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In this paper, a practical PI-PD controller parameter tuning method is proposed, which uses the incenter of the triangle and the
Fermat point of the convex polygon to optimize the PI-PD controller. Combined with the stability boundary locusmethod, the PI-
PD controller parameters that can ensure stability for the unstable fractional-order system with time delay are obtained. Firstly,
the parameters of the inner-loop PD controller are determined by the centre coordinates of the CSR in the kd − kf plane. Secondly,
a new graphical method is used to calculate the parameters of the PI controller, in which Fermat points in the CSR of (kp − ki)
plane are selected. Furthermore, the method is extended to uncertain systems, and the PI-PD controller parameters are obtained
by using the proposed method through common stable region of all stable regions.  e proposed graphical method not only
ensures the stability of the closed-loop system but also avoids the complicated optimization calculations.  e superior control
performance of this method is illustrated by simulation.

1. Introduction

Proportional-integral-derivative (PID) controller has been
widely used in industrial control systems for decades because
of its simple structure and convenient implementation [1–6].
As the control plant becomes more and more complex, the
performance of the controller is required to be higher and
higher and the controllability of the system becomes di�cult
to solve. By using Schade’s �xed point theorem, the con-
trollability problem of nonlinear fractional integro-di�er-
ential dynamical systems is transformed into the �xed point
problem in [7].  e integral-order PID (IOPID) controller
has limitations in control integration, instability, and delay
process, and it often leads to large step response, large
overshoot, and large impact, especially for unstable complex
systems with time delay, and it is di�cult to obtain good
closed-loop performance [8–12]. Researchers have proposed
a series of controller design schemes, including integer-
order PID (IOPID) controller, sliding mode controller
(SMC) to fractional-order PID (FOPID) controller,

fractional-order sliding mode controller and other complex
controllers, and so on [12–19].  e computational cost of
these controllers increases geometrically with the change of
controller structure complexity, but the performance im-
provement is not satisfactory. For this reason, researchers
put forward a PI-PD controller structure by changing the
structure of PID controllers in [8, 9, 20].  e controller
converts the unstable open-loop plant into the stable open-
loop plant through the PD controller of the internal loop
circuit, ensuring that the open-loop poles of the resonance
and integration processes are in the proper position.  e PI
controller of the outer loop controls the inner loop of the
system as a whole. Many studies have shown that the PI-PD
structure has superior closed-loop performance for an un-
stable system with time delay [20].  e IOPID controller has
three adjustable parameters, while the PI-PD controller has
four adjustable parameters.  erefore, the PI-PD controller
has advantages over the IOPID controller in terms of control
structure and control freedom [21, 22].  e traditional
controller has a good control e�ect on the precise model
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with certain parameters. However, in most cases, the exact
model of the actual system could not be obtained [23].
-erefore, an excellent controller design must meet the
requirements of robustness, stability, control performance,
and the ability to overcome the uncertainty of model pa-
rameters [24, 25].

In practical applications, PID controller parameter
tuning methods are divided into three categories: the iter-
ative optimization method based on intelligent optimization
[26, 27]; the setting formula method for specific system
[3, 4, 28]; and a parameter selection method [29–34] based
on the stable region. -e stable boundary locus (SBL)
method has been widely studied, which provides an effective
solution for some specific systems.

In recent years, PI-PD controllers have been used
extensively in systems with unstable processes and time
delay. Kaya and Atherton [28] studied the first-order
time-delay unstable system of a PI-PD controller by using
a simple regulation formula tuning method, taking in-
tegral of squared error (ISE) and integral of squared time
weighted error (ISTE) as performance indicators. Tan [29]
and Srivastava and Pandit [30] proposed a graphic
method based on SBL by using gain phase tester to achieve
the specified gain and phase margin and extended this
method to the systems with parameter uncertainty by
Kharitonov theorem. For the systems with uncertain time-
varying delays, Shariati proposed a neutral system ap-
proach to stabilize and synthesize H∞ PI-PD controllers.
A new bounded real lemma was given for neutral systems
with efficiency in designing the H∞ controllers with both
state delay and state derivative delay coefficients
depending on the controller parameters [35]. Onat et al.
[31, 32] proposed the concept of the weight geometric
centre (WGC) method based on stable domain, which was
applied to the parameter design of a PI controller.
Ozyetkin [36] extended the WGC method to the frac-
tional-order PI-PD. All the sample points that make up
the stable locus boundary would be used to calculate the
coordinate of WGC point. However, it has the large
calculation cost which is not conducive to the application
of real-time system control. In addition, under fractional-
order control, WGC points do not always fall into the
stable region. Onat [34] simplified the WGC method and
constructed a convex stabilization region with only three
points to ensure that the WGC is in the stable region.

