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 is paper is concerned with the Hopf bifurcation of a synthetic drug transmission model with two delays. Firstly, some su�cient
conditions of delay-induced bifurcation for such a model are captured by using di�erent combinations of the two delays as the
bifurcation parameter. Secondly, based on the center manifold theorem and normal form theory, some su�cient conditions
determining properties of the Hopf bifurcation such as the direction and the stability are established. Finally, to underline the
e�ectiveness of the obtained results, some numerical simulations are ultimately addressed.

1. Introduction

Increased use of heroin and other addictive drugs is an
issue of concern all over the world. Drug abuse a�ects not
only life quality of the general public but also the overall
situation of social stability and economic development
[1–3].  e data from the World Drug Report published by
the United Nations (U.N.) showed that thirty-�ve million
people worldwide su�er from drug abuse disorders, and
only one-seventh has received treatment [4]. It also showed
that, in 2017, millions of people around the world injected
drugs, including 1.4 million people living with HIV and 5.6
million people su�ering from hepatitis C. From the sta-
tistical data, it is clear that the adverse health e�ect due to
drug use is more serious and widespread than previous
anticipation, and it is urgent to control the prevalence of
addictive drugs.

As stated in [5], the spread of heroin habituation and
addiction has similar characteristics to an epidemic, in-
cluding rapid di�usion and clear geographic boundaries.
With the help of epidemic models, one could try to simulate
and reveal the nature of epidemics and provide theoretical
rules and results for preventing and controlling infectious
diseases [6]. In recent decades, mathematical modelling
technologies based on the infectious disease models have

been developed to understand and combat drug-addiction
problems. In [7], White and Comiskey formulated a heroin
epidemic model with a standard incidence rate based on
principles of mathematical epidemiology. In the succes-
sion, Mulone and Straughan [8] found stability conditions
for steady states of the proposed model by White and
Comiskey. In the subsequent papers, Wang et al. [9–12]
studied global stability of a heroin epidemic model with
bilinear incidence rate, respectively. Some other works
related to the dynamical behaviour of heroin epidemic
models with nonlinear incidence rates can be found in
[3, 13–15], and models with age structure can be found in
[13, 15–18]. For the analytical study of stochastic heroin
epidemic models or some other heroin epidemic models,
one can also see [1, 2, 19–22].

All the aforementioned models consider only tradi-
tional drugs. Compared with traditional drugs, the relevant
works are few. On the other hand, synthetic drugs are
addictive more easily because they can directly a�ect the
central nervous system as a new type of mental drug.
According to China’s Drug Situation Report [23], among
drug abuse, methamphetamine is the most common.
Methamphetamine abusers accounted for 56.1% of the
existing 2.444 million drug addicts, and methamphetamine
has replaced heroin as the most abused drug in China.
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Besides, in 2018, the people who relapsed and abused
synthetic drugs were accounted for 57.3% of the total
number of drug abuse among the relapsed addicts. Based
on the above facts, Ma et al. [24] formulated a synthetic
drug transmission model with psychological addicts and
general contact rates, and they investigated the local and
global stability of the proposed model. However, they
assumed that the contact rates of psychological addicts
and physiological addicts are equal for the sake of simple
calculation and analysis, which is not reasonable because
the susceptible individuals who have never taken any
drugs are more likely to initiate drug abuse once they
contact with the physiological addicts compared to the
psychological ones. Based on the work in [24], Saha and
Samanta [25] proposed a synthetic drug transmission
model with general contact rate and Holling type-II
functional responses among susceptible and drug addicts.
Recently, Liu et al. [26] proposed the following synthetic
drug transmission model with different susceptible
compartments:

dS(t)

dt
� Λ − β1S(t)I(t) − μS(t),

dQ(t)

dt
� εI(t) + δR(t) − μQ(t) − β2Q(t)I(t),

dI(t)

dt
� β1S(t)I(t) + β2Q(t)I(t) + σR(t)

− (ε + c + μ)I(t),

dR(t)

dt
� cI(t) − (δ + σ + μ)R(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where the meanings of S(t), Q(t), I(t), and R(t) are de-
scribed concisely in Table 1. All the parameters Λ, β1, μ, ε, δ,
c, β2, and σ are positive constants, and their meanings are
presented in Table 2. Liu et al. [26] studied the global ex-
ponential stability of the drug-free equilibrium and the
global stability of the drug-addiction equilibrium, and they
showed that special psychological treatment played a very
positive role in drug abusers.

It should be pointed out that system (1) assumed that
drug abusers can give up drugs instantaneous. *is as-
sumption seems not to be realistic since the synthetic drugs
are addictive easily and it usually needs a period to give up
drugs. Time delays have been incorporated into dynamical
models about some other fields by many scholars [27–33].
Generally speaking, delay differential equations exhibit
muchmore complicated dynamics than ordinary differential
equations since a time delay could cause the equilibrium of a
dynamical model to lose its stability. Hence, it is important
to know the critical point at which a synthetic drug trans-
mission model changes its stability. Based on the discussion
above, we consider the following synthetic drug trans-
mission model with two time delays:

dS(t)

dt
� Λ − β1S(t)I(t) − μS(t),

dQ(t)

dt
� εI t − τ1( 􏼁 + δR t − τ2( 􏼁 − μQ(t) − β2Q(t)I(t),

dI(t)

dt
� β1S(t)I(t) + β2Q(t)I(t) + σR(t) − (c + μ)I(t)

− εI t − τ1( 􏼁,

dR(t)

dt
� cI(t) − (σ + μ)R(t) − δR t − τ2( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where τ1 is the time delay due to the period that the drug
abusers use to give up drugs through self-control. τ2 is the
time delay due to the period used to give up drugs
through successful treatment. *e transfer diagram of
system (2) is depicted as in Figure 1. *is paper mainly
concerns the effect of the delays τ1 and τ2 on the stability
of system (2).

