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Modeling solar photovoltaic (PV) systems accurately is based on optimal values of unknown model parameters of PV cells and
modules. In recent years, the use of metaheuristics for parameter extraction of PV models gains more and more attentions thanks
to their e�cacy in solving highly nonlinear multimodal optimization problems.�is work addresses a novel application of supply-
demand-based optimization (SDO) to extract accurate and reliable parameters for PV models. SDO is a very young and e�cient
metaheuristic inspired by the supply and demand mechanism in economics. Its exploration and exploitation are balanced well by
incorporating di�erent dynamic modes of the cobweb model organically. To validate the feasibility and e�ectiveness of SDO, four
PV models with diverse characteristics including RTC France silicon solar cell, PVM 752 GaAs thin �lm cell, STM6-40/36
monocrystalline module, and STP6-120/36 polycrystalline module are employed. �e experimental results comparing with ten
state-of-the-art algorithms demonstrate that SDO performs better or highly competitively in terms of accuracy, robustness, and
convergence. In addition, the sensitivity of SDO to variation of population size is empirically investigated.�e results indicate that
SDO with a relatively small population size can extract accurate and reliable parameters for PV models.

1. Introduction

Rising energy costs, losses in the present-day electricity grid,
risks from nuclear power generation, and global environ-
mental changes highlight the increasing signi�cance of re-
newable energy resources for electricity generation [1].
Among renewable energy resources, solar energy is the most
abundant natural resource with many advantages such as
easily exploitable, clean, discreet, inexhaustible, long lasting,
and reliable [2, 3]. It has made a leap forward in recent years.
According to the International Energy Agency (IEA) [4],
renewable energy resources will have the fastest growth in the
electricity sector, providing almost 30% of power demand in
2023, up from 24% in 2017. During this period, solar pho-
tovoltaic (PV) contributes the most with expected 575GW of
new installed capacity. Owing to the ever-growing capacity of
PV in power systems, PV brings about great changes to power

system planning and operating. In such a context, optimal PV
models appear especially important to analyze their dynamic
conversion behaviors under diverse environmental condi-
tions. Electrical equivalent circuit models are the most
popular tools to describe the input-output characteristics of
PV cells and modules. Among them, the single diode model
(SDM) and the double diode model (DDM) are the most
commonly used models [5]. �e SDM and DDM have �ve
and seven unknown model parameters, respectively.
Extracting accurate values for these unknown parameters is
the premise and promise of optimal PV models.

Up to now, a great number of parameter extraction
methods for PV models have been elaborated. �ey can be
broken down into two categories from solution principles:
analytical methods and optimization methods. �e analytical
methods are a “taking a part for the whole” methodology.
Namely, they mainly rely highly on several key data points
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provided by the manufacturer. *ese data points such as
short-circuit point, open-circuit point, and maximum power
point of the current-voltage (I-V) characteristic curve are
nameplate rating data measured under standard test condi-
tion (STC).*ey will change over time due to PV degradation
[6]. In addition, some assumptions and approximations are
introduced to simplify the established mathematical models.
In such contexts, the analytical methods will result in inac-
curacy in the involved model parameters.

Unlike the analytical methods, the optimization methods
are a “taking all actual measured data for the whole” meth-
odology.*ey are no longer confined to several key data points
under the STC provided by the manufacturer but extended to
depending on a large number of data points measured under
actual operating conditions. *ese data points cover a wide
range of the I-V characteristic curve and thereby can reflect the
actual relationship between inputs and outputs of a PVmodel.
*e optimization methods firstly construct an objective
function to reflect the difference between the measured data
and the calculated data based on the idea of curve fitting and
thenminimize the resultant objective function to obtain values
for the unknown model parameters. *e optimization
methods consist of deterministic methods and metaheuristic
methods. *e former, including Newton method [7],
Newton–Raphson method [8], iterative curve fitting [9], and
Levenberg–Marquardt algorithm [10], are considerably de-
pendent on the gradient information and subjected to initial
conditions. *erefore, they easily plunge into local minima
leading to inaccurate and unreliable solutions especially for
complicated multimodal problems such as the parameter
extraction problem of PV models.

