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�is paper presents a novel and simple three-dimensional (3-D) chaotic system by introducing two sine nonlinearities into a
simple 3-D linear dynamical system.�e presented sine system possesses nine equilibrium points consisting of �ve index-2 saddle
foci and four index-1 saddle foci which allow the coexistence of various types of disconnected attractors, also known as
multistability. �e coexisting multiple attractors are depicted by the phase plots and attraction basins. Coexisting bifurcation
modes triggered by di�erent initial values are numerically simulated by two-dimensional bifurcation and complexity plots under
two sets of initial values and one-dimensional bifurcation plots under three sets of initial values, which demonstrate that the
abundant coexisting multiple attractors’ behaviors in the presented sine system are related not only to the system parameters but
also to the initial values. A simulation-oriented circuit model is synthesized, and PSIM (power simulation) screen captures well
validate the numerical simulations.

1. Introduction

Recently, numerous nonlinear dynamical systems have been
reported that they present the coexistence of two or more
disconnected attractors with their isolated attraction basins.
�e coexisting phenomena of two or more attractors have
been encountered in nonlinear oscillating circuits [1–5],
biological neuron models [6, 7], Hop�eld neural networks
[8–11], vibroimpact system [12], superconducting quantum
interference device oscillators [13], pure mathematical
systems [14–17], and so on. �is striking phenomenon, also
known as multistability, demonstrates that the system initial
values do play an important role in the emergence of
complex coexisting attractors’ behaviors [18, 19]. For a
multistable dynamical system, it is usually challenging to
predict the �nal steady state to which the dynamical system
will tend for a given initial value since a small disturbance in
the initial value can alter the steady state of such dynamical
systems [20–23]. Multistability has great application po-
tentials in the chaos-based secure communication and in-
formation encryption [24–27], but e¡cient prediction and

control methods should be employed to make these dy-
namical systems in the desired oscillating modes [28–32].

Usually, an e�ective method for implementing the initial-
related multistability is to lead one, two, or more generic or
extended memristors in various existing circuits and systems
[15–17, 33–36]. Memristor-based circuits and systems with
di�erent types of equilibrium points are easy to exhibit
coexisting attractors’ behaviors of multistability. Compara-
tively speaking, another bene�cial and simple method for
generating initial value o�set-boosted coexisting attractors is
to put periodic trigonometric functions into speci�c o�set-
boostable dynamical systems [37–41]. When the cyclic periods
for the periodic functions are identical, any attractor will be
copied by periodic o�set boosting the initial values [37].
However, due to the reported o�set-boostable dynamical
systems with self-contained nonlinearities, the newly con-
structing multistable dynamical systems become relatively
complicated [38–41], not convenient for theoretical analyses
and hardware circuit implementations. �e algebraic sim-
plicity of system’s structure and topological complexity of
chaotic attractors are bene�ts for developing chaos-based
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cryptosystems [42]. In this paper, based on a simple 3-D linear
dynamical system and two newly introduced sine non-
linearities, a novel and extremely simple 3-D sine chaotic
system is readily constructed, from which abundant coexisting
multiple attractors’ behaviors are observed [43].

&e rest is organized as follows. In Section 2, a novel and
simple 3-D sine chaotic system is presented. It has nine
equilibrium points consisting of five index-2 saddle foci and
four index-1 saddle foci, resulting in the coexistence of up to
six types of disconnected attractors. In Section 3, by two-
dimensional bifurcation and complexity plots under two sets
of initial values and one-dimensional bifurcation plots under
three sets of initial values, coexisting bifurcation modes are
numerically simulated to demonstrate the abundant coex-
isting multiple attractors’ behaviors. In Section 4, with the
simulation-oriented circuit model, PSIM screen captures
validate the numerical simulations. &e conclusion is
summarized in Section 5.