*e framework of the current paper is arranged as
follows. In Section 2, the existence of Hopf bifurcation is
discussed in detail by using the different combinations of
the two delays as the bifurcation parameters and analyzing
the distribution of roots of the associated characteristic
equations. In Section 3, the direction of Hopf bifurcation
and stability of the bifurcating periodic solutions are
determined with the help of the center manifold theorem
and normal form theory. In Section 4, the effectiveness of
the obtained theoretical findings is certified through
numerical simulations. Finally, conclusions are drawn in
Section 5.

Table 1: *e state variables for system (1).

Parameter Description

S(t)
Number of susceptible individuals who have never

taken any drugs at time t

Q(t)
Number of susceptible individuals who have history

of drug abuse
I(t) Number of drug users not in treatment
R(t) Number of individuals who are receiving treatment

Table 2: *e description of parameters for system (1).

Parameter Description
Λ Immigration rate of the susceptible
β1 Probability of transmission from S to I
μ Natural death rate of all populations
Ε Self-cure rate from I to Q
δ Successful treatment rate from I to Q
c Procession rate from I to R
β2 Probability of transmission from Q to I
σ Probability of treatment failure
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2. The Existence of Hopf Bifurcation

According to the analysis in the literature [26], we know that
system (2) has a unique positive synthetic drug-addiction
equilibrium E∗(S∗, Q∗, I∗, R∗) when

R0 �
β2Λ(δ + σ + μ)

μ((ε + c + μ)(δ + σ + μ) − cσ)
> 1,

S
∗

�
Λ

β1I∗ + μ
,

Q
∗

�
ε(δ + σ + μ) + δc

(δ + σ + μ) μ + β2I∗( 􏼁
I
∗
,

R
∗

�
c

δ + σ + μ
I
∗
,

(3)

where I∗ is the positive root of the following equation:

a I
∗

( 􏼁
2

+ bI
∗

+ c � 0,

a � μβ1β2(c + δ + σ + μ),

b � μ2 β1 + β2( 􏼁(c + δ + μ + σ)

+ μεβ1(δ + σ + μ) + μβ1cδ

− β1β2Λ(δ + σ + μ),

c � u
2
(δ + σ + μ)(μ + ε) + μ2c(δ + μ)

− μβ1Λ(δ + σ + μ).

(4)

*e linear part of system (2) is
dS(t)

dt
� L11S(t) + L13I(t),

dQ(t)

dt
� L22Q(t) + L23I(t) + M23I t − τ1( 􏼁

+ N24R t − τ2( 􏼁,

dI(t)

dt
� L31S(t) + L32Q(t) + L33I(t) + L34R(t)

+ M33I t − τ1( 􏼁,

dR(t)

dt
� L43I(t) + L44R(t) + N44R t − τ2( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

whose characteristic equation is

λ4 + a3λ
3

+ a2λ
2

+ a1λ + a0 + b3λ
3

+ b2λ
2

+ b1λ + b0􏼐 􏼑e
− λτ1

+ c3λ
3

+ c2λ
2

+ c1λ + c0􏼐 􏼑e
− λτ2

+ d2λ
2

+ d1λ + d0􏼐 􏼑e
− λ τ1+τ2( ) � 0,

(6)

where

a0 � L11L22 L33L44 − L34L43( 􏼁 + L13L31L22L44,

a1 � L34L43 − L33L44( 􏼁 L11 + L22( 􏼁 − L13L31 L22 + L44( 􏼁

− L11L22 L33 + L44( 􏼁,

a2 � L11 + L22( 􏼁 L33 + L44( 􏼁 + L11L22 + L33L44

− L13L31 − L34L43,

a3 � − L11 + L22 + L33 + L44( 􏼁,

b0 � L11L44 L22M33 − L32M23( 􏼁,

b1 � L32M23 L11 + L44( 􏼁 − M33 L11L22 + L11L44 + L22L44( 􏼁,

b2 � M33 L11 + L22 + L44( 􏼁 − L32M23,

b3 � − M33,

c0 � L11L22L33N44 + L13L31L22N44 + L11L32L43N24,

c1 � − N44 L11L22 + L11L33 + L22L33( 􏼁 − L13L31N44

− L32L43N24,

c2 � N44 L11 + L22 + L33( 􏼁,

c3 � − N44,

d0 � L11N44 L22M33 − L32M23( 􏼁,

d1 � L32M23N44 − M33N44 L11 + L22( 􏼁,

d2 � M33N44,

L11 � − β1I
∗

+ μ( 􏼁,

L13 � − β1S
∗
,

L22 � − μ + β2I
∗

( 􏼁,

L23 � − β2Q
∗
,

L31 � β1I
∗
,

L32 � β2I
∗
,

L33 � β1S
∗

+ β2Q
∗
,

L34 � σ,

L43 � c,

L44 � − (σ + μ),

M23 � ε,

M33 � − ε,

N24 � δ,

N44 � − δ.

(7)

Case 1. τ1 � τ2 � 0. When τ1 � τ2 � 0, equation (6)
becomes

μS(t)
Λ

δR(t – τ2)

δR(t)

β2Q(t)I(t)

β1S(t)I(t)

εI(t – τ1)S Q I
γI(t)

R μS(t)

μI(t)μQ(t)

Figure 1: *e transfer diagram of system (2).
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λ4 + K3λ
3

+ K2λ
2

+ K1λ + K0 � 0, (8)

where

K0 � a0 + b0 + c0 + d0,

K1 � a1 + b1 + c1 + d1,

K2 � a2 + b2 + c2 + d2,

K3 � a3 + b3 + c3.

(9)

According to Routh–Hurwitz criterion, the drug-ad-
diction equilibrium E∗(S∗, Q∗, I∗, R∗) is locally asymptoti-
cally stable provided the following conditions are satisfied:
(H1)K0 > 0, K3 > 0, K2K3 >K1K4, and K1K2K3 >K2

1K4 +

K0K
2
3.

Case 2. τ1 > 0 and τ2 � 0.