Different from the deterministicmethods, themetaheuristic
methods do not need the gradient information. *ey have no
requirements on the specific search domain information or the
continuity/convexity of objective functions and exhibit the
merits of robustness, simplicity, ease of implementation, etc.
[11–13]. Consequently, they are considered global optimization
algorithms and have received increasing interests in recent
years.*e parameter extraction problem of PVmodels is highly
nonlinear, nonconvex, and has many local minima. Under this
circumstance, the use of metaheuristic methods for this
problem seems to be a promising alternative. Up to now, many
metaheuristic methods have been applied to solve this problem.
For example, Ismail et al. [14] applied the genetic algorithm
(GA) to compute the parameters of both SDM and DDM.
Chellaswamy andRamesh [15] proposed a differential evolution
(DE) technique with adaptive mutation factor and crossover
rate to different solar cell types. Biswas et al. [16] implemented a
linear population size reduction technique of success history-
based adaptive DE to estimate parameters for PV models.
Jordehi [17] developed a five-staged successive mutation
strategy to construct a high-quality leader to pull all particles in
particle swarm optimization (PSO) and applied the resultant
improved algorithm to three PV models. Merchaoui et al. [18]
introduced an adaptive mutation to alleviate the premature
convergence of PSO. Askarzadeh and Leandro [19] simplified
the original bird mating optimizer (BMO) and used the im-
proved algorithm to an amorphous silicon PV module at
different operating conditions. Ali et al. [20] applied multiverse

optimization (MVO) to extract five parameters for the SDM.
Oliva et al. [21] utilized the chaotic maps to improve the
performance of the whale optimization algorithm (WOA) and
applied the improved algorithm to different PV models. Chen
et al. [22] employed generalized opposition-based learning to
enhance teaching-learning-based optimization (TLBO) and
applied themodified algorithm to two PVmodels. Yu et al. [23]
obtained parameters for three PVmodels by an improved JAYA
algorithm with three strategies including self-adaptive weight,
experience-based learning strategy, and chaotic elite learning
method. Xiong et al. solved the parameter extraction problem of
different PV models by using several metaheuristics including
symbiotic organisms search (SOS) algorithm [24], improved
WOAbased on twomodified prey searching strategies [25], and
hybrid DE with WOA [26]. In addition to the aforementioned
metaheuristics, manymore [27–40] have also been presented to
solve the important problem.

*e abovementioned metaheuristics have, to some ex-
tent, proven themselves promising methods for the pa-
rameter extraction problem of PV models. *eir
performances are largely attributed to their own well-tuned
parameters and well-designed search strategies for balancing
the exploration and exploitation. According to the famous
no-free-launch theorem [41], there is no “one size fits all”
approach for solving all optimization problems. Similarly,
there is no “one size fits all” metaheuristic for extracting
accurate parameters for all PV models, which highly mo-
tivates the authors to attempt new ones for the purpose of
achieving optimal or suboptimal solutions for the problem
considered here.

In this paper, a very young and effective metaheuristic
named supply-demand-based optimization (SDO) [42]
developed in 2019 is first applied to the parameter extraction
problem of PV models. SDO mathematically mimics both
the demand relation of consumers and supply relation of
producers described by the famous cobweb theory in eco-
nomics. According to the cobweb model [43, 44], markets
have three dynamic modes, i.e., convergent mode, divergent
mode, and closed mode. *ey correspond to the exploita-
tion, exploration, and demarcation between them in SDO,
respectively. SDO can incorporate these three modes or-
ganically. It has shown high competition in solving some
benchmark test functions and mechanical engineering op-
timization problems compared with some popular meta-
heuristics such as PSO, DE, GA, and TLBO. In this paper, the
SDO is applied to four PV models with diverse character-
istics, i.e., the RTC France silicon solar cell, PVM 752 GaAs
thin film cell, STM6-40/36 monocrystalline module, and
STP6-120/36 polycrystalline module. Ten state-of-the-art
metaheuristics are employed to verify the feasibility and
effectiveness of SDO. Besides, the sensitivity of SDO to
variation of population size is also empirically investigated.