2. System Model and Its Coexisting
Multiple Attractors

By introducing two sine nonlinearities with two coupling
coefficients into a simple 3-D linear dynamical system, a
novel 3-D sine chaotic system with simple algebraic equa-
tions is easily achieved, which is modeled by

_x � y + z − k1 sin(y),

_y � − x + z,

_z � − x − z + k2 sin(x),

(1)

where x, y, and z are the three state variables and k1 and k2
are the two positive constants.

&e presented sine system in (1) is symmetric about the
origin and dissipative. &e symmetric property can be
demonstrated by the invariance of system (1) with respect to
the transformation (x, y, z)⟷ (− x, − y, − z). &e dis-
sipativity is explained by

∇V �
z _x

zx
+

z _y

zy
+

z _z

zz
� − 1< 0. (2)

&us, the orbits are finally confined to a specific subset
with zero volume and its asymptotic motion settles onto a
standalone attractor.

&e equilibrium points of the presented sine system in
(1) are obtained by solving the following equations:

0 � y + z − k1 sin(y),

0 � − x + z,

0 � − x − z + k2 sin(x),

(3)

which is expressed as

E � (δ, σ, δ). (4)

&e values δ and σ can be yielded by solving the fol-
lowing transcendental functions:

h1 � 2δ − k2 sin(δ) � 0 (5)

h2 � σ + δ − k1 sin(σ) � 0, (6)

respectively.
&e Jacobian matrix J at E is given as

J �

0 1 − k1 cos(σ) 1

− 1 0 1

− 1 + k2 cos(δ) 0 − 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (7)

so that the characteristic polynomial is derived as

P(λ) � λ3 + c1λ
2

+ c2λ + c3 � 0, (8)

where

c1 � 1,

c2 � 2 − k1 cos(σ) − k2 cos(δ),

c3 � 1 − k1 cos(σ)  2 − k2 cos(δ) .

(9)

&e above characteristic polynomial implies that Jaco-
bian matrix (7) has three nonzero roots. For these roots,
Routh–Hurwitz conditions are given as

c1 > 0,

c3 > 0,

c1c2 − c3 > 0,

(10)

i.e.,

1 − k1 cos(σ)  2 − k2 cos(δ) > 0,

k1 cos(σ) 1 − k2 cos(δ) > 0.
(11)

If the conditions in (11) are satisfied, i.e., k1 cos(σ)< 1
and k2 cos(δ)< 1, E is stable, leading to the existence of the
point attractor. Otherwise, if any one of the conditions in
(11) is not satisfied, i.e., k1 cos(σ)< 1 or k2 cos(δ)< 1, E is
unstable, resulting in that unstable behaviors may be trig-
gered in the presented sine system.

Denote k1 � k2 � k and take k� 3.6 and 5 as two examples.
&e values δ and σ of the equilibrium point E in (4) are the
intersection points of two function curves h1 and h2 de-
scribed by (5) and (6), as shown in Figures 1(a) and 1(b),
respectively, from which nine pairs of δ and σ are obtained
by inspecting the intersection points, indicating the exis-
tence of nine equilibrium points in the presented sine
system. With these equilibrium points, the three nonzero
eigenvalues are calculated from the Jacobian matrix J in (7)
and the corresponding stabilities can be determined, as listed
in Table 1. &e calculation results illustrate that five index-2
saddle foci (Index-2 USF, for short) and four index-1 saddle
foci (Index-1 USF, for short) can be found, which could
emerge five disconnected attracting regions when these
attracting regions cannot be linked with each other, leading
to the coexistence of disconnected attractors.