We analyze the effect of τ1 on bifurcation for system (2).
When τ1 > 0 and τ2 � 0, equation (6) becomes

λ4 + K13λ
3

+ K12λ
2

+ K11λ + K10

+ L13λ
3

+ L12λ
2

+ L11λ + L10􏼐 􏼑e
− λτ1 � 0,

(10)

where
K10 � a0 + c0,

K11 � a1 + c1,

K12 � a2 + c2,

K13 � a3 + c3,

L10 � b0 + d0,

L11 � b1 + d1,

L12 � b2 + d2,

L13 � b3.

(11)

Assume that λ � iω1(ω1 > 0) is a purely imaginary root
of equation (10), then it follows that

L10 − L12ω2
1( 􏼁cosω1τ1 − L13ω3

1 − L11ω1( 􏼁sinω1τ1
� K12ω2

1 − ω4
1,

L10 − L12ω2
1( 􏼁sinω1τ1 + L13ω3

1 − L11ω1( 􏼁cosω1τ1
� K11ω1 − K13ω3

1.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

By the aid of equation (12), we have

ω8
1 + e13ω

6
1 + e12ω

4
1 + e11ω

2
1 + e10 � 0, (13)

where
e10 � K

2
10 − L

2
10,

e11 � K
2
11 + 2L10L12 − 2K10K12 − L

2
11,

e12 � K
2
12 + 2K10 + 2L11L13 − 2K11K13 − L

2
12,

e13 � K
2
13 − 2K12 − L

2
13.

(14)

Making the substitution v1 � ω2
1, equation (13) can be

rewritten as

v
4
1 + e13v

3
1 + e12v

2
1 + e11v1 + e10 � 0. (15)

Define

g1 v1( 􏼁 � v
4
1 + e13v

3
1 + e12v

2
1 + e11v1 + e10. (16)

In order to establish the main results of this article, it is
assumed that (H21) equation (15) has at least one positive
real root. Without loss of generality, assume that equation
(15) has four positive roots, denoted by v11, v12, v13, and v14.
Accordingly, ω1i �

���
v1i

√
(i � 1, 2, 3, 4) are the roots of

equation (13). From equation (12), one has

τj
1i �

1
ω1i

× arccos
f11 ω1i( 􏼁

f12 ω1i( 􏼁
+ 2nπ􏼨 􏼩, (17)

with i � 1, 2, 3, 4; n � 0, 1, 2, . . . ; and

f11 ω1i( 􏼁 � L12 − K13L13( 􏼁ω6
1i + K11L13 + K13L11(

− K12L12 − L10􏼁ω
4
1i + K10L12 + K12L10(

− K11L11􏼁ω
2
1i − K10L10,

f12 ω1i( 􏼁 � L
2
13ω

6
1i + L

2
12 − 2L11L13􏼐 􏼑ω4

1i

+ L
2
11 − 2L10L12􏼐 􏼑ω2

1i + L
2
10.

(18)

Denote

τ10 � τ01i0
� min τ01i ∣ i � 1, 2, 3, 4􏽮 􏽯,

ω10 � τ1i0
.

(19)

Next, we derive the condition of the occurrence for Hopf
bifurcation. Differentiating both sides of equation (10) with
regard to τ1 and substituting λ � iω10 into the obtained
expression, it can be achieved that

Re
dλ
dτ1

􏼢 􏼣

− 1

τ1�τ10

�
g1′ v10( 􏼁

L13ω3
10 − L11ω10( 􏼁

2
+ L10 − L12ω2

10( 􏼁
2,

(20)

where v10 � ω2
10. To ensure the condition of the occurrence

for Hopf bifurcation, we educe the following hypothesis:
(H22) g1′(v10)≠ 0, which suggests that transversality condi-
tion is matched. In conclusion, we have the following
results.

Theorem 1. For system (2), if the conditions (H1), (H21),
and (H22) hold, then drug-addiction equilibrium
E∗(S∗, Q∗, I∗, R∗) is locally asymptotically stable when
τ1 ∈ [0, τ10); system (2) undergoes a Hopf bifurcation at the
drug-addiction equilibrium E∗(S∗, Q∗, I∗, R∗) when τ1 � τ10,
and a family of periodic solutions bifurcate from the drug-
addiction equilibrium E∗(S∗, Q∗, I∗, R∗).

Remark 1. Although the assumptions (H21) and (H22)

seem to be tedious, however, one can verify the assumptions
in numerical simulations.
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Case 3. τ1 � 0 and τ2 > 0.

Remark 2. When τ1 � 0 and τ2 > 0, the analysis of the effect
of τ2 on bifurcation for system (2) is similar as that in Case 2.
*erefore, we omit it here.

Case 4. τ1 � τ2 � τ > 0.
We analyze the effect of τ on bifurcation for system (2).

When τ1 � τ2 � τ > 0, equation (6) becomes

λ4 + K33λ
3

+ K32λ
2

+ K31λ + K30

+ L33λ
3

+ L32λ
2

+ L31λ + L30􏼐 􏼑e
− λτ

+ M32λ
2

+ M31λ + M30􏼐 􏼑e
− 2λτ

� 0,

(21)

with

K30 � a0,

K31 � a1,

K32 � a2,

K33 � a3,

L30 � b0 + c0,

L31 � b1 + c1,

L32 � b2 + c2,

L33 � b3 + c3,

M30 � d0,

M31 � d1,

M32 � d2.

(22)

By multiplying eλτ on both sides of equation (21), it can
be procured that

L33λ
3

+ L32λ
2

+ L31λ + L30

+ λ4 + K33λ
3

+ K32λ
2

+ K31λ + K30􏼐 􏼑e
λτ

+ M32λ
2

+ M31λ + M30􏼐 􏼑e
− λτ

� 0.