However, the above literature only considered integer-
order systems. On the other hand, there is little research
on the PI-PD controller design through these graphical
parameter selection methods. Inspired by the above
analysis, the main contribution of this paper is to solve the
parameters of the general fractional-order time-delay
system PI-PD controller by the graphical method and
generalize it to the parameter uncertainty system. In this
paper, a new method to tune the parameters of PI-PD is
proposed by using the incenter point, Fermat point, and
geometry method in convex stable region (CSR).-e main
design process includes the following steps: firstly, for the
open-loop uncertain system, the internal loop PD con-
troller is designed. -e stability boundary locus on the

kd − kf plane is obtained by using the internal loop closed-
loop characteristic polynomial. -en, the incenter co-
ordinates of the CSR are computed. Secondly, embedding
PD controller parameters into transfer function, desired
stability boundary locus of Pl controller is computed by
the same procedure. -en, a quadrilateral Fermat point in
CSR of the outer loop is obtained which is the parameter
of the PI controller. -is method only needs simple
geometric calculation to obtain the parameters of the PI-
PD controller, which is solved in the stable region to
ensure the closed-loop stability. It uses several special
points of the stable region and fewer points describing the
coordinates than the WGC method, ensuring that the
calculated points are situated in the stable region and the
PI-PD controller has superior robustness. -e simulation
example shows that the method presented in this paper
has a satisfactory control effect.

-e structure of this paper is organized as follows. In
Section 2, the problem statements of the controlled plant and
controller are given, and then the proposed method is
presented and extended to uncertain systems. Simulative
and experimental application examples are considered to
illustrate the effectiveness of the proposed method in Section
3. Section 4 gives conclusion.

2. Main Results

2.1. Problem Statement. -e generalized PI-PD negative
feedback system shown in Figure 1, where r is the set point
and y is the negative feedback output. -e generalized
fractional transfer function Gp(s) is written as follows:

Gp(s) �
Np(s)

Dp(s)
e

− τs
, (1)

where τ is the time delay and Np(s) and Dp(s) are the
numerator and the denominator of the transfer function,
respectively. -ey are defined with the forms:

Np(s) � b0s
β0 + b1s

β1 + · · · + bn− 1s
βn− 1 + bns

βn � 􏽘
n

i�0
bis

βi ,

Dp(s) � a0s
α0 + a1s

α1 + · · · + an− 1s
αn + ans

αn � 􏽘
n

i�0
ais

αi ,

(2)

where aj, bi, αj, βi, i, j � 0, 1, . . . , n are real numbers and
αn > αn− 1 > · · · > α2 > α1 > α0 ≥ 0, βn > βn− 1 > · · · > β2 > β1 >
β0 ≥ 0, αn > βn. -e internal loop PD controller CPD(s) and
external loop PI controller CPI(s) are defined as

CPD(s) �
NPD(s)

DPD(s)
� kf +

kds

Ts + 1
, (3)

CPI(s) �
NPI(s)

DPI(s)
� kp +

ki

s
, (4)

where T � 0.01, kf and kd are proportional and differential
gains of the internal loop PD controller, and kp and ki are
proportional and integral gains of the outer-loop PI con-
troller, respectively.
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-e main purpose is to solve the parameters of the
generalized fractional-order time-delay system (1) with PI-
PD controller (3) and (4) by the graphical method.

2.2. )e Proposed Method. -e PI-PD controller has four
adjustable parameters (kf , kd, kp, ki) that need to be de-
termined. -e internal PD controller is used to change the
poles of the plant transfer function Gp(s) to more desirable
locations for control by the outer-loop PI controller.

