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A nutrient-phytoplankton model with multiple delays is studied analytically and numerically.The aim of this paper is to study how
the delay factors influence dynamics of interaction between nutrient and phytoplankton. The analytical analysis indicates that the
positive equilibrium is always globally asymptotically stable when the delay does not exist. On the contrary, the positive equilibrium
loses its stability viaHopf instability induced by delay and then the corresponding periodic solutions emerge. Especially, the stability
switches for positive equilibrium occur as the delay is increased. Furthermore, the numerical simulations show that periodic-2 and
periodic-3 solutions can appear due to the existence of delays. Numerical results are consistent with the analytical results. Our
results demonstrate that the delay has a great impact on the nutrient-phytoplankton dynamics.

1. Introduction

Some phytoplankton, for example, Cyanobacteria, can form
dense and sometimes toxic blooms in freshwater and marine
environments, which threaten ecological balance, drinking
water, fisheries, and even human health [1]. However, the
mechanism, by which phytoplankton blooms occur, is cur-
rently not very clear, which contribute to the difficulty
to prevent or mitigate the proliferation of phytoplankton
blooms. These have stimulated lots of researches aiming to
understand the growth mechanisms of phytoplankton.

In recent years, dynamics in phytoplankton growth have
drawn increasing attention from experimental ecologists, as
well as mathematical ecologists. Some results from experi-
ments and field observations imply that many factors affect-
ing the dynamics of phytoplankton growth are bound to
exist, such as nutrient [2], light [3], temperature [4], iron
supply [5], zooplankton [6]. Especially, due to the effects
of limiting factors including temperature, light, and day

length, it has been indicated by Rhee and Gotham [7]
that the population dynamics of phytoplankton in aquatic
environments can change with season, latitude, and depth.
Among factors affecting phytoplankton growth, nutrient has
been an essential element [8–10], mainly including nitrogen
and phosphate. Results reported by Ryther [11] indicated
that phytoplankton indeed consumes lots of nitrogen and
phosphate in their growth process, but reducing the nitrogen
content in aquatic cannot slow the eutrophication. Using data
from 17 lakes, Smith [8] analysed the influence of ratio of
total nitrogen to phosphorus on the growth of blue-green
algae (Cyanophya) and showed that controlling the ratio can
help us improve the quality of aquatic environment very well.
Obviously, the production process of phytoplankton is more
complex.

However, due to the complexity and nonlinearity of
aquatic ecosystem, there are some difficulties in understand-
ing nutrient-phytoplankton dynamics only depending on
experiment or field observation, which makes it necessary
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to use models to provide quantitative insights into dynamic
mechanism of phytoplankton growth. For different aquatic
environments, we can use various modifications of the
classical prey-predator models by introducing functional
responses to model nutrient-phytoplankton dynamics [12–
14]. For example, Huppert et al. [15] describe the dynamics
of nutrient-driven phytoplankton blooms by a simple model
and identify, using the model analysis, an important thresh-
old effect that a bloom will only be triggered when nutrients
exceed a certain defined level. Additionally, most nutrient-
phytoplankton models reveal that phytoplankton population
and nutrient population can coexist at equilibrium globally
under some conditions [16, 17]. However, Sherratt and Smith
[18] have reported that a constant population density may
not exist in reality because of the existence of some factors,
such as noise and physical factors. Actually, experiments and
field observations show that the changes of phytoplankton
population density usually possess oscillatory behaviour [19,
20].

For the single cell phytoplankton species, in most studies
of nutrient-phytoplankton models, it is usually assumed that
the processes, such as conversion process of nutrient, in the
dynamics of phytoplankton growth are instantaneous [14–
17, 19–23]. It may be doubtful whether there exists the delay
in the growth of phytoplankton over the large area or not.
Yet, J. Caperon [24] studied time lag in population growth
response of Isochrysis galbana, a phytoplankton species, to a
variable nitrate environment by both experiments andmodel,
and demonstrated the existence of delay in the growth of
Isochrysis galbana. Hence, the delay may indeed exist in
the phytoplankton growth, which means that it is necessary
to consider delay in nutrient-phytoplankton models. An
approach that has been attempted by researchers to model
the dynamics of phytoplankton is the role of delay since
delay appears as an important component in biosystems and
ecosystems [25–30].

Actually, growing evidence shows that there exists time
lag in some conversion processes from one state to another
in some systems, and delay is an important factor because
it can affect the dynamics of these systems. Volterra [31]
considered time delay in a prey-predator model first and
found oscillatory behaviour for the spatial distribution. For
a long time, it has been recognized that delays can give rise
to destabilizing effect of the dynamics of systems, where
periodic solutions, as well as chaos, may emerge [32–35].
Models incorporating delays in diverse biological and eco-
logical models are extensively studied [36–42]. Especially, the
characteristic equation with respect to the linearized system
of delay differential equations plays a key role in dynamic
analysis, by which we can obtain some information on the
stability of equilibrium. In addition, using the normal form
theory, one can carry out the bifurcation analysis, such as the
direction and stability of periodic solutions arising through
Hopf bifurcation [43, 44].

The main purpose of this paper is to consider the effects
of multiple delays on the nutrient-phytoplankton dynamics.
In [15], Huppert et al. presented a simple model to investigate
effect of nutrient on phytoplankton blooms, and much better
results are obtained. Here, this model is extended into a “two

preys-one predator” type to describe nitrogen- phosphorus-
phytoplankton dynamics, as follows:𝑑𝑁𝑑𝑡 = 𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴𝑑𝑃𝑑𝑡 = 𝐼2 − 𝑞2𝑃 − 𝛼2𝑃𝐴𝑑𝐴𝑑𝑡 = 𝛽1𝛼1𝑁(𝑡 − 𝜏1) 𝐴 + 𝛽2𝛼2𝑃 (𝑡 − 𝜏2) 𝐴 − 𝑚𝐴

(1)

where 𝑁, 𝑃, and 𝐴 represent nitrogen, phosphorus, and
phytoplankton population density at time 𝑡, respectively; 𝐼1
is the nitrogen nutrients input flowing into the system and𝐼2 is the phosphorus nutrients input flowing into the system;𝑞1 is the loss rate of the nitrogen nutrients, and 𝑞2 is the
loss rate of the phosphorus nutrients; 𝛼1 is nitrogen nutrient
uptake rate of phytoplankton, and 𝛼2 is phosphorus nutrient
uptake rate of phytoplankton; 𝛽1 and 𝛽2 denote the efficiency
of nutrient utilization; 𝜏1 and 𝜏2 are time delay parameters;𝑚
is themortality rate of phytoplankton. Although the function,
which describes nutrient uptake dynamics, is not aMichaelis-
Menten function, but Lotka-Volterra type, Huppert et al.
[15] have indicated that the Lotka-Volterra term is a good
first approximation to the Michaelis-Menten type. From
biological viewpoint, all parameters are nonnegative. 𝑁(𝑡),𝑃(𝑡), and 𝐴(𝑡) ≥ 0 are continuous on −𝜏 ≤ 𝑡 < 0, where𝜏 = max(𝜏1, 𝜏2) and𝑁(0), 𝑃(0), and 𝐴(0) > 0.

The paper is organized as follows. In Section 2, we analyze
the existence and stability of positive equilibrium inmodel (1)
without delays. In Section 3, we discuss stability of positive
equilibrium and Hopf bifurcation under five different cases
for delay effect. Subsequently, the direction of bifurcation and
the stability of periodic solutions arising through Hopf bifur-
cation are given in Section 4. In order to analyze further how
delay effects influence nutrient-phytoplankton dynamics, a
series of numerical simulations are carried out in Section 5.
Finally, the paper ends with conclusion in Section 6.

2. Existence and Stability of Positive
Equilibrium in Model (1) without Delays

In this section, it is presented first that the first octant
is positive invariant in model (1) without delays and the
following lemma holds.

Lemma 1. All the solutions of model (1) with initial conditions
that initiate in {𝑅3+} are positive invariant in the absence of
delays.

Proof. From the first equation of model (1), we have𝑑𝑁𝑑𝑡 = 𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴 ≥ − (𝑞1 + 𝛼1𝐴)𝑁. (2)

Hence,𝑁(𝑡) ≥ 𝑁(0) exp[− ∫𝑡
0
(𝑞1+𝛼1𝐴)𝑑𝑠] > 0 under𝑁(0) >0.

Likewise, from the second equation of model (1), we have𝑃(𝑡) ≥ 𝑃(0) exp[− ∫𝑡
0
(𝑞2 + 𝛼2𝐴)𝑑𝑠] > 0 under 𝑃(0) > 0.
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In the absence of delays in model (1), from the third
equation of model (1), if 𝐴(0) > 0, it can be obtained that𝐴 (𝑡) = 𝐴 (0) exp [∫𝑡

0
(𝛽1𝛼1𝑁 + 𝛽2𝛼2𝑃 − 𝑚)𝑑𝑠] > 0 (3)

Obviously, all the solutions of model (1) without delays
are positive invariant if the initial conditions initiate in {𝑅3+}.

Then, we complete the proof.