(23)

Suppose iω(ω> 0) is the root of equation (23), then one
has

J41(ω)cosωτ + J42(ω)sinωτ � J45(ω),

J43(ω)sinωτ − J44(ω)cosωτ � J46(ω),
􏼨 (24)

where

J41(ω) � ω4
− K32 + M32( 􏼁ω2

+ K30 + M30,

J42(ω) � K33ω
3

− K31 − M31( 􏼁ω,

J43(ω) � ω4
− K32 − M32( 􏼁ω2

+ K30 − M30,

J44(ω) � K33ω
3

− K31 + M31( 􏼁ω,

J45(ω) � L32ω
2

− L30,

J46(ω) � L33ω
3

− L31ω.

(25)

Using Cramer’s rule to solve the above equations, one
obtains

cosωτ �
l6ω6 + l4ω4 + l2ω2 + l0

ω8 + j6ω6 + j4ω4 + j2ω2 + j0
, (26)

sinωτ �
l7ω7 + l5ω5 + l3ω3 + l1ω

ω8 + j6ω6 + j4ω4 + j2ω2 + j0
, (27)

with

j0 � K
2
30 − M

2
30,

j2 � K
2
31 − M

2
31 − 2K30K32 + 2M30M32,

j4 � 2K30 − M
2
32 − 2K31K33,

j6 � K
2
33 − 2K32,

l0 � − K30 − M30( 􏼁L30,

l1 � K31 + M31( 􏼁L30 − K30 + M30( 􏼁L31,

l2 � K32 − M32( 􏼁L30 + K30 − M30( 􏼁L32 − K31 − M31( 􏼁L31,

l3 � K32 + M32( 􏼁L31 + K30 + M30( 􏼁L33 − K31 + M31( 􏼁L32

− K33L30,

l4 � K31 − M31( 􏼁L33 − K32 − M32( 􏼁L32 + K33L31 − L30,

l5 � K33L32 − L31 − K32 − M32( 􏼁L33,

l6 � L32 − K33L33,

l7 � L33.

(28)

Squaring both sides of equations (26) and (27), re-
spectively, and adding them together, one has

ω16
+ k7ω

14
+ k6ω

12
+ k5ω

10
+ k4ω

8
+ k3ω

6
+ k2ω

4

+ k1ω
2

+ k0 � 0,
(29)

where

k0 � j
2
0 − l

2
0,

k1 � 2j0j2 − 2l0l2 − l
2
1,

k2 � j
2
2 + 2j0j4 − l

2
2 − 2l0l4 − 2l1l3,

k3 � 2j0j6 + 2j2j4 − 2l0l6 − 2l2l4 − l
2
3 − 2l1l5,

k4 � j
2
4 + 2j0 + 2j2j6 − l

2
4 − 2l2l6 − 2l1l7 − 2l3l5,

k5 � 2j2 + 2j4j6 − 2l4l6 − l
2
5 − 2l3l7,

k6 � j
2
6 + 2j4 − l

2
6 − 2l5l7, k7 � 2j6 − l

2
7.

(30)

Let ω2 � v, then equation (29) becomes

v
8

+ k7v
7

+ k6v
6

+ k5v
5

+ k4v
4

+ k3v
3

+ k2v
2

+ k1v + k0 � 0.

(31)

Suppose that (H41) equation (29) has at least one
positive root. Without loss of generality, assume that
equation (31) has eight positive roots, denoted by

Complexity 5



v1, v2, . . . , v8. Accordingly, ωi �
��
vi

√
(i � 1, 2, . . . , 8) are the

roots of equation (29). *us, one has

τj
i �

1
ωi

× arccos
l6ω6

i + l4ω4
i + l2ω2

i + l0

ω8
i + j6ω6

i + j4ω4
i + j2ω2

i + j0
+ 2nπ􏼨 􏼩,

(32)

with i � 1, 2, . . . , 8; n � 0, 1, 2, . . . ; and

τ0 � τ0i0 � min τ0i ∣ i � 1, 2, . . . , 8􏽮 􏽯,

ω0 � τi0
.

(33)

Differentiating both sides of equation (23) with respect
to τ yields

dλ
dτ

􏼢 􏼣

− 1

� −
f31(λ)

f32(λ)
−
τ
λ
, (34)

where

f31(λ) � 3L33λ
2

+ 2L32λ + L31 + 4λ3 + 3K33λ
2

+ 2K32λ􏼐

+ K31􏼁e
λτ

+ 2M32λ + M31( 􏼁e
− λτ

,

f32(λ) � λ λ4 + K33λ
3

+ K32λ
2

+ K31λ + K30􏼐 􏼑e
λτ

− λ M32λ
2

+ M31λ + M30􏼐 􏼑e
− λτ

.

(35)

Hence, one obtains

Re
dλ
dτ

􏼢 􏼣

− 1

τ�τ0

�
U3RV3R + U3IV3I

V2
3R + V2

3I

, (36)

with

U3R � L31 − 3L33ω
2
0 + K31 + M31 − 3K33ω

2
0􏼐 􏼑cosω0τ0

− 2K32ω0 − 2M32ω0 − 4ω3
0􏼐 􏼑sinω0τ0,

U3I � 2L32ω0 + K31 − M31 − 3K33ω
2
0􏼐 􏼑sinω0τ0

+ 2K32ω0 + 2M32ω0 − 4ω3
0􏼐 􏼑cosω0τ0,

V3R � K33ω
4
0 − K31ω

2
0 + M31ω

2
0􏼐 􏼑cosω0τ0

− ω5
0 − K32ω

3
0 − M32ω

3
0 + K30ω0 + M30ω0􏼐 􏼑sinω0τ0,

V3I � K33ω
4
0 − K31ω

2
0 − M31ω

2
0􏼐 􏼑sinω0τ0

+ ω5
0 − K32ω

3
0 + M32ω

3
0 + K30ω0 − M30ω0􏼐 􏼑cosω0τ0.

(37)

In order to obtain the main results, it is necessary to
make the following extra assumption (H42) U3RV3R+

U3IV3I ≠ 0, which ensures that transversality condition
holds.