Substituting sα � ωα(cos(απ/2) + j sin(απ/2)) into (1)
and dividing the numerator and denominator into a real part
and an imaginary part, one can write

Np(jω)

Dp(jω)
�

NPE(jω) + jNPO(jω)

DPE(jω) + jDPO(jω)
. (5)

Simplify NPE(jω), NPO(jω), DPE(jω), andDPO(jω) as
NPE, NPO, DPE, andDPO, where NPE, NPO are the real part
and the imaginary part and DPE, DPO are the real part and
the imaginary part, respectively.-e expressions are given as

NPE � 􏽘
n

i�0
biω

βi cos
βi

2
π􏼠 􏼡;

NPO � 􏽘
n

i�0
biω

βi sin
βi

2
π􏼠 􏼡,

DPE � 􏽘
n

i�0
aiω

αi cos
αi

2
π􏼒 􏼓;

DPO � 􏽘
n

i�0
aiω

αi cos
αi

2
π􏼒 􏼓.

(6)

As shown in Figure 1, the internal loop negative feedback
transfer function is

ϕ1(s) �
Gp(s)

1 + CPD(s)Gp(s)
. (7)

-e closed-loop characteristic polynomial of the internal
loop negative feedback transfer function is written as

ΔPD s; kf , kd( 􏼁 � 1 + CPD(s)Gp(s)

� (s + 100)Dp(s) + kf + 100kd( 􏼁s + 100kf( 􏼁

· Np(s)e
− τs

.

(8)

Substitute s � jω and e− jτω � cos(τω) − j sin(τω) into
inner-loop transfer function (8) and divide it into real part
and imaginary part as follows:

ΔPD jω; kf , kd( 􏼁 � 100 DPE + jDPO( 􏼁 + ω jDPE − DPO( 􏼁

+ m1NPE + m2NPO( 􏼁 + j m1NPO((

+ m2NPE􏼁􏼁cos(τω)

+ m1NPO + m2NPE( 􏼁 − j m1NPE((

+ m2NPO􏼁􏼁sin(τω)

� ReΔ,PD + jImΔ,PD � 0,

(9)
where m1 � 100kf and m2 � (kf + 100kd)ω.

Taking the real part and the imaginary part of the
characteristic polynomial as zero, they can be simplified into
the following form:

ReΔ,PD � A1kf + B1kd + C1 � 0,

ImΔ,PD � A2kf + B2kd + C2 � 0,
􏼨 (10)

whereA1 � (100NPE +ωNPO)cos(τω) + (100NPO +ωNPE)sin
(τω); A2 � (100NPO + ωNPE)cos(τω) − (100NPE + ωNPO)

sin(τω); B1 � 100ωNPO cos(τω) + 100ωNPE sin(τω); B2 �

100ωNPE cos(τω) − 100ωNPO sin(τω);C1 � 100DPE − ωDPO;
and C2 � 100DPO − ωDPE.

Solving equation (10), we can get the expression of kf and
kd and draw the stable boundary curve on the kd − kf plane
when ω ∈ (0,∞). -e expressions kf and kd are given

kd �
A1C2 − A2C1

B1A2 − A1B2
,

kf �
B2C1 − B1C2

B1A2 − A1B2
.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(11)

According to the obtained SBL, the vertices and corner
points of the stable region are devoted to describe the CSR.
In a general kd − kf plane, the CSR is designed as a triangle
with one vertex and two corner points, whose coordinates
are (kd1, kf1), (kd2, kf2), and (kd3, kf3). In order to ensure
that the obtained point is in the stable region, here we
propose the concept of the incenter of the CSR, whose
coordinate expression is as follows:

H �

kd1 kd2 kd3

kf1 kf2 kf3

⎡⎢⎣ ⎤⎥⎦

a

b

c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a + b + c
,

(12)

where a, b, and c are the modules of the three-sided vectors.
-e vectorH obtained in (12) is the inner-loop PD controller
parameter (kd; kf ).