For model (1), it is obvious that the extinction equilib-
rium, (𝐼1/𝑞1, 𝐼2/𝑞2, 0), exists. Moreover, in order to discuss
the existence of positive equilibrium, the following function
is defined:𝑓 (𝑥) = 𝛼1𝛼2𝑚𝑥2+ [(𝑚𝑞1 − 𝛼1𝛽1𝐼1) 𝛼2 + (𝑚𝑞2 − 𝛼2𝛽2𝐼2) 𝛼1] 𝑥+ (𝑚𝑞1𝑞2 − 𝛽1𝛼1𝐼1𝑞2 − 𝛽2𝛼2𝐼2𝑞1) , (4)

and then we can obtain𝑁∗ = 𝐼1𝑞1 + 𝛼1𝐴∗ ,𝑃∗ = 𝐼2𝑞2 + 𝛼2𝐴∗ , (5)

where 𝐴∗ is the positive root of (4).
For the function 𝑓(𝑥), we have 𝑓(0) = 0 when the

condition, 𝑚 = (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2), holds, and then
there is no positive equilibrium in model (1). Obviously,𝑓(0) < 0 holds if 𝑚 < (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2), and then
there exists a unique positive root with respect to 𝑓(𝑥) = 0,
which means that there exists a unique positive equilibrium
in model (1) under this condition. However, when 𝑚 >(𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2), it can be verified directly that𝑓(0) > 0 and (𝑚𝑞1 − 𝛼1𝛽1𝐼1)𝛼2 + (𝑚𝑞2 − 𝛼2𝛽2𝐼2)𝛼1 > 0,
which implies that there is no positive equilibrium in model
(1). Thus, summarizing these results, the following theorem
can be obtained.

�eorem 2. If 0 < 𝑚 < (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2) holds,
then there exists a unique positive equilibrium in model (1);
otherwise, there is no positive equilibrium in model (1) if 𝑚 ≥(𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2) holds.

Letting the unique positive equilibrium be 𝐸∗ =(𝑁∗, 𝑃∗, 𝐴∗), then the following theorem holds for model (1)
without delays.

�eorem 3. If the unique positive equilibrium exists in model
(1) without delays, then it is globally asymptotically stable.

Proof. We construct a Lyapunov function, as follows:

𝑉 = 𝛽1 ∫𝑁
𝑁∗

𝑠 − 𝑁∗𝑠 𝑑𝑠 + 𝛽2 ∫𝑃
𝑃∗

𝑠 − 𝑃∗𝑠 𝑑𝑠
+ ∫𝐴
𝐴∗

𝑠 − 𝐴∗𝑠 𝑑𝑠 (6)

In the model (1) without delays,𝑑𝑉𝑑𝑡 = 𝛽1𝑁 −𝑁∗𝑁 𝑑𝑁𝑑𝑡 + 𝛽2𝑃 − 𝑃∗𝑃 𝑑𝑃𝑑𝑡 + 𝐴 − 𝐴∗𝐴 𝑑𝐴𝑑𝑡= 𝛽1𝑁 −𝑁∗𝑁 (𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴) + 𝛽2𝑃 − 𝑃∗𝑃 (𝐼2− 𝑞2𝑃 − 𝛼2𝑃𝐴) + 𝐴 − 𝐴∗𝐴 (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴− 𝑚𝐴) = 𝛽1𝑁 −𝑁∗𝑁 ((𝑞1𝑁∗ + 𝛼1𝑁∗𝐴∗)− (𝑞1𝑁 + 𝛼1𝑁𝐴)) + 𝛽2𝑃 − 𝑃∗𝑃 ((𝑞2𝑃∗ + 𝛼2𝑃∗𝐴∗)− (𝑞2𝑃 + 𝛼2𝑃𝐴)) + 𝐴 − 𝐴∗𝐴 (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴− (𝛽1𝛼1𝑁∗ + 𝛽2𝛼2𝑃∗) 𝐴) = −𝛽1 (𝑞1 + 𝛼1𝐴∗)⋅ (𝑁 − 𝑁∗)2𝑁 − 𝛽2 (𝑞2 + 𝛼2𝐴∗) (𝑃 − 𝑃∗)2𝑃

(7)

Obviously, 𝑑𝑉/𝑑𝑡 ≤ 0 holds under existence of positive
equilibrium and 𝑑𝑉/𝑑𝑡 = 0 holds if and only if 𝑁 = 𝑁∗
and 𝑃 = 𝑃∗. The largest invariant subset of the set of the
point where 𝑑𝑉/𝑑𝑡 = 0 is 𝐸∗ = (𝑁∗, 𝑃∗, 𝐴∗). Therefore,
according to LaSalle’s theorem, 𝐸∗ = (𝑁∗, 𝑃∗, 𝐴∗) is globally
asymptotically stable.

Then, we complete the proof.

Letting the extinction equilibrium be 𝐸0 = (𝑁0, 𝑃0,0) =(𝐼1/𝑞1, 𝐼2/𝑞2, 0), then we can obtain the following theorem in
model (1) in the absence of delay.

�eorem 4. In the absence of delays, let 𝑚∗ = (𝛽1𝛼1𝐼1/𝑞1) +(𝛽2𝛼2𝐼2/𝑞2), so that
(i) if𝑚 > 𝑚∗, then the extinction equilibrium 𝐸0 is locally

asymptotically stable;
(ii) if 𝑚 < 𝑚∗, then the extinction equilibrium 𝐸0 is

unstable;
(iii) if 𝑚 = 𝑚∗, then the model (1) undergoes transcritical

bifurcation at the extinction equilibrium 𝐸0.
Proof. For simplicity, let

𝑓𝑤 (𝑋,𝑚) = ( 𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴𝐼2 − 𝑞2𝑃 − 𝛼2𝑃𝐴𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴 − 𝑚𝐴)
and 𝑋 = [𝑁, 𝑃,𝐴]𝑇 . (8)

The Jacobian matrix at 𝐸0 is
𝐽 (𝐸0) =(

(
−𝑞1 0 −𝛼1𝐼1𝑞10 −𝑞2 −𝛼2𝐼2𝑞20 0 − (𝑚 − 𝑚∗)

)
)
. (9)

The eigenvalues are −𝑞1, −𝑞2, −(m − 𝑚∗).
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Obviously, if𝑚 > 𝑚∗, then the extinction equilibrium 𝐸0
is locally asymptotically stable.

If𝑚 < 𝑚∗, then the extinction equilibrium 𝐸0 is unstable.
When𝑚 = 𝑚∗, the Jacobian matrix at 𝐸0 is

𝐽 (𝐸0) =(
(
−𝑞1 0 −𝛼1𝐼1𝑞10 −𝑞2 −𝛼2𝐼2𝑞20 0 0

)
)
. (10)

Then 𝐽(𝐸0) has a geometrically simple zero eigenvalue with
right eigenvector Φ = (𝛼1𝐼1𝑞22, 𝛼2𝐼2𝑞21, −𝑞21𝑞22)𝑇 and left
eigenvector Ψ = (0, 0, 1).

Now

𝐷𝑚𝑓𝑤 = ( 00−𝐴) (11)

and (Ψ (𝐷𝑋𝐷𝑚𝑓𝑤)Φ)𝐸0 = 𝑞21𝑞22 ̸= 0,Ψ ((𝐷𝑋𝑋𝑓𝑤) (Φ,Φ))= (Ψ 3∑
𝑖=1

(𝑒𝑖Φ𝑇𝐷𝑋 (𝐷𝑋𝑓𝑖)𝑇Φ))
𝐸0= −2𝑞21𝑞22 (𝛽1𝐼1𝛼21𝑞22 + 𝛽2𝐼2𝛼22𝑞21) ̸= 0

(12)

According to [45], the model (1) undergoes transcritical
bifurcation at the extinction equilibrium 𝐸0 in the absence of
delays.

Then, we complete the proof.

Actually, when 𝑚 > 𝑚∗ holds, the positive equilibrium
does not exist, and the extinction equilibrium 𝐸0 is globally
asymptotically stable. Then, the following theorem holds.

�eorem 5. If𝑚 > (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2) holds, then the
extinction equilibrium 𝐸0 = (𝑁0, 𝑃0,0) = (𝐼1/𝑞1, 𝐼2/𝑞2, 0) is
globally asymptotically stable.

Proof. We construct a Lyapunov function, as follows:

𝑉 = 𝛽1 ∫𝑁
𝑁0

𝑠 − 𝑁0𝑠 𝑑𝑠 + 𝛽2 ∫𝑃
𝑃0

𝑠 − 𝑃0𝑠 𝑑𝑠 + 𝐴 (13)

In the model (1) without delays,𝑑𝑉𝑑𝑡 = 𝛽1𝑁 −𝑁0𝑁 𝑑𝑁𝑑𝑡 + 𝛽2𝑃 − 𝑃0𝑃 𝑑𝑃𝑑𝑡 + 𝑑𝐴𝑑𝑡= 𝛽1𝑁 −𝑁0𝑁 (𝐼1 − 𝑞1𝑁 − 𝛼1𝑁𝐴)

+ 𝛽2𝑃 − 𝑃0𝑃 (𝐼2 − 𝑞2𝑃 − 𝛼2𝑃𝐴)+ (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴 − 𝑚𝐴)= 𝛽1𝑁 −𝑁0𝑁 (𝑞1𝑁0 − 𝑞1𝑁 − 𝛼1𝑁𝐴)+ 𝛽2𝑃 − 𝑃0𝑃 (𝑞2𝑃0 − 𝑞2𝑃 − 𝛼2𝑃𝐴)+ (𝛽1𝛼1𝑁𝐴 + 𝛽2𝛼2𝑃𝐴 − 𝑚𝐴)= −𝛽1𝑞1 (𝑁 − 𝑁0)2𝑁 − 𝛽2𝑞2 (𝑃 − 𝑃0)2𝑃+ (𝛽1𝛼1𝑁0 + 𝛽2𝛼2𝑃0 − 𝑚)𝐴= −𝛽1𝑞1 (𝑁 − 𝑁0)2𝑁 − 𝛽2𝑞2 (𝑃 − 𝑃0)2𝑃+ (𝛽1𝛼1𝐼1𝑞1 + 𝛽2𝛼2𝐼2𝑞2 − 𝑚)𝐴
(14)

Obviously, 𝑑𝑉/𝑑𝑡 < 0 holds if 𝑚 > (𝛽1𝛼1𝐼1/𝑞1) +(𝛽2𝛼2𝐼2/𝑞2). Therefore, the extinction equilibrium 𝐸0 =(𝑁0, 𝑃0,0) = (𝐼1/𝑞1, 𝐼2/𝑞2, 0) is globally asymptotically stable
when𝑚 > (𝛽1𝛼1𝐼1/𝑞1) + (𝛽2𝛼2𝐼2/𝑞2).