For k� 3.6, 5, and several sets of the initial values (labeled
in Figure 2), the phase plots of coexisting multiple attractors
projected on the x-y plane are depicted in Figures 2(a) and
2(b), respectively. In Figure 2(a), a chaotic attractor coexisted
with twin small-size period-1 limit cycles, twin large-size
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period-1 limit cycles, and a relatively larger size period-1 limit
cycle. By contrast, in Figure 2(b), two chaotic attractors
coexisted with twin large-size period-1 limit cycles and a
relatively larger size period-1 limit cycle. �erefore, up to six

types of coexisting multiple attractors are numerically dis-
closed in the 3-D sine chaotic system because of the attracting
and repelling interactions between the �ve index-2 saddle foci
and four index-1 saddle foci.
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Figure 1: Values δ and σ of the equilibrium points by inspecting the intersections of two function curves h1 and h2 described by (5) and (6).
(a) k� 3.6. (b) k� 5.

Table 1: Equilibrium points, eigenvalues, and stabilities for k� 3.6 and 5.

k Equilibrium points Eigenvalues Stabilities

3.6

P0: (0, 0, 0) 1.0528± j0.4807, –3.1057 Index-2 USF
P1,2: (0, ±2.4074, 0) 1.3656, –1.1828± j1.7041 Index-1 USF

P3,8: (±1.7659, ±1.7668, ±1.7659) 0.1205± j1.9193, –1.2410 Index-2 USF
P4,7: (±1.7659, ±0.7858, ±1.7659) 1.3103, –1.1551± j1.3587 Index-1 USF
P5,6: (±1.7659, ±2.8378, ±1.7659) 0.3285± j2.6672, –1.6569 Index-2 USF

5

P0: (0, 0, 0) 1.4346± j1.0215, –3.8692 Index-2 USF
P1,2: (0, ±2.5976, 0) 2.0719, –1.5359± j2.2986 Index-1 USF

P3,8: (±2.1253, ±2.1271, ±2.1253) 0.4429± j2.9575, –1.8857 Index-2 USF
P4,7: (±2.1253, ±0.5756, ±2.1253) 2.1115, –1.5558± j2.1419 Index-1 USF
P5,6: (±2.1253, ±2.9680, ±2.1253) 0.6154± j3.4532, –2.2309 Index-2 USF
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Figure 2: Phase plots of coexisting multiple attractors projected on the x-y plane for di�erent initial values. (a) For k� 3.6, six types of
coexisting multiple attractors. (b) For k� 5, �ve types of coexisting multiple attractors.
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To detect the attracting regions of the coexisting multiple
attractors given in Figure 2, the attraction basins in the initial
value plane are used to classify different dynamical behaviors
[44]. For the two coupling coefficients used in Figure 2, the
attraction basins in the x(0)-y(0) plane with z(0) � 10− 6 are
depicted in Figure 3. &e attracting regions painted by
different colors represent the initial value regions corre-
sponding to different long-term oscillating states, i.e.,
coexisting multistable states, which are identical with the
colored trajectories appearing in Figure 2. &us, the at-
traction basins show the relatively complicated manifold
structures along with basin boundaries. Meanwhile, the
numerical results in Figure 3 demonstrate the emergence of
multistability in the presented sine system.

It can be concluded that due to the appearance of five
index-2 saddle foci and four index-1 saddle foci and their
interactions with each other, some disconnected attracting
regions are thereby formed in the neighborhoods around
these unstable saddle foci, resulting in the generation of
coexisting multiple disconnected attractors.

3. Initial Values-Related Coexisting Multiple
Bifurcation Modes

Because the presented sine system in (1) is symmetric about
the origin, the disconnected attracting regions have locally
symmetric behaviors, which are well exhibited in Figures 2
and 3. For this reason and convenient analysis, three sets of
the initial values (10− 6, 0, 0), (10− 6, 3, 0), and (10− 6, –3, 0) are
considered in next numerical plots. &e fourth-order
Runge–Kutta algorithm with the 0.01 s time step and (700 s,
800 s) time interval is used for depicting the phase plots and
bifurcation plots, whereas the fourth-order Runge–Kutta-
basedWolf’s method with the 0.01 s time step and 20 ks time
end is adopted for calculating the Lyapunov exponents.