Theorem 2. For system (2), if the conditions (H1), (H41),
and (H42) hold, then drug-addiction equilibrium
E∗(S∗, Q∗, I∗, R∗) is locally asymptotically stable when
τ ∈ [0, τ0); system (2) undergoes a Hopf bifurcation at the

drug-addiction equilibrium E∗(S∗, Q∗, I∗, R∗) when τ � τ0,
and a family of periodic solutions bifurcate from the drug-
addiction equilibrium E∗(S∗, Q∗, I∗, R∗).

Remark 3. Although the assumptions (H41) and (H42)

seem to be tedious, however, one can verify the assumptions
in numerical simulations.

Case 5. τ1 ∈ (0, τ10) and τ2 > 0.
Motivated by the work in [34], in this case, we analyze

the effect of τ2 on bifurcation for system (2) and fix
τ1 ∈ (0, τ10). Suppose iω2′(ω2′ > 0) is the root of equation (6).
For convenience, we still denote ω2′ as ω2. *en, one has

J41 ω2( 􏼁sinω2τ2 + J42 ω2( 􏼁cosω2τ2 � J43 ω2( 􏼁,

J41 ω2( 􏼁cosω2τ2 − J42 ω2( 􏼁sinω2τ2 � J44 ω2( 􏼁,
􏼨 (38)

where

J41 ω2( 􏼁 � c1ω2 − c3ω
3
2 + d1ω2 cosω2τ1

− d0 − d2ω
2
2􏼐 􏼑sinω2τ1,

J42 ω2( 􏼁 � c0 − c2ω
2
2 + d1ω2 sinω2τ1 + d0 − d2ω

2
2􏼐 􏼑cosω2τ1,

J43 ω2( 􏼁 � a2ω
2
2 − ω4

2 − a0 − b1ω2 − b3ω
3
2􏼐 􏼑sinω2τ1

− b0 − b2ω
2
2􏼐 􏼑cosω2τ1,

J44 ω2( 􏼁 � a3ω
3
2 − a1ω2 − b1ω2 − b3ω

3
2􏼐 􏼑cosω2τ1

+ b0 − b2ω
2
2􏼐 􏼑sinω2τ1.

(39)

Squaring both sides of the above equations, respectively,
and adding them together, one has

r40 ω2( 􏼁 + 2r41 ω2( 􏼁cosω2τ1 + 2r42 ω2( 􏼁sinω2τ1 � 0, (40)

where

r40 ω2( 􏼁 � ω8
2 + a

2
3 − 2a2 − b

2
3 − c

2
3􏼐 􏼑ω6

2

+ ( a
2
2 + 2a0 − 2a1a3 + b

2
2 − 2b1b3

− c
2
2 + 2c1c3 − d

2
2􏼁ω

4
2 + ( a

2
1 − 2a0a2 − 2b0b2 + b

2
1

− c
2
1 + 2c0c2 − d

2
1 + 2d0d2􏼁ω

2
2 + a

2
0 + b

2
0 − c

2
0 − d

2
0,

r41 ω2( 􏼁 � a3b3 − b2( 􏼁ω6
2 + a2b2 − a1b3 − a3b1 + b0(

− c2d2 + c3d1􏼁ω
4
2 + a1b1 − a2b0 − a0b2 + c0d2(

− c1d1 + c2d0􏼁ω2 + a0b0 − c0d0,

r42 ω2( 􏼁 � − b3ω
7
2 + a2b3 + b1 − a3b2 + c3d2( 􏼁ω5

2

+ a3b0 + a1b2 − a2b1 − a0b3 − c1d2(

+ c2d1 − c3d0􏼁ω
3
2 + a0b1 − a1b0 − c0d1 + c1d0( 􏼁ω2.

(41)

Suppose that (H51) equation (40) has finite positive
roots, denoted by ω21∗,ω22∗, . . . ,ω2i∗. *us,
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τj
2i∗ �

1
ω2i∗

× arccos
J41 ω2i∗( 􏼁 × J44 ω2i∗( 􏼁 + J42 ω2i∗( 􏼁 × J43 ω2i∗( 􏼁

J241 ω2i∗( 􏼁 + J242 ω2i∗( 􏼁
+ 2nπ􏼨 􏼩, (42)

with i � 1, 2, . . . , k; n � 0, 1, 2, . . . ; and

τ2∗ � τ02i∗0 � min τ02i∗ ∣ i � 1, 2, . . . , k􏽮 􏽯. (43)

Differentiating equation (6) with respect to τ2, one has

dλ
dτ

􏼢 􏼣

− 1

� −
f41(λ)

f42(λ)
−
τ2
λ

, (44)

with

f41(λ) � 4λ3 + 3a3λ
2

+ 2a2λ + a1 + 3b3 − τ1b2( 􏼁λ2 − τ1λ
3

+ 2b2 − τ1b1( 􏼁λ + b1 − τ1b0􏼐 􏼑e
− λτ1

+ 2d2 − τ1d1( 􏼁λ − τ1d2λ
2

+ d1 − τ1d0􏼐 􏼑e
− λ τ1+τ2( ) + 3c3λ

2
+ 2c2λ + c1􏼐 􏼑e

− λτ2 ,

f42(λ) � λ c3λ
3

+ c2λ
2

+ c1λ + c0􏼐 􏼑e
− λτ2 + λ d2λ

2
+ d1λ + d0􏼐 􏼑e

− λ τ1+τ2( ).