Then, we complete the proof.

3. Local Stability Analysis and
the Hopf Bifurcation

In this section, we first state the following positive invariant
theorem.

Lemma 6. All the solutions of model (1) with initial conditions
that initiate in {𝑅3+} are positive invariant.
Proof. We consider (𝑁, 𝑃, 𝐴) a noncontinuable solution of
model (1); see [46], defined on [−𝜏,B), where 𝐵 ∈ (0, +∞].
Then we can use the method from [47] to prove that, for all𝑡 ∈ [0, 𝐵), 𝑁(𝑡) > 0, 𝑃(𝑡) > 0, and 𝐴(𝑡) > 0. Suppose that
is not true. Then, there exists 0 < T < B such that, for all𝑡 ∈ [0, 𝑇), 𝑁(𝑡) > 0, 𝑃(𝑡) > 0, and 𝐴(𝑡) > 0 and either𝑁(𝑇) = 0, 𝑃(𝑇) = 0, or 𝐴(𝑇) = 0. According to Lemma 1,
for all 𝑡 ∈ [0, 𝑇), we have

𝑁(𝑡) > 𝑁 (0) exp [−∫𝑡
0
(𝑞1 + 𝛼1𝐴) 𝑑𝑠] ,

𝑃 (𝑡) > 𝑃 (0) exp [−∫𝑡
0
(𝑞2 + 𝛼2𝐴) 𝑑𝑠] , (15)

and𝐴 (𝑡) = 𝐴 (0)⋅ exp [∫𝑡
0
(𝛽1𝛼1𝑁(𝑠 − 𝜏1) + 𝛽2𝛼2𝑃 (𝑠 − 𝜏2) − 𝑚)𝑑𝑠] . (16)
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As (𝑁, 𝑃, 𝐴) is defined and continuous on [−𝜏, 𝑇], there
is a𝑀 ≥ 0 such that, for all 𝑡 ∈ [−𝜏, 𝑇),𝑁(𝑡) > 𝑁 (0) exp [−∫𝑡

0
(𝑞1 + 𝛼1𝐴) 𝑑𝑠]≥ 𝑁 (0) exp (−𝑇𝑀) ,𝑃 (𝑡) > 𝑃 (0) exp [−∫𝑡
0
(𝑞2 + 𝛼2𝐴) 𝑑𝑠]≥ 𝑃 (0) exp (−𝑇𝑀)

(17)

and𝐴 (𝑡) = 𝐴 (0)⋅ exp [∫𝑡
0
(𝛽1𝛼1𝑁(𝑠 − 𝜏1) + 𝛽2𝛼2𝑃 (𝑠 − 𝜏2) − 𝑚)𝑑𝑠]≥ 𝐴 (0) exp (−𝑇𝑀) . (18)

Taking the limit, as 𝑡 󳨀→ 𝑇, we can get𝑁(𝑇) ≥ 𝑁 (0) exp (−𝑇𝑀) > 0,𝑃 (𝑇) ≥ 𝑃 (0) exp (−𝑇𝑀) > 0 (19)

and 𝐴 (𝑇) ≥ 𝐴 (0) exp (−𝑇𝑀) > 0, (20)

which contradicts the fact that either 𝑁(𝑇) = 0, 𝑃(𝑇) = 0, or𝐴(𝑇) = 0. Thus, for all 𝑡 ∈ [0, 𝐵), 𝑁(𝑡) > 0, 𝑃(𝑡) > 0, and𝐴(𝑡) > 0.
Therefore, all the solutions of model (1) are positive

invariant if the initial conditions initiate in {𝑅3+}.
Then, we complete the proof.

Next, we will discuss the stability of the unique positive
equilibriumand existence ofHopf bifurcation inmodel (1) for
five different cases: 𝜏1 > 0, 𝜏2 = 0; 𝜏1 = 0, 𝜏2 > 0; 𝜏1 = 𝜏2 = 𝜏;𝜏1 ∈ (0, 𝜏10), 𝜏2 > 0; 𝜏1 > 0, 𝜏2 ∈ (0, 𝜏20).

According toTheorem 2, let 𝑢1 = 𝑁(𝑡) − 𝑁∗, 𝑢2 = 𝑃(𝑡) −𝑃∗, 𝑢3 = 𝐴(𝑡) − 𝐴∗; the linearized form of model (1) can be
obtained as follows:�̇�1 = 𝑎11𝑢1 (𝑡) + 𝑎13𝑢3 (𝑡)�̇�2 = 𝑎22𝑢2 (𝑡) + 𝑎23𝑢3 (𝑡)�̇�3 = 𝑎31𝑢1 (𝑡 − 𝜏1) + 𝑎32𝑢2 (𝑡 − 𝜏2) (21)

where 𝑎11 = −𝑞1 − 𝛼1𝐴∗;𝑎13 = −𝛼1𝑁∗;𝑎22 = −𝑞2 − 𝛼2𝐴∗;𝑎23 = −𝛼2𝑃∗;𝑎31 = 𝛽1𝛼1𝐴∗;𝑎32 = 𝛽2𝛼2𝐴∗.
(22)

Then, we obtain the associated characteristic equation of
model (21) as follows:𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + 𝐷𝜆𝑒−𝜆𝜏1 + 𝐸𝑒−𝜆𝜏1 + 𝐹𝜆𝑒−𝜆𝜏2+ 𝐺𝑒−𝜆𝜏2 = 0, (23)

where 𝐵 = − (𝑎11 + 𝑎22) ;𝐶 = 𝑎11𝑎22;𝐷 = −𝑎13𝑎31;𝐸 = 𝑎13𝑎31𝑎22;𝐹 = −𝑎23𝑎32;𝐺 = 𝑎11𝑎23𝑎32.
(24)

Case 1. 𝜏1 > 0, 𝜏2 = 0.
Due to 𝜏1 > 0, 𝜏2 = 0, (23) becomes𝜆3 + 𝐵𝜆2 + (𝐶 + 𝐹) 𝜆 + (𝐷𝜆 + 𝐸) 𝑒−𝜆𝜏1 + 𝐺 = 0. (25)

Assuming 𝜆 = 𝑖𝜔1(𝜔1 > 0) is the pure imaginary root of
(25), then the following can be obtained:−𝜔31 + (𝐶 + 𝐹) 𝜔1 = 𝐸 sin (𝜔1𝜏1) − 𝐷𝜔1 cos (𝜔1𝜏1) ,−𝐵𝜔21 + 𝐺 = −𝐸 cos (𝜔1𝜏1) − 𝐷𝜔1 sin (𝜔1𝜏1) , (26)

Then𝜔61 + (𝐵2 − 2 (𝐶 + 𝐹)) 𝜔41+ ((𝐶 + 𝐹)2 − 2𝐵𝐺 − 𝐷2) 𝜔21 + 𝐺2 − 𝐸2 = 0. (27)

Now, we define a function as follows:𝑓1 (V1) = V31 + (𝐵2 − 2 (𝐶 + 𝐹)) V21+ ((𝐶 + 𝐹)2 − 2𝐵𝐺 − 𝐷2) V1 + 𝐺2 − 𝐸2. (28)

(i) If (𝐻21):𝐺2 − 𝐸2 < 0 holds, then, (28) has at least one
positive root. Without loss of generality, we denote
V11, V12, and V13 as the roots of (28); hence𝜔1𝑘 = √V1𝑘,𝑘 = 1, 2, 3, if V1𝑘 > 0.

(ii) If (𝐻22):𝐺2−𝐸2 > 0 holds, let𝑀1 = 𝐵2 −2(𝐶+𝐹) and𝑀2 = (𝐶+𝐹)2−2𝐵𝐺−𝐷2. WhenΔ = 𝑀12−3𝑀2 ≤ 0,
then (28) has no positive roots. However, whenΔ > 0,𝑓󸀠1(V1) = 0 has two real roots, denoted as

𝑥∗1 = −𝑀1 + √Δ3 ,
𝑥∗2 = −𝑀1 − √Δ3 . (29)
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Obviously, lim𝑥󳨀→+∞𝑓1(𝑥) = +∞. If (𝐻22) and Δ = 𝑀12 −3𝑀2 > 0 holds, then (28) has two positive real roots if and
only if 𝑥∗1 > 0 and 𝑓1(𝑥∗1 ) < 0. In addition, we denote two
positive roots of (28) as 𝜒1 and 𝜒2; then, (27) has two positive
roots, namely, 𝜔1𝑎 = √𝜒1 and 𝜔1𝑏 = √𝜒2. Furthermore, we
can have the following results.

Proposition 7.

(i) If (𝐻21) holds, then (28) has at least one positive root.

(ii) If (𝐻22) and Δ = 𝑀12 − 3𝑀2 ≤ 0 holds, then, (28) has
no positive root.

(iii) If (𝐻22) and Δ = 𝑀12 − 3𝑀2 > 0 holds, then, (28) has
two positive roots if and only if 𝑥∗1 > 0, and𝑓1(𝑥∗1 ) < 0.