Firstly, two-dimensional bifurcation plots (bifurcation
diagrams and dynamical maps) [23] are employed to show
complex dynamical behaviors in the presented sine system
intuitively, as shown in Figures 4 and 5. Here, both the
coupling coefficients k1 and k2 are simultaneously increased
in the region [2, 8] and two sets of initial values (10− 6, 0, 0)
and (10− 6, 3, 0) are chosen. Note that the exhibited two-
dimensional bifurcation behaviors are similar to each other
for the initial values (10− 6, 3, 0) and (10− 6, –3, 0) due to the
system symmetry.

As shown in Figure 4, the two-dimensional bifurcation
diagrams in the k1-k2 parameter plane are obtained by
calculating the periodicities of state variable x, which
demonstrate rich and complex coexisting dynamical be-
haviors related to system parameters and initial values. &e
stable points and chaotic attractors distribute in the black-
and red-colored regions, respectively, and the periodic
attractors with different periodicities situate in the other
colored regions. Comparing Figure 4(b) with Figure 4(a),
there is a big difference between the two dynamical be-
haviors in the lower right regions, which is triggered by the
initial values-dependent multistability in the presented sine
system, leading to the coexistence of multiple bifurcation
modes.

As shown in Figure 5, the two-dimensional dynamical
maps in the k1-k2 parameter plane under two sets of initial
values are depicted by evaluating the values of the largest
Lyapunov exponent. &e yellow-red-white colored regions
with different positive values of the largest Lyapunov ex-
ponent represent different chaotic behaviors, the black-
colored regions with different negative values of the largest
Lyapunov exponent only stand for stable point behaviors,
and the black-yellow colored regions with the zero largest
Lyapunov exponent represent different periodic behaviors.
In a similar manner, the dynamical behaviors described by
the dynamical maps in Figures 5(a) and 5(b) are of great
difference, which manifest how coexisting dynamical be-
haviors evolve for different initial values.

Similarly, the two-dimensional spectral entropy-based
complexity plots in the k1-k2 parameter plane are displayed
in Figure 6, where two sets of initial values (10− 6, 0, 0) and
(10− 6, 3, 0) are employed. On the basis of the Fourier
transform [32, 45], the complexity values are obtained by
calculating the spectral entropy of the time sequence of the
variable x. &e relatively large complexity value in Figure 6
indicates the appearance of an irregularly chaotic sequence,
whereas the relatively small complexity value in Figure 6
represents the occurrence of a regularly periodic sequence.
For the two sets of different initial values, there are some
differences in the complexity plots between Figures 6(a) and
6(b), implying that the system initial values have great effects
on the dynamical behaviors of the presented sine system.

&erefore, the dynamical maps shown in Figure 5 and
complexity plots shown in Figure 6 can reflect the dynamical
evolutions with the variations of the system parameters and
initial values, which are the effective supplements to confirm
the coexisting dynamical behaviors depicted by the bi-
furcation diagrams in Figure 4.

To visualize the coexisting multiple bifurcation modes
related to the initial values, three sets of initial values (10− 6, 0,
0), (10− 6, 3, 0), and (10− 6, –3, 0) are considered and both the
coupling coefficients k1 and k2 are simultaneously increased
in the region [2, 8]. Denote k1 � k2 � k as a bifurcation pa-
rameter. &e one-dimensional bifurcation plots with the
variation of the system parameter k are shown in Figure 7. In
Figure 7(a), the bifurcation diagrams drawn by the black,
blue, and red trajectories correspond to those initiated from
the initial values (10− 6, 0, 0), (10− 6, 3, 0), and (10− 6, –3, 0),
respectively. And in Figure 7(b), the first two Lyapunov
exponents associated with three sets of initial values are
drafted in the upper, middle, and bottom of Figure 7(b),
which entirely match with the bifurcation diagrams in
Figure 7(a). &erefore, when more initial values are con-
sidered, more complicated coexisting multiple bifurcation
modes can be revealed in the presented sine system.