-en, the inner-loop negative feedback system has the
following form:

ϕ1(s) �
N(s)

D(s)
�

Gp(s)

1 + CPD(s)Gp(s)

�
(s + 100)Np(s)e− τs

(s + 100)Dp(s) + Np(s)e− τs kf + 100kd( 􏼁s + 100kf( 􏼁
.

(13)

CPI (s)

CPD (s)

Gp (s) y

– –

+ +
r

Figure 1: -e PI-PD control system for generalized fractional
plant.
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Simplify the inner-loop transfer function (13) and split
the numerator and denominator into real parts and imag-
inary parts, respectively:

N(jω)

D(jω)
�

NE(jω) + jNO(jω)

DE(jω) + jDO(jω)
. (14)

Simplify NE(jω), NO(jω), DE(jω), andDO(jω) as NE,

NO, DE, andDO, where NE, NO are the real part and
imaginary part of numerator and DE, DO are the real part
and imaginary part of the denominator, respectively. -eir
expressions are as follows:
NE � NPE cos(τω) + NPO sin(τω)( 􏼁 n1 + 100( 􏼁 + ( NPE sin(τω)

− NPO cos(τω)􏼁n2,

NO � NPE cos(τω) + NPO sin(τω)( 􏼁n2 + ( NPO cos(τω)

− NPE sin(τω)􏼁 n1 + 100( 􏼁,

DE � A1kf + B1kd + C1;

DO � A2kf + B2kd + C2.

(15)

Regarding the inner loop as a whole, the transfer
function of the system is written as

ϕ2(s) �
CPI(s)ϕ1(s)

1 + CPI(s)ϕ1(s)
. (16)

-erefore, the closed-loop characteristic equation of the
outer loop is determined as follows:

ΔPI s; kp, ki􏼐 􏼑 � 1 + CPI(s)Gp(s)

� sD(s) + kps + kd􏼐 􏼑N(s)􏼐 􏼑.
(17)

Substitute (4) and (12) into the closed-loop characteristic
equation (16) and divide it into real part and imaginary parts:

ΔPI jω; kp, ki􏼐 􏼑 � ReΔ,PI + jImΔ,PI � 0. (18)

Simplify the characteristic equation into a binary
equations with unknown parameters kp, ki:

ReΔ,PI � A1kp + B1ki + C1 � 0,

ImΔ,PI � A2kp + B2ki + C2 � 0,

⎧⎪⎨

⎪⎩
(19)

where A1 � − ωNO; A2 � ωNE; B1 � NE; B2 � NO;
C1 � − ωDO; and C2 � ωDE.

-e parameters of SBL and the stability region of the
outer-loop PI controller on the kp − ki plane are obtained by
solving equation (19). And a SBL is drawn on the kp − ki
plane:

kp �
B2 C1 − B1 C2

B1 A2 − A1 B2
,

ki �
A1 C2 − A 2 C1

B1 A2 − A1 B2
.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(20)

For obtaining the outer-loop PI controller parameters,
this paper introduces a Fermat point concept that has the
smallest sum of distances to the vertices of the polygon. In

order to optimize calculation of Fermat point, a trapezoid is
designed at first. -e four vertices include two corner points
and two points on the SBL which are 1/2 of the longitudinal
distance between the cusp and corner point. Fermat point is
the diagonal intersection point.

-e proposed method includes the following five steps:

Step 1: according to equation (11), the relationship
between the parameters kd, kf of the inner-loop PD
controller could be obtained. And the SBL could be
drawn on the kd − kf plane.
Step 2: by selecting the vertices and corner points of the
CSR, the incenter of the convex CSR is computed
according to equation (12). Its coordinates H(kd, kf )

are the parameters of the inner-loop PD controller.
Step 3: calculating the transfer function of the inner
loop based on the obtained parameters (kd, kf ).
Step 4: according to equation (20), the relation of the
outer-loop PI controller parameters kp, ki could be
obtained. -e SBL is drawn on the kp − ki plane.
Step 5: determining the corner point and the boundary
point of the SBL; the intersection point of the trapezoid
diagonal is the parameter of the outer-loop PI
controller.

