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This paper presents a nonlinear trajectory controller with improved performances for a general model of the waverider based on
feedback linearization theory and composite nonlinear feedback (CNF) technique. First, a nonlinear controller is presented using
the dynamic inversion andCNF technique for theMIMOModel, and the robust stability of the proposed controller is proved.Then,
the nonlinear model is established on the basis of hypersonic aerodynamic principle, and the dynamic characteristics are analyzed
accordingly, and the periodic trajectory is designed and optimized in combination with a fuel optimization problem. Furthermore,
the nonlinear controller is applied to the trajectory tracking of the waverider model, and the general design steps are provided
the flight controller using this nonlinear control method. Finally, an illustrative example is given to verify the effectiveness of the
nonlinear controller of the waverider, and the flight performances are improved accordingly, including system stability, robustness,
and tracking ability.

1. Introduction

Air-breathing waveriders are considered a possible means
to access space, and these vehicles have commercial and
military implications. Unlike rocket-based (combined cycle)
systems, air-breathing waveriders can reach orbital speeds
without carrying oxygen by applying the scramjet propulsion
system [1]. However, waveriders are characterized by extreme
aerothermo-elastic-propulsion interactions and uncertainty.
As a result, the design of satisfactory control systems for
air-breathing waveriders becomes a critical issue to address,
with strong couplings between aerodynamic and propulsive
effects, while addressing significant uncertainties associated
with the complicated flight conditions and special geometries
required for these vehicles [2].

For the design of guidance and control systems of air-
breathing waveriders, an important task is to construct
dynamical models. To this end, a comprehensive analytical
model of waverider was developed in [3] using Newtonian
impact theory to estimate the pressures that act on the

vehicle. Based on the integration of computational fluid
dynamics (CFD) and analytical techniques, the stability and
control derivatives were determined in [4] to build a model
of the longitudinal dynamics of the waverider and investi-
gate the propulsion/airframe integration. A first principle-
based dynamic model of the waverider was provided in
[5] to incorporate aero-thermo-elastic-propulsion interac-
tions: this model applied inviscid compressible oblique
shock-expansion theory to estimate aerodynamic forces and
moments, as well as a 1D Rayleigh flow model and an Euler-
Bernoulli beam model determined scramjet propulsion and
structural flexibility, respectively. Given that the nonlinear
physics-based dynamical model in [5] was highly compli-
cated to be employed for control analysis and design, a simpli-
fied model of this version was given in [6] to remove a set of
weak couplings of nonlinear dynamics. For a comprehensive
aero-thermo-elastic-propulsion model of the six-degree-of-
freedom dynamics of waverider in [7], a control-oriented
model was developed in [8] to allow stability, controllabil-
ity, and robustness analyses and support the adaptive and
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nonlinear control law design. Based on these control-related
models of the waverider, some nonlinear controllers have
been developed, including the adaptive sliding mode control
[9] and linear output feedback tracking control [10].

The control system design of waveriders should be inte-
grated with the guidance law because any small attitude
variation leads to a significant change in the trajectory on
the hypersonic flight condition. Therefore, feasible trajectory
generation is critical for the design of guidance and control of
waveriders to improve the flight performance and minimize
the control power [11]. The periodic cruise can typically save
more fuel than the steady-state cruise in the hypersonic flight
phase [12]; thus, applying the periodic flight trajectory helps
improve the hypersonic flight performance. Nevertheless,
tracking such a trajectory is difficult for the guidance and
control systemwhile guaranteeing the respected control qual-
ities, such as fast setting time, small overshot, and robustness
during the hypersonic flight. To this end, Parker et al. [13]
designed a control systemof an air-breathingwaverider based
on approximate feedback linearization to achieve excellent
tracking performance and robustness. Alternatively, a non-
linear adaptive dynamic inversion controller was developed
in [14] for a waverider to achieve the desired reference
track while being robust to the system uncertainties. The
dynamic inversion-based flight control, however, has diffi-
culty in ensuring robustness and good transient performance
simultaneously for waveriders [15].

A so-called composite nonlinear feedback (CNF) con-
trol technique, presented by Lin et al. [16], can ameliorate
transient performances in the control process. Turner et al.
[17] applied CNF to higher-order andmultiple-input systems.
Chen et al. [18] developed a CNF control to a general class of
systems with input saturation. This controller consisted of a
linear feedback control law and a nonlinear feedback control
law without any switching element; as a result, the CNF
design can capture the time-optimal maneuver in asymp-
totically tracking situations [19]. The CNF technique has
also been used for nonlinear systems [20], uncertain chaotic
systems [21], discrete-time linear systems [22], master/slave
synchronization of nonlinear systems [23], and switched
systems with input saturation [24]. In particular, a design
method of composite nonlinear feedback control technique
was presented in [23] for the synchronization of master/slave
nonlinear systems, and a new condition was derived for the
master and slave systems. Also, a robust tracking problem
was considered in [24] for the uncertain switched systems
with input saturations, and a new form of the nonlinear
function was generated based on a CNF control law to
adapt the changes in the tracking targets. Furthermore, a
variant factor technique was proposed in [25] to address
input saturation in a class of nonlinear systems. If the flight
control law is designed with the dynamic inversion and
CNF technique, some important control qualities can be
improved for waveriders, such as the transient performance
and decoupling control capability. Accordingly, this study
develops a novel flight control law for a general model of
waverider using the CNF technique to guarantee integrated
control performances, such as fast setting time, small over-
shot, and robustness on the hypersonic flight condition. Not

only that, the periodic flight trajectory can be followed using
this designed controller under uncertain flight conditions,
and optimal energy consumption is guaranteed in the course
of the waverider flight accordingly.

The rest of this paper is divided into several sections.
Section 2 deals with the model properties and periodic cruise
trajectory generation of thewaverider. Section 3 considers the
guidance and control law design for the periodic trajectory
using feedback linearization theory and CNF technique.
The proof of system stability and robustness is provided
accordingly. Section 4 demonstrates an illustrative example,
which tests the feasibility of the proposed controller for a
general longitudinal model of the waverider. The response
performances and fuel consumption savings are compared in
relation to the dynamic inversion control and CNF control.
Section 5 concludes.

2. Nonlinear Controller with Improved
Performances for MIMO Model

A multi-input multioutput (MIMO) affine nonlinear model
of waveriders is written with input saturation as follows [26]:

𝑥̇ = 𝑓 (𝑥) + 2∑
𝑖=1

𝑔𝑖 (𝑥) 𝑠𝑎𝑡 (𝑢𝑖)
𝑦󸀠 = (ℎ1 (𝑥) , ℎ2 (𝑥))

(1)

where 𝑥 ∈ R7, 𝑦 ∈ R2, and 𝑢𝑖 ∈ R, 𝑖 = 1, 2 are the state,
output, and control variables, respectively. 𝑠𝑎𝑡 is a function
defined as follows:

𝑠𝑎𝑡 (𝑢𝑖) =
{{{{{{{{{
𝑢𝑖, 𝑢𝑖 > 𝑢𝑖𝑢𝑖, 󵄨󵄨󵄨󵄨𝑢𝑖󵄨󵄨󵄨󵄨 ≤ 𝑢𝑖−𝑢𝑖, 𝑢𝑖 < −𝑢𝑖

(2)

for 𝑖 = 1, 2, where 𝑢𝑖 is the maximum of 𝑢𝑖. Following that,
we give the following assumptions [27].(1)𝑓(𝑥) ∈ R7 and 𝑔𝑖(𝑥) ∈ R7, 𝑖 = 1, 2 are smooth vector
fields and ℎ𝑖(𝑥) ∈ R, 𝑖 = 1, 2 are smooth functions on a
compact and connected set𝑋 ofR7.(2)The relative degree of the nonlinear model is (𝑟1, 𝑟2)󸀠,𝑟 = ∑2