Observed from Figure 7, abundant coexisting multiple
attractors’ behaviors related to the initial values are
exhibited, including stable points, periodic oscillations, and
chaotic oscillations along with period-doubling bifurcations,
tangent bifurcations, and crisis scenarios. When two sets of
initial values (10− 6, 3, 0) and (10− 6, –3, 0) are chosen, both the
depicted dynamical behaviors in Figure 7 are basically
identical over the entire parameter region, with only slight
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Figure 4: Two-dimensional bifurcation diagrams in the k1-k2 parameter plane through calculation of the periodicities of the state variable x
under two sets of initial values. (a) Initial values (10− 6, 0, 0). (b) Initial values (10− 6, 3, 0).
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Figure 3: Two attraction basins in the x(0)-y(0) plane with z(0) � 10− 6 and the painted colors correspond to the colored motion orbits
shown in Figure 2. (a) Attraction basin for k� 3.6. (b) Attraction basin for k� 5.
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Figure 5: Two-dimensional dynamical maps in the k1-k2 parameter plane by evaluating the values of the largest Lyapunov exponent under
two sets of initial values. (a) Initial values (10− 6, 0, 0). (b) Initial values (10− 6, 3, 0).
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Figure 8: Continued.

6 Complexity



di�erences in the parameter region (6.94, 7.58). However,
when the other two sets of initial values (10− 6, 0, 0) and (10− 6, 3,
0) are chosen, both the depicted dynamical behaviors in
Figure 7 have big di�erences in the parameter region (2.96,
5.24). As the parameter k is increased in this parameter region,
the moving orbit for (10− 6, 0, 0) goes into chaotic oscillating
state at k� 3.01 via period-doubling bifurcation route and
mutates into periodic oscillating state at k� 3.76 via chaos
crisis, whereas the moving orbit for (10− 6, 3, 0) turns into
periodic oscillating state from stable resting state at k� 3.14
and enters into chaotic oscillating state at k� 4.34 via period-
doubling bifurcation route with two relatively larger periodic
windows. Of course, in the parameter region (6.94, 7.58), some
slight di�erences between the depicted dynamical behaviors
under two sets of initial values (10− 6, 0, 0) and (10− 6, 3, 0) can
be seen for the presented sine system as well.

Except for the two examples in Figure 2, other examples
to exhibit coexisting multiple attractors’ behaviors are given
in Figure 8, where four sets of phase plots in the x-y plane are
provided together for the initial values (10− 6, 0, 0), (10− 6, 3,
0), and (10− 6, –3, 0). When k� 3, the coexistence of a period-
4 limit cycle and a pair of symmetric points is exhibited in
Figure 8(a). When k� 4.5, the coexistence of a large size
period-1 limit cycle and a pair of symmetric period-3 limit
cycles is demonstrated in Figure 8(b). When k� 7, the co-
existence of a chaotic attractor and a period-5 limit cycle is
illustrated in Figure 8(c). However, when k� 8, the co-
existence of two chaotic attractors with di�erent topologies
is disclosed in Figure 8(d). Consequently, various types of
coexisting attractors’ behaviors can be found in the pre-
sented sine system.

4. Validations by the Simulation-Oriented
Circuit Model

By employing PSIM Version 9.0.3 software, the simulation-
oriented circuit model for implementation of the presented
sine system is synthesized and its screen shot is given in
Figure 9, in which three operation channels containing three

integrators, three inverters and two sine function converters
are used to implement three state variables x, y, and z,
respectively.

Based on the simulation-oriented circuit model shown in
Figure 9, the state equations for the capacitor voltages vx, vy,
and vz are described by

RC
dvx
dt

� vy + vz −
R

Rk1
sin vy( ),

RC
dvy
dt

� − vx + vz,

RC
dvz
dt

� − vx − vz −
R

Rk2
sin vx( ).

