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In this paper, we analyzed the periodicity of discrete Logistic and Tent sequences with different computational precision in
detail. Further, we found that the process of iterations of the Logistic and Tent mapping is composed of transient and periodic
stages. Surprisingly, for the different initial iterative values, we first discovered that all periodic stages have the same periodic
limit cycles. This phenomenon has seriously affected the security of chaotic cipher. To solve this problem, we designed a novel
discrete chaotic sequence generator based on m-sequence and discrete chaotic mapping. The experimental results indicated that
the chaotic sequence generator can generate pseudorandom chaotic sequences with large periodicity and good performance under
the condition of limited computational precision.

1. Introduction

Chaos is a new interdisciplinary theory of physics,mathemat-
ics, nonlinear dynamics, and so on. The ergodic character of
chaotic system satisfies the diffusion principle of cryptosys-
tem.The initial value sensitivity of chaos can generate a large
key space. Compared with traditional cipher, chaotic cipher
has the advantages of simple structure, easy implementation,
and high security.Therefore, in recent years, chaos theory has
been widely applied in the field of cryptography and secret
communication [1–4]. For instance, Yadav et al. [5] proposed
a chaotic system-based data hiding scheme that provides high
payload and imperceptibility. Murillo-Escobar et al. [6] put
forward a novel pseudorandom number generator based on
pseudorandomly enhanced Logistic map. Li et al. [7] came
up with an image encryption scheme based on chaotic Tent
map. Hasimoto-Beltran [8] designed a high-performance
multimedia encryption system based on chaos to ensuremul-
timedia information security. Chaotic mapping theoretically
generates discrete sequences that are not periodic for any
given initial iterative value. However, for the digital chaotic
sequence generator, performance of the discrete chaotic
sequence is seriously affected by the limited computational
precision of processor, which will cause the quantized the

chaotic binary sequences to have short periodicity and cannot
meet the requirements of cryptography [9, 10].

Aiming at this problem, Du et al. [11] proposed a
novel chaotic key sequence generator based on double K-L
(Karhunen-Loeve) transform. It can effectively improve the
complexity and period length of Logistic chaotic sequence.
Nagaraj et al. [12] proposed a pseudorandom number gener-
ator based on chaotic switching between robust chaos maps
in order to increase average period lengths. Cernak [13]
proposed to increase the period of discrete chaotic sequences
by using programmable combinational circuits and perturb-
ing chaotic parameters. Chen et al. [14] designed a new
chaotic sequence generator based on the novel interacting
neural networks and the multiple chaotic systems with the
purpose of enhancing the performance of chaotic sequences.
In order to increase the period of the generated chaotic orbits,
Heidari-Bateni et al. [15] proposed a new chaotic sequence
generator by cascading two Logistic maps with different
bifurcation parameters. Further, Hu et al. [16] proposed an
error compensation method to counteract the dynamical
degradation of digital chaos. Deng et al. [17] designed an
analogue-digital mixed method for enhancing the perfor-
mance of chaotic sequences. Cao et al. [18] came up with a
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new perturbation method based on Lyapunov exponent to
improve random distribution of chaotic sequences.

However, these schemes do not consider the effect of
chaotic initial value on chaotic sequence and key space.
These literatures do not accurately analyze the short-period
behavior of chaotic systems. Moreover, some of the schemes
are too complex to be implemented in hardware circuits and
engineering applications. In view of the above problems, we
focus on the effect of limited computational precision on
discrete chaotic mapping. The periodicity of discrete chaotic
sequence and the scope of key space are analyzed accurately.
For the discrete Logistic and Tent sequences with different
initial values, we found that all periodic stages have the
same periodic limit cycles. This phenomenon has seriously
affected the key space of chaotic stream ciphers. Based on
this situation, we present an effective approach to increase
the period and key space of the chaotic sequence by using m-
sequences with a simple structure. The experimental results
show that the period of chaotic sequence can be determined
by the order of the m-sequence. When the computational
precision is limited, we can increase the order of the m-
sequence to obtain a good performance discrete chaotic
sequence. Compared with other proposed schemes, the key
advantages of our method include the following several
aspects: (i) In comparison with the general perturbation
method under same calculation precision and perturbation
source, the digital chaotic sequence generated by our scheme
has considerable period length. (ii) The method consumes
less hardware resources and is easy to implement in engineer-
ing. (iii) Compared with the analogue-digital mixed method,
our scheme has better stability. Because chaos is extremely
sensitive to initial values, components of the analogue circuit
are susceptible to environmental temperature and humidity
so that the parameters of the chaotic system are difficult to
maintain a constant value.

