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During the mission at sea, the ship steering control to yaw motions of the intelligent autonomous surface vessel (IASV) is a very
challenging task. In this paper, a quantum neural network (QNN) which takes the advantages of learning capabilities and fast
learning rate is proposed to act as the foundation feedback control hierarchy module of the IASV planning and control strategy.
�e numeric simulations had shown that the QNN steering controller could improve the learning rate performance signi�cantly
comparing with the conventional neural networks. Furthermore, the numeric and practical steering control experiment of the
IASV BAICHUAN has shown a good control performance similar to the conventional PID steering controller and it con�rms the
feasibility of the QNN steering controller of IASV planning and control engineering applications in the future.

1. Introduction

In the past decade, the research on intelligent automatic
surface ship (IASV) technology in academic and marine
industries has continued to grow. �ese developments have
been fuelled by advanced sensing, communication, and
computing technology together with the potentially trans-
formative impact on automotive sea transportation and
perceived social and economic bene�ts [1–5]. �e ship
planning and control strategy for IASV, shown in Figure 1,
which based on a module-based hierarchical structure,
would be a good navigation strategy. It includes the global
routing planning module, behaviour decision-making
module, local motion planning module, and feedback
control module. �ese modules are in charge of the di£erent
tasks especially the feedback control module is the foun-
dationmodule as action part of the IASV navigation process.
�e key function of this module is the IASV steering op-
eration to maintain or change ship course. In this paper,
a quantum neural network (QNN) for ship steering control
is proposed to address the ship steering control problem
based on the IASV planning and control concept.

As a good research foundation of the IASV steering
control problem, many e£ective steering feedback control
methods had been surveyed. �e ship steering control based

on proportional-integral-derivative (PID) strategy is simple
and easy to construct. However, the conventional PID oc-
cupies the necessary basic controller role in process control,
but it is not the trend of controller design due to the lack of
learning and adaption capabilities. In addition, the con-
troller parameters are required adjustments in varying
conditions, which are time consuming and may not achieve
accurate control performance. To solve the issues and obtain
better performance, various advanced control strategies have
been proposed for the steering control of the ship in recent
years, such as adaptive steering control strategy [6–8],
steering control strategy based on fuzzy logic algorithm
[9, 10], steering controller based on Backstepping controller
design method [11–13], and adaptive backstepping method
[14, 15]. �e robust control schemes such as the sliding
mode control method [16, 17] and H∞ robust control al-
gorithm [18] are also utilized in the ship steering control to
achieve better ship course keeping and changingmanoeuver.

Since the 1990s, with the introduction of the arti�cial
neural network into the ship steering controller design,
experts and scholars had gradually increased ship steering
control research on this issue. Witt et al. proposed a PID
steering controller to train a neural network, where the
output signal of the PID controller acts as the teacher
signal and the simulation results showed that the control

Hindawi
Complexity
Volume 2019, Article ID 3821048, 10 pages
https://doi.org/10.1155/2019/3821048

mailto:suzuojing@163.com
https://orcid.org/0000-0001-6561-6349
https://orcid.org/0000-0003-3018-7710
https://orcid.org/0000-0002-1577-571X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/3821048


effects of the PID controller and the neural network
controller have basically the same course control effect
[19]. Hearn et al. proposed an online course control neural
network to improve the conventional PID steering control
effects, but the slow convergence of the ship steering
controller based on the neural network is still a big
problem to be solved [20].

In order to overcome the shortcomings of the conven-
tional neural network, a ship steering controller based on the
QNN is proposed in this paper under the concept of quantum
computing [21–23]. .e concept of QNN was first proposed
by Toth et al. in 1996 [24]..en, Matsui et al. used a quantum
bit and the quantum revolving door to design a QNN for
information processing and expression [25]. Another group
of Japanese scholars, Kouda et al., summarized their previous
research and summed up an emerging model, which is
a quantum neuron model based on general quantum logic
gates [26]. In 2018, Jeswal and Chakraverty introduced the
latest developments of QNN and discussed the application of
QNN [22]. And Xie et al. took the general quantum logic gates
as the basis function to design a quantum neural computing
network, and the simulation results indicated that the QNN is
superior to the classical BP neural network and the radial basis
function (RBF) neural network computing model in the fi-
nancial data analysis [27]. Li and Li also pointed out that
QNN based on general quantum gate evolution can improve
the convergence performance of the conventional BP neural
network [28]. Besides, the QNN has been applied to signature
verification [29], audio watermarking [30], cardiovascular
diseases risk prediction [31], classification recognition of
electronic shock fault [32], and English to Hindi machine
translator [33] and other fields.

