4.36 77.04± 4.39 77.65± 4.53 76.54± 3.59 78.52 ± 4.16
3 82.92± 1.56 80.69± 1.11 85.97± 1.44 86.39± 1.95 85.97± 1.44 85.56± 2.51 85.14± 2.91 86.81 ± 1.93
4 85.87± 2.12 81.75± 2.98 88.41± 2.37 88.89± 2.23 88.57± 2.17 87.78± 2.65 87.94± 2.93 89.37 ± 2.37
5 90.74± 3.95 88.33± 4.65 92.04± 2.57 92.41± 2.37 92.22± 2.43 88.89± 1.57 88.89± 6.29 92.96 ± 2.78

IMM

2 63.54± 2.76 60.00± 1.58 66.67± 2.67 66.77± 2.54 66.67± 2.52 66.15± 2.66 65.83± 2.19 66.88 ± 2.40
3 69.72± 2.34 63.89± 2.15 73.06± 2.34 73.61 ± 3.48 72.50± 2.47 73.33± 3.21 72.08± 2.09 73.61 ± 3.15
4 74.38± 4.24 68.96± 5.09 77.08± 3.42 78.33± 3.59 77.08± 3.68 77.08± 2.92 75.83± 3.23 78.54 ± 3.57
5 82.92± 4.01 81.67± 4.08 85.00± 2.24 85.42± 3.68 84.58± 2.92 83.33± 3.42 83.33± 3.42 86.25 ± 3.45

PIE29

4 89.90± 0.70 90.94± 0.57 91.01± 0.71 91.37± 0.55 90.97± 0.74 91.56± 0.48 90.50± 0.60 91.68 ± 0.58
6 92.12± 0.77 92.29± 0.40 92.68± 0.64 92.81± 0.65 92.60± 0.70 92.76± 0.67 92.45± 0.41 92.91 ± 0.70
8 92.94± 0.48 92.74± 0.75 93.49± 0.54 93.49± 0.60 93.51± 0.54 93.22± 0.66 93.14± 0.56 93.77 ± 0.60
10 93.68± 0.61 94.03± 0.78 94.47± 0.53 94.54± 0.54 94.39± 0.47 93.99± 0.85 93.89± 0.92 94.60 ± 0.54

Table 4:*e classification accuracies (%) of the competing methods with the corresponding standard deviations with different class-specific
training samples on each UCI data set.

Data l SRC CRC CCRC ProCRC EProCRC Co-CRC DSRC DCCRC

Vehicle 10 56.382.00 62.11± 3.27 60.02± 3.60 60.07± 3.62 60.02± 3.62 53.55± 4.14 57.94± 2.21 63.03 ± 3.44
11 57.03± 1.13 64.56± 1.77 63.22± 1.69 63.24± 1.69 63.22± 1.69 54.34± 7.00 61.22± 4.23 65.01 ± 2.70

Auto 10 70.54± 2.24 73.02± 2.09 73.47± 1.66 73.67± 1.93 73.68± 1.90 69.18± 5.38 70.02± 2.86 73.89 ± 1.59
14 73.80± 4.06 75.28± 3.03 75.66± 3.14 75.63± 3.18 75.62± 3.17 71.16± 7.51 74.16± 4.13 75.93 ± 3.60

Credit 8 61.25± 5.80 67.98± 2.44 68.72± 1.04 68.55± 0.84 68.55± 0.82 59.91± 5.39 62.85± 6.82 69.50 ± 3.05
10 64.90± 4.28 68.78± 1.12 69.25± 2.19 69.31± 2.02 69.22± 2.01 61.88± 3.92 63.82± 6.59 72.42 ± 2.79

Wine 7 66.88± 4.79 77.58± 6.10 87.13± 3.17 88.41± 2.64 72.10± 3.67 62.80± 3.62 76.56± 6.17 89.81 ± 2.06
8 70.52± 5.39 82.8± 1.93 89.22± 4.17 90.00± 3.00 77.79± 3.96 66.88± 7.01 80.91± 6.17 91.04 ± 2.57

Heart 6 58.76± 5.69 61.94± 5.16 64.65± 2.89 64.42± 2.77 64.42± 2.77 61.24± 2.2 63.64± 8.63 67.13 ± 4.04
8 63.54± 4.11 70.87± 3.32 71.42± 2.65 71.42± 2.65 71.42± 2.65 69.53± 5.49 66.14± 4.40 73.23 ± 2.83

SCredit 35 63.10± 2.77 71.97± 2.87 72.00± 2.77 72.03± 2.71 72.23± 2.77 57.58± 3.35 63.74± 4.81 75.84 ± 3.81
50 66.07± 3.51 74.64± 2.83 74.41± 1.38 74.44± 1.34 74.47± 1.52 59.32± 2.60 65.53± 4.88 76.95 ± 4.32

Isolet 21 71.41± 3.02 71.38± 1.48 69.83± 0.94 69.47± 1.10 69.47± 1.10 66.36± 2.69 72.89± 2.39 73.19 ± 2.50
26 78.10± 1.70 79.22± 2.02 77.80± 2.20 77.53± 2.29 77.55± 2.32 75.81± 3.01 79.50± 2.27 79.88 ± 2.28

Iono 15 83.49± 4.25 88.66± 3.88 87.54± 3.50 87.35± 3.39 87.35± 3.43 82.06± 3.84 81.99± 3.18 89.72 ± 4.29
20 86.37± 1.94 91.38± 1.27 88.49± 2.05 88.04± 1.55 87.97± 1.45 82.06± 1.45 83.09± 1.91 92.99 ± 1.12
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0.4 with a step 0.1. As an example, the testing samples with
the random pixels from one class are shown in Figure 5 and
with the random occlusions shown in Figure 6.