𝑖=1 𝑟𝑖, 𝑟 ≤ 7, and 𝑟𝑖 ≥ 1, 𝑖 = 1, 2 on𝑋.(3)The zero dynamics of the nonlinear model is stable on𝑋 if any.
Based on the differential geometry theories, for the

nonlinear model there is a nonsingular transformation Φ(𝑥)
from𝑋 to𝑍×𝑍0 which is a compact and connected set ofR7

[28],

( 𝑧𝑧0) = Φ (𝑥) , ∀𝑥 ∈ 𝑋, ( 𝑧𝑧0) ∈ 𝑍 × 𝑍0 (3)

Φ (𝑥) = (𝐿0𝑓ℎ1 (𝑥) , ⋅ ⋅ ⋅ , 𝐿𝑟1−1𝑓
ℎ1 (𝑥) , 𝐿0𝑓ℎ2 (𝑥) , ⋅ ⋅ ⋅ ,

𝐿𝑟2−1
𝑓

ℎ2 (𝑥) , 𝜙𝑟+1 (𝑥) , ⋅ ⋅ ⋅ , 𝜙7 (𝑥)) (4)
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where

𝐿𝑖𝑓ℎ𝑗 (𝑥) = 𝑓󸀠 (𝑥) 𝜕𝐿𝑖−1𝑓 ℎ𝑗 (𝑥)𝜕𝑥 (5)

for 𝑖 = 1, ⋅ ⋅ ⋅ , 7 and 𝑗 = 1, 2,
𝐿0𝑓ℎ𝑗 (𝑥) = ℎ𝑗 (𝑥) (6)

for 𝑗 = 1, 2,
𝑔󸀠𝑗 (𝑥) 𝜕𝜙𝑖 (𝑥)𝜕𝑥 = 0 (7)

for 𝑖 = 𝑟+1, ⋅ ⋅ ⋅ , 7 and 𝑗 = 1, 2, and 𝜙𝑖(𝑥) is a smooth function
on 𝑋 for 𝑖 = 𝑟 + 1, ⋅ ⋅ ⋅ , 7. According to the nonlinear state
transformationΦ(𝑥), the nonlinear model can be changed as
follows: 𝑧̇ = 𝐴𝑧 + 𝐵V,

𝑧 (0) = 𝑧𝑉
V fl 𝑠 (𝑧, 𝑧0) + 2∑

𝑖=1

𝑝𝑖 (𝑧, 𝑧0) 𝑠𝑎𝑡 (𝑢𝑖)
𝑦 = 𝐶𝑧
𝑧̇0 = 𝑧𝑑 (𝑧, 𝑧0)

(8)

where 𝑧0 ∈ R7−𝑟 is the state variable of the zero dynamics and𝑧 ∈ R𝑟. In addition, 𝑧𝑑(𝑧, 𝑧0) ∈ R7−𝑟 and 𝑠(𝑧, 𝑧0) ∈ R2 and𝑝𝑖(𝑧, 𝑧0) ∈ R2, 𝑖 = 1, 2, are smooth vector fields on 𝑍 × 𝑍0.
They are expressed by

𝑧󸀠𝑑 (𝑧, 𝑧0) = (𝑓󸀠 (𝑥) 𝜕𝜙𝑟+1 (𝑥)𝜕𝑥 , ⋅ ⋅ ⋅ , 𝑓󸀠 (𝑥) 𝜕𝜙7 (𝑥)𝜕𝑥 ) (9)

𝑠󸀠 (𝑧, 𝑧0) = (𝑓󸀠 (𝑥) 𝜕𝐿𝑟1𝑓ℎ1 (𝑥)𝜕𝑥 , 𝑓󸀠 (𝑥) 𝜕𝐿𝑟2𝑓ℎ2 (𝑥)𝜕𝑥 ) (10)

𝑝󸀠𝑖 (𝑧, 𝑧0) = (𝑔󸀠𝑖 (𝑥) 𝜕𝐿
𝑟1
𝑓
ℎ1 (𝑥)𝜕𝑥 , 𝑔󸀠𝑖 (𝑥) 𝜕𝐿

𝑟2
𝑓
ℎ2 (𝑥)𝜕𝑥 ) (11)

𝑥 = Φ−1 ( 𝑧𝑧0) (12)

where Φ−1 represents the inverse of Φ, which is defined as
a nonsingular function from 𝑋 to 𝑍 × 𝑍0. Accordingly, the
system matrices are 𝐴 = diag (𝐴1, 𝐴2)

𝐵 = diag (𝑏1, 𝑏2)
𝐶 = diag (𝑐1, 𝑐2)

(13)

𝐴 𝑖 = [0 𝐼0 0] ,
𝑏𝑖 = [01] ,
𝑐𝑖 = [1 0]

(14)

for 𝑖 = 1, 2, where 𝐴 𝑖 ∈ R𝑟𝑖×𝑟𝑖 , 𝑏𝑖 ∈ R𝑟𝑖×1, 𝑐𝑖 ∈ R1×𝑟𝑖 , and 𝐼
denotes the identify matrix with approximate dimensions.

In addition, a reference generator needs to be designed
for the waverider to produce reference in (69) to be tracked,
and, based on the equivalent model in (8), it is constructed as
follows:

𝑧̇ = 𝐴𝑧 + 𝐵V𝑒,𝑧 (0) = 𝑧𝑉
V𝑒 = 𝐹𝑒𝑧 + 𝑟𝑠𝑟 = 𝐶𝑧

(15)

where 𝑧 ∈ R𝑟 is the state of the reference generator, 𝐹𝑒
denotes the feedback gain matrix, 𝑟𝑠 represents the virtual
signal source, and 𝑧𝑉 indicates the initial value.This reference
generator can produce an arbitrary type of output signal,
including the sinusoidal signal and the ramp signal by
choosing 𝐹𝑒, 𝑟𝑠, and 𝑧𝑉.

Furthermore, we will present a CNF control law associ-
ated with the reference generator given in the above section
in order that the proposed CNF control law can track the
designed reference in (15). To this end, we first define 𝑧𝑒 =𝑧 − 𝑧, and then, based on (8) and (15), we get

𝑧̇𝑒 = 𝐴𝑧𝑒 + 𝐵 (V − V𝑒) ,
V = 𝑠 (𝑧, 𝑧0) + 2∑

𝑖=1

𝑝𝑖 (𝑧, 𝑧0) 𝑠𝑎𝑡 (𝑢𝑖)
V𝑒 = 𝐹𝑒𝑧 + 𝑟𝑠𝑧̃ = 𝑦 − 𝑟 = 𝐶 (𝑧 − 𝑧) = 𝐶𝑧𝑒
𝑧̇0 = 𝑧𝑑 (𝑧, 𝑧0)

(16)

This error equation is applied in the design of the
CNF control law, and the detailed design procedure will be
introduced in the following steps.

Steps 1. Design a linear feedback control law

V𝐿 = 𝐹𝑧𝑒 + V𝑒 (17)

where 𝐹 is the chosen state feedback gain matrix R2×𝑟 such
that (1) 𝐴 + 𝐵𝐹 is an asymptotically stable matrix and (2)
the closed-loop system 𝐶(𝑠𝐼 − 𝐴 − 𝐵𝐹)−1𝐵 has the expected
properties.The selection of𝐹 is tomake the closed-loop poles
of𝐴+𝐵𝐹 have a dominating pair with a small damping ratio,
leading to a fast rise time in the response process.