(45)

*us, one obtains

Re
dλ
dτ2

􏼢 􏼣

− 1

τ2�τ2∗

�
U4RV4R + U4IV4I

V2
4R + V2

4I

, (46)

with

U4R � 2c2ω2∗ sinω2∗τ2∗ + c1 − 3c3ω
2
2∗􏼐 􏼑cosω2∗τ2∗ + a1 − 3a3ω

2
2∗ + 2d2 − τ1d1( 􏼁ω2∗ sinω2∗τ1 cosω2∗τ2∗(

+ cosω2∗τ1 sinω2∗τ2∗􏼁 + τ1d2ω
2
2∗ + d1 − τ1d0􏼐 􏼑 cosω2∗τ1 cosω2∗τ2∗ − sinω2∗τ1 sinω2∗τ2∗( 􏼁

+ τ1ω
3
2∗ + 2b2 − τ1b1( 􏼁ω2∗􏼐 􏼑sinω2∗τ1 + τ1b2 − 3b3( 􏼁ω2

2∗ + b1 − τ1b0􏼐 􏼑cosω2∗τ1,

U4I � 2c2ω2∗ cosω2∗τ2∗ − c1 − 3c3ω
2
2∗􏼐 􏼑sinω2∗τ2∗ + 2a2ω2∗ − 4ω3

2∗ + 2d2 − τ1d1( 􏼁ω2∗ cosω2∗τ1 cosω2∗τ2∗(

− sinω2∗τ1 sinω2∗τ2∗􏼁 − τ1d2ω
2
2∗ + d1 − τ1d0􏼐 􏼑 sinω2∗τ1 cosω2∗τ2∗ + cosω2∗τ1 sinω2∗τ2∗( 􏼁

+ τ1ω
3
2∗ + 2b2 − τ1b1( 􏼁ω2∗􏼐 􏼑cosω2∗τ1 − τ1b2 − 3b3( 􏼁ω2

2∗ + b1 − τ1b0􏼐 􏼑sinω2∗τ1,

V4R � d0ω2∗ − d2ω
3
2∗􏼐 􏼑 sinω2∗τ1 cosω2∗ cosω2∗ + cosω2∗τ1 sinω2∗τ2∗( 􏼁 − d1ω

2
2∗ cosω2∗τ1 cosω2∗τ2∗(

− sinω2∗τ1 sinω2∗τ2∗􏼁,

V4I � d0ω2∗ − d2ω
3
2∗􏼐 􏼑 cosω2∗τ1 cosω2∗ cosω2∗ − sinω2∗τ1 sinω2∗τ2∗( 􏼁 + d1ω

2
2∗ sinω2∗τ1 cosω2∗τ2∗(

+ cosω2∗τ1 sinω2∗τ2∗􏼁.

(47)

As in Case 4, we make the following extra assumption
(H52)U34V4R + U4IV4I ≠ 0, which ensures that transversality
condition holds.

Theorem 3. For system (2), if τ1 ∈ (0, τ10) and τ2 > 0 and
the conditions (H1), (H51), and (H52) hold, then drug-ad-
diction equilibrium E∗(S∗, Q∗, I∗, R∗) is locally asymptotically
stable when τ2 ∈ [0, τ2∗); system (2) undergoes a Hopf bi-
furcation at the drug-addiction equilibrium E∗(S∗, Q∗, I∗, R∗)

when τ2 � τ2∗, and a family of periodic solutions bifurcate
from the drug-addiction equilibrium E∗(S∗, Q∗, I∗, R∗).

Remark 4. Although the assumptions (H51) and (H52)

seem to be tedious, however, one can verify the assumptions
in numerical simulations.

3. Properties of Hopf Bifurcation

In this section, by employing the center manifold theorem
and normal form theory, the properties of the Hopf bi-
furcation at the critical value τ2∗ are determined. Let t � sτ,
S(t) � u1(sτ), Q(t) � u2(sτ), I(t) � u3(sτ), R(t) � u4(sτ),
and τ � τ2∗ + 9 where 9 ∈ R. *roughout this section, we
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assume that τ1∗ < τ2∗, where τ1∗ ∈ (0, τ10). *en, system (2)
becomes the following form:

_u(t) � L9 ut( 􏼁 + F 9, ut( 􏼁, (48)

where L9: C⟶ R4 and F: R × C⟶ R4 are defined, re-
spectively, by

L9ϕ � τ2∗ + 9( 􏼁􏼠M1maxϕ(0) + M2maxϕ −
τ1∗
τ2∗

􏼠 􏼡

+ M3maxϕ(− 1)􏼡,

F(9, ϕ) �

− β1ϕ1(0)ϕ3(0)

− β2ϕ2(0)ϕ3(0)

β1ϕ1(0)ϕ3(0) + β2ϕ2(0)ϕ3(0)

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(49)

with

M1max �

L11 0 L13 0

0 L22 L23 0

L31 L32 L33 L34

0 0 L43 L44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M2max �

0 0 0 0

0 0 M23 0

0 0 M33 0

0 0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

M3max �

0 0 0 0

0 0 0 N24

0 0 0 0

0 0 0 N44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(50)

By the Riesz representation theorem in [35], there exists
a function η(θ, 9) of bounded variation for θ ∈ [− 1, 0] such
that

L9ϕ � 􏽚
0

− 1
dη(θ, 9)ϕ(θ). (51)

In fact, one can choose

η(θ, 9) �

τ2∗ + 9( 􏼁 M1max + M2max + M2max( 􏼁, θ � 0,

τ2∗ + 9( 􏼁 M2max + M3max( 􏼁, θ ∈
τ1∗
τ2∗

, 0􏼢 􏼡,

τ2∗ + 9( 􏼁M3max, θ ∈ − 1, −
τ1∗
τ2∗

􏼠 􏼡,

0, θ � − 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

where δ is defined by

δ(θ) �
0, θ≠ 0,

1, θ � 0.
􏼨 (53)

For ϕ ∈ C([− 1, 0], R4), define

A(9)ϕ �

dϕ(θ)

dθ
, − 1≤ θ< 0,

􏽚
0

− 1
dη(θ, 9)ϕ(θ), θ � 0,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R(9)ϕ �

0, − 1≤ θ< 0,

F(9, ϕ), θ � 0.