*e rest of this paper is organized as follows. Section 2
describes the mathematical formulation of parameter ex-
traction problem of PV models. Section 3 introduces the
supply and demand mechanism of the cobweb model. *e
SDO is detailed in Section 4. Section 5 presents the ex-
perimental results and comparisons. Finally, the paper is
concluded in Section 6.
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2. Problem Formulation

2.1. Single DiodeModel (SDM). *e output current IL of the
SDM shown in Figure 1 is calculated as follows:

IL � Iph − Id − Ish, (1)

where Iph, Ish, and Id denote the photogenerated current,
shunt resistor current, and diode current, respectively. Id
and Ish are formulated as follows [5, 45–47]:

Id � Isd · exp
VL + Rs · IL

nVt
  − 1 , (2)

Vt �
kT

q
, (3)

Ish �
VL + Rs · IL

Rsh
, (4)

where Isd is the saturation current, VL is the output voltage,
Rs and Rsh are the series resistance and shunt resistance,
respectively, n is the diode ideal factor, k is the Boltzmann
constant (1.3806503×10− 23 J/K), q is the electron charge
(1.60217646×10− 19 C), and T is the cell temperature (K).

By incorporating equations (2)–(4) into (1), the output
current IL can be yielded as follows:

IL � Iph − Isd · exp
VL + Rs · IL

nVt
  − 1  −

VL + Rs · IL

Rsh
.

(5)

It is obvious that the SDM has five unknown parameters
(i.e., Iph, Isd, Rs, Rsh, and n) that need to be extracted.

2.2. Double Diode Model (DDM). *e DDM considers the
effect of recombination current loss in the depletion region
and therefore performs well in some applications especially
for thin films at low irradiance [46]. *e output current IL of
the DDM in Figure 2 is formulated as follows [5, 46]:

IL � Iph − Id1 − Id2 − Ish

� Iph − Isd1 · exp
VL + Rs · IL

n1Vt
  − 1  − Isd2

· exp
VL + Rs · IL

n2Vt
  − 1  −

VL + Rs · IL

Rsh
,

(6)

where Isd1 and Isd2 are diode currents and n1 and n2 are
diode ideal factors. *e DDM has seven unknown param-
eters (i.e., Iph, Isd1, Isd2, Rs, Rsh, n1, and n2) that need to be
extracted.

2.3. PV Module Model. *e output current IL of a PV
module with Ns × Np solar cells in series and/or in parallel
can be calculated as follows.

For the SDM-based PV module,

IL � Np Iph − Isd · exp
VL/Ns + RsIL/Np

nVt
  − 1 

−
VL/Ns + RsIL/Np

Rsh
.

(7)

For the DDM-based PV module,

IL � Np Iph − Isd1 · exp
VL/Ns + RsIL/Np

n1Vt
  − 1 

− Isd2 · exp
VL/Ns + RsIL/Np

n2Vt
  − 1  −

VL/Ns + RsIL/Np

Rsh
.

(8)

2.4. Objective Function. In general, the root mean square
error (RMSE) between the measured current IL,measured and
the calculated current IL,calculated is used as the objective
function [15, 17–19, 21–23]:

minf(x) � RMSE(x) �

����������������������������

1
N



N

k�1
I

k
L,calculated(x) − I

k
L,measured 

2




,

(9)

where N is the number of measured data and x is the vector
of unknown parameters.