Steps 2. Given a positive definite symmetricmatrix𝑊 ∈ R𝑟×𝑟,
we solve the following Lyapunov equation:

(𝐴 + 𝐵𝐹)󸀠 𝑃 + 𝑃 (𝐴 + 𝐵𝐹) = −𝑊 (18)

for 𝑃 > 0. Accordingly, the nonlinear feedback portion of the
CNF control law 𝑢𝑁 is provided by

V𝑁 = 𝜌𝐵󸀠𝑃𝑧𝑒 (19)
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where 𝜌 = diag(𝜌1, 𝜌2), and 𝜌𝑖, 𝑖 = 1, 2, represent
the nonpositive functions regarding 𝑧𝑒, which are used to
gradually adjust the damping ratio of the closed-loop system
to obtain better tracking performance.

Steps 3. The linear feedback control law and nonlinear
feedback part are constituted to get a generalizedCNF control
law:

V = V𝐿 + V𝑁 = 𝐹𝑧𝑒 + V𝑒 + 𝜌𝐵󸀠𝑃𝑧𝑒 (20)

Steps 4. The control law for the equivalent linear model is
designed as follows:

𝑢 : (𝑢1𝑢2) = 𝑝−1 (𝑧, 𝑧0) [𝐹𝑧𝑒 + V𝑒 + 𝜌𝐵󸀠𝑃𝑧𝑒 − 𝑠 (𝑧, 𝑧0)] (21)

Furthermore, for a set of scalars 𝜏𝑖 ∈ (0, 1), 𝑖 = 1, 2, let𝜇 > 0 be the largest positive scalar such that, for all 𝑥 ∈ 𝑋𝑖𝑉,
where

𝑋𝑖𝑉 fl {𝑥 : 𝑥󸀠𝑃𝑥 ≤ 𝜇} , (22)

the following condition holds:

𝑚𝑖 ‖𝐹𝑥‖ ≤ (1 − 𝜏𝑖) 𝑢𝑖, 𝑖 = 1, 2 (23)

𝑚𝑖 = max
𝑥∈𝑋

󵄩󵄩󵄩󵄩󵄩𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0)󵄩󵄩󵄩󵄩󵄩 (24)

where𝑚𝑖 is not zero as 𝑝 is invertible, and 𝑒󸀠𝑖 ∈ R2 is a vector
in which only the i-th element of 𝑒𝑖 is 1 and the other is zero.

Beyond this, for getting further results, first we propose a
lemma below.

Lemma 1. Suppose that 𝑞𝑧 = diag(𝑞𝑧1, 𝑞𝑧2), and, then,
𝜆min [𝑝𝜌𝑞𝑧𝑝−1𝜌 + (𝑝󸀠𝜌)−1 𝑞𝑧𝑝󸀠𝜌] = 2min (𝑞𝑧1, 𝑞𝑧2) (25)

where 𝜆min denotes the minimal eigenvalue.

Proof. As 𝑝𝜌𝑞𝑧𝑝−1𝜌 + (𝑝󸀠𝜌)−1𝑞𝑧𝑝󸀠𝜌 is a symmetric matrix,

𝜆min [𝑝𝜌𝑞𝑧𝑝−1𝜌 + (𝑝󸀠𝜌)−1 𝑞𝑧𝑝󸀠𝜌]
= min

‖𝑥‖=1
𝑥󸀠 [𝑝𝜌𝑞𝑧𝑝−1𝜌 + (𝑝󸀠𝜌)−1 𝑞𝑧𝑝󸀠𝜌] 𝑥

= min
‖𝑥‖=1

2𝑥󸀠𝑝𝜌𝑞𝑧𝑝−1𝜌 𝑥
(26)

Afterwards, we provide a Lagrange function as follows:

𝐿𝑧 = 2𝑥󸀠𝑝𝜌𝑞𝑧𝑝−1𝜌 𝑥 + 2𝜆𝑧 (1 − 𝑥󸀠𝑥) (27)

where 2𝜆𝑧 is the Lagrange multiplier. Following that𝜕𝐿𝑧𝜕𝑥 = 4𝑝𝜌𝑞𝑧𝑝−1𝜌 𝑥 − 4𝜆𝑧𝑥 = 0, 󳨐⇒
𝑝𝜌 (𝑞𝑧 − 𝜆𝑧𝐼) 𝑝−1𝜌 𝑥 = 0 (28)

𝜕𝐿𝑧𝜕𝜆𝑧 = 2 (1 − 𝑥󸀠𝑥) = 0, 󳨐⇒
𝑥󸀠𝑥 = 1 (29)

Actually, if 𝜆𝑧 ̸= 𝑞𝑧𝑖, there is no stationary point. As 𝜆𝑧 =𝑞𝑧𝑖, there is one stationary point, 𝑥󸀠𝑥 = 1, and 𝑝𝜌𝑞𝑧𝑝−1𝜌 𝑥𝑖 =𝑞𝑧𝑖𝑥𝑖 so that
2𝑥󸀠𝑖𝑝𝜌𝑞𝑧𝑝−1𝜌 𝑥𝑖 = 2𝑞𝑧𝑖 (30)

Thus,

𝜆min [𝑝𝜌𝑞𝑧𝑝−1𝜌 + (𝑝󸀠𝜌)−1 𝑞𝑧𝑝󸀠𝜌] = min
‖𝑥‖=1

2𝑥󸀠𝑝𝜌𝑞𝑧𝑝−1𝜌 𝑥
= 2min (𝑞𝑧1, 𝑞𝑧2) (31)

This completes proof of Lemma 1, and the result of
Lemma 1 will be applied in the proof of the following
Theorem.

Theorem 2. Suppose that(1)𝑓(𝑥) and 𝑔𝑖(𝑥), 𝑖 = 1, 2 are smooth vector fields
and ℎ𝑖(𝑥), 𝑖 = 1, 2 are smooth function on a compact and
connected set𝑋 ofR7.(2) �e relative degree of the nonlinear model is (𝑟1, 𝑟2)󸀠,𝑟 = 𝑟1 + 𝑟2 ≤ 7, and 𝑟𝑖 ≥ 1, 𝑖 = 1, 2 on𝑋.(3) Zero dynamics of the nonlinear model in (1) is stable on𝑋 if any.(4) 𝑝(𝑧, 𝑧0) = (𝑝1(𝑧, 𝑧0), 𝑝2(𝑧, 𝑧0)) is invertible at∀ ( 𝑧

𝑧0 ) ∈𝑍 × 𝑍0 in which ( 𝑧
𝑧0 ) = Φ(𝑥) is nonsingular on𝑋.

�en, with the CNF control law comprising (18) and (21)
will drive system output 𝑦 to track arbitrary reference 𝑟 from an
initial state asymptotically without steady-state error, provided
that the following properties are satisfied.(1)�ere exist a set of scalars, 𝜏𝑖 ∈ (0, 1), 𝑖 = 1, 2, so that󵄩󵄩󵄩󵄩󵄩𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0) [V𝑒 − 𝑠 (𝑧, 𝑧0)]󵄩󵄩󵄩󵄩󵄩 ≤ 𝜏𝑖𝑢𝑖, 𝑖 = 1, 2 (32)

(2) 𝜌(𝑧𝑒) = diag(𝜌1, 𝜌2) and𝜌𝑖 ≤ 0 (33)

for 𝑖 = 1, 2.(3) Let 𝑥𝑖𝑉 be the initial value of 𝑥. �en, the initial
condition 𝑧𝑒𝑉 of 𝑧𝑒 satisfies

𝑧𝑒𝑉 ∈ 𝑋𝑖𝑉, (𝑧𝑒𝑉𝑧0,𝑉) = Φ (𝑋𝑖𝑉) (34)