⎧⎪⎨

⎪⎩

(54)

*en, system (48) is equivalent to

_u(t) � A(9)ut + R(9)ut, (55)

where ut � u(t + θ).
*e adjoint operator A∗(9) of A(9) is defined by

A
∗
(φ) �

dϕ(s)

ds
, 0< s≤ 1,

􏽚
0

− 1
dηT

(s, 0)ϕ(− s), s � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(56)

For ϕ ∈ C([− 1, 0], R4) and φ ∈ C1([0, 1], (R4)∗), define

〈φ(s), ϕ(θ)〉 � φ(0)ϕ(0) − 􏽚
0

θ�− 1
􏽚
θ

ξ�0
φ(ξ − θ)dη

· (θ)ϕ(ξ)dξ,

(57)

where η(θ) � η(θ, 0).
From Section 2, it can be seen that ± iτ2∗ω2∗ are the

eigenvalues of A(0), so ± iτ2∗ω2∗ are also the eigenvalues of
A∗(0). Suppose that q(θ) � (1, q2, q3, q4)

Teiτ2∗ω2∗θ and
q∗(s) � D(1, q∗2 , q∗3 , q∗4 )Teiτ2∗ω2∗s be the eigenvectors for
A(0) and A∗(0) corresponding to +iτ2∗ω2∗ and − iτ2∗ω2∗,
respectively. *en, one can obtain

q2 �
L33 iω2∗ − L11( 􏼁

L13 iω2∗ − L22 − M23e
− iτ1∗ω2∗ − N24e

− iτ2∗ω2∗( 􏼁
,

q3 �
iω2∗ − L11

L13
,

q4 �
L43 iω2∗ − L11( 􏼁

L13 iω2∗ − L44 − N24e
− iτ2∗ω2∗( 􏼁

,

q
∗
2 �

L11 L32 + M33e
iτ1∗ω2∗( 􏼁

iω2∗ + L31( 􏼁 iω2∗ + L22 + M23e
iτ1∗ω2∗( 􏼁

,

q
∗
3 � −

L11

iω2∗ + L31
,

q
∗
4 � −

N24e
iτ2∗ω2∗q∗2 + L34q

∗
3

iω2∗ + L44 + N44e
iτ2∗ω2∗

.

(58)
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In order to guarantee 〈q∗(s), q(θ)〉 � 1, the value of D
needs to be determined. In view of equation (57), we have

D � 􏼢1 + 􏽘
4

i�1
q
∗
i qi + τ1∗e

iτ1∗ω2∗q2 M23q
∗
2 + M33q

∗
3( 􏼁

+ τ2∗e
iτ2∗ω2∗q4 N24q

∗
2 + N44Q

∗
4( 􏼁􏼣

− 1

.

(59)

In what follows, based on the algorithm in [36] and the
similar computation process as that in [37–40], we can
obtain the expressions of g20, g11, g02, and g21 as follows:

g20 � 2Dτ2∗ q
∗
3 − 1( 􏼁β1q3 + q

∗
3 − q
∗
2( 􏼁β2q2q3,

g11 � Dτ2∗ q
∗
3 − 1( 􏼁β1 q3 + q3( 􏼁 + q

∗
3 − q
∗
2( 􏼁β2 q2q3 + q2q3( 􏼁,

g02 � 2Dτ2∗ q
∗
3 − 1( 􏼁β1q3 + q

∗
3 − q
∗
2( 􏼁β2q2q3,

g21 � 2Dτ2∗ q
∗
3 − 1( 􏼁β1 W

(1)
11 (0)q3 +

1
2
W

(1)
20 (0)q3 + W

(3)
11 (0) +

1
2
W

(3)
20 (0)􏼒 􏼓 + q

∗
3 − q
∗
2( 􏼁β2

· W
(2)
11 (0)q3 +

1
2
W

(2)
20 (0)�q3 + W

(3)
11 (0)q2 +

1
2
W

(3)
20 (0)�q2􏼒 􏼓,

(60)

with

W20(θ) �
ig20q(0)

τ2∗ω2∗
e

iτ2∗ω2∗θ +
ig02q(0)

3τ2∗ω2∗
e

− iτ2∗ω2∗θ + E1e
2iτ2∗ω2∗θ,

W11(θ) � −
ig11q(0)

τ2∗ω2∗
e

iτ2∗ω2∗θ +
ig11q(0)

τ2∗ω2∗
e

− iτ2∗ω2∗θ + E2.

(61)

E1 and E2 can be solved by

E1 � 2

L∗11 0 − L13 0

0 L∗22 L∗23 − N24e
− 2iτ2∗ω2∗

L31 − L32 L∗33 L34

0 0 − L43 L∗44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

×

− β1q3
− β2q2q3

β1q3 + β2q2q3
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

E2 � 2

L11 0 L13 0

0 L22 L23 + M23 N24

L31 L32 L33 + M33 L34

0 0 L43 L44 + N44

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

×

− β1 q3 + q3( 􏼁

− β2 q2q3 + q2q3( 􏼁

β1 q3 + q3( 􏼁 + β2 q2q3 + q2q3( 􏼁

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(62)

where

L
∗
11 � 2iω2∗ − L11,

L
∗
22 � 2iω2∗ − L22,

L
∗
23 � − L23 − M23e

− 2iτ1∗ω2∗ ,

L
∗
33 � 2iω2∗ − L33 − M33e

− 2iτ1∗ω2∗ ,

L
∗
44 � 2iω0 − L44 − N44e

− 2iτ2∗ω2∗ .

(63)

*us, we have

C1(0) �
i

2τ2∗ω2∗
g11g20 − 2 g11

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

−
g02

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

3
⎛⎝ ⎞⎠ +

g21

2
,

μ2 � −
Re C1(0)􏼈 􏼉

λ′ τ2∗( 􏼁􏼈 􏼉
,

β2 � 2Re C1(0)􏼈 􏼉,

T2 �
Im C1(0)􏼈 􏼉 + μ2Im λ′ τ2∗( 􏼁􏼈 􏼉

τ2∗ω2∗
.

(64)
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Figure 2: Waveform plots of system (65) with τ1 � 15.2608< τ10.
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Figure 3: Continued.
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In conclusion, we can obtain the following results based
on the fundamental results about Hopf bifurcation in the
literature [32].