The rest of this paper is organized as follows: Section 2
analyzes in detail the influence of limited computational
precision on digital chaotic system. Section 3 describes a
novel discrete chaotic sequence generator with the purpose
of avoiding short periods of chaotic sequences. Section 4
gives the comparative analysis of performance of discrete
chaotic sequences, including key space, autocorrelation test
and PE analysis. Section 5 summarizes the discussions of this
paper.

2. Influence of Computational Precision on
Discrete Chaotic Sequences

2.1. Logistic Mapping. In this section, we take Logistic map-
ping [19] as an example to illustrate the effect of computa-
tional precision on discrete chaotic sequences. The mathe-
matical equation of Logistic mapping can be described as
follows:

𝑥𝑛+1 = 𝜇𝑥𝑛 (1 − 𝑥𝑛) , 𝜇 ∈ (0, 4] , 𝑥𝑛 ∈ [0, 1] (1)

where 𝜇 is called branch parameter; when the value range of
𝜇 is [3.5699456, 4], Logistic mapping is in a chaotic state and

displays the complex dynamic characteristics. Further, let us
rewrite 𝑥𝑛 in its binary representation:

𝑥𝑛 = (0.𝜀1𝜀2𝜀3 ⋅ ⋅ ⋅)2 =
∞

∑
𝑖=1

𝜀𝑖2−𝑖 𝜀𝑖 ∈ {0, 1} (2)

where (⋅)2 denotes the enclosed number is in binary format.
Let us assume that 𝐿 represents computational precision. 𝑥𝑛
denotes approximate value of 𝑥𝑛, defined by

𝑥𝑛 = (0.𝜀1𝜀2 ⋅ ⋅ ⋅ 𝜀𝐿)2 =
𝐿

∑
𝑖=1

𝜀𝑖2−𝑖 ≈ 𝑥𝑛 (3)

For computing convenience, we introduce a new variable 𝑧𝑛:
𝑧𝑛 = 2𝐿𝑥𝑛 = (𝜀1𝜀2 ⋅ ⋅ ⋅ 𝜀𝐿)2 (4)

where 𝑧𝑛 is an integer and 𝑧𝑛 ∈ [0, 2𝐿 − 1]. Further, (1) can be
rewritten as the follows:

𝑧𝑛+1 = 𝜇𝑧𝑛 (1 − 𝑧𝑛2𝐿) 𝑧𝑛 ∈ [0, 2𝐿 − 1] (5)

According to (5), we generated a series of discrete chaotic
sequences with different computational precision, including
𝐿 = 8, 12, 16, and 24. In order to test the effect of
computation precision on discrete chaotic sequences, we
performed autocorrelation test, permutation entropy test,
and statistical analysis of sequence periodicity for the above
chaotic sequences.

2.2. Autocorrelation Test. Autocorrelation test can clearly
reflect the dependence relationship of a signal between two
different moments, which is a significant method with the
purpose of evaluating the randomness and periodicity of
discrete chaotic sequences [20]. Autocorrelation function is
defined as follows:

𝑅𝑧 (𝑚) = 1
𝑁
𝑁−1

∑
𝑛=0

𝑧𝑛𝑧𝑛+𝑚 (6)

where 𝑅𝑧(𝑚) and𝑁 denote autocorrelation function and the
length of discrete chaotic sequence, respectively. Based on the
above theoretical basis, autocorrelation test can be performed
with discrete Logistic sequences of different computational
precision. MATLAB simulation results are shown in Figure 1.
As can be seen from the figure, the smaller the computational
precision is, the denser the peak the line of the autocorrelation
function is. The distance between each two peak lines can be
approximately expressed as the period length of the discrete
chaotic sequences. Therefore, we can conclude that if the
calculation precision is small, the discrete chaotic sequences
will emerge some short periodic phenomena.