Proof. Consider 𝑧𝑒 = 𝑧 − 𝑧; then
𝑢 = 𝑝−1 (𝑧, 𝑧0) [𝐹𝑧𝑒 + V𝑒 + 𝜌𝐵󸀠𝑃𝑧𝑒 − 𝑠 (𝑧, 𝑧0)]
= 𝑝−1 (𝑧, 𝑧0) 𝜌𝐵󸀠𝑃𝑧𝑒 + 𝑝−1 (𝑧, 𝑧0) 𝐹𝑧𝑒
+ +𝑝−1 (𝑧, 𝑧0) [V𝑒 − 𝑠 (𝑧, 𝑧0)]

(35)

When 𝑧𝑒 ∈ 𝑋𝑖𝑉, it shows that𝑚𝑖
󵄩󵄩󵄩󵄩𝐹𝑧𝑒󵄩󵄩󵄩󵄩 ≤ (1 − 𝜏𝑖) 𝑢𝑖, 𝑖 = 1, 2 (36)

Thus,󵄩󵄩󵄩󵄩󵄩𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0) 𝐹𝑧𝑒󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0)󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝐹𝑧𝑒󵄩󵄩󵄩󵄩≤ 𝑚𝑖
󵄩󵄩󵄩󵄩𝐹𝑧𝑒󵄩󵄩󵄩󵄩 ≤ (1 − 𝜏𝑖) 𝑢𝑖 (37)
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Afterwards, with (32) and (37), we have󵄩󵄩󵄩󵄩󵄩𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0) 𝐹𝑧𝑒 + 𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0) [V𝑒 − 𝑠 (𝑧, 𝑧0)]󵄩󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩󵄩𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0) 𝐹𝑧𝑒󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩𝑒󸀠𝑖𝑝−1 (𝑧, 𝑧0) [V𝑒 − 𝑠 (𝑧, 𝑧0)]󵄩󵄩󵄩󵄩󵄩≤ (1 − 𝜏𝑖) 𝑢𝑖 + 𝜏𝑖𝑢𝑖 = 𝑢𝑖

(38)

Following that, the input channels with the saturation can
be expressed by [21]:

𝑠𝑎𝑡 (𝑢) = 𝑝−1 (𝑧, 𝑧0) 𝐹𝑧𝑒 + 𝑝−1 (𝑧, 𝑧0) (V𝑒 − 𝑠) + 𝜔 (39)

where 𝜔 = 𝑞𝑧𝑝−1𝜌𝐵󸀠𝑃𝑧𝑒, 𝑞𝑧 = diag(𝑞𝑧1, 𝑞𝑧2), and 𝑞𝑧𝑖 ∈ [0, 1]
for 𝑖 = 1, 2. Substituting (39) into (16), we have

𝑧̇𝑒 = 𝐴𝑧𝑒 + 𝐵 (𝐹𝑧𝑒 + 𝑝𝜔) (40)

As a result, the closed-loop system involving (16) and (40)
can be expressed by

𝑧̇𝑒 = (𝐴 + 𝐵𝐹) 𝑧𝑒 + 𝐵𝑝𝜔
𝑧̇0 = 𝑧𝑑 (𝑧, 𝑧0) (41)

The above equation is combined with two parts and the
second part is assumed to be stable for the zero dynamics, so
only stability of the first part needs to be proved accordingly.

Based on that, we choose a Lyapunov function below

Γ = 𝑧󸀠𝑒𝑃𝑧𝑒 (42)

Then, the derivative of Γ can be calculated with (18) and
(41) as follows:

Γ̇ = 𝑧̇󸀠𝑒𝑃𝑧𝑒 + 𝑧󸀠𝑒𝑃𝑧̇𝑒
= −𝑧󸀠𝑒𝑊𝑧𝑒
+ 𝑧󸀠𝑒𝑃𝐵 [𝜌 (𝑝󸀠)−1 𝑞𝑧𝑝󸀠 + 𝑝𝑞𝑧𝑝−1𝜌] 𝐵󸀠𝑃𝑧𝑒

(43)

Let 𝜀 > 0 be a tiny number, so (43) is rewritten as

Γ̇ = −𝑧󸀠𝑒𝑊𝑧𝑒
− 𝑧󸀠𝑒𝑃𝐵𝑅𝑝 [(𝑝󸀠𝜌)−1 𝑞𝑧𝑝󸀠𝜌 + 𝑝𝜌𝑞𝑧𝑝−1𝜌 ] 𝑅𝑝𝐵󸀠𝑃𝑧𝑒
+ 𝜀𝑧󸀠𝑒𝑃𝐵 [(𝑝󸀠)−1 𝑞𝑧𝑝󸀠 + 𝑝𝑞𝑧𝑝−1] 𝐵󸀠𝑃𝑧𝑒

(44)

where 𝑅𝑝 = (−𝜌 + 𝜀𝐼)1/2 and 𝑝𝜌 = 𝑅−1𝜌 𝑝.
Evidently, based on Lemma 1, the second item of (44) is

expressed as follows:

− 𝑧󸀠𝑒𝑃𝐵𝑅𝑝 [(𝑝󸀠𝜌)−1 𝑞𝑧𝑝󸀠𝜌 + 𝑝𝜌𝑞𝑧𝑝−1𝜌 ] 𝑅𝑝𝐵󸀠𝑃𝑧𝑒
≤ −𝑧󸀠𝑒𝑃𝐵𝑅𝑝2min (𝑞𝑧1, 𝑞𝑧2) 𝑅𝑝𝐵󸀠𝑃𝑧𝑒 ≤ 0 (45)

Furthermore, the third item of (44) is shown as

𝜀𝑧󸀠𝑒𝑃𝐵 [(𝑝󸀠)−1 𝑞𝑧𝑝󸀠 + 𝑝𝑞𝑧𝑝−1] 𝐵󸀠𝑃𝑧𝑒
= 𝜀𝑧󸀠𝑒𝑃𝐵2𝜆𝑧𝐵󸀠𝑃𝑧𝑒 (46)

where min(𝑞𝑧1, 𝑞𝑧2) ≤ 𝜆𝑧 ≤ max(𝑞𝑧1, 𝑞𝑧2); that is, 𝜆𝑧 ∈ [0, 1].
Thus, (44) is expressed by

Γ̇ ≤ −𝑧󸀠𝑒𝑊𝑧𝑒 + 𝜀𝑧󸀠𝑒𝑃𝐵2𝜆𝑧𝐵󸀠𝑃𝑧𝑒
≤ −𝜎min (𝑊) 𝑧󸀠𝑒𝑧𝑒 + 2𝜀𝜎max (𝑃𝐵𝐵󸀠𝑃) 𝑧󸀠𝑒𝑧𝑒 (47)

Obviously, 𝜀 < 0.5𝜎min(𝑊)𝜎−1max(𝑃𝐵𝐵󸀠𝑃) exists; therefore,
Γ̇ ≤ −𝜎min (𝑊) 𝑧󸀠𝑒𝑧𝑒 + 2𝜀𝜎max (𝑃𝐵𝐵󸀠𝑃) 𝑧󸀠𝑒𝑧𝑒 < 0 (48)

These results indicate that once 𝑧𝑒𝑉 ∈ 𝑋𝑖𝑉, 𝑧𝑒𝑉 will never be
out of 𝑋𝑖𝑉 as Γ̇ < 0 if (22), (23), (24), and (34) are met. In
other words, the initial value of 𝑧𝑒𝑉 is satisfiedwith 𝑧𝑒𝑉 ∈ 𝑋𝑖𝑉;𝑧𝑒𝑉 will lie in 𝑋𝑖𝑉 based on Γ̇ < 0. Therefore, the closed-loop
system including (16) and (21) is asymptotically stable. This
accomplishes the proof of this Theorem.