Motivated by the above observations, a QNN steering
controller would be applied to the IASV steering to yaw
control. Hence, the remainder of the paper is organized as
follows. In Section 2, the mathematical model of the IASV
steering to yaw motion is given. Section 3 devotes to
a systematic procedure for the QNN steering controller
design. In Section 4, the numeric comparison simulations
for the QNN steering controller and conventional neural
networks steering controller were firstly carried out to
demonstrate the faster learning convergence of the proposed
QNN steering controller. .en, a numeric and practical
experiment on smart IASV BAICHUAN has shown the
feasibility of the QNN steering controller in practical en-
gineering practice. Finally, Section 5 gives the conclusions of
the paper.

2. IASV Mathematical Model

While a mathematical model of the IASV is fully described
by coupled nonlinear differential equations, a simple model
with predictive capability is usually preferred for the design
of a ship-steering autopilot. A three-degree-of-freedom
plane motion including surge, sway, and yaw motion is
considered satisfactory. However, roll motion cannot be
neglected due to couplings and hence a four-degree-of-
freedom plane motion including surge, sway, yaw, and roll
motion is used to describe the motion of a ship. Conse-
quently, a fourth-order transfer function relating to the yaw
rate to rudder deflection is derived based on the linearized
equations of motion. Nevertheless, a fourth-order transfer
function is further reduced to a second-order Nomoto
model and then to a first-order Nomoto model for ease of
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Figure 1: IASV planning and control strategy.

2 Complexity



controller design. .e first-order Nomoto model, from δ to
yaw rate r is presented as

r(s)

δ(s)
�

K

(1 + Ts)
, (1)

where r is the yaw rate, δ is the rudder deflection, T is the
time constant of IASV maneuverability, and K is defined as
the steering control gain constant of IASV maneuverability.
.e parameters K and T that describe the ship steering to
yaw dynamics can be identified from standard maneuvering
tests. Since r is the time derivative of the yaw angle ψ, the
transfer function relating to the yaw angle to steering
movement can be obtained by adding an integrator (1/s) to
the first-order Nomoto model of (1), then we can get

ψ(s)

δ(s)
�

K

s(1 + Ts)
, (2)

and the corresponding differential equation can be expressed
as

T€ψ + _ψ � Kδ. (3)

.e model presented in (3) is modified to include
a nonlinear steering condition as discussed in [6], wherein
the yaw rate _ψ term is replaced by a nonlinear function
H( _ψ). .en, we can get the following equation:

T€ψ + H( _ψ) � Kδ, (4)

where

H( _ψ) � α0 + α1 _ψ + α2 _ψ2
+ α3 _ψ3

. (5)

Because of the symmetrical structure of ships, the pa-
rameters a0 � a2 � 0 [34] and α1 is set as +1 for stable ships
and − 1 for unstable ones, while the value of α3, known as the
Norbin coefficient [14], can be determined via the ship
turning test.

3. QNN Steering Controller Design

In this section, a quantum neural network model was
constructed for the ship steering controller design to en-
hance the convergence performance of the conventional
neural network steering controller.

3.1. $e Quantum Neuron Model. .e structure of the
quantum neuron model based on the quantum logic gate is
defined as Figure 2, including the input part, phase rotation
part, aggregation part, reverse rotation part, and output part.
.e details of the quantum neural networks working pro-
cesses are shown as the following steps:

Step 1: let |xi〉 � (cos ti, sin ti)
T, and define the qubit

phase rotation gate as

R(θ) �
cos θ − sin θ

sin θ cos θ
􏼠 􏼡. (6)

.en, with the aggregation, we can get

􏽘

n

i�1
R θi( 􏼁 xi〉 � cos θ sin θ􏼂 􏼃

T
,

􏼌􏼌􏼌􏼌􏼌 (7)

where θ � arg􏼒􏽐
n
i�1R(θi) | xi􏼋􏼓 � arg tan􏼒􏽐

n
i�1sin(ti +

θi)/􏽐
n
i�1cos(ti + θi)􏼓.