2.3. Permutation Entropy. Permutation entropy (PE) [21–
23] is widely applied in the measurement of discrete time
sequence complexity because of its high robustness and fast
algorithm characteristics, which can be described as follows.
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Figure 1: Autocorrelation test of Logistic chaotic sequences with different computational precision. (a) 𝐿 = 8; (b) 𝐿 = 12; (c) 𝐿 = 16; (d)
𝐿 = 24.

Step 1. For a discrete time sequence𝑋𝑁 = {𝑋1, 𝑋2, ⋅ ⋅ ⋅ 𝑋𝑁},
where 𝑚 and 𝜏 represent the embedding dimension and a
delay factor, respectively, the sequence 𝑋𝑁 can be recon-
structed as

𝑋(𝑛) , 𝑋 (𝑛 + 𝜏) , . . . , 𝑋 (𝑛 + (𝑚 − 1) 𝜏)
1 ≤ 𝑛 ≤ 𝑁 − 𝑚 + 1 (7)

Step 2. Each sequence of (7) is placed depending on an
ascending order.

𝑋(𝑛 + (𝑘1 − 1) 𝜏) ≤ 𝑋 (𝑛 + (𝑘2 − 1) 𝜏) ≤ ⋅ ⋅ ⋅
≤ 𝑋 (𝑛 + (𝑘𝑚 − 1) 𝜏)

(8)

Step 3. Further, 𝜋𝑛 = {𝑘1, 𝑘2, ⋅ ⋅ ⋅ , 𝑘𝑚} displays the original
position index of each element, which is one of the possible

order types of all 𝑚! permutations. Suppose 𝑃𝑔 is a symbol
permutation and ∑𝑤𝑔=1 𝑃𝑔 = 1, where 𝑔 = 1, 2, ⋅ ⋅ ⋅ , 𝑤, 𝑤 ≤
𝑚!. Then, PE𝐻𝑝 is defined as

𝐻𝑝 = −
𝑤

∑
𝑔=1

𝑃𝑔 ln𝑃𝑔 (9)

When 𝐻𝑝 = 1/𝑚!, then 𝐻𝑝 obtains the maximum value
ln(𝑚!). Further, the normalized PE ℎ𝑝 is defined as ℎ𝑝 =𝐻𝑝/ ln(𝑚!).

PE test can be performed with discrete Logistic sequences
of different computational precision. On the basis of a large
number of experimental analysis, we set 𝑚 = 6 and 𝜏 = 1
with the purpose of obtaining more accurate PE values. The
experimental results are shown inTable 1. As can be seen from
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Table 1: The PE value of discrete Logistic sequences with different
computational precision.

computational precision PE value
8 0.22066
12 0.39636
16 0.57908
24 0.63111

the table, with the improvement of calculation precision, the
PE value of the discrete chaotic sequence is larger. That is to
say, the discrete chaotic sequences with high computational
precision have higher complexity.

2.4. Statistical Analysis of Sequence Periodicity. In this sec-
tion, we analyzed the periodicity of discrete Logistic
sequences with different computational precision in detail.
The experimental results are shown in Table 2, where 𝑝 and
𝑟 represent the period length of discrete Logistic sequences
and the number of 𝑝-period, respectively. Under the same
calculation precision 𝐿, we generated 2𝐿 discrete Logistic
sequences with different initial values 𝑧1 and analyzed the
periodicity of each chaotic sequence. It can be seen from
the table that the limited computational precision will lead
to a variety of short-period phenomena in discrete Logistic
sequences. For instance, when computational precision =12,
it offers periods 1, 3, 8, and 9. If such a chaotic sequence is used
as a key stream for the stream cipher, it will seriously affect the
security of the stream cipher privacy communication.