Remark. the equivalent form of (41) is expressed as

𝑧̇𝑒 = 𝐴𝑐𝑧𝑒 + 𝐵𝑊𝑎 (49)

where 𝐴𝑐 = 𝐴 + 𝐵𝐹 and 𝑊𝑎 = 𝑝𝜔. Based on the results in
[28], the stability of the closed-loop system matrix 𝐴𝑐 in the
region of linear matrix inequality (LMI) is satisfied with

𝐿 ⊗ 𝑃 + 𝑂 ⊗ (A𝑐𝑃) + 𝑄𝑇 ⊗ (𝐴𝑐𝑃)𝑇 < 0 (50)

where the symmetric matrix 𝐿, 𝑃 and matrix 𝑄 make Ω ={𝑠 ∈ 𝐶 : L + 𝑠Q + 𝑠Q𝑇 < 0}. Accordingly, Ω indicates a
LMI region.Therefore, the adjusted function 𝜌 can ensure the
system asymptotic stability to meet the stability condition of
Linear Matrix Inequalities (LMIs) accordingly.

To be specific, the main task of adding the nonlinear part
is to alter the damping ratios of the closed-loop system as the
outputs approach the periodic cruise trajectory commands,
and the nonlinear gains can help to improve stability robust-
ness and to suppress the effect of uncertainties in accordance
with the adaptive regulation ability.

3. Nonlinear Trajectory Controller
for Waveriders

This study investigates the design methods of the track
controller using CNF technique as the waverider flies along
with the periodic cruise trajectory. The vehicle shape chosen
for this study is shown in Figure 1, where the vehicle geometry
is assumed to have unity depth [5].

Figure 1 illustrates the basic geometry of the waverider.
A combination of oblique shock and Prandtl-Meyer flow
theory is used to determine the pressures on the vehicle
surfaces, whereas a 1D Rayleigh flow scramjet propulsion
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Figure 1: Representative shape of waverider.

model is applied with a variable geometry inlet. Specifically,
an oblique shock occurs on the lower forebody as 𝛼 ≥ −𝜏1,𝑙.
The respective airflow properties across the bow shock are
determined by [29]:

tan (𝜏1,𝑙 + 𝛼) = 2 cot𝛽𝑠 (𝑀2
∞sin2𝛽𝑠 − 1)𝑀2

∞ (𝛾𝑐 + 1 − 2 sin2𝛽𝑠) + 2 (51)

𝑀1 sin (𝛽𝑠 − 𝜏1,𝑙 − 𝛼)
= √ 1 + ((𝛾𝑐 − 1) /2)𝑀2

∞sin2𝛽𝑠𝛾𝑐𝑀2
∞sin2𝛽𝑠 − (𝛾𝑐 − 1) /2

(52)

𝑃1𝑃∞ = 1 + 2𝛾𝑐𝛾𝑐 + 1 (𝑀2
∞sin2𝛽𝑠 − 1) (53)

where 𝛾𝑐 is the specific heat ratio for air, 𝛽𝑠 denotes the shock
wave angle, 𝛼 indicates the angle of attack, 𝑀∞ and 𝑀1

represent the flight Mach on the front and rear of the shock
wave, respectively, and 𝑃∞ and 𝑃1 indicate the pressures on
the front and rear of the shock wave, respectively. Similarly, a
Prandtl-Meyer expansion occurs on the upper surface as 𝛼 ≤−𝜏1,𝑢, and the relations between the geometric parameters
and aerodynamic characteristics are decided by [30]:

] (𝑀∞) = √𝛾𝑐 + 1𝛾𝑐 − 1 {tan−1√𝛾𝑐 − 1𝛾𝑐 + 1 (𝑀2
∞ − 1)}

− tan−1√𝑀2
∞ − 1

(54)

] (𝑀1) = ] (𝑀∞) + 𝜏1,𝑢 + 𝛼 (55)

𝑃1𝑃∞ = [1 + ((𝛾𝑐 − 1) /2)𝑀2
∞1 + ((𝛾𝑐 − 1) /2)𝑀2
1

]𝛾𝑐/(𝛾𝑐−1) (56)

Once the pressures acting on all vehicle surfaces are
computed based on either oblique shock theory or Prandtl-
Meyer expansion flow theory, the aerodynamic forces such as
the lift 𝐿, drag 𝐷, and pitch moment𝑀𝑦 can be determined.
Aside from these aerodynamic forces, the propulsive force 𝑇

is calculated according to themomentum theorem from fluid
mechanics and expressed by [31]

𝑇 = 𝑚̇𝑎 (𝑉𝑒 − 𝑉∞) + (𝑃𝑒 − 𝑃∞) 𝐴𝑒 − (𝑃1 − 𝑃∞) 𝐴 𝑖 (57)

where 𝐴𝑒 and 𝐴 𝑖 indicate the exit area and inlet area of the
propulsive system, respectively, 𝑃𝑒 and 𝑉𝑒 denote the exhaust
exit pressure and velocity, respectively, and 𝑚̇𝑎 is the mass
flow of air, which is determined by [32]:

𝜂𝑐𝑚̇𝑓𝐻𝑓 = 𝑚̇𝑎 (ℎ𝑡3 − ℎ𝑡2) + 𝑚̇𝑓ℎ𝑡3 (58)

𝑚̇𝑓 = 𝛽𝑓𝑠𝑡𝑚̇𝑎 (59)

where ℎ𝑡2 and ℎ𝑡3 denote the total enthalpy at the combustor
inlet and exit, respectively, 𝛽 and 𝑚̇𝑓 are the equivalence ratio
and mass flow of fuel, respectively, 𝜂𝑐 represents the com-
bustor efficiency, and 𝑓𝑠𝑡 and 𝐻𝑓 indicate the stoichiometric
fuel-air ratio and fuel lower heating value for the given fuel,
respectively.

When the lift 𝐿, drag 𝐷, pitch moment𝑀𝑦, and thrust 𝑇
are acquired, the longitudinal model of the waverider along
with the velocity coordinate system is provided by [33]:

𝑉̇ = 𝑇 cos𝛼 − 𝐷𝑚 − 𝑔 sin 𝛾
̇𝛾 = 𝐿 + 𝑇 sin𝛼𝑚𝑉 − 𝑔 cos 𝛾𝑉
ℎ̇ = 𝑉 sin 𝛾
𝛼̇ = 𝑞 − ̇𝛾
̇𝑞 = 𝑀𝑦

I𝑦

(60)

where 𝑉 denotes the flight velocity, 𝛾 is the flight path angle,𝑞 represents the pitch angle velocity, 𝛼 indicates the angle of
attack, ℎ is the flight height, and 𝑟 denotes the flight range,
which is determined by ̇𝑟 = 𝑉cos𝛾. In addition, 𝑚, 𝑔, and𝐼𝑦 are the airplane mass, gravitational constant, and moment
of inertia, respectively. For (60), the elevon deflection angle𝛿𝑒 and equivalence ratio Φ are chosen as the control inputs,
and then, based on the aforementioned force computation
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theories, the lift 𝐿, drag 𝐷, pitch moment 𝑀𝑦, and thrust 𝑇
can be expressed as functions regarding the flight states and
inputs by

𝐿 = 0.5𝜌𝑉2𝑆𝐶𝐿 (𝛼, 𝛿𝑒)
𝐷 = 0.5𝜌𝑉2𝑆𝐶𝐷 (𝛼, 𝛿𝑒)

𝑀𝑦 = 0.5𝜌𝑉2𝑆𝑐𝐶𝑀 (𝛼, 𝛿𝑒)
𝑇 = 𝑓𝑇 (𝛼, 𝛿𝑒, 𝛽)

(61)

where 𝑆 and 𝑐 indicate the reference area and mean aerody-
namic chord, respectively, 𝜌 represents air density, and 𝐶𝐿,𝐶𝐷, and 𝐶𝑀 denote the coefficients with regard to the lift,
drag, and pitch moment, respectively.