Then, according to (26), the critical delay can be obtained as
follows:

𝜏𝑗1𝑝 = 1𝜔1𝑝 (arccos 𝐷𝜔41𝑝 + (𝐵𝐸 − (𝐶𝐷 + 𝐷𝐹)) 𝜔21𝑝 − 𝐸𝐺𝐷2𝜔21𝑝 + 𝐸2
+ 2𝑗𝜋) , 𝑗 = 0, 1, 2, . . . , 𝑝 = 1, 2, 3, 𝑎, 𝑏 (30)

Letting 𝜏10 = min𝑝=1,2,3,𝑎,𝑏𝜏01𝑝, from [37] we know that
Re(𝑑𝜆/𝑑𝜏1) ̸= 0 also needs to be proved. Differentiating left
side of (26) with respect to 𝜏1, we have
( 𝑑𝜆𝑑𝜏1)−1 = 3𝜆2 + 2𝐵𝜆 + (𝐶 + 𝐹) + 𝐷𝑒−𝜆𝜏1𝜆 (𝐷𝜆 + 𝐸) 𝑒−𝜆𝜏1 − 𝜏1𝜆 , (31)

so that the following can be obtained:

Re( 𝑑𝜆𝑑𝜏1)−1𝜆=𝑖𝜔10 = 𝜔210Δ 𝑓1󸀠 (𝜔210) , (32)

whereΔ = (−𝐷𝜔210 cos (𝜔10𝜏1) + 𝐸𝜔10 sin (𝜔10𝜏1))2+ (𝐸𝜔10cos (𝜔10𝜏1) + 𝐷𝜔210sin (𝜔10𝜏1))2 . (33)

If (i) in Proposition 7 and (𝐻23): 𝑓1󸀠(𝜔210) ̸= 0 hold,
then we have Re(𝑑𝜆/𝑑𝜏1)−1𝜆=𝑖𝜔10 ̸= 0. However, if (iii) in
Proposition 7 holds, assuming 𝜏𝑗1𝑎 < 𝜏𝑗1𝑏, then we obtain𝑓1󸀠(𝜒1) > 0 and 𝑓1󸀠(𝜒2) < 0. Hence, we have (𝑑Re𝜆(𝜏)/𝑑𝜏)|
𝜏=𝜏
𝑗
1𝑎
> 0, (𝑑Re 𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
𝑗

1𝑏

< 0, and 𝑗 = 0, 1, 2, . . ..
Therefore, we have the following results.

�eorem 8. For model (1) with 𝜏1 > 0, 𝜏2 = 0,
(i) If (𝐻21) and (𝐻23) both hold, then the positive equilib-

rium 𝐸∗ is locally asymptotically stable for 𝜏1 ∈ (0, 𝜏10)
and Hopf bifurcation occurs at 𝜏1 = 𝜏10.

(ii) If (ii) in Proposition 7 holds, then the positive equilib-
rium 𝐸∗ is locally asymptotically stable for all 𝜏1 ≥ 0.

(iii) If (iii) in Proposition 7 holds, there exists a nonnegative
integer 𝑛, such that the positive equilibrium 𝐸∗ is
locally asymptotically stable whenever 𝜏1 ∈ [0, 𝜏01𝑎) ∪(𝜏01𝑏, 𝜏11𝑎) ∪ ⋅ ⋅ ⋅ ∪ (𝜏𝑛−11𝑏 , 𝜏𝑛1𝑎) and is unstable whenever𝜏1 ∈ [𝜏01𝑎, 𝜏01𝑏)∪(𝜏11𝑎, 𝜏11𝑏)∪⋅ ⋅ ⋅∪(𝜏𝑛−11𝑎 , 𝜏𝑛−11𝑏 )∪(𝜏𝑛1𝑎, +∞).
Then, model (1) undergoes Hopf bifurcation around 𝐸∗
at every 𝜏1 = 𝜏𝑗1𝑎 𝑎𝑛𝑑 𝜏𝑗1𝑏, 𝑗 = 0, 1, 2, . . ..

Case 2. 𝜏1 = 0, 𝜏2 > 0.
Since 𝜏1 = 0, 𝜏2 > 0, (23) becomes𝜆3 + 𝐵𝜆2 + (𝐶 + 𝐷) 𝜆 + (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2 + 𝐸 = 0. (34)

Similar to Case 1, let 𝜆 = 𝑖𝜔2(𝜔2 > 0) be the pure
imaginary root of (34); then we obtain−𝜔32 + (𝐶 + 𝐷)𝜔2 = 𝐺 sin (𝜔2𝜏2) − 𝐹𝜔2 cos (𝜔2𝜏2) ,−𝐵𝜔22 + 𝐸 = 𝐺 cos (𝜔2𝜏2) − 𝐹𝜔2 sin (𝜔2𝜏2) . (35)

That is,𝜔62 + (𝐵2 − 2 (𝐶 + 𝐷))𝜔42+ ((𝐶 + 𝐷)2 − 2𝐵𝐸 − 𝐹2)𝜔22 + 𝐸2 − 𝐺2 = 0. (36)

Letting V2 = 𝜔22 , we define the following function:𝑓2 (V2) = V32 + (𝐵2 − 2 (𝐶 + 𝐷)) V22+ ((𝐶 + 𝐷)2 − 2𝐵𝐸 − 𝐹2) V2 + 𝐸2 − 𝐺2. (37)

(i) If (𝐻31):𝐸2 − 𝐺2 < 0 holds, then (37) has at least one
positive root. Without loss of generality, we denote
V21, V22, V23 as the roots of (37); then 𝜔2𝑘 = √V2𝑘,𝑘 = 1, 2, 3, if V2𝑘 > 0.

(ii) If (𝐻32):𝐸2−𝐺2 > 0 holds, let𝑀1 = 𝐵2−2(𝐶+𝐷) and𝑀2 = (𝐶+𝐷)2−2𝐵𝐸−𝐹2. WhenΔ = 𝑀12−3𝑀2 ≤ 0,
then (37) has no positive roots. However, whenΔ > 0,𝑓󸀠2(V2) = 0 has two real roots, denoted as

𝑥∗∗1 = −𝑀1 + √Δ3 ,
𝑥∗∗2 = −𝑀1 − √Δ3 . (38)

Obviously, lim𝑥󳨀→+∞𝑓2(𝑥) = +∞. If (𝐻32) and Δ = 𝑀12 −3𝑀2 > 0 holds, then (37) has two positive real roots if and
only if 𝑥∗∗1 > 0 and 𝑓2(𝑥∗∗1 ) < 0. In addition, we denote two
positive roots of (37) as 𝜒∗1 and 𝜒∗2 ; then (36) has two positive
roots, namely, 𝜔2𝑎 = √𝜒∗1 and 𝜔2𝑏 = √𝜒∗2 . Furthermore, we
can obtain the following results.

Proposition 9.

(i) If (𝐻31) holds, then (36) has at least one positive root.
(ii) If (𝐻32) and Δ = 𝑀12 − 3𝑀2 ≤ 0 holds, then, (36) has

no positive root.
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(iii) If (𝐻32) and Δ = 𝑀12 − 3𝑀2 > 0 holds, then, (36) has
two positive roots if and only if 𝑥∗∗1 > 0 and 𝑓2(𝑥∗∗1 ) <0.

Then the critical delay can be derived by (35):

𝜏𝑗2𝑝 = 1𝜔2𝑝 (arccos 𝐷𝜔42𝑝 + (𝐵𝐸 − (𝐶𝐷 + 𝐷𝐹)) 𝜔22𝑝 − 𝐸𝐺𝐷2𝜔22𝑝 + 𝐸2
+ 2𝑗𝜋) , 𝑗 = 0, 1, 2, . . . , 𝑝 = 1, 2, 3, 𝑎, 𝑏 (39)

Let 𝜏20 = min𝑝=1,2,3,𝑎,𝑏𝜏02𝑝. Differentiating left side of (34)
with respect to 𝜏2, we obtain( 𝑑𝜆𝑑𝜏2)−1 = 3𝜆2 + 2𝐵𝜆 + (𝐶 + 𝐷) + 𝐹𝑒−𝜆𝜏2𝜆 (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2 − 𝜏2𝜆 , (40)

Hence, we obtain the following:

Re( 𝑑𝜆𝑑𝜏2)−1𝜆=𝑖𝜔20 = 𝜔220Δ 𝑓2󸀠 (𝜔220) , (41)

whereΔ = (−𝐹𝜔220 cos (𝜔20𝜏2) + 𝐺𝜔20 sin (𝜔20𝜏2))2+ (𝐺𝜔20 cos (𝜔20𝜏2) + 𝐹𝜔220 sin (𝜔20𝜏2))2 . (42)

If (i) in Proposition 9 and (𝐻33):𝑓2󸀠(𝜔220) ̸= 0 both hold,
then Re(𝑑𝜆/𝑑𝜏2)−1𝜆=𝑖𝜔20 ̸= 0 is obtained. However, if (iii) in
Proposition 9 holds, assuming 𝜏𝑗2𝑎 < 𝜏𝑗2𝑏, we obtain 𝑓2󸀠(𝜒∗1 ) >0 and 𝑓2󸀠(𝜒∗2 ) < 0. Then, we have (𝑑Re𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
𝑗
2𝑎
> 0,(𝑑Re𝜆(𝜏)/𝑑𝜏)|

𝜏=𝜏
𝑗

2𝑏

< 0, and 𝑗 = 0, 1, 2, . . .. Therefore, we
have the following theorem.

�eorem 10. For model (1) with 𝜏1 = 0, 𝜏2 > 0,
(i) If𝐻31 and𝐻33 hold, then, the positive equilibrium𝐸∗ is

locally asymptotically stable for 𝜏2 ∈ (0, 𝜏20) and Hopf
bifurcation occur at 𝜏2 = 𝜏20.

(ii) If (ii) in Proposition 9 holds, then the positive equilib-
rium 𝐸∗ is locally asymptotically stable for all 𝜏2 ≥ 0.

(iii) If (iii) in Proposition 9 holds, then there exists a non-
negative integer 𝑛, such that the positive equilibrium𝐸∗
is locally asymptotically stable whenever 𝜏2 ∈ [0, 𝜏02𝑎) ∪(𝜏02𝑏, 𝜏12𝑎) ∪ ⋅ ⋅ ⋅ ∪ (𝜏𝑛−12𝑏 , 𝜏𝑛2𝑎) and is unstable whenever𝜏2 ∈ [𝜏02𝑎, 𝜏02𝑏)∪(𝜏12𝑎, 𝜏12𝑏)∪⋅ ⋅ ⋅∪(𝜏𝑛−12𝑎 , 𝜏𝑛−12𝑏 )∪(𝜏𝑛2𝑎, +∞).
Then, model (1) undergoes Hopf bifurcation around 𝐸∗
for every 𝜏2 = 𝜏𝑗2𝑎 𝑎𝑛𝑑 𝜏𝑗2𝑏, 𝑗 = 0, 1, 2, . . ..