Step 2: the result of equation (7) makes the reverse
rotation operation by the controlled-NOT gate as
follows:

U(c) �

cos f(c)
π
2

− 2θ0􏼒 􏼓 − sin f(c)
π
2

− 2θ0􏼒 􏼓

sin f(c)
π
2

− 2θ0􏼒 􏼓 cos f(c)
π
2

− 2θ0􏼒 􏼓

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(8)

where f is the sigmoid function; then, we can get

U(c) 􏽘
n

i�1
R θi( 􏼁 xi〉 � cos

π
2

f(c) − θ􏼒 􏼓 sin
π
2

f(c) − θ􏼒 􏼓􏼔 􏼕
T

.

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

(9)

.erefore, the relationship between the input and output
of the quantum neuron model can be described as

y � sin
π
2

f(c) − θ􏼒 􏼓 � sin
π
2

f(c) − arg 􏽘
n

i�1
R θi( 􏼁 | xi〉⎛⎝ ⎞⎠⎛⎝ ⎞⎠.

(10)

3.2. QNN Model. Based on the quantum neuron model,
a quantum neural network for the ship steering controller
design is constructed as shown in Figure 3..e proposed neural
network has three layers including an input layer, hidden layer,
and output layer. .e concept of QNN is applied to the layer
that is between the input layer and the hidden layer; there are n

quantumneurons in the input layer,m quantumneurons in the
hidden layer, and p conventional neurons in the output layer.

Assuming the input variable is |xi〉, the output of the
hidden layer is hj, the output of the QNN is yk, R(θij) is the
quantum rotation gate between the input layer and the hidden
layer to update the qubits, and wjk is the network weight for
the hidden layer and the output layer. Taking the qubit-
controlled NOT-gate U(cj) as the transfer function of the
hidden layer, then the output of the QNN can be expressed as

yk � g 􏽘
m

j�1
wjkhj

⎛⎝ ⎞⎠ � g 􏽘
m

j�1
wjk sin

π
2

f cj􏼐 􏼑⎛⎝⎛⎝

− arg 􏽘
m

i�1
R θij􏼐 􏼑 xi〉

􏼌􏼌􏼌􏼌 􏼑⎛⎝ ⎞⎠⎞⎠,

(11)

where i � 1, 2, . . . , n; j � 1, 2, . . . , m; and k � 1, 2, . . . , p.

3.3. $e Learning Algorithm of QNN. To apply the QNN in
practical engineering, the training samples should be
transformed into the quantum states. For example, the
n-dimensional Euclidean space training sample
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X � (x1, x2, . . . , xn)T can be defined as the corresponding
quantum state as

|X〉 � |x1〉, |x2〉, . . . , xn〉
􏼌􏼌􏼌􏼌 􏼑

T
,􏼒 (12)

where

|xi〉 � cos
2π

1 + exp − xi( 􏼁
􏼠 􏼡|0〉 + sin

2π
1 + exp − xi( 􏼁

􏼠 􏼡|1〉

� cos
2π

1 + exp − xi( 􏼁
􏼠 􏼡, sin

2π
1 + exp − xi( 􏼁

􏼠 􏼡􏼠 􏼡

T

.

(13)

In the three layers of the QNN model as described in
Figure 3, there are 3 groups of parameters, namely, phase
rotation parameters θij, reverse parameters cj, and network
weights wjk needed to be updated. Firstly, define the error
evaluation function as

E �
1
2

􏽘

p

k�1
dk − yk( 􏼁

2
, (14)

where dk and yk are the desired outputs and actual outputs
of the normalized quantum neural network, respectively. Let
|xi〉 � (cosφi, sinφi)

T and βj � arctan(􏽐
n
i�1sin(φi + θij)/

􏽐
n
i�1cos(φi + θij)), then equation (11) could be rewritten as

yk � g 􏽘
m

j�1
wjk sin

π
2

f cj􏼐 􏼑 − βj􏼒 􏼓⎛⎝ ⎞⎠. (15)

Let

Sj �
􏽐

n
i�1 sin φi + θij􏼐 􏼑

􏽐
n
i�1 cos φi + θij􏼐 􏼑

,

Sj1 � 􏽐
n

i�1
cos φi + θij􏼐 􏼑,

Tj �
cos φi + θij􏼐 􏼑Sj1 + sin2 φi + θij􏼐 􏼑􏼐 􏼑

S2j1
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

According to the gradient descent method, we can get

Δθij � −
zE

zθij

� − 􏽘

p

k�1
dk − yk( 􏼁g′wjk cos

π
2

f cj􏼐 􏼑 − βj􏼒 􏼓

·
Tj

1 + Sj
2,

Δcj � −
zE

zcj

�
π
2

􏽘

p

k�1
dk − yk( 􏼁g′wjk cos

π
2

f cj􏼐 􏼑 − βj􏼒 􏼓f′,

Δwjk � −
zE

zwjk

� dk − yk( 􏼁g′ sin
π
2

f cj􏼐 􏼑 − βj􏼒 􏼓.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

.erefore, the updated rules for phase rotation pa-
rameters θij, reverse rotation parameters cj, and network
weights wjk are