We consider the classical short-period approximation by
applying the Jacobian linearization for (60) and (61). The
transfer function between the flight path angle and elevator
deflection is approximately described as [33]:

Δ𝛾Δ𝛿𝑒 =
𝐶𝛾 (𝑠 + 1/𝑇𝛾1) (𝑠 + 1/𝑇𝛾2) (𝑠 − 1/𝑇𝛾2)(𝑠 + 𝑇𝛿1) (𝑠 + 𝑇𝛿2) (62)

where

𝑇𝛿1, 𝑇𝛿2 = 𝑍𝛼2𝑉𝑡 ±
√(𝑍𝛼 − 𝑉𝑡𝑀𝑞)2 + 4𝑉2

𝑡 𝑀𝛼2𝑉𝑡 (63)

1𝑇𝛾2 = √𝑀𝛼 − 𝑀𝛿𝑒𝑍𝛿𝑒

𝑍𝛼 (64)

where 𝑀𝛼 = (1/𝐼𝑦)(𝜕𝑀𝑦/𝜕𝛼), 𝑀𝑞 = (1/𝐼𝑦)(𝜕𝑀𝑦/𝜕𝑞),𝑀𝛿𝑒
= (1/𝐼𝑦)(𝜕𝑀𝑦/𝜕𝛿𝑒), 𝑍𝛼 = −(1/𝑚)(𝜕𝐿/𝜕𝛼), and𝑍𝛿𝑒

= −(1/𝑚)(𝜕𝐿/𝜕𝛿𝑒). In addition,𝐶𝛾 represents the transfer
function gain, and the subscript 𝑡 denotes the trim value.
For the basic geometry of waverider in Figure 1, 𝑀𝛼 > 0
because of the large force acted on the lower surface, which
presents an unstable pole according to (63), thereby leading
to unstable short-period dynamics for the longitudinalmodel
of the waverider [5]. In addition, the lift corresponding to the
elevator deflection results in the existence of a nonminimum
phase zero because of 𝑍𝛿𝑒

< 0. Fortunately, 𝑍𝛿𝑒
is very small

because of the flight in the very low density environment,
such that this nonminimum phase zero locates at the far
right. In sum, the model dynamics of waverider are unsta-
ble, nonminimum, and strong coupling and present large
uncertain disturbances and unknown model dynamics. As a
result, designing a satisfactory guidance and control system
for waverider is a challenging task.

In this section, a guidance and control law using the
dynamic inversion and CNF technique is derived for the
waverider to track the optimized periodic cruise trajectory.
This proposed design process integrates the guidance and
control loops by merging the attitude, velocity, and altitude
dynamics of the waverider.

The established nonlinear model of waverider in (60) and
(61) is difficult to use for some nonlinear control techniques

because the obtained lift, drag, and moment are nonanalyti-
cal. As a result, the control lawdesignmust conduct themodel
simplification associated with the design requirements. The
critical dynamic characteristics concerning the initial model
should be retained, although it is simplified to be analytically
tractable. Thus, the core work in the model simplification
course aims to identify the analytical expressions of the
lift, drag, thrust, and pitching moment that need to not
only conform to the initial model features but also be in
accordance with the control-oriented design goal.

In this study, the forms for the force and moment
functions in (61) are selected as [6]:

𝐶𝐿 (𝛼, 𝛿𝑒) = 𝐶𝛼2

𝐿 𝛼2 + 𝐶𝛼
𝐿𝛼 + 𝐶𝛼𝛿𝑒

𝐿 𝛼𝛿𝑒 + 𝐶𝛿2
𝑒

𝐿 𝛿2𝑒
+ 𝐶𝛿𝑒

𝐿 𝛿𝑒 + 𝐶0
𝐿

𝐶𝐷 (𝛼, 𝛿𝑒) = 𝐶𝛼2

𝐷 𝛼2 + 𝐶𝛼
𝐷𝛼 + 𝐶𝛼𝛿𝑒

𝐷 𝛼𝛿𝑒 + 𝐶𝛿2
𝑒

𝐷𝛿2𝑒
+ 𝐶𝛿𝑒

𝐷𝛿𝑒 + 𝐶0
𝐷

𝐶𝑀 (𝛼, 𝛿𝑒) = 𝐶𝛼2

𝑀𝛼2 + 𝐶𝛼
𝑀𝛼 + 𝐶0

𝑀,𝛼 + 𝑐𝑒𝛿𝑒
𝑇 ≈ 𝐶𝛼3

𝑇 𝛼3 + 𝐶𝛼2

𝑇 𝛼2 + 𝐶𝛼
𝑇𝛼 + 𝐶0

𝑇

(65)

where

𝐶𝛼3

𝑇 = 𝜀1 (ℎ, 𝑄) 𝛽 + 𝜀2 (ℎ, 𝑄)
𝐶𝛼2

𝑇 = 𝜀3 (ℎ, 𝑄) 𝛽 + 𝜀4 (ℎ, 𝑄)
𝐶𝛼
𝑇 = 𝜀5 (ℎ, 𝑄) 𝛽 + 𝜀6 (ℎ, 𝑄)

𝐶0
𝑇 = 𝜀7 (ℎ, 𝑄) 𝛽 + 𝜀8 (ℎ, 𝑄)

(66)

where 𝑄 = 0.5𝜌𝑉2 is dynamic pressure and 𝐶𝛼2

𝐿 , 𝐶𝛼
𝐿, 𝐶𝛼𝛿𝑒

𝐿 ,𝐶𝛿2
𝑒

𝐿 , 𝐶𝛿𝑒
𝐿 , and 𝐶0

𝐿 denote the needed identification parameters
for the lift terms. The item parameters for the drag, pitching
moment, and thrust also have to be acquired. The scramjet
of the waverider strongly depends on the angle of attack and
dynamic pressure alongwith the inputΦ.The flight attitude is
also dramatically influenced by the propulsive action because
of the airflow compression and expansion at the inlet and
outlet, which leads to the significant change in the lift and
drag. As a result, themutual effects between the flight attitude
change and propulsive action bring a significant challenge for
the design of the guidance and control system.

In further implementation, the parameters of the polyno-
mial functions in (65) and (66) are acquired using the least-
squares approach based on themodel datumderived from the
anterior estimation approaches concerning the aerodynamic
and propulsive forces. Theoretically, these parameters that
have considerable coupling itemsmay result in fairly accurate
fitting results, but the complexity of these functions is
unfavorable for the guidance and control law design. Thus,
from the perspective of the control design for the waverider,
we need a compromise selection of the function forms in (65)
and (66).
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To design the integrated guidance and control law in the
preceding part, the outputs of the nonlinear model in (60),
(61), and (65) are selected as 𝑦1 = 𝑉 and 𝑦2 = ℎ. In addition, a
second-order actuator model is added to the input 𝛽, and the
propulsive commanded value𝛽𝑐 is selected as the new control
input; that is,

̈𝛽 = −2𝜉𝑇𝜔𝑇 ̇𝛽 − 𝜔2𝑇𝛽 + 𝜔2𝑇𝛽𝑐 (67)

where 𝜉𝑇 and 𝜔𝑇 represent the damping ratio and natural
frequency of the actuator, respectively. Thus, the control
inputs are changed as 𝑢1 = 𝛽𝑐 and 𝑢2 = 𝛿𝑒. Furthermore,
we choose the flight state vector as 𝑥 = [𝑉, 𝛾, ℎ, 𝛼, 𝑞, 𝛽𝑐, ̇𝛽𝑐]󸀠
such that the nonlinear model in combination with (60) and
(67) becomes a 7D model; that is, this model has a relative
degree of 7 over the operating range of interest.