Moreover, we have done a more detailed analysis for the
periodicity of the discrete Logistic sequences. On the basis
of (5), we can generate a series of discrete Logistic sequences
with different initial values. For arbitrary initial value 𝑧0 and
𝑧0 ∈ [0, 2𝐿 − 1], when two iterative values 𝑧𝛼 and 𝑧𝛽 in the
sequence are equal (𝑧𝛼 = 𝑧𝛽, 𝛼 ̸= 𝛽), it can be concluded
that the period length of the sequence is 𝑝 (𝑝 = 𝛽 − 𝛼)
and the set of periodic elements is Ω𝑝 = {𝑧𝛼, 𝑧𝛼+1, ⋅ ⋅ ⋅ , 𝑧𝛽−1}.
Correspondingly, for another discrete Logistic sequence of 𝑝-
period with initial value 𝑧1, we assume that 𝑧𝛾 is an arbitrary
iterative value on the periodic limit cycle of this sequence.
If 𝑧𝛾 ∈ Ω𝑝, then the initial value 𝑧0 and 𝑧1 will converge
into the same periodic limit cycles. According to the above
theoretical analysis, we can conduct corresponding statistical
analysis experiments on all discrete Logistic sequences.

We take the calculation precision 𝐿 = 8 as an example to
give a detailed explanation. When calculation precision 𝐿 =
8, the discrete Logistic sequences were generated with initial
values 1, 2 and 3.The illustrations of iterations of the Logistic
mapping with different initial values 𝑧1 are shown in Figure 2.
As can be seen from the figure, the process of iterations of
the Logistic mapping is composed of transient and periodic
stages. However, for the discrete Logistic sequences with
different initial values, all sequences of 4-period have the
same periodic limit cycles (11, 42, 140, 253). We did the same
test for other initial values with 𝐿 = 8, and the results showed
the same periodic limit cycles.

In addition, when calculation precision 𝐿 = 12, all
discrete Logistic sequences of 3-period will converge into

the same periodic limit cycles (771, 2503, 3893). Similarly,
all sequences of 8-period and 9-period will also converge
separately into the corresponding cycles (217, 822, 2628, 3767,
1210, 3410, 2284, 4041) and (3786, 1146, 3301, 2562, 3837, 970,
2961, 3281, 2611). When calculation precision 𝐿 = 16 and 24,
for every sequence of period 𝑝(𝑝 > 1), all periodic stages
display the same periodic limit cycles with period length
𝑝. This phenomenon has seriously affected the key space of
chaotic stream ciphers.

In addition, we did the same experiment for Tent map-
ping with the purpose of analyzing statistical analysis of
Tent sequence periodicity.Themathematical equation of Tent
mapping can be described as follows:

𝑥𝑛+1 =
{{{
{{{
{

𝑥𝑛
𝑎 0 ≤ 𝑥𝑛 < 𝑎
(1 − 𝑥𝑛)
(1 − 𝑎) 𝑎 ≤ 𝑥𝑛 ≤ 1

(10)

when 𝑎 = 0.5, the above Tent mapping is a standard
Tent mapping. Further generalization, we can get a kind of
piecewise linear Tent mapping.

𝑥𝑛+1 =

{{{{{{{{{{{
{{{{{{{{{{{
{

𝑥𝑛
𝑤 0 ≤ 𝑥𝑛 < 𝑤
(𝑥𝑛 − 𝑤)
(0.5 − 𝑤) 𝑤 ≤ 𝑥𝑛 < 0.5
(1 − 𝑥𝑛 − 𝑤)
(0.5 − 𝑤) 0.5 ≤ 𝑥𝑛 < (1 − 𝑤)
(1 − 𝑥𝑛)
𝑤 (1 − 𝑤) ≤ 𝑥𝑛 ≤ 1

(11)

When 𝑤 = 0.25, 𝑥𝑛 = (0.𝜀1𝜀2 ⋅ ⋅ ⋅ 𝜀𝐿)2 ≈ 𝑥𝑛, 𝑅 = 2𝐿, 𝑧𝑛+1 =𝑥𝑛+1𝑅, and 𝑧𝑛 = 𝑥𝑛𝑅, (11) is transformed into

𝑧𝑛+1 =

{{{{{{{
{{{{{{{
{

4𝑧𝑛 0 ≤ 𝑧𝑛 < 0.25𝑅
4𝑧𝑛 − 𝑅 0.25𝑅 ≤ 𝑧𝑛 < 0.5𝑅
3𝑅 − 4𝑧𝑛 0.5𝑅 ≤ 𝑧𝑛 < 0.75𝑅
4𝑅 − 4𝑧𝑛 0.75𝑅 ≤ 𝑧𝑛 ≤ 𝑅