Case 3. 𝜏1 = 𝜏2 = 𝜏.
When 𝜏1 = 𝜏2 = 𝜏, (23) becomes𝜆3 + 𝐵𝜆2 + 𝐶𝜆 + (𝐷 + 𝐹) 𝜆𝑒−𝜆𝜏 + (𝐸 + 𝐺) 𝑒−𝜆𝜏 = 0. (43)
Leting 𝜆 = 𝑖𝜔3(𝜔3 > 0) be the pure imaginary root of

(43), then −𝜔33 + 𝐶𝜔3 = (𝐸 + 𝐺) sin (𝜔3𝜏)− (𝐷 + 𝐹) 𝜔3 cos (𝜔3𝜏) ,−𝐵𝜔23 = − (𝐸 + 𝐺) cos (𝜔3𝜏)− (𝐷 + 𝐹) 𝜔3 sin (𝜔3𝜏) ,
(44)

that is,𝜔63 + (𝐵2 − 2𝐶)𝜔43 + [𝐶2 − (𝐷 + 𝐹)2] 𝜔23 − (𝐸 + 𝐺)2= 0. (45)

Let V3 = 𝜔23 and define the following function:𝑓3 (V3) = V33 + (𝐵2 − 2𝐶) V23 + [𝐶2 − (𝐷 + 𝐹)2] V3− (𝐸 + 𝐺)2 , (46)

From (46), we can clearly see that 𝑓3(0) = −(𝐸 + 𝐺)2 < 0;
hence (46) has at least one positive root. Without loss of
generality, we denote V31, V32, and V33 as the roots of (46); then
we have 𝜔3𝑘 = √V3𝑘, 𝑘 = 1, 2, 3, if V3𝑘 > 0 holds. Hence, the
critical delay can be derived by (44):

𝜏𝑗
3𝑘
= 1𝜔3𝑘 (arccos (𝐷 + 𝐹) 𝜔43𝑘 + 𝐵 (𝐸 + 𝐺) 𝜔23𝑘 − 𝐶 (𝐷 + 𝐹) 𝜔23𝑘(𝐷 + 𝐹)2 𝜔23𝑘 + (𝐸 + 𝐺)2 + 2𝜋𝑗) , (𝑗 = 0, 1, 2 . . . , 𝑘 = 1, 2, 3) . (47)

Let 𝜏30 = min𝑘=1,2,3𝜏03𝑘. Differentiating left side of (43)
with respect to 𝜏, we obtain(𝑑𝜆𝑑𝜏)−1 = 3𝜆2 + 2𝐵𝜆 + 𝐶 + (𝐷 + 𝐹) 𝑒−𝜆𝜏𝜆 [(𝐷 + 𝐹) 𝜆 + (𝐸 + 𝐺)] 𝑒−𝜆𝜏 − 𝜏𝜆 . (48)

Hence, we obtain the following:

Re(𝑑𝜆𝑑𝜏)−1𝜆=𝑖𝜔30 = 𝜔230Δ 𝑓3󸀠 (𝜔230) , (49)

where Δ = (− (𝐷 + 𝐹) 𝜔230 cos (𝜔30𝜏)+ (𝐸 + 𝐺) 𝜔30 sin (𝜔30𝜏))2+ ((𝐸 + 𝐺) 𝜔30 cos (𝜔30𝜏) + (𝐷 + 𝐹)⋅ 𝜔230 sin (𝜔30𝜏))2 .
(50)
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If (𝐻41): 𝑓3󸀠(𝜔230) ̸= 0 holds, then Re(𝑑𝜆/𝑑𝜏)−1𝜆=𝑖𝜔30 ̸= 0 is
obtained; hence, we have the following result.

�eorem 11. For model (1), when 𝜏1 = 𝜏2 = 𝜏, if (𝐻41) holds,
then the positive equilibrium 𝐸∗ is locally asymptotically stable
for 𝜏 ∈ (0, 𝜏30) and Hopf bifurcation occurs at 𝜏 = 𝜏30.
Case 4. 𝜏1 ∈ (0, 𝜏10), 𝜏2 > 0.

Under this case, 𝜏2 is considered as a parameter.The same
as Case 1, let 𝜆 = 𝑖𝜔∗2 be the root of (23); then we have the
following: 𝑅51 cos (𝜔∗2 𝜏2) − 𝑅52 sin (𝜔∗2 𝜏2) = 𝑅53,𝑅51 sin (𝜔∗2 𝜏2) + 𝑅52 cos (𝜔∗2 𝜏2) = 𝑅54, (51)

where𝑅51 = 𝐹𝜔∗2 ;𝑅53 = 𝜔∗2 3 − 𝐶𝜔∗2 − 𝐷𝜔∗2 cos (𝜔∗2 𝜏1) + 𝐸 sin (𝜔∗2 𝜏1) ;𝑅52 = 𝐺;𝑅54 = 𝐵𝜔∗2 2 − 𝐷𝜔∗2 sin (𝜔∗2 𝜏1) − 𝐸 cos (𝜔∗2 𝜏1) .
(52)

According to (51), the following holds:𝐹1 (𝜔∗2 ) + 𝐹2 (𝜔∗2 ) sin (𝜔∗2 𝜏1) + 𝐹3 (𝜔∗2 ) cos (𝜔∗2 𝜏1)= 0, (53)

where𝐹1 (𝜔∗2 ) = 𝜔∗2 6 + (𝐵2 − 2𝐶)𝜔∗2 4+ (𝐶2 + 𝐷2 − 𝐹2) 𝜔∗2 2 + (𝐸2 − 𝐺2) ,𝐹2 (𝜔∗2 ) = 2 (𝐸 − 𝐵𝐷)𝜔∗2 3 − 2𝐶𝐸𝜔∗2 ,𝐹3 (𝜔∗2 ) = −2𝐷𝜔∗2 4 + 2 (𝐶𝐷 − 𝐵𝐸)𝜔∗2 2.
(54)

Assuming (𝐻51): (53) has finite positive root and denoting
as 𝜔∗2𝑘, (𝑘 = 1, 2, . . . , 𝑙1), then the critical value can be
represented as follows:𝜏∗2𝑘(𝑗)= 1𝜔∗

2𝑘

(arccos(𝑅51 ⋅ 𝑅53 + 𝑅52 ⋅ 𝑅54𝑅251 + 𝑅252 ) + 2𝜋𝑗) ,
(𝑗 = 0, 1, 2 . . . ; 𝑘 = 1, 2, . . . 𝑙1) .

(55)

Let 𝜏∗20 = min 𝜏∗2𝑘(0), (𝑘 = 1, 2, . . . 𝑙1). Differentiating left
side of (23) with respect to 𝜏2, the following is obtained:( 𝑑𝜆𝑑𝜏2)−1= 3𝜆2 + 2𝐵𝜆 + 𝐶 + (𝐷 − 𝐷𝜆𝜏1 − 𝜏1𝐸) 𝑒−𝜆𝜏1 + 𝐹𝑒−𝜆𝜏2𝜆 (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2− 𝜏2𝜆 ,

(56)

and then, we have

Re( 𝑑𝜆𝑑𝜏2)−1𝜆=𝑖𝜔∗20 = 𝐹51𝐹53 + 𝐹54𝐹52𝐹251 + 𝐹252 , (57)

where𝐹51 = −𝐹𝜔∗202 cos (𝜔∗20𝜏∗20) + 𝐺𝜔∗20 sin (𝜔∗20𝜏∗20) ,𝐹52 = 𝐺𝜔∗20 cos (𝜔∗20𝜏∗20) + 𝐹𝜔∗202 sin (𝜔∗20𝜏∗20) ,𝐹53 = −3𝜔∗202 + 𝐶 + 𝐷 cos (𝜔∗20𝜏1) − 𝜏1𝐸 cos (𝜔∗20𝜏1)− 𝜏1𝐷𝜔∗20 sin (𝜔∗20𝜏1) + 𝐹 cos (𝜔∗20𝜏∗20) ,𝐹54 = 2𝐵𝜔∗20 − 𝐷 sin (𝜔∗20𝜏1) + 𝜏1𝐸 sin (𝜔∗20𝜏1)− 𝜏1𝐷𝜔∗20 cos (𝜔∗20𝜏1) − 𝐹 sin (𝜔∗20𝜏∗20) .
(58)

Supposing (𝐻52): 𝐹51𝐹53 + 𝐹54𝐹52 ̸= 0, then we have the
following.

�eorem 12. For model (1), when 𝜏1 ∈ (0, 𝜏10) and 𝜏2 > 0,
if both 𝐻51 and 𝐻52 hold, then the positive equilibrium 𝐸∗
is locally asymptotically stable for 𝜏2 ∈ (0, 𝜏∗20) and Hopf
bifurcation occurs at 𝜏2 = 𝜏∗20.
Case 5. 𝜏1 > 0, 𝜏2 ∈ (0, 𝜏20).