Remark 1. For fractional-order time-delay systems, the
traditional method of selecting stable regions is usually
determined by manually selecting a large number of test
points in all the regions divided by the stable boundary
trajectories, which will lead to time consumption. Inspired
by [37], this paper gives a simple parameter tuning method
of FOPID controller, which avoids time-consuming stability
test.

2.3. Method Extension of Uncertain Systems. Due to mod-
elling errors and other factors, it is an important issue for the
analysis and design of the uncertain parameter control
systems with time delay in control theory. In this article, the
design method is extended to the fractional-order system
with time delay and parameter uncertainty. Multiple transfer
functions are attained in the condition of uncertain pa-
rameters. Consider the transfer function with parameter
uncertainty for the control system shown in Figure 1. It is
defined as follows:

Gp(s) �
􏽐

n
j�0bjs

βj

􏽐
m
i�0ais

αi

e
− τs

, (21)

where ai ∈ [ai, ai], bj ∈ [bj, bj], αi ∈ [αi, αi], βj ∈ [β
j
, βj], i �

0, 1, . . . , m and j � 0, 1, . . . , n. According to the number of
uncertain parameters in the general transfer function, there
are m2 × n2 Kharitonov plants in total.

For the uncertain parameter system with time delay, all
steps of the method put forward in paper are individually
processed for each transfer function in terms of the Khar-
itonov theorem. -en, the common stable domain of all
transfer functions and its convex stable domain are obtained.
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Finally, the incenter of the inner loop and the Fermat points
of outer loop of the common convex stability region are
obtained, and then a robust PI-PD controller is designed.

-e proposed method extension of the time-delay un-
certain system could be classified into the following steps:

Step 1: for all submodels, the inner-loop stable
boundary loci are calculated separately, and the com-
mon stable region is determined graphically on the kd −

kf plane.
Step 2: then, the CCSR is determined according to the
corner points, intersection points, and individual tip
points. -e incenter of the CCSR is computed by ap-
plying (12). -e coordinate of the incenter is the pa-
rameter (kd, kf ) of the PD controller in the internal
loop.
Step 3: by substituting the values kd and kf into the
inner-loop system, the transfer functions of the outer
loop are obtained for all the submodels simplified based
on the Kharitonov theorem.
Step 4: the common stable region of the outer-loop PI
controller on the kp − ki plane is determined based on
all closed-loop transfer functions.
Step 5: looking for corner points, tip points, and bi-
partite points of the common stable area, the CCSR
based on these points is obtained. -e Fermat point of
the CCSR is given by the graphical method, which is
parameter (kp, ki) of the outer-loop PI controller.

Remark 2. -e method proposed in this paper is an
empirical parameter adjustment method, which is only
suitable for systems that can clearly distinguish stable
regions in images. For uncertain systems, it is only ap-
plicable to the case with common stable region. Other-
wise, further research is needed to find other control
methods.

3. Simulation

Several simulation examples show the effectiveness of the
proposed method. It includes the following plants: two
unstable time-delay systems of order 1 and order 2, re-
spectively, the time-delay unstable fractional plant with
uncertain parameters, and the two fractional-order plants.

3.1. Example A. Consider a first-order unstable transfer
function with time delay which was studied by Tan [29],
Onat [34], Kaya [38], and Visioli [39]. It has the following
form:

Gp(s) �
4

4s − 1
e

− 2s
. (22)

According to the proposed steps, the stable region of
the inner-loop system is obtained. -e SBL is drawn in the
kd − kf plane. And the convex region of the stable region is
demonstrated in Figure 2. It shows that the convex

stability region consists of one vertex V and two corner
points C1 and C2. -e convex stability region of the PD
controller can be described as a triangle by these points.
According to the coordinates of the above points, the
incenter (Inc) of the PD controller can be calculated by
applying equation (12), and its coordinate is (0.461,
0.469). -e inner-loop PD controller parameters are
kd � 0.461 and kf � 0.499.