The application of periodic cruise trajectories for hyper-
sonic flight can achieve better fuel consumption savings than
that of the steady-state cruise trajectories because of the
more effective kinetic-potential energy interchange of the
former [14]. However, designing and tracking such periodic
cruise trajectories aremore difficult and complicated than the
process for the steady-state trajectories. Therefore, planning
and optimizing the feasible periodic trajectories are critical
to improve the cruise performances for waverider.

For the steady-state trajectories, once the model prop-
erties, environmental parameters, and aerodynamic expres-
sions are determined, the corresponding trim values with
regard to the given velocity and altitude can be solved by

𝑇𝑡 cos𝛼𝑡 − 𝐷𝑡 = 0
𝐿 𝑡 + 𝑇𝑡 sin𝛼𝑡 − 𝑚𝑔 = 0

𝑀𝑦𝑡 = 0
(68)

For the periodic cruise trajectories, how to acquire
considerable performance benefit needs to be discussed in
view of fuel consumption savings. Comparedwith the steady-
state trajectories, where the engine is always switched on, the
periodic cruise trajectories allow the waverider to switch off
its engine at some points. For simplicity, we consider that the
engine works as 𝛾 > 0 when the vehicle continues to climb.
In turn, the engine turns off in the descent phase. We further
adopt a parameterized periodic trajectory in [34], which is
given by

ℎ = ℎ𝑡 + exp[−𝜂( 𝑟𝑟𝑓)][ℎ𝑎 sin(2𝜋𝑟𝑟𝑓 )] (69)

𝑑𝑉𝑑𝑟 = 𝑇 cos𝛼 − 𝐷 − 𝑚𝑔 sin 𝛾𝑚𝑉 cos 𝛾 (70)

𝑑ℎ𝑑𝑟 = tan 𝛾 (71)

𝑑𝛾𝑑𝑟 = 𝐿 + 𝑇 sin𝛼 − 𝑚𝑔 cos 𝛾𝑚𝑉2 cos 𝛾 (72)

where ℎ𝑎 is the amplitude of the periodic trajectory, 𝜂
denotes the damping term, and 𝑟𝑓 indicates the period

parameter regarding the flight range. ℎ𝑎, 𝜂, and 𝑟𝑓 are the
adjusted parameters that should be optimized to minimize
the following cost function [14]:

𝐽 = ∫𝑇𝑧
0
𝑚̇𝑓𝑑𝑡∫𝑇𝑧

0
̇𝑟𝑑𝑡 (73)

where 𝑇𝑧 is the total flight time.This cost functionminimizes
the ratio of the fuel consumption over the flight range.
According to the parameterized periodic trajectory in (69),
the dynamic balance values can be computed by

𝑇𝑡 cos𝛼𝑡 − 𝐷𝑡 − 𝑚𝑔 sin 𝛾𝑡 = 0
𝑚𝑉𝑡 ̇𝛾𝑡 = 𝐿 + 𝑇 sin𝛼𝑡 − 𝑚𝑔 cos 𝛾𝑡𝑀𝑦𝑡 = 0
(𝜕ℎ𝜕𝑟)𝑡 = tan 𝛾𝑡

(74)

where

(𝜕ℎ𝜕𝑟)𝑡 = (− 𝜂𝑟𝑓) exp[−𝜂( 𝑟𝑟𝑓)][ℎ𝑎 sin(2𝜋𝑟𝑟𝑓 )]
+ (2𝜋𝑟𝑓 ) exp[−𝜂( 𝑟𝑟𝑓)][ℎ𝑎 cos(2𝜋𝑟𝑟𝑓 )]

(75)

̇𝛾𝑡 = cos2𝛾𝑡 [ℎ𝑎 sin(2𝜋𝑟𝑟𝑓 )]
⋅ exp[−𝜂( 𝑟𝑟𝑓)][

(𝜂2 − 4𝜋2)𝑟2
𝑓

]
− cos2𝛾𝑡 [ℎ𝑎 cos(2𝜋𝑟𝑟𝑓 )] exp[−𝜂( 𝑟𝑟𝑓)]
⋅ (4𝜋𝜂𝑟2

𝑓

)

(76)

Based on (74), (75), and (76), the dynamic trim states can
be obtained in relation to each flight speed and altitude. If
the periodic trajectory is given, then the reference command
associated with the guidance and control action is decided.
The optimal periodic cruise problem in (73) is too complex
to be solved analytically; thus, it is solved numerically in
this study using the genetic algorithm toolbox in MATLAB.
Once the optimal values are obtained, we design the guidance
and control law for the waverider to follow this optimized
reference trajectory.

Furthermore, the nonlinear controller in Section 1 is
employed to the model-based optimized reference trajectory
of the waverider, and the structure diagram of the trajectory
controller using CNF technique is provided for the waverider
in Figure 2.

Figure 2 shows that the presented controller combines
the CNF technique with the inversion control structure for
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Figure 2: Structure diagram of guidance and control design using CNF technique for hypersonic vehicle.
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the waverider. To be specific, the nonlinear model is first
converted into the resulting equivalent model based on the
differential geometry theories.Then, a linear feedback control
law is designed to become a closed-loop system with faster
rise time. Afterwards, the nonlinear feedback control law
is applied to reduce overshoot and improve transient per-
formance in tracking control. Not only that, a combination
of the linear and nonlinear feedback control will guarantee
closed system stability and robustness in the presence of the
unknown model dynamics, while repressing the uncertain
disturbances in the complicated flight environment.

The selection of the design parameters 𝑊 and 𝜌 in (18)
and (19) is important to improve transient performance in
tracking control, and this is because the nonlinear part of
CNF controller will assist speeding up the settling time and
decreasing the overshoot, or, equivalently, contributing to a
large part to the control input as the tracking errors are small.
Basically, the poles of the closed-loop system can be adjusted
by the functions 𝜌𝑖 as a result that these poles approach the

invariant zeros of the auxiliary system which is similarly
defined in [20] as |𝜌𝑖| become larger and large. In fact, the
larger |𝜌𝑖| will lead to a larger damping ratio and yield a
smaller overshoot, so one possible choice of 𝜌𝑖 is provided as
follows:

𝜌𝑖 = −𝜀𝑖 󵄨󵄨󵄨󵄨󵄨𝑒−𝜏𝑖|𝑒𝑖| − 𝑒−𝜏𝑖|𝑦𝑖−𝑟𝑖|󵄨󵄨󵄨󵄨󵄨 , 𝑖 = 1, 2 (77)

where 𝜀𝑖 and 𝜏𝑖 are chosen positive scalars to yield a desired
track performance. Evidently, when the track error 𝑒𝑖 is large,
the effect of the nonlinear part of theCNF controller is limited
due to the small value of 𝜌𝑖, whereas the nonlinear part will
be effective as 𝑒𝑖 is small. Finally, we note that the choice of 𝜌𝑖
is nonunique, and any function will work as if it has similar
characteristics of that given in (77).

Besides the given guidance and control law design of
waverider, the CNF control methods are also considered
a general strategy for flight control. Correspondingly, the
flow diagram with regard to the design steps using the CNF
technique is provided in Figure 3.

According to Figure 3, the general design steps for the
flight control law design are provided as follows.

Steps 1. The database of the aerodynamic forces and thrust is
built based on the CFD and engineering estimationmethods.
Theobtained aerodynamic forces and thrust are input into the
nonlinear airplane model. A full simulation model derived
from first principles is established to verify the presented
control designs.

Steps 2. Based on the acquired databases, the polynomial
expressions regarding aerodynamic forces and thrust are
identified using fitting approaches. A curve-fitted model is
accordingly obtained. The inherent dynamics of this model
with the fitting expressions is compared with the full simu-
lation model to demonstrate the effectiveness of the model
simplification mean.