(12)

where 𝐿 represent computational precision and 𝑥𝑛 denotes
approximate value of 𝑥𝑛. The value ranges of 𝑧𝑛 and 𝑧𝑛+1 are
[0, 2𝐿 − 1]. Equation (12) can get two stable zero solutions,
which are 0 and 𝑅, respectively. If (12) appears 𝑧𝑛 = 0 or
𝑧𝑛 = 𝑅 in the iteration process, all subsequent iterations 𝑧𝑛+1
will be zero value. In order to avoid this phenomenon, we
improved (12) as follows:

𝑧𝑛+1

=

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

4𝑧𝑛 + 1 (0 ≤ 𝑧𝑛 < 0.25𝑅) ∩ (𝑧𝑛 = 2𝑘 − 1)
4𝑧𝑛 − 1 (0 ≤ 𝑧𝑛 < 0.25𝑅) ∩ (𝑧𝑛 = 2𝑘)
4𝑧𝑛 − 𝑅 0.25𝑅 ≤ 𝑧𝑛 < 0.5𝑅

3𝑅 − 4𝑧𝑛 − 1 0.5𝑅 ≤ 𝑧𝑛 < 0.75𝑅
4𝑅 − 4𝑧𝑛 + 1 (0.75𝑅 ≤ 𝑧𝑛 ≤ 𝑅) ∩ (𝑧𝑛 = 2𝑘 − 1)
4𝑅 − 4𝑧𝑛 − 1 (0.75𝑅 ≤ 𝑧𝑛 ≤ 𝑅) ∩ (𝑧𝑛 = 2𝑘)

𝑘 ∈ 𝑁∗
(13)



Complexity 5

Table 2: The statistical analysis of Logistic sequence periodicity with different computational precision.

computational precision
𝐿

The range of initial values
[0, 2𝐿 − 1] Period length 𝑝 Number 𝑟 Percent 𝑟/2𝐿

8 [0, 255] 1 4 1.56%
4 252 98.44%

12 [0, 4095]
1 10 0.24%
3 8 0.195%
8 98 2.39%
9 3980 97.17%

16 [0, 65535]

1 4 0.006%
7 112 0.17%
18 1574 2.4%
79 43998 67.14%
119 19848 30.29%

24 [0, 16777215]

1 4 0.000%
2 2556 0.003%
5 22 0.000%
8 8760 0.052%
16 224 0.001%
272 10553704 62.9%
716 3047268 18.16%
993 3164678 18.86%

1 3 11 42 140 253

Periodic

initial values

Transient

(a)

3 11 42 140 253

Periodic
initial values

Transient

(b)

2 7 27 96 240 60

initial values

183158 49 243 156 208

255241 56 175 221 120 3 11 42 140 253

Periodic

Transient

(c)

Figure 2:The illustration of iterations of the Logistic mapping with different initial values. (a) 𝑧1 = 1; (b) 𝑧1 = 3; (c) 𝑧1 = 2.

where 𝑁∗ is the set of positive integers. On the basis of
(13), we did some experiments to analyze the periodicity of
piecewise linear Tent sequences with different computational
precision. The experimental results are shown in Table 3. It
can be seen from the table that the limited computational

precision can lead to a variety of short-period phenomena for
discrete Tent sequences.

We still take the calculation precision 𝐿 = 8 as an example
to analyze the periodicity of the discrete Tent sequence in
detail. When calculation precision 𝐿 = 8, the Tent sequences
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Table 3: The statistical analysis of Tent sequence periodicity with different computational precision.

computational precision
𝐿

The range of initial values
[0, 2𝐿 − 1] Period length 𝑝 Number 𝑟 Percent 𝑟/2𝐿

8 [0, 255]

1 6 2.34%
2 1 0.39%
3 1 0.39%
5 52 20.3125%
7 1 0.39%
12 195 76.172%

12 [0, 4095]