Substituting the PD controller parameters into the inner
loop, the system transfer function is obtained by using (20). For
the outer loop, PI controller parameters’ stability region is
drawn in the kp − ki plane in Figure 3. Figure 3 also dem-
onstrates the CSR. In this step, two corner pointsC3 andC4 and
two points E1 and E2 on the SBL with a longitudinal distance of
1/2 from the corner point to the cusp point are given as shown
in Figure 3. -ese points describe the convex region as
a trapezoid. -en, the coordinates of Fermat points (Fps) are
obtained as (0.06475, 0.04573), and the parameters of the
inner-loop PI controller are kp � 0.06459 and ki � 0.04564.
-us, parameters of the PI-PD controller are kd �

0.461, kf � 0.499, kp � 0.06459, and ki � 0.04564.
In Figure 4, the unit step response of the method put

forward in this paper is compared with the methods put
forward by Onat [34], Tan [29], Kaya [38], and Visioli [39].
Table 1 gives the parameters of the various methods. -e
settling time, overshoot, rise time, peak time, and IAE values
are used as evaluation index. Table 2 gives the evaluation
values of this proposed method, other controller designs,
and optimization methods. In light of the evaluation criteria,
the tuning method proposed in this paper exhibits the su-
perior performance.-is method has the lowest settling time
and the smallest overshoot. -e response speed of the PID
controller is fast, but other performances are not ideal. In
this example, the PI-PD controller proved to be superior to
PID controller, and the parameter tuning method is the best
in comparison.

3.2. Example B. View a second-order unstable transfer
function which was studied by Kaya and Atherton [28]:

Gp(s) �
1

2s2 + s − 1
e

− 0.3s
. (23)

-e stability region of the inner-loop PD controller is
shown in Figure 5. A vertex V and two corner points C1 and
C2 in Figure 5 construct a CSR. Inc stands for convex stable
region, and Inc can be calculated as (5.51, 4.8667), and then
the inner-loop PD controller parameters are
kd � 5.51 and kf � 4.8667.

By substituting the PD controller parameters
(kd � 5.51, kf � 4.8667) into the inner loop, the transfer
function can be obtained by using (12). Figure 6 gives the
stable region and its convex region of the outer ring PI
controller in the kp − ki plane. C3 and C4 are the corner
points and E1 and E2 are the bisection points. -e diagonal
intersection coordinate of the quadrilateral is obtained by
the graphic method, and the coordinate values of Fp are
kp � 3.77 and ki � 4.75. -rough the above analysis and
calculation, the PI-PD controller parameters calculated by
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the proposed method are determined. -ey are kd � 5.51,
kf � 4.8667, kp � 3.77, and ki � 4.75.

Figure 7 gives the comparison between the PI-PD
controller optimized by the parameter tuning method put
forward in this paper and the controller put forward by
Kaya and Atherton [28]. -e unit step responses of these
controllers are illustrated in Figure 7. Controller pa-
rameters are shown in Table 3. Table 4 gives the

performance indexes of the several studies in this ex-
ample. Obviously, the proposed method has lowest
overshoot and peak time. And it also has a small IAE in
this example. It is obvious that the tuning method put
forward in this paper is better than the others.

3.3. Example C. -is example considers a time-delay un-
stable transfer function with uncertain parameters. -e
transfer function is written as

Gp(s) �
1

sa − b
e

− 0.2s
, (24)

where a ∈ [0.8, 1.2] and b ∈ [0.5, 1.5]. Four boundary
transfer functions are taken into account based on Khar-
itonov’s theorem which are Gp1(s), Gp2(s), Gp3(s), and
Gp4(s). -e plants are given in (25)–(28), respectively:

Gp1(s) �
1

s1.2 − 0.5
e

− 0.2s
, (25)

Gp2(s) �
1

s1.2 − 1.5
e

− 0.2s
, (26)

Gp3(s) �
1

s0.8 − 1.5
e

− 0.2s
, (27)

Gp4(s) �
1

s0.8 − 0.5
e

− 0.2s
. (28)

Above all, stability boundary loci of edge plants in the
inner loop are drawn in the kd − kf plane in Figure 8.
According to the stable boundary loci obtained above, the
common stability region is obtained as shown as the
shadow in Figure 8. Figure 9 enlarges CSR in Figure 8 and
gives CCSR composed of corner points C1 and C2 and
vertex V. C1 is the intersection of two stable boundary
loci. -e parameters of the inner-loop PD controller
are the values of Inc coordinates with kd � 0.0314 and
kf � 2.205.