Since 𝜏1 > 0, 𝜏2 ∈ (0, 𝜏20), we consider 𝜏1 as a parameter.
The same as Case 4, letting 𝜆 = 𝑖𝜔∗1 be the root of (23), we
obtain: 𝑅61 cos (𝜔∗1 𝜏1) − 𝑅62 sin (𝜔∗1 𝜏1) = 𝑅63,𝑅61 sin (𝜔∗1 𝜏1) + 𝑅62 cos (𝜔∗1 𝜏1) = 𝑅64, (59)

where𝑅61 = 𝐷𝜔∗1 ;𝑅63 = 𝜔∗1 3 − 𝐶𝜔∗1 − 𝐹𝜔∗1 cos (𝜔∗1 𝜏2) + 𝐺 sin (𝜔∗1 𝜏2) ;𝑅62 = 𝐸;𝑅64 = 𝐵𝜔∗1 2 − 𝐹𝜔∗1 sin (𝜔∗1 𝜏2) − 𝐺 cos (𝜔∗1 𝜏2) .
(60)

According to (59), the following holds:𝐺1 (𝜔∗1 ) + 𝐺2 (𝜔∗1 ) sin (𝜔∗1 𝜏2) + 𝐺3 (𝜔∗1 ) cos (𝜔∗1 𝜏2)= 0, (61)

where𝐺1 (𝜔∗1 ) = 𝜔∗1 6 + (𝐵2 − 2𝐶)𝜔∗1 4+ (𝐶2 + 𝐹2 − 𝐷2) 𝜔∗1 2 + (𝐺2 − 𝐸2) ,𝐺2 (𝜔∗1 ) = 2 (𝐺 − 𝐵𝐹)𝜔∗1 3 − 2𝐶𝐺𝜔∗1 ,𝐺3 (𝜔∗1 ) = −2𝐹𝜔∗1 4 + 2 (𝐶𝐹 − 𝐵𝐺)𝜔∗2 2.
(62)
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Supposing (𝐻61): (61) has finite positive root 𝜔∗2𝑘, (𝑘 =1, 2, . . . , 𝑙2), then we obtain𝜏∗1𝑘(𝑗)= 1𝜔∗
1𝑘

(arccos(𝑅61 ⋅ 𝑅63 + 𝑅62 ⋅ 𝑅64𝑅261 + 𝑅262 ) + 2𝜋𝑗) ,
(𝑗 = 0, 1, 2 . . . ; 𝑘 = 1, 2, . . . 𝑙2) .

(63)

Assuming 𝜏∗10 = min 𝜏∗1𝑘(0), (𝑘 = 1, 2, . . . 𝑙2) and differ-
entiating left side of (23) with respect to 𝜏1, therefore, the
following is obtained:

( 𝑑𝜆𝑑𝜏1)−1= 3𝜆2 + 2𝐵𝜆 + 𝐶 + (𝐹 − 𝐹𝜆𝜏2 − 𝜏2𝐺) 𝑒−𝜆𝜏2 + 𝐷𝑒−𝜆𝜏1𝜆 (𝐹𝜆 + 𝐺) 𝑒−𝜆𝜏2− 𝜏1𝜆 ,
(64)

Hence, we have

Re( 𝑑𝜆𝑑𝜏1)−1𝜆=𝑖𝜔∗10 = 𝐹61𝐹63 + 𝐹64𝐹62𝐹261 + 𝐹262 , (65)

where𝐹61 = −𝐷𝜔∗102 cos (𝜔∗10𝜏∗10) + 𝐸𝜔∗10 sin (𝜔∗10𝜏∗10) ,𝐹62 = 𝐸𝜔∗10 cos (𝜔∗10𝜏∗10) + 𝐷𝜔∗102 sin (𝜔∗10𝜏∗10) ,𝐹63 = −3𝜔∗102 + 𝐶 + 𝐷 cos (𝜔∗10𝜏∗10) − 𝜏2𝐺 cos (𝜔∗10𝜏2)− 𝜏2𝐹𝜔∗10 sin (𝜔∗10𝜏2) + 𝐹 cos (𝜔∗10𝜏2) ,𝐹64 = 2𝐵𝜔∗10 − 𝐷 sin (𝜔∗10𝜏∗10) + 𝜏2𝐺 sin (𝜔∗10𝜏2)− 𝜏2𝐹𝜔∗10 cos (𝜔∗10𝜏2) − 𝐹 sin (𝜔∗10𝜏2) ,
(66)

Supposing (𝐻62): 𝐹61𝐹63 + 𝐹64𝐹62 ̸= 0 holds, then we obtain
the following theorem.

�eorem 13. For model (1), when 𝜏1 > 0 and 𝜏2 ∈ (0, 𝜏20),
if both 𝐻61 and 𝐻62 hold, then the positive equilibrium 𝐸∗
is locally asymptotically stable for 𝜏1 ∈ (0, 𝜏∗10) and Hopf
bifurcation occurs at 𝜏1 = 𝜏∗10.
4. Properties of Periodic Solution

In this section, we will discuss the direction of Hopf bifur-
cation and the stability of the bifurcating periodic solutions
under Case 4 by using normal form method and center
manifold theorem [43], and methods of other four cases are
similar to Case 4. Assuming 𝜏1 ∈ (0, 𝜏10), 𝜏∗20 > 𝜏1, and Hopf
bifurcation occurs at (𝑁∗, 𝑃∗, 𝐴∗) in model (1) when 𝜏 = 𝜏∗20.

Let 𝜏2 = 𝜏∗20 + 𝜇, 𝑡 = 𝑠𝜏2, 𝑥(𝑠𝜏2) = 𝑥(𝑠), 𝑦(𝑠𝜏2) = 𝑦(𝑠),
and 𝑧 = (𝑠𝜏2) = �̂�(𝑠), and we also denote 𝑥(𝑠), 𝑦(𝑠), and �̂�(𝑠)

as 𝑥(𝑠), 𝑦(𝑠), and 𝑧(𝑠). Then, model (1) could be rewritten as
follows in 𝐶 = 𝐶([−1, 0], 𝑅3):

�̇� (𝑡) = 𝐿𝜇 (𝑢𝑡) + 𝑓 (𝜇, 𝑢𝑡) , (67)

where 𝑢(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))𝑇 ∈ 𝑅3. 𝐿𝜇(𝜙) : 𝐶 󳨀→ 𝑅3 and𝑓(𝜇, 𝑢(𝑡)) are given as follows:

𝐿𝜇 (𝜙)= (𝜏∗20 + 𝜇)(𝐴𝜙 (0) + 𝐵𝜙(− 𝜏1𝜏∗20) + 𝐶𝜙 (−1)) ,𝑓 (𝜇, 𝜙) = (𝜏∗20 + 𝜇) (𝑓1 𝑓2 𝑓3)𝑇 ,
(68)

where

𝐴 = (𝑎11 0 𝑎130 𝑎22 𝑎230 0 0 ) ,
𝐵 = ( 0 0 00 0 0𝑎31 0 0) ,
𝐶 = (0 0 00 0 00 𝑎32 0) ,𝑓1 = −𝛼1𝜙1 (0) 𝜙3 (0) ,𝑓2 = −𝛼2𝜙2 (0) 𝜙3 (0) ,𝑓3 = 𝛽1𝛼1𝜙1 (− 𝜏1𝜏∗20)𝜙3 (0) + 𝛽2𝛼2𝜙2 (−1) 𝜙3 (0) .

(69)

According to the Riesz representation theorem, we know
that there exists a function 𝜂(𝜃, 𝜇) of bounded variation for𝜃 ∈ [−1, 0] such that 𝐿𝜇𝜙 = ∫0−1 𝑑𝜂(𝜃, 𝜇)𝜙(𝜃), for all 𝜙 ∈𝐶([−1, 0], 𝑅3). Choosing
𝜂 (𝜃, 𝜇)
=
{{{{{{{{{{{{{{{{{{{{{

(𝜏∗20 + 𝜇) (𝐴 + 𝐵 + 𝐶) , 𝜃 = 0(𝜏∗20 + 𝜇) (𝐵 + 𝐶) , 𝜃 ∈ [− 𝜏1𝜏∗20 , 0)(𝜏∗20 + 𝜇)𝐶, 𝜃 ∈ (−1, − 𝜏1𝜏∗20)0, 𝜃 = −1
(70)
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For 𝜙 ∈ 𝐶1([−1, 0], 𝑅3), we define
𝐴 (𝜇) 𝜙 = {{{{{{{

𝑑𝜙 (𝜃)𝑑𝜃 , 𝜃 ∈ [−1, 0)∫0
−1
𝑑𝜂 (𝜇, 𝑠) ⋅ 𝜙 (𝑠) , 𝜃 = 0

𝑅 (𝜇) 𝜙 = {{{0, 𝜃 ∈ [−1, 0)𝑓 (𝜇, 𝜙) , 𝜃 = 0
(71)

Then, model (1) can be rewritten as�̇� (𝑡) = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡. (72)

For 𝜓 ∈ 𝐶1([0, 1], (𝑅3)∗), the adjoint operator 𝐴∗ of 𝐴 is
defined as follows:

𝐴∗𝜓 (𝑠) = {{{{{{{
−𝑑𝜓 (𝑠)𝑑𝑠 , 𝑠 ∈ (0, 1] ,∫0
−1
𝑑𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0. (73)

Associated with a bilinear inner product⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)
− ∫0
−1
∫𝜃
𝜉=0
𝜓 (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉, (74)

where 𝜂(𝜃) = 𝜂(𝜃, 0) and we know that ±𝑖𝜔∗20𝜏∗20 are the
eigenvalues of 𝐴(0) and 𝐴∗(0).

Choose 𝑞(𝜃) = (1, 𝑞2, 𝑞3)𝑇𝑒𝑖𝜔∗20𝜏∗20𝜃 to be the eigenvec-
tor of 𝐴(0) corresponding to the eigenvalue 𝑖𝜔∗20𝜏∗20 and𝑞∗(𝑠) = 𝐷(1, 𝑞∗2 , 𝑞∗3 )𝑒𝑖𝜔∗20𝜏∗20𝑠 to be the eigenvector of 𝐴∗(0)
corresponding to the eigenvalue −𝑖𝜔∗20𝜏∗20. By computation,
we obtain

𝑞2 = 𝑎23 (𝑖𝜔∗20 − 𝑎11)𝑎13 (𝑖𝜔∗20 − 𝑎22) ;𝑞3 = 𝑖𝜔∗20 − 𝑎11𝑎13 ;
𝑞∗2 = 𝑎32𝑒𝑖𝜔∗20𝜏1 (𝑎11 + 𝑖𝜔∗2 )𝑎31𝑒𝑖𝜔∗20𝜏1 (𝑎22 + 𝑖𝜔∗2 ) ;𝑞∗3 = − (𝑎11 + 𝑖𝜔∗2 )𝑎31𝑒𝑖𝜔∗20𝜏1 .