Theorem 4. For system (2), if μ2 > 0 (μ2 < 0), then the Hopf
bifurcation is supercritical (subcritical); if β2 < 0 (β2 > 0), then
the bifurcating periodic solutions are stable (unstable); if
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Figure 3: Waveform plots of system (65) with τ1 � 16.3642> τ10.

0 500 1000 1500 2000
5

6

7

8

Time t

S 
(t)

(a)

Time t
0 500 1000 1500 2000

16

18

20

22
Q

 (t
)

(b)

Time t
0 500 1000 1500 2000

12

13

14

15

16

I (
t)

(c)

Time t
0 500 1000 1500 2000

9

10

11

12

13

14

R 
(t)

(d)

Figure 4: Waveform plots of system (65) with τ2 � 20.3665< τ20.
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Figure 5: Waveform plots of system (65) with τ2 � 23.9608> τ20.
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Figure 6: Waveform plots of system (65) with τ � 8.4565< τ0.
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Figure 7: Waveform plots of system (65) with τ � 8.7807> τ0.
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T2 > 0 (T2 < 0), then the period of the bifurcating periodic
solutions increases (decreases).

4. Numerical Simulation

In this section, numerical simulations are employed to
confirm the efficiency of the theoretical analysis in the
present paper. Considering the biological significance of
the parameters in system (2), we refer to the range of the
parameter values provided in the literature [26]. By
extracting some values from the literature [26] and
considering the biological significance of the parameters
and conditions for the occurrence of Hopf bifurcation, we
choose Λ � 1, β1 � 0.01, μ � 0.02, ε � 0.1, δ � 0.095,
β2 � 0.008, σ � 0.0011, and c � 0.095. *en, system (2)
turns into

dS(t)

dt
� 1 − 0.01S(t)I(t) − 0.02S(t),

dQ(t)

dt
� 0.1I t − τ1( 􏼁 + 0.095R t − τ2( 􏼁

− 0.02Q(t) − 0.008Q(t)I(t),

dI(t)

dt
� 0.01S(t)I(t) + 0.008Q(t)I(t) + 0.0011R(t)

− 0.115I(t) − 0.1I t − τ1( 􏼁,

dR(t)

dt
� 0.095I(t) − 0.0211R(t) − 0.095R t − τ2( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(65)
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Figure 8: Waveform plots of system (65) with τ2 � 10.2508< τ2∗ and τ1 � 7.75 ∈ (0, τ10).
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*en, one can obtain R0 � 2.3530> 1, and equation (4)
becomes the following form:

3.3776e − 007 I
∗

( 􏼁
2

− 3.6335e − 006I
∗

− 1.3277e − 005 � 0,

(66)

from which one gets the unique positive root I∗ � 13.6396.
Further, we obtain that system (65) has a unique
drug-addiction equilibrium E∗(6.3940, 18.7755, 13.6396,

11.1607). By delicate calculation, it is obtained that ω10 �

0.1872 and τ10 � 16.0145; ω20 � 0.9243 and τ20 � 21.9566;
ω0 � 2.9207 and τ0 � 8.6947; ω2∗ � 1.4648 and
τ2∗ � 10.7568 when τ1∗ � 7.75 ∈ (0, τ10).

By *eorem 1, E∗(6.3940, 18.7755, 13.6396, 11.1607) is
asymptotically stable for system (65) when τ1 �

15.2608< τ10, which is depicted in Figure 2. E∗(6.3940,

18.7755, 13.6396, 11.1607) is unstable for system (65) and
Hopf bifurcation occurs when τ1 � 16.3642> τ10, which are
simulated in Figure 3. Similar simulations can be shown as in
Figures 4 and 5 for *eorem 2, Figures 6 and 7 for *eorem
3, and Figures 8 and 9 for *eorem 4, respectively.

Whereafter, by some complex calculations, we obtain
C1(0) � − 13.0664 + 9.6207i and λ′(τ2∗) � 1.0081 − 0.6309i.
By the results in equation (64), it can be derived that
μ2 � 12.9614> 0, β2 � − 26.1328< 0, and T2 � − 0.0916< 0. It

follows from *eorem 4 that the Hopf bifurcation is su-
percritical since μ2 > 0, the bifurcating periodic solutions are
stable since β2 < 0, and the period of the periodic solutions
decreases as τ2 increases since T2 < 0.

5. Conclusions

In this paper, a delayed synthetic drug transmission model
with relapse and treatment is investigated by incorporating
two delays into the model proposed in the literature [26].We
consider not only the time delay due to the period that the
drug abusers use to give up drugs through self-control but
also the time delay due to the period used to give up drugs
through successful treatment. Compared with the model in
[26], the delayed synthetic drug transmission model in the
present paper is more general because it usually needs a
period for the drug abusers to give up drugs through either
self-control or successful treatment.

It has been shown that, under certain conditions, the
drug-addiction equilibrium is locally asymptotically stable
when the value of the time delay is below the critical value. In
this case, system (2) is in ideal stable state and the synthetic
drug transmission can be controlled easily. However, once
the value of the time delay is above the critical value, system
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Figure 9: Waveform plots of system (65) with τ � 11.3691> τ2∗ and τ1 � 7.75 ∈ (0, τ10).
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(2) will lose its stability and undergo a Hopf bifurcation at
the corresponding critical value of the time delay, which is
not welcomed in reality. *e occurrence of Hopf bifurcation
means that the existence of populations in system (2)
changes from the drug-addiction equilibrium to a limit
cycle, and in this case, the synthetic drug transmission is out
of control. *erefore, it is vital to take some necessary
measures to postpone and eliminate the occurrence of the
Hopf bifurcation for system (2).

Specially, the direction of the Hopf bifurcation and
stability of the bifurcating periodic solutions are determined
by employing the center manifold theorem and normal form
theory. In addition, according to the numerical simulations,
it is easily observed that the time delay due to the period that
the drug abusers use to give up drugs through self-control is
marked because the critical value of τ1 is much smaller when
we only consider it. From this point of view, it is strongly
recommended that drug abusers should have strong will in
the process of giving up drugs.
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