Furthermore, for outer loop, stability boundary loci of
edge plants are drawn in Figure 10, and the shadow is the
CSR. Figure 11 enlarges CSR in Figure 10 and gives CCSR as
a trapezoid composed of corner points C3 and C4 and the
bisection points E1 and E2 of the common stable region.
Applying the method proposed in the paper, the common
convex region is designed as a trapezoid and Fermat point is
the diagonal intersection of the trapezoid. -erefore, the
values of Fp coordinate in Figure 11 are the parameters of
the outer-loop PI controller with kp � 1.518 and kf � 1.644.
-rough the above two steps, the PI-PD controller of the
system is obtained, and its parameters are kd � 0.0314,

kf � 2.205, kp � 1.518, and kf � 1.644.
Finally, for the parameters of the uncertain system, the

cell step responses of the four boundary plants are obtained
in Figure 12. For the uncertain system, the controller has
strong robustness.

3.4. Example D. Consider the following transfer function,
which has an order of 0.8:
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Figure 4: Unit step responses comparison of various methods for
example A.
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Figure 3: Convex stability region and Fermat point of PI controller
in example A.
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example A.
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Gp(s) �
1

s0.8 − 1
e

− 0.2s
. (29)

In this example, if the point at ω � 0 is used as a corner
point, the CSR is as shown in Figure 13. -e convex region
contains a lot of unstable regions, and the WGC point and
the incenter of the convex region are outside of the stable
region. -erefore, as shown in Figure 14, a new point C1 is
defined as the left corner point. -e height of C1 is equal to
the original corner point. And C1 is closer to the stable
region. C2 is another corner point of the new convex stable
region, and V is the vertex of the stable region.

For inner loop, Inc coordinates are obtained as kd �

− 0.041 and kf � 1.55 and centroid coordinates are obtained
as kd � 0.00947 and kf � 2.5633.

And for the outer loop, using the WGC method, the
convex stability region is given as Figure 15. C3, C4, and C5
are the corner points of the stable region, and V is the vertex
of the stable region. -e centroid PI controller parameters
are obtained as kp � 0.1072 and ki � 2.805. Applying the
method put forward in this paper, the convex stability region
of PI controller is given in Figure 16. -e convex stable
region is a trapezoid composed of the corner points C6 and
C7 and the bisection points E1 and E2 of the common stable
region. -e outer-loop PI controller parameters are com-
puted as Fp with kp � 1.527 and ki � 2.515. Accordingly, the
PI-PD controller optimized by using the WGC method and
the method proposed in this paper is determined. -e pa-
rameters of the WGC method are kd � 0.00947, kf � 2.5633,
and kp � 0.1072, ki � 2.805, and the parameters of the
proposed method are kd � − 0.041, kf � 1.55, and
kp � 1.527, ki � 2.515. -e unit step responses are given in
Figure 17. Compared with Onat’s method, the method
proposed in this paper can achieve faster response.

Table 1: Controller parameters comparison of various methods in example A (other data cited from [34]).

Controller Proposed PI-PD Onat PI-PD Tan PI-PD Kaya PI-PD Visioli PID

Parameters

kd � 0.461
kf � 0.499
kp � 0.06459
ki � 0.04564

kd � 0.3412
kf � 0.439
kp � 0.107
ki � 0.0393

kd � 0.20
kf � 0.413
kp � 0.07
ki � 0.03

kp � 0.6217
ki � 0.0722
kd � 0.5352

kp � 0.652
ki � 0.0789
kd � 0.6309

Table 2: Performance metrics comparison of various methods in example A (other data cited from [34]).