(75)

Besides, from (74) we have𝐷= 11 + 𝑞2𝑞∗2 + 𝑞3𝑞∗3 + 𝑞∗3𝑎31𝜏1𝑒−𝑖𝜔∗20𝜏1 + 𝑞2𝑞∗3𝑎32𝜏∗20𝑒−𝑖𝜔∗20𝜏∗20 , (76)

such that ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1 and ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.

Then, according to [44], we obtain the following relevant
parameter, which helps to determine the direction and
stability of Hopf bifurcation:𝑔20 = 2𝐷𝜏∗20 (−𝛼1𝑞3 − 𝛼2𝑞∗2𝑞2𝑞3 + 𝛽1𝛼1𝑞3𝑞∗3 𝑒−𝑖𝜔∗20𝜏1+ 𝛽2𝛼2𝑞2𝑞3𝑞∗3 𝑒−𝑖𝜔∗20𝜏∗20) ,𝑔11 = 𝐷𝜏∗20 [−𝛼1 (𝑞3 + 𝑞3) − 𝛼2𝑞∗2 (𝑞2𝑞3 + 𝑞2𝑞3)+ 𝛽1𝛼1𝑞∗3 (𝑞3𝑒−𝑖𝜔∗20𝜏1 + 𝑞3𝑒𝑖𝜔∗20𝜏1)+ 𝛽2𝛼2𝑞∗3 (𝑞2𝑞3𝑒−𝑖𝜔∗20𝜏∗20 + 𝑞3𝑞2𝑒𝑖𝜔∗20𝜏∗20)] ,𝑔02 = 2𝐷𝜏∗20 (−𝛼1𝑞3 − 𝛼2𝑞∗2𝑞2𝑞3 + 𝛽1𝛼1𝑞3𝑞∗3 𝑒𝑖𝜔∗20𝜏1+ 𝛽2𝛼2𝑞2𝑞3𝑞∗3 𝑒𝑖𝜔∗20𝜏∗20) ,𝑔21 = 2𝐷𝜏∗20 {−𝛼1 [𝑊(3)11 (0) + 12𝑊(3)20 (0)+ 12𝑞3𝑊(1)20 (0) + 𝑞3𝑊(1)11 (0)] − 𝛼2𝑞∗2 [𝑞2𝑊(3)11 (0)+ 𝑞2 12𝑊(3)20 (0) + 12𝑞3𝑊(2)20 (0) + 𝑞3𝑊(2)11 (0)]+ 𝑞∗3𝛽1𝛼1 [𝑞3𝑊(1)11 (− 𝜏1𝜏∗20) + 𝑞3 12𝑊(1)20 (− 𝜏1𝜏∗20)+ 12𝑊(3)20 (0) 𝑒𝑖𝜔∗20𝜏1 +𝑊(3)11 (0) 𝑒−𝑖𝜔∗20𝜏1]+ 𝑞∗3𝛽2𝛼2 [𝑞3𝑊(2)11 (−1) + 𝑞3 12𝑊(2)20 (−1)+ 𝑞2 12𝑊(3)20 (0) 𝑒𝑖𝜔∗20𝜏∗20 + 𝑞2𝑊(3)11 (0) 𝑒−𝑖𝜔∗20𝜏∗20]} ,

(77)

and

𝑊20 (𝜃) = 𝑖𝑔20𝑞 (0)𝜔∗20𝜏∗20 𝑒𝑖𝜃𝜔∗20𝜏∗20 + 𝑔02𝑖3𝜔∗20𝜏∗20 𝑞 (0) 𝑒−𝑖𝜃𝜔∗20𝜏∗20+ 𝐸1𝑒2𝑖𝜃𝜔∗20𝜏∗20 ,𝑊11 (𝜃) = −𝑖𝑔11𝑞 (0)𝜔∗20𝜏∗20 𝑒𝑖𝜃𝜔∗20𝜏∗20 + 𝑔11𝑖𝜔∗20𝜏∗20 𝑞 (0) 𝑒−𝑖𝜃𝜔∗20𝜏∗20+ 𝐸2,
(78)

where 𝐸1and 𝐸2 can be determined by the following, respec-
tively:

(2𝑖𝜔∗20 − 𝑎11 0 −𝑎130 2𝑖𝜔∗20 − 𝑎22 −𝑎23−𝑎31𝑒−2𝑖𝜔∗20𝜏1 −𝑎32𝑒−2𝑖𝜔∗20𝜏∗20 2𝑖𝜔∗20) ⋅ 𝐸1
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= 2(𝐾11𝐾21𝐾31),
(𝑎11 0 𝑎130 𝑎22 𝑎23𝑎31 𝑎32 0 ) ⋅ 𝐸2 = −(

𝐾12𝐾22𝐾32),
(79)

where 𝐾11 = −𝛼1𝑞3;𝐾21 = −𝛼2𝑞2𝑞3;𝐾31 = 𝛽1𝛼1𝑞3𝑒−𝑖𝜔∗20𝜏1 + 𝛽2𝛼2𝑞2𝑞3𝑒−𝑖𝜔∗20𝜏∗20 ;𝐾12 = −𝛼1 (𝑞3 + 𝑞3) ;𝐾22 = −𝛼2 (𝑞2𝑞3 + 𝑞2𝑞3) ;𝐾32 = 𝛽1𝛼1 (𝑞3𝑒𝑖𝜔∗20𝜏1 + 𝑞3𝑒−𝑖𝜔∗20𝜏1)+ 𝛽2𝛼2 (𝑞2𝑞3𝑒𝑖𝜔∗20𝜏∗20 + 𝑞2𝑞3𝑒−𝑖𝜔∗20𝜏∗20) .
(80)

Then, we can compute the following values:

𝑐1 (0) = 𝑖2𝜔∗20𝜏∗20 (𝑔20𝑔11 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔212 ,
𝜇 = −Re (𝑐1 (0))

Re𝜆󸀠 (𝜏∗20) ,𝛽 = 2Re (𝑐1 (0)) ,
𝑇 = − Im {𝑐1 (0)} + 𝜇2Im {𝜆󸀠 (𝜏∗20)}𝜔∗20𝜏∗20 .

(81)

This determine the properties of bifurcating periodic solu-
tions and the Hopf bifurcation at 𝜏 = 𝜏∗20. That is,

(i) 𝜇 determines the direction of the Hopf bifurcation.
Specifically, when 𝜇 > 0(< 0), the Hopf bifurcation
is supercritical (subcritical).

(ii) 𝛽 determines the stability of the bifurcating periodic
solutions; when 𝛽 < 0(> 0), the bifurcating periodic
solution is stable (unstable).

(iii) 𝑇 determines the period of the bifurcating periodic
solutions; when 𝑇 > 0(< 0), the period of bifurcating
periodic solution increases (decrease).

5. Numerical Simulations

Due to the complexity of model (1), we perform some numer-
ical simulations in this section to investigate further how
the delay influences dynamics in model (1). The following
parameter values are used 𝐼1 = 𝐼2 = 0.5, 𝑞1 = 𝑞2 = 0.001,

𝛼1 = 𝛼2 = 0.08, 𝛽1 = 0.3, and 𝑚 = 0.8. Other parameters are
chosen as control parameters.

According to the standard linear analysis, when 𝜏2 is equal
to zero, the analysis reveals that the 𝛽2 − 𝜏1 parameter plane
is divided into four parts (see Figure 1(a)). In Figure 1(a),
before 𝛽2 reaching black dashed line, there exists 𝜏10 in
model (1) such that the unique positive equilibrium loses
its stability when the condition, 𝜏1 > 𝜏10, holds. When
the locus of 𝛽2 is between black dashed line and green
dashed line, the stability switches for positive equilibrium
do not exist although (28) has two positive roots, which
means that there exists 𝜏10 in model (1) such that the
unique positive equilibrium loses its stability when the
condition, 𝜏1 > 𝜏10, holds. However, the stability switches
for positive equilibrium emerge when 𝛽2 is beyond green
dashed line but it does not reach blue zone. When the locus
of 𝛽2 is in blue zone, the unique positive equilibrium is
always stable, which suggests that 𝜏1 cannot influence the
stability of the positive equilibrium. When 𝜏1 equals zero,
the similar results for 𝛽2 − 𝜏2 parameter plane are shown
in Figure 1(b), but the sequence is reversed. Additionally,
according to results in Section 4, we calculate the values
of 𝜇, 𝛽, and 𝑇 at 𝜏1 = 𝜏10 with 𝛽2 ∈ (0, 0.3), and the
corresponding results are shown in Figure 1(c), where we
can find that the Hopf bifurcation is supercritical and the
bifurcating periodic solutions are stable; especially, the period
of the bifurcating periodic solutions increases as 𝛽2 increases.
For other cases of 𝜏1 and 𝜏2, the same procedures with
respect to calculations of 𝜇, 𝛽, and 𝑇 can be performed like
Figure 1(c).