θij(t + 1) � θij(t) + ηΔθij(t),

cj(t + 1) � cj(t) + ηΔcj(t),

wjk(t + 1) � wjk(t) + ηΔwjk(t),

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

where η is the learning rate of the QNN.
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Figure 2: .e quantum neuron model.
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3.4. Teacher Controller of QNN. In this paper, the conven-
tional PID steering control controller is acted as the teacher
of the QNN controller. .e input variable of the PID
controller is the heading deviation Δψ, and the linear
combination of the proportion, integration, and differen-
tiation of the heading deviation Δψ is used as the output
value of the PID controller. .e command steering angle
δ(k) can be expressed as

δ(k) � kpΔψ(k) + ki 􏽘

k

j�0
Δψ(j) + kd[Δψ(k) − Δψ(k − 1)],

(19)

where kp, ki, and kd are the controller proportion parameter,
integral parameter, and differential parameter, respectively,
and k is the sampling time (k � 0, 1, 2, . . .).

3.5. Design of the QNN Steering Controller. In this section,
a three layer 2-5-1 QNN model was constructed. .e
structure of the QNN steering control system is shown in
Figure 4. .e two inputs of the QNN steering controller are
the heading deviation Δψ(k) and yaw rate r(k), respectively,
and the output is the command steering angle δQNNr (k). .e
difference between the QNN steering controller outputs and
PID course keeping controller outputs is defined as the
system error. .e mean square of the system error (MSE) is
defined as the performance evaluation function of the
proposed QNN to evaluate the performance of the QNN
learning performance and optimized targets. Generally, its
value is set as 0.00001. .e activation function of the QNN
hidden layer and the output layer is defined as hyperbolic
tangent sigmoid function (tan-sigmoid) to accelerate the
QNN training and convergence performance in the training
process. .e gradient descent with a quasi-Newton algo-
rithm [35] is offered to the QNN training, and the mo-
mentum parameter of the quasi-Newton algorithm is set as
0.8. .e initial values of the QNN weights are randomly
generated between the intervals (− 1, 1), and the learning rate
η of QNN is set as 0.1.

4. Simulations and Analysis

In this section, a series of simulations were used to illustrate
the fast convergence characteristics and practical engi-
neering effectiveness of the proposed controller. Especially
an IASV BAICHUAN is utilized as a practical experiment
for validations of the proposed QNN steering controller.
TakeK � 0.6, T � 1.866, a1 � 1, and a3 � − 9.44 × 10− 6 as the
dynamic parameters of the second-order Nomoto ship
model equation (4) for IASV BAICHUAN. Set kp � 2,
ki � 0.00001, and kd � 1.5 as tuning parameters of the
teacher controller equation (19). In the simulations, the
initial course of the IASV was set as 000° and the desired
course keeping angle was set as 090°. .e simulation time
was set as 50 s, and the sampling period was set as 0.05 s.
From the result of the simulations shown in Figure 5, it can
be seen that the PID steering controller, which acted as the
teacher of the QNN controller, could track the desired

course after 13s, and the result shows that the PID controller
is satisfactory to act as a suitable teacher of the QNN steering
controller.

To illustrate the practical effectiveness of the proposed
QNN steering control system, as shown in Figure 4, during
the QNN steering controller training, the values of phase
rotation parameters θij, reverse rotation parameters cj, and
network weights wjk would be updated according to
equation (18) by using the training data set extracted from
PID controller simulation results in Figure 5.

For comparison, a conventional BP neural network
steering controller is also trained using the same training
data set extracted from the PID control results in Figure 5.
To emphasize the advantages of the faster convergence and
fewer learning iterations, the QNN steering controller and
BP neural network steering controller were trained 8 times,
respectively, and then the epochs in each training time are
shown in Figure 6. For the BP neural network, the maximum
number of training epoch is 9565 (in the 6th training time),
the minimum training epoch is 4325 (in the 2nd training
time), and the average number of training epochs for the 8
training times is 7022. Although, for the QNN, the maxi-
mum number of training epoch is 4625 (in the 2nd training
time), the minimum training epoch is 1526 (in the 4th
training time), and the average number of sample training
epoch of the 8 training times is 3302. .erefore, it can be
concluded that the QNN steering controller is improved
significantly in the convergence rate compared with the
conventional BP neural network steering controller.