1 8 0.1953%
2 1 0.0244%
5 911 22.2412%
7 118 2.881%
8 219 5.34668%
10 152 3.7109%
11 1 0.0244%
14 201 4.9072%
30 1093 26.6846%
43 440 10.7422%
44 951 23.2178%
240 1 0.0244%

were generated with initial values 2 and 3. The illustration of
iterations of the Tent mapping with different initial values 𝑧1
is shown in Figure 3. Obviously, Tent sequences with different
initial values 𝑧1 still converge to the same periodic limit
cycles. Through a large number of experimental analysis,
for every sequence of period 𝑝, we found that all periodic
stages display the same periodic limit cycles with period
length 𝑝. It shows a similar regularity to the discrete Logistic
sequences.

3. A Novel Discrete Chaotic
Sequence Generator

Based on the above experimental results and theoretical
analysis, we found that a large number of short-period
phenomena occur in discrete chaotic sequences under the
influence of limited computational precision. In addition, the
chaotic sequences with different initial values will converge
to the same periodic limit cycles. These phenomena will
seriously affect the security of chaotic ciphers and key
space. To avoid the above problems, we designed a novel
discrete chaotic sequence generator based on Logistic and
Tent mapping, which is shown in Figure 4. Where 𝑧Lo1 and
𝑧Te1 represent the initial value of Logistic and Tent mapping.
The 𝐶 = 𝑐0, 𝑐1, ⋅ ⋅ ⋅ , 𝑐𝑞−1 and 𝑀 = 𝑚1, 𝑚2, ⋅ ⋅ ⋅ are the initial
state and bit stream of 𝑞-order m-sequence, and 𝑏 is the
number of bits that are passed into the Logistic or Tent system
every time. Moreover, the structure schematic diagram of the
function 𝑔(⋅) is shown in Figure 5. The ∧, ⊕, and ∨ represent
the bitwise logical AND, XOR and OR operator, respectively.
The <<< is bit cycle left shift operator, and 𝐿 is equal to
the value of the calculation precision, which represent the
number of bits for input and output data.

The generation process of the novel discrete chaotic
sequences is given as follows.

Step 1. The initialized m-sequence generator outputs the 𝑏
bits sequence stream 𝑚1, 𝑚2, ⋅ ⋅ ⋅ 𝑚𝑏, and then 𝑚1, 𝑚2, ⋅ ⋅ ⋅ 𝑚𝑏
is represented as a decimal form:

𝑇 =
𝑏

∑
𝑖=1

𝑚𝑖2𝑖−1 (14)

where the choice of parameter 𝑏 should correspond to
the average period length of the digital chaotic system. For
example, if the average period length of the digital chaotic
sequence is 32 under a certain computational precision, the
value of 𝑏 should be roughly equal to 5 (25 = 32). Based
on the above parameter selection, the iterative value will
approximately fall into the periodic cycle after 𝑇 iterations.
At the same time, the iterative value should jump to another
digital chaotic system to prevent continuous loop in a certain
periodic limit cycle.

Step 2. Logistic mapping passes the last iteration value into
function 𝑔(⋅) after 𝑇 iterations. Next, the output result of
the function 𝑔(⋅) is used as the initial iteration value of Tent
mapping. Similarly, the Tent mapping also passes the last
iteration value into function𝑔(⋅) after the𝑇 iteration.Thenew
output result of the function 𝑔(⋅) serves as the initial iteration
value of Logistic mapping.

Step 3. The m-sequence generator outputs the 𝑏 bits new
sequence stream𝑚1+𝑏, 𝑚2+𝑏, ⋅ ⋅ ⋅ 𝑚2𝑏, and the binary sequence
is also converted to decimal number 𝑇.
Step 4. Finally, the novel discrete chaotic sequence generator
circulates continuously between step 2 and 3. The iterative
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Figure 3: The illustration of iterations of the Tent mapping with different initial values. (a) 𝑧1 = 2; (b) 𝑧1 = 3.
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8 Complexity

0.5

1

1.5

2

2.5 x 104

R
z

(m
)

−300 −200 −100 0 100 200 300 400−400
m

(a)

x 104

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

R
z

(m
)

−300 −200 −100 0 100 200 300 400−400
m

(b)

−400 −300 −200 −100 0 100 200 300 400

1.6

1.8

2

2.2

2.4

2.6

x 104

m

R
z

(m
)

(c)

Figure 6: Autocorrelation test of chaotic sequences. (a) Logistic; (b) Tent; (c) improved method.

value of each round of Logistic and Tent mapping constitutes
a new discrete chaotic sequence.