Controller Settling time (s) Overshoot (%) Rise time (s) Peak time (s) IAE
Proposed PI-PD 11.81 1.35 5.80 15.68 5.63
Onat PI-PD 16.04 2.13 3.77 8.63 4.87
Tan PI-PD 20.26 6.24 4.64 10.62 5.89
Kaya PI-PD 17.70 174.16 0.45 5.01 8.57
Visioli PID 24.15 191.65 0.32 4.00 9.18
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Figure 5: Convex stability region and incenter of PD controller in
example B.
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3.5. Example E. Consider the case of order 1.2 of fractional
transfer function in example 3:

Gp(s) �
1

s1.2 − 1
e

− 0.2s
. (30)

According to the method proposed in this paper, the
corner points are selected. -e stable region and its regular
convex stability region of the inner loop and outer loop are
shown in Figures 18 and 19, respectively. C1, C2, C3, and C4

are the corner points, V is the vertex point, and E1 and E2 are
the bisection points. -e inner PD controller parameters are
the coordinates of Inc with kd � 0.799 and kf � 1.823, and
the outer PI controller parameters are the coordinates of Fp
with kp � 4.976 and ki � 7.75.

Due to the inward extension of corner points, the fol-
lowing attempts were made in this paper to select inflection
points on the boundary to replace corner points. -e stable
region and the convex region are as shown in Figures 20 and

Table 3: Controller parameters comparison of various methods in example B (other data cited from [34]).

Controller Proposed PI-PD Onat PI-PD Kaya PI-PD Atherton PID

Parameters

kd � 5.51
kf � 4.8667
kp � 3.77
ki � 4.75

kd � 5.46
kf � 5.69
kp � 3
ki � 5.3

kd � 0.535
kf � 3
kp � 1.398
ki � 0.793

kp � 1.398
ki � 0.793
kd � 0.535

Table 4: Performance metrics comparison of various methods in example B (other data cited from [34]).

Controller Settling time (s) Overshoot (%) Rise time (s) Peak time (s) IAE
Proposed PI-PD 11.81 1.35 5.80 15.68 5.63
Onat PI-PD 16.04 2.13 3.77 8.63 4.87
Tan PI-PD 20.26 6.24 4.64 10.62 5.89
Kaya PI-PD 17.70 174.16 0.45 5.01 8.57
Visioli PID 24.15 191.65 0.32 4.00 9.18

–3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

Common stable
region

Stability boundary
locus

Gp1

Gp2

Gp3

Gp4

kf

kd
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uncertain systems in example C.
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21. C5, C6, C7, and C8 are the corner points, V is the vertex
point, and E3 and E4 are the bisection points.
(kd, kf ) and (kp, ki) are the coordinates of Inc and Fp, re-
spectively. -e parameters of this improved PI-PD con-
troller are kd � 0.533, kf � 2.941, kp � 3.488, and ki � 5.363.
-e unit step responses are compared as shown in Figure 22.
-e two methods show the same settling time. However, the
improvedmethod is better than the former one in the field of
overshot and IAE capabilities.
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4. Conclusions

In this paper, a PI-PD control parameter graphical tuning
method for unstable fractional time-delay systems is pro-
posed by using the concept of incenter and Fermat points of
CSRs. -e method obtains the inner-loop stable boundary
locus and the outer-loop stable boundary locus by estab-
lishing the characteristic equations. CSR is designed, and the
incenter of the inner-loop CSR and Fermat point of outer-
loop convex stable region are obtained, respectively. -is
method uses several special points on the stable boundary
locus to determine the convex stable region. -e method has
the advantages of convenient calculation and easy imple-
mentation in engineering. -is method is popularized to the
uncertain system by applying Kharitonov’s theorem. Sim-
ulation examples verify the effectiveness of the method put
forward in the paper. In future studies, the proposed method
can also be extended to the PIλ-PDμ controller.

Nomenclature

SBL: Stable boundary locus
ISE: Integral of squared error
ISTE: Integral of squared time weighted error
WGC: Weight geometric centre
CSR: Convex stable region
CCSR: Common convex stable region
kd: Derivative gain of the PD controller
kf : Proportional gain of the PD controller
kp: Proportional gain of the PI controller
ki: Integral gain of the PI controller
CPI: Transfer function of the PI controller
CPD: Transfer function of the PD controller
s: Laplace variable
j: Imaginary

���
− 1

√

ω: Frequency
Δ: Characteristic equation
N: Numerator of the transfer function
D: Denominator of the transfer function
Inc: Incenter of the convex stable region
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Fp: Fermat point
C1, C2, . . .: Corner of the stable region
V: Vertex of the stable region
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