To validate the effectiveness of the trained QNN steering
controller, an IASV BAICHUAN QNN steering control
simulation was carried out. .e weights wjk of the QNN
controller were extracted from the 2nd training time and
selected as the initial weights of the IASV BAICHUANQNN
steering controller. .e values are detailed in Table 1. .en,
the simulation result are shown in Figure 7.

It can be seen from Figure 7 that the QNN steering
controller could track the desired course at about 13 s. .e
control result is very similar to the PID controller. It can be
concluded that the proposed QNN steering controller has
a very strong learning ability and could be widely applied to
various fields.

To further confirm the proposed QNN steering con-
troller performance, an IASV BAICHUAN course keeping
practical engineering experiment was carried out. .e ex-
periment environment is shown in Figure 8. .e wind di-
rection of the experiment scene was northwest (310°–330°),
and the wind velocity varied from 0–0.20m/s. .e tem-
perature was about 8°C. .e maximum wave height was
about 0–0.05m. .e initial course of the IASV is set at 000°,
and the desired course keeping angle is set as 090°. .e QNN
steering controller’s initial parameters are also set as Table 1.
Also the PID steering control experiment was carried out for
comparison. .e parameter of the PID steering controller
was also set as kp � 2, ki � 0.00001, and kd � 1.5, as men-
tioned above. .e sampling period of the QNN steering
controller and PID steering controller are set as 0.05s, re-
spectively. Finally, the experiment results are shown in
Figure 9.
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.e left side of Figure 9 shows the course keeping control
effect, and the right side shows the output of the IASV
BAICHUAN steering control. It can be seen that the rising
time of the QNN steering controller is slightly slower than
the PID controller, but both controllers can reach the target
course rapidly and both of them can achieve a good course
keeping control effect. As it can be seen on the right side of
Figure 9, the controller output of the two type steering
controller is basically the same and the time to reach the
static stabilities are also similar, but the response of the QNN
steering controller is also slightly slower (about one second)
than the PID steering controller.

To further quantify the controller performance, the
controller efficiency function (CEF) is defined as

CEF �
1
n

􏽘

n

k�1
(Δψ(k))

2
+ 􏽘

n

k�1
(Δδ(k))

2⎛⎝ ⎞⎠. (20)

.en, we can obtain that the CEF of the QNN steering
controller is 0.323 and the CEF of the PID steering controller

is 0.299. Hence, it is concluded that the control efficiency of
the QNN steering controller can get a similar control effect
compared with the PID steering controller for the IASV
course keeping.

Remark 1. From the numeric simulation and practical
engineering experiment, it can be seen that the proposed
QNN steering controller has a slightly delayed response
compared with the PID steering controller, although the
delayed response phenomenon is not obvious in the numeric
simulations. .e reason of the delayed response phenom-
enon might be caused by the larger computation burden of
the QNN steering controller. .is is a potential disadvantage
of the QNN. However, due to the features of strong learning
ability and fast convergence performance, the proposed
QNN steering controller could be used in learning of other
advanced controllers, not only restricted in the PID
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controller. .erefore, the proposed QNN steering controller
might be a universal controller design structure and scheme
for the future IASV steering feedback control module.

5. Conclusions

In this paper, a QNN steering controller design method
based on the planning and control concept is proposed.
.rough the numeric simulations of the steering con-
troller based on the conventional BP neural network and
QNN, it can be inferred that the QNN steering controller
has a faster convergence rate than the conventional BP
neural network steering controller. Also, the numeric
simulation results show that the QNN steering controller

has a similar course keeping control performance com-
paring with the training teacher PID steering controller.
Furthermore, the practical QNN steering control exper-
iment on an IASV BAICHUAN has shown that the
proposed QNN steering controller is feasible to be
equipped to a practical IASV for steering to yaw control in
the future IASV planning and control engineering. Es-
pecially the strong learning characteristics and efficient
convergence performance of the QNN steering controller
might be the developing trend of the advanced IASV
steering controller. However, the QNN steering controller
proposed in this paper might be the first step to apply the
advanced AI controller to the IASV. Furthermore, the
proposed QNN controller structure could apply to other
marine control engineering practices.
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Figure 8: .e scene of the experiment.
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