The design idea of this chaotic sequence generator is to
control the number of iterations of Logistic and Tentmapping
through m-sequence. When the iteration value is in periodic
limit cycles, it can jumpout of the periodic limit cycles in time
with the purpose of avoiding the short-period phenomenon
of the chaotic sequence. The purpose of function 𝑔(⋅) is to
control the initial iteration value of each round of Logistic
and Tent mapping in order to increase the complexity of the
discrete chaotic sequence.

4. Comparative Analysis of Performance of
Discrete Chaotic Sequences

4.1. Key Space. On the basis of these original Logistic and
Tent sequence generator, for every sequence of period 𝑝,

all periodic stages display the same periodic limit cycles
with period length 𝑝. Therefore, for one-dimensional digital
chaotic maps, the original key space 2𝐿 will suffer a large
degradation, because different initial values (secret key) will
generate the same key stream except for a few iterative values
in the transient state. Therefore, there are a large number
of weak secret keys in key space 2𝐿. In contrast, actual key
spaces of these generator are much less than 2𝐿. For instance,
when calculation precision 𝐿 = 8, key spaces of Logistic and
Tent sequence generator are 2 and 6 (the number of different
periodic limit cycles), respectively. However, for the novel
discrete chaotic sequence generator, the key space should be
22𝐿+𝑞, where 𝑞 is the order number of m-sequence. Further,
when 𝐿 = 8 and 𝑞 = 7, the key space is 223. Hence, the
key space of the improved sequence generator has been fully
expanded.
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Figure 7: PE analysis with three different chaotic sequences.

4.2. Autocorrelation Test. Autocorrelation is a significant
randomness measure. We generated three different discrete
chaotic sequences (Logistic, Tent, and improved method)
with calculation precision 𝐿 = 8. Moreover, for improved
method, we set 𝑞 = 7. Results of autocorrelation test are
shown in Figure 6. Obviously, autocorrelation function of the
improved method approximates the 𝛿 function and shows
good randomness. However, autocorrelation functions of
original Logistic and Tent generator show a serious short-
period phenomenon.

4.3. PE Analysis. In this section, we calculated the PE of
chaotic sequences generated by the above three different
generators with the purpose of comparing their complexities.
The parameters of PE are selected to be the same as that
in Section 2.3, and MATLAB simulation results are shown
in Figure 7. We generated 10 sets of data to compare the
complexity of chaotic sequences. As can be seen from the
figure, improved method can significantly increase the com-
plexity of chaotic sequences. The PE of sequence generated
by improved method is larger than original Logistic and Tent
sequences.Therefore, the method can improve the dynamical
degradation of a digital chaotic map obviously.

5. Conclusion

In this paper, we analyze the Logistic chaotic sequences with
different computational precision in detail through autocor-
relation function, permutation entropy and statistical analysis
of sequence periodicity. Based on the above experimental
results, we found that there are a variety of short-period
phenomena in chaotic sequences under finite computational
precision. Surprisingly, for every sequence of period 𝑝, all
periodic stages display the same periodic limit cycles with
period length 𝑝. This phenomenon will seriously affect the
key space and security of chaotic stream ciphers. Further,

we did the same experiment for Tent mapping with the
purpose of analyzing the periodicity of Tent sequence. The
experimental results show a similar regularity to the discrete
Logistic sequences. In view of this problem, we designed a
novel discrete chaotic sequence generator. The experimental
results show that the chaotic sequence generator can generate
good pseudorandom chaotic sequences. This method has
the advantages of simple structure and easy realization in
hardware. In the case of finite computational precision, it can
overcome the short-period behavior of chaotic sequence and
effectively increase the key space. This method provides a
feasible way for the application of chaos theory in the field
of secure communication.
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