Steps 3. After determining the simplified model with the
polynomial expressions, we obtain the resulting equiva-
lent model using differential geometry theories. Unlike the
Jacobian linear structure with the given flight point, the
feedback linearization method can maintain the nonlinear
model dynamics, broaden the resulting structure over a large
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flight range, and be combined with some advanced control
methods.

Steps 4. The guidance and control law with linear feedback
and a nonlinear control part is designed using the CNF
technique and inversion control structure. This proposed
guidance and control system can track general target refer-
ence trajectories with input saturation. The respected flight
qualities, including fast setting time, small overshot, and
robustness, are ensure.

In general, the developed guidance and control law using
the CNF technique is generally suitable for the nonlinear
model of any fixed-wing vehicle to track arbitrary flight
trajectories in line with the aforementioned step-by-step
design procedure. This process depends on the control-
oriented model with the curve-fitted mean instead of the
linear model with the Jacobian linearization while driving
the applicability of the CNF technique in combination with
the dynamic inversion control. As a result, this proposed
controller can ameliorate transient performance in tracking
the anticipated reference trajectories and guarantee system
robustness.

4. Illustrative Example

This study adopts the typical waverider geometry of
waverider in [5] to validate the feasibility of the proposed
control law. This configuration makes the vehicle forebody
become a significant section of the inlet compression process,
whereas its afterbody performs a large part of the nozzle,
which generates considerable thrust [35]. The propulsive
system design encompasses the entire undersurface of the
waverider. As a result, the engine and airframe become
one [36]. In a real application, the periodic flight trajectory
can be designed to widen the cruise range and to save
the consumed energy [12]. For this reason, an illustrative
example is provided for this study in a similar manner to the
actual situation for waveriders [37].

Aerodynamic data are obtained for the geometry of
the waverider in Figure 1 using a combination of oblique
shock and Prandtl-Meyer flow theory in (51)-(56). The
thrust is estimated based on the 1D Rayleigh flow scram-
jet propulsion model in (57)-(59). For simplicity, some
shape parameters are suitably changeable in this study in
comparison with those in [5] to ensure the rationality of
the proposed model from the design viewpoint of flight
control. When these model parameters are known, the
polynomial expressions concerning these forces andmoment
can be identified. Additionally, we select the operation
condition as 𝑀𝑎 = 8, and ℎ = 27𝑘𝑚. The result-
ing aerodynamic and propulsive expressions are approxi-
mately acquired according to (65), and they are expressed
below:

𝐶𝐿 (𝛼, 𝛿𝑒) = −0.6107𝛼2 + 2.1755𝛼 + 0.0113
+ 0.2733 × 𝛿𝑒

𝐶𝐷 (𝛼, 𝛿𝑒) = 1.8934𝛼2 + 0.0721𝛼 + 0.0267

𝐶𝑀 (𝛼, 𝛿𝑒) = 2.4214𝛼2 + 1.0467𝛼 + 0.0878 − 0.9434
× 𝛿𝑒

T = 55108Φ − 38159𝛼 − 4680.8
(78)

Furthermore, the trim states in the vicinity of the opera-
tion condition based on (68) are plotted in Figure 4.

Figure 4 shows that the trim values dramatically change
with the different flight Mach numbers and altitudes near
the operation point, which demonstrates that the inherent
dynamics of the waverider is sensitive to the change in
the flight condition. Moreover, the flight dynamics is also
unconventional due to the presence of the zero and pole in
the right plane regarding (62), as displayed in Figure 5.

Figure 5 shows the zeros and poles on the right plane
as the flight Mach number is changed from 7.8 to 8.2 and
the altitude is changed from 26.5 km to 27.5 km. Obviously,
these zeros and poles indicate that the nonlinear model of
the waverider is unstable and a nonminimum phase as a
result of the limitation for the control law design, such as the
control bandwidth and effective control region. Furthermore,
we select 𝜂 = 0.5, ℎ𝑡 = 27000𝑚, and ℎ𝑎 = 300𝑚 in (69). The
consumed fuel with the changes in the adjusted parameter 𝑟𝑓
and flight range 𝑟 is plotted in Figure 6.

According to (73) and (74), we can obtain the optimal
adjusted parameter 𝑟𝑓 = 62931𝑚 by using the genetic
algorithm. Thus, the reference command of the optimal
periodic cruise in (73) is acquired as

ℎ𝑐 = 27000
+ exp [−0.5 ( 𝑟62931)] [300 sin( 2𝜋𝑟62931)]

(79)

The dynamic balance states can be solved by substituting
(79) into (74). The results with the change in the flight range
are provided in Figure 7.

Figure 7 demonstrates that the flight path angle, angle
of attack, and control inputs change periodically to follow
the expected flight trajectory in (79). Also, we consider the
velocity change command with Δ𝑉𝑐 = 50𝑚/𝑠 from 𝑀𝑎 = 8
in the control process. In this case,𝑊1 and𝑊2 are selected as
the unit matrix, and 𝐹 = diag(𝐹1, 𝐹2) is given as

𝐹1 = diag (1.2, 3.5, 10)
𝐹2 = diag (2, 4, 6, 6) (80)

The nonlinear gain functions 𝜌1 and 𝜌2 are selected as

𝜌1 = −20 󵄨󵄨󵄨󵄨󵄨𝑒−0.5|𝑒1|󵄨󵄨󵄨󵄨󵄨
𝜌2 = − 󵄨󵄨󵄨󵄨󵄨𝑒−0.2|𝑒2|󵄨󵄨󵄨󵄨󵄨 (81)

In the simulation, the response results of the structures
with CNF and without CNF are considered for the waverider
model, passing through 200s. The results in relation to
the steady-state flight and periodic cruise are presented in
Figure 8.
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Figure 8 shows the contrast curves of the structures with
CNF andwithout CNF. In consideration of the nonlinear part
of theCNF control law in (21), the velocity and altitude output
can rapidly follow the commands signals in contrast to that
using only inversion control.

Figures 9 and 10 indicate the change curves of the
angle of attack, flight path angle, and control inputs that
gently return to the anticipated balance values due to the
control action. Compared with the nonlinear control law
provided in [38], the proposed controller which depends on
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the nonlinear part of CNF makes the system outputs follow
the periodic altitude command and step velocity command
well while guaranteeing the control performances including
small overshoot and fast settling time. In addition, the angle
of attack is smaller using the CNF controller such that the
propulsive force can keep stable and the drag can decrease
accordingly. As a result, the consumed energy will reduce for
the hypersonic vehicle due to the nonlinear part of CNF, and
the transient performances will be improved for the periodic
cruise trajectory of the hypersonic vehicle.

Figure 11 shows that the fuel consumed when flying with
the periodic cruise trajectory is less than that flying with
the steady-state cruise trajectory, whereas the consumed fuel
using the CNF controller is minimal throughout the entire
flight process. These results indicate that the flight control
law using the CNF technique can not only improve the track
performances but also achieve high fuel consumption savings
for the waverider.

5. Conclusion

This study proposes a design method of the flight control
law using the CNF technique to track the periodic cruise
trajectory of the waverider. Compared with the well-known
methods, the advantage of the proposed controller can guar-
antee the respected control qualities, including fast setting
time, small overshot, and robustness over the hypersonic
flight range. Furthermore, the simulation results show that
the proposed control law improves the flight performance
with input saturation. Fast setting time, small overshot, and
robustness are ensured for the waverider while considering
the tracking issue of the periodic cruise trajectory. However,
we have assumed that all the flight states are available to
feedback. Thus, future works should introduce the state
observers for this presented control law so that these flight
states can be estimated to satisfy the requirements in real
applications.
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