As examples corresponding to stability of the positive
equilibrium with 𝛽2 = 0.2, taken 𝜏1 = 1 and 𝜏1 =3 in Figure 1(a), respectively, the corresponding numerical
solutions are shown in Figure 2. Obviously, the positive
equilibrium is stable because 𝜏1 = 1 is below 𝜏10 (see
Figure 2(a)). In contrast, due to 3 = 𝜏1 beyond 𝜏10, a periodic
solution exists (see Figure 2(b)). Furthermore, set 𝛽2 = 0.7,
then we have 𝜏01𝑎 ≈ 4.9050 < 𝜏01𝑏 ≈ 19.0615 < 𝜏11𝑎 ≈ 38.6683.
Taken 𝜏1 = 4, 𝜏1 = 18 and 𝜏1 = 21 in Figure 1(a), respectively,
the corresponding numerical solutions are shown in Figure 3.
Obviously, the positive equilibrium is stable when 𝜏1 = 4
and 𝜏1 = 21 (see Figures 3(a) and 3(c)), but the positive
equilibrium is unstable when 𝜏1 = 18 (see Figure 3(b)), which
means that the positive equilibrium can gain its stability again
for 𝜏1 > 𝜏10. In Figure 3, the same initial values are applied,
and other parameter values except for 𝜏1 are also identical.
Clearly, the delay is the principal factor giving rise to the
difference among (a), (b), and (c).

Numerical solutions in Figure 3 suggest that the stability
switches induced by delay may exist. Hence, the bifurcation
diagram in 𝜏1 − 𝜏2 parameter plane is given (see Figure 4(a)).
For case 𝜏2 = 0, there exists a 𝜏∗1 such that the positive
equilibrium with respect to 𝜏1 ∈ (0, 𝜏∗1 ) is stable. For case𝜏1 = 0, there exists a 𝜏∗2 such that the positive equilibrium
with respect to 𝜏2 ∈ (0, 𝜏∗2 ) is stable. Additionally, when𝜏2 ∈ (0, 𝜏∗2 ), Figure 4(a) shows that 𝜏10 exists such that the
positive equilibrium with respect to 𝜏1 ∈ (0, 𝜏10) is stable.
Likewise, when 𝜏1 ∈ (0, 𝜏∗1 ), Figure 4(a) also display that 𝜏20
exists such that the positive equilibrium with respect to 𝜏2 ∈
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Figure 1: (a) Bifurcation diagram with 𝜏2 = 0 corresponding to 𝜏1 V.S. 𝛽2, where solid, dashed, dash-dot, and dotted curves represent the
critical values of 𝜏1 in (30) for j = 0, 1, 2, 3, respectively, and the green dashed line denotes 𝛽2 = 0.417238. (b) Bifurcation diagram with𝜏1 = 0 corresponding to 𝜏2 V.S. 𝛽2, where solid, dashed, dash-dot, and dotted curves represent the critical values of 𝜏2 in (39) for j = 0, 1, 2, 3,
respectively, and the green dashed line denotes 𝛽2 = 0.21. (c) Examples for 𝜇, 𝛽, and T at 𝜏1 = 𝜏10 with respect to 𝛽2, where 𝜏2 = 0.
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Figure 2: Numerical solutions of model (1) with 𝜏2 = 0 and 𝛽2 = 0.2, (a) 𝜏1 = 1; (b) 𝜏1 = 3.
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Figure 3: Numerical solutions of model (1) with 𝜏2 = 0 and 𝛽2 = 0.7, (a) 𝜏1 = 4; (b) 𝜏1 = 18 (c) 𝜏1 = 21.
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Figure 4: (a) Bifurcation diagram with 𝛽2 = 0.7 for 𝜏1 V.S. 𝜏2, where the symbol “S” denotes stable and the symbol “US” denotes unstable;
(b) bifurcation diagram with 𝛽2 = 0.7 for the effect of 𝜏2 on nutrient-phytoplankton dynamics, where dashed line denotes unstable; solid line
denotes stable; the green solid square is Hopf bifurcation point, dot-dashed line corresponding to 𝜏∗2 in (a), blue line represents equilibrium,
and red line represents amplitude of periodic solutions. (c) Bifurcation diagram with 𝛽2 = 0.7 and 𝜏2 = 1, where the yellow solid square is
Hopf bifurcation point, the blue solid circle is bifurcation point for periodic-2 solution, the magenta zone indicates the existence of periodic-2
solutions, and the cyan solid diamond denotes the value of 𝜏1 for a phase and a time-series in the inner of (c). (d) A periodic-3 solution for
phytoplankton population, where 𝛽2 = 0.7, 𝜏1 = 100, and 𝜏2 = 2.
(0, 𝜏20) is stable. Significantly, Figure 4(a) demonstrates that
the stability switches for positive equilibrium with respect to𝜏1 emerge when 𝜏2 below 𝜏∗2 is fixed.

Figure 4(b) depicts the dependence of stability of positive
equilibrium on delay 𝜏2 in the fully nonlinear regime for 𝜏1 in
sequence [0, 2, 10, 30] and 𝜏1 = 𝜏2, which is consistent with
results in Figure 4(a). However, when 𝜏2 is fixed, Figure 4(c)
shows that the stability switches emerge with 𝜏1 increases.
Especially, periodic-2 solutions exist for some values of 𝜏2 (see
magenta zone in Figure 4(c)). As an example of periodic-2
solution existence, taking 𝜏1 = 41, a phase and a time-series
are given in the inner of Figure 4(c). Moreover, Figure 4(d)
shows that there exist periodic-3 solutions in model (1).
According to results in Section 2, the positive equilibrium is

globally asymptotically stable in themodel (1) without delay if
it exists. Obviously, the results shown in Figure 4 are induced
by delay.

In Figure 4(a), we can find that the number of intervals
corresponding to stability of positive equilibrium for small
values of 𝜏2 equals 3. However, when 𝜏2 is beyond dashed line
(𝜏∗∗2 ), the number of intervals is 2. So the number of intervals
for stability switches may be different for diverse 𝜏2. Accord-
ingly, we calculate the number of intervals with respect to
parameter 𝛽2, as shown in Figure 5(a). Figure 5(b) shows that
there exist 3 stable intervals when 𝛽2 = 0.7 and 𝜏2 = 0,
which is an example of Figure 5(a). Evidently, parameter 𝛽2
can remarkably influence the number of intervals for stability
of positive equilibrium.
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Figure 5: (a) The number of intervals for stability switches of positive equilibrium with respect to 𝛽2, where 𝜏2 = 0; (b) based on (a), an
example for comparison between results predicted by linear analysis and numerical results in the fully nonlinear regime with (𝛽2, 𝜏2) at(0, 0.7), where top panel represents numerical results for model (1) in the fully nonlinear regime; bottom panel depicts the results predicted
by linear analysis, and blue and red area denote stable and unstable, respectively.

6. Conclusions

In this paper we proposed a nitrogen-phosphorus-
phytoplankton model with multiple delays. The analysis
focused on the effect of delay on nutrient-phytoplankton
dynamics. In the absence of delay, theoretical analysis
indicated that the unique positive equilibrium is globally
asymptotically stable in model (1) if it exists. Deng et al. [48]
also studied a nitrogen-phosphorus-phytoplankton model
without delay, where Holling II function was employed to
describe the nutrient uptake dynamics of phytoplankton.
Although the function modelling the nutrient uptake
dynamics of phytoplankton is different, they get the same
results. These results mean that the nutrient-phytoplankton
ecosystem will approach the stable equilibrium. However, it
has been reported [18] that a constant population density may
not exist because of the existence of some factors including
noise, interval factors, and physical factors. And ecological
studies [49, 50] also criticized this idea of “the balance
of nature.” Actually, the existence of nutrient-plankton
oscillations has been detected by laboratory experiments and
field observation [19, 20]. Additionally, Benincà et al. [49]
present the first experimental demonstration of chaos in a
long-term experiment with a complex food web, where the
food web was consisted of bacteria, several phytoplankton
species, herbivorous and predatory zooplankton species, and
detritivores. And they also find that the community moved
back and forth between stabilizing and chaotic dynamics
during the cyclic succession, and their findings provide
a field demonstration of nonequilibrium coexistence of
competing species through a cyclic succession at the edge of
chaos [50]. These reports support that the nonequilibrium
dynamics, such as oscillations and chaos, can exist in reality.

In the present paper, we find that the unique positive equi-
libriummay lose its stability via Hopf bifurcation when delay

appears, and then a periodic solution emerges, which means
that nutrient-phytoplankton oscillation occurs. Obviously,
the factor giving rise to nutrient- phytoplankton oscillation
is delay in our studies. And the period and the stability of
the bifurcating periodic solutions with respect to delay are
discussed by using center manifold argument and normal
form theory. In fact, instability induced by delay in nutrient-
plankton model has been studied widely, and many studies
indicate that the equilibrium is always unstable when delay
is beyond a critical value [25, 29, 51, 52]. Yet, it should be
emphasized in the present paper that the stability switches
induced by delay can occur under some conditions.

Moreover, numerical simulations showed how the delay
influences nutrient-phytoplankton dynamics. Numerical
results for model (1) in the fully nonlinear regime are
consistent with the linear analysis. In numerical simulations,
we found that delay indeed gives rise to the emergence
of stability switches for the positive equilibrium. Yet, the
numerical results show that the parameter intervals for
stability switches may depend on other parameters as
well, e.g., 𝛽2. Additionally, numerical results also indicated
that periodic-2 solutions and periodic-3 solutions can
emerge under some conditions for delay, which means
that complex dynamics induced by delay exist in model
(1). From biological viewpoint, the existence of periodic
solutions implies that the fluctuations exist in density of
phytoplankton population; that is, nutrient-phytoplankton
oscillation emerges. Especially, by Li and York’s theory,
periodic-3 solution implies chaos, which means that chaotic
density fluctuations can display a variety of different
periodicities and the long-term prediction of phytoplankton
density can be fundamentally impossible.The chaotic density
fluctuations donot contribute to the control of phytoplankton
bloom. Consequently, the importance of the present paper
is not the precision with which it predicts specific events for



Complexity 15

phytoplankton blooms but its contribution to the studies on
how the delay influences nutrient-phytoplankton dynamics.
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