*e classification results of the competing methods on
IMM and Yale with varying ratios of the random corrup-
tions are shown in Table 5 for random occlusions and in
Table 6 for random corrected pixels. Note that the best
classification performance among all the methods in two
tables is indicated in bold face. As listed in two tables, the
classification accuracies of each competing method descend
with the increase of the ratios of the corrupted size of each
testing image. From these experimental results, we can see
that the proposed DCCRC is nearly the most robust among
all the competing methods, since it outperforms the other
competing methods. *us, the proposed method has more
effectiveness and robustness under the situations of data
with noises.

5. Conclusions

Collaborative representation-based classification is a typical
technique for pattern recognition. To further improve
pattern discrimination in collaborative representation, we
design a new discriminative, competitive, and collaborative
representation-based classification method (DCCRC) in this
article. *e proposed DCCRC extends the Co-CRC method
and mainly designs a discriminative regularization of the
collaborative representation from all the classes and the ones
from all the classes excluding any one class. *e proposed
method fully utilizes the class-specific representations in
collaborative representation and can competitively and
discriminatively enhance the class-specific representations
for good classification. *e extensive experiments on some
face databases and UCI data sets are conducted for verifying
the effectiveness and robustness of the proposed DCCRC

Table 5: *e classification accuracies (%) of the competing methods with the corresponding standard deviations under the situations of the
random block occlusions.

Data Ratios SRC CRC CCRC ProCRC EProCRC Co-CRC DSRC DCCRC

IMM

0.1 62.17± 1.80 63.00± 1.00 65.17± 1.33 65.50± 0.85 62.33± 0.97 63.67± 1.35 62.67± 0.97 66.00 ± 0.82
0.2 54.33± 1.43 56.17± 1.80 59.50± 1.87 58.67± 1.63 55.50± 3.27 55.33± 1.55 57.50± 1.18 59.67 ± 1.45
0.3 45.67± 2.44 47.67± 1.62 50.00± 2.36 50.83± 2.47 48.17± 2.44 49.50± 2.51 49.83± 1.22 51.50 ± 2.26
0.4 37.33± 3.14 35.83± 1.90 40.50± 2.15 41.00 ± 2.44 38.33± 2.36 39.67± 1.72 39.33± 2.20 41.00 ± 2.44

Yale

0.1 82.67± 2.83 86.67± 2.11 86.50± 2.25 86.50± 1.94 85.50± 2.53 85.00± 3.18 84.17± 3.23 87.33 ± 2.31
0.2 76.00± 2.83 79.17± 3.46 79.00± 1.73 79.17± 1.76 78.67± 1.76 75.33± 1.15 75.00± 1.60 79.33 ± 1.89
0.3 64.83± 3.52 68.83± 2.49 70.33± 2.56 69.50± 3.01 69.17± 2.94 62.50± 3.23 65.50± 3.49 70.83 ± 1.94
0.4 53.07± 2.13 56.80± 1.36 57.87± 2.32 56.27± 4.49 56.53± 4.81 45.33± 2.53 50.67± 2.39 58.40 ± 2.29

Table 6: *e classification accuracies (%) of the competing methods with the corresponding standard deviations under the situations of the
random pixel corruptions.

Data Ratios SRC CRC CCRC ProCRC EProCRC Co-CRC DSRC DCCRC

IMM

0.1 65.17± 1.11 64.67± 0.67 65.33± 1.55 65.67± 1.86 63.17± 2.32 62.17± 2.39 63.50± 1.11 66.00 ± 2.07
0.2 58.67± 1.35 59.33± 1.33 58.17± 1.22 58.17± 1.22 57.33± 1.33 53.00± 1.63 57.17± 0.85 59.67 ± 1.80
0.3 51.33± 1.35 52.17± 1.55 49.33± 1.62 49.67± 1.80 48.67± 2.27 43.33± 2.74 48.172.07 53.17 ± 3.00
0.4 40.50± 3.64 40.50± 3.10 39.83± 2.26 40.00± 2.11 39.83± 2.66 32.50± 2.04 32.17± 3.60 40.83 ± 2.30

Yale

0.1 87.73± 2.29 89.87± 1.81 90.67± 1.69 90.67± 1.69 89.33± 1.89 90.93 ± 1.96 89.87± 2.17 90.93 ± 1.96
0.2 83.47± 1.81 85.87± 1.36 86.93± 1.31 87.47± 1.07 85.07± 1.00 86.13± 1.81 86.40± 1.77 88.00 ± 1.19
0.3 79.73± 4.25 80.27± 2.59 83.73± 2.72 83.20± 2.61 79.73± 1.96 83.20± 2.87 83.20± 3.44 84.53 ± 2.32
0.4 69.07± 2.44 74.67± 2.23 75.73± 1.55 74.67± 2.53 70.13± 3.22 72.00± 1.19 76.00± 1.89 76.27 ± 1.55

(a) (b)

Figure 5: *e testing images with the random pixel corruptions from one class. (a) IMM. (b) Yale.

(a) (b)

Figure 6: *e testing images with the random block occlusions from one class. (a) IMM. (b) Yale.
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method. *rough comparing DCCRC with the state-of-the-
art representation-based classification methods, the pro-
posed DCCRC outperforms the competing methods. *us,
the proposed DCCRC is an effective and robust classifier in
pattern recognition. In the future work, we will employ the
idea of the competitive and collaborative representation
among all the classes into the other kinds of classifiers.
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