(12)

where C1�C2�C3�C, Rk1�R/k1, and Rk2�R/k2. When
RC� 10 kΩ× 10 nF� 100 μs, i.e., R� 10 kΩ and C� 10 nF,
the circuit parameters Rk1 and Rk2 for PSIM circuit simu-
lations can be conveniently determined.

According to the system parameters k1 and k2 and the
initial values used in Figure 2, the circuit parameters Rk1 and
Rk2 have the same values, i.e., Rk1�Rk2. When
Rk1�Rk2� 2.78 kΩ and 2 kΩ, respectively, PSIM screen
captures are obtained in Figure 10, where the initial voltages
vx(0) and vz(0) of the capacitors C1 and C3 are always �xed
as 1 μV and 0V, respectively, and only the initial voltage
vy(0) of the capacitor C2 is adjusted as di�erent initial
values.

Similarly, based on the system parameters k1 and k2 and
three sets of initial values used in Figure 8, the circuit pa-
rameters are selected as Rk1�Rk2� 3.33 kΩ, 2.22 kΩ, 1.43 kΩ,
and 1.25 kΩ, respectively. �e corresponding PSIM screen
captures are attached in Figure 11, where the initial voltages
vx(0), vy(0), and vz(0) of the capacitors C1, C2, and C3 are
assigned as vx(0) � 1μV, vy(0) � 3V (or 0V and –3V), and
vz(0) � 0V, respectively.

PSIM circuit simulations in Figure 11(d) are slightly
di�erent from MATLAB numerical simulations in
Figure 8(d), which are mainly caused by the inconsistently
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transient behaviors due to the existence of simulation errors
[46]. Ignoring the tiny di�erences between MATLAB nu-
merical simulations and PSIM circuit simulations, the re-
sults in Figures 10 and 11 e�ectively validate the coexisting
attractors’ behaviors disclosed in Figures 2 and 8.

Besides, it should be mentioned that the sine function
terms are the two key units for realizing the proposed 3-D
sine chaotic system. In the analog circuit experiments [47],
the sine function terms can be physically implemented using

two AD639AD trigonometric function converters. But the
system initials, corresponding to the initial capacitor volt-
ages, are hardly set in the experimental measurements. In
contrast, in the digital circuit experiments [48], the sine
function terms can be directly achieved by calling IP cores in
CORDIC library of FPGA and the system initials can be
readily preset. �erefore, a feasible way to realize the pro-
posed 3-D sine chaotic system could be implemented on the
FPGA, which is addressed in our future paper.
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Figure 9: Screen shot of PSIM simulation-oriented circuit model for implementation of the presented sine system.
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Figure 10: PSIM screen captures of coexisting multiple attractors in the vx-vy plane for di�erent initial values. (a) For Rk1�Rk2� 2.78 kΩ,
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5. Conclusion

�e autonomous chaotic systems can generate the con-
ventional self-excited attractors as their oscillations are
excited from the unstable determined equilibrium points.
�e mechanism for constructing chaotic systems with
coexisting multiple attractors is based on the fact that the
system equilibrium points can be reinstalled by newly in-
troduced sine nonlinearities, leading to the great variations
of their number, characteristics, and distributions [49].
�erefore, by introducing two sine nonlinearities into a
simple 3-D linear dynamical system, this paper presented a
novel and simple 3-D sine chaotic systemwith the reinstalled
�ve index-2 saddle foci and four index-1 saddle foci, from
which the abundant coexisting multiple attractors’ behaviors
were thereby revealed by numerical simulations, such as
phase plots, attraction basins, two-dimensional bifurcation
and complexity plots, and one-dimensional bifurcation
plots, and �nally validated by PSIM circuit simulations. �e

algebraic simplicity of system structure and topological
complexity of chaotic attractor are a long-term goal for
seeking a new chaotic system with coexisting behaviors,
which could acquire wide interest for its chaos-based en-
gineering applications [42, 50].
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