3. Supply and Demand Mechanism of the
Cobweb Model

*e cobweb model [43, 44] is a famous economic theory
used to study the fluctuation relationship between the price

VL

Iph Id Ish

Rsh

Rs

IL

D

Figure 1: Equivalent circuit of the SDM.
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Figure 2: Equivalent circuit of the DDM.
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and quantity of a commodity in a perfectly competitive
market. It was apparently first named by Nicholas Kardor in
1934. *e cobweb model is a dynamic equilibrium analysis
theory based on elastic principle. According to this theory,
for a given commodity, its quantity Qt+1 in the next time
reacts to its current price Pt with an increasing supply
function Qt+1 � g(Pt) due to production lags, while its price
Pt+1 in the next time depends only on its corresponding
quantity Qt+1 at the same time with a decreasing demand
function Pt � f(Qt). Generally, both functions f(·) and
g(·) are assumed to be linear as follows for the sake of
simplification:

Supply functiong(·): Qt+1 − Qe � Kg Pt − Pe( , (10)

Demand function f(·): Pt+1 − Pe � Kf Qt+1 − Qe( ,

(11)

where Kg > 0 and Kf < 0 are the supply slop and demand
slop, respectively, and Ee(Qe, Pe)

T is an equilibrium point.
By substituting equation (10) into equation (11), the

following formulation is yielded:

Pt+1 � KfKgPt + 1 − KfKg Pe. (12)

Consequently, we can obtain the following equation (13)
easily by using recursion:

Pt+1 � KfKg 
t
P1 + 1 − KfKg 

t
 Pe. (13)

It can be seen from (13) that markets have the following
three dynamic modes:

(i) Convergent mode: If |KfKg|< 1, then
limt⟶∞Pt⟶ Pe; therefore, this market is stable
and the price and quantity tend to spiral inwards
with time as shown in Figure 3(a).

(ii) Divergent mode: If |KfKg|> 1, then
limt⟶∞Pt⟶∞, which means that this market is
divergent and the price and quantity tend to spiral
outwards with time as shown in Figure 3(b).

(iii) Closedmode: If |KfKg| � 1, when the time t is even,
limt⟶∞Pt � P1; when t is odd,
limt⟶∞Pt � 2Pe − P1. Hence, this market is os-
cillating and the price has the same impact on the
supply and demand of the market as shown in
Figure 3(c).

4. Supply-Demand-Based Optimization (SDO)

SDO [42] is a very young and effective metaheuristic al-
gorithm inspired by the cobweb theory about the supply and
demand mechanism. In SDO, there are ps markets and each
market is considered a solution for a given optimization
problem. Each market has D commodities corresponding to
variables of the problem. Each commodity has a certain price
and quantity at a given time.*erefore, each market actually
has two solutions where one is a candidate solution Pt

i �

[Pt
i,1, Pt

i,2, . . . , Pt
i,D] represented by the prices of commodities

and the other is a possible solutionQt
i � [Qt

i,1, Qt
i,2, . . . , Qt

i,D]

composed by the quantities of commodities, where
i � 1, 2, . . . , ps, t � 1, 2, . . . , tmax, tmax is the maximum
number of iterations. Each price solution Pt

i and quantity
solution Qt

i are associated with the fitness values f(Pt
i) and

f(Qt
i), respectively. *e fitness value f(Pt

i) is directly
analogous to the rationality of a market. *e price solution
Pt

i will be replaced by the quantity solution Qt
i if Q

t
i is more

rational, i.e., f(Qt
i) is smaller than f(Pt

i ) for a minimization
optimization problem.

Although both the price solution Pt
i and quantity so-

lution Qt
i serve as solutions, they have different updating

strategies. It can be seen from equations (10) and (11) that
the prerequisite of obtaining the prices and quantities of a
market is getting the position of the equilibrium point

Et
e � [Et

e,1, Et
e,2, . . . , Et

e,D] �
Qt

e,1, Qt
e,2, . . . , Qt

e,D

Pt
e,1, Pt

e,2, . . . , Pt
e,D

 . How-

ever, the equilibrium point is not known a priori during the
iterations. In this context, SDO adopts the following
methods to determine the equilibrium point Et

e at each it-
eration. For the quantity, each market chooses a quantity
solution Qt

k � [Qt
k,1, Qt

k,2, . . . , Qt
k,D] probabilistically as its

quantity equilibrium vector Qt
e � [Qt

e,1, Qt
e,2, . . . , Qt

e,D] using
fitness value-based roulette wheel selection as follows:

λi � f Qt
i  −

1
ps



ps

i�1
f Qt

i 




,

μi �
λi


ps
i�1λi

,

Qt
e � Qt

k, k � RouletteWheel Selection (μ),

(14)

where μ � [μ1, μ2, . . . , μps].
Concerning the price, each market chooses either a price

solution Pt
k � [Pt

k,1, Pt
k,2, . . . , Pt

k,D] probabilistically using
fitness value-based roulette wheel selection or the average
price vector Pt � [Pt

1, Pt
2, . . . , Pt

D] of all markets as its
quantity equilibrium vector Pt

e � [Pt
e,1, Pt

e,2, . . . , Pt
e,D]. Pt

k

and Pt are chosen with the same probability:

ρi � f Pt
i  −

1
ps



ps

i�1
f Pt

i 




,

σi �
ρi


ps
i�1ρi

,

Pt
e �

r1 · Pt
k, if r2 ≥ 0.5,

Pt, if r2 < 0.5,

⎧⎪⎨

⎪⎩

(15)

where Pt
d � (1/ps)ps

i�1P
t
i,d, d � 1, 2, . . . , D, k � Roulette

Wheel Selection Wheel Selection (σ), σ � [σ1, σ2, . . . , σps],
and r1 and r2 are random real numbers in (0, 1).

After getting the position of the equilibrium point
Et

e � [Et
e,1, Et

e,2, . . . , Et
e,D], the quantity and price adopt the

following strategies to generate their corresponding trial
vectors TQt

k � [TQt
i,1, TQt

i,2, . . . , TQt
i,D] and TPt

k � [TPt
i,1,

TPt
i,2, . . . , TPt

i,D], respectively:
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TQ
t
i,d � Q

t
e,d + α · P

t
i,d − P

t
e,d ,

TP
t
i,d � P

t
e,d + β · TQ

t
i,d − Q

t
e,d ,

(16)

where d � 1, 2, . . . , D, and α and β denote the supply weight
and demand weight, respectively. *ey are determined as
follows:

α �
2 · tmax − t + 1( 

tmax
· sin 2πr3( , (17)

β � 2 · cos 2πr4( , (18)

where r3 and r4 are random real numbers in (0, 1).
*ereafter, a selection is implemented to choose a fitter

one as follows:

Qt+1
i �

TQt
i , if f TQt

i( ≤f Qt
i( ,

Qt
i , otherwise,

⎧⎨

⎩

Pt+1
i �

TPt
i , if f TPt

i(  is the smallest one,

Qt+1
i , if f Qt+1

i(  is the smallest one,

Pt
i , otherwise.

⎧⎪⎪⎨

⎪⎪⎩

(19)

It can be seen that if |αβ|< 1, then the corresponding
market is stable or convergent, which means the supply and
demand mechanism defines a search space in the neigh-
borhood of the equilibrium point and allows the market to
exploit its prices inside that domain. If |αβ|> 1, the corre-
sponding market is divergent, indicating that the supply and
demand mechanism defines a large search space far away
from the equilibrium point and allows the market to explore
its prices in new promising areas. |αβ| � 1 corresponds to the
critical point between the exploration and exploitation. In
addition, equations (17) and (18) enable SDO a smooth
transition from exploration to exploitation as the iterations
progress. *erefore, SDO exhibits exploration and exploi-
tation and possesses an ability to balance them. *e flow-
chart of SDO is shown in Figure 4.

5. Experimental Results

To validate the performance of SDO in solving the parameter
extraction problem of PV models, SDO is applied to the
following four different PV models with diverse
characteristics:

(i) RTC France silicon solar cell [48]: contains 26 pairs
of I-V data points measured at 33°C under
1000W/m2 irradiance

(ii) PVM 752 GaAs thin film cell [17]: contains 44 pairs
of I-V data points measured at 25°C under
1000W/m2 irradiance

(iii) STM6-40/36 monocrystalline module [30, 49]:
composed of 36 cells in series with 20 pairs of I-V
data points measured at 51°C

(iv) STP6-120/36 polycrystalline module [30, 49]:
composed of 36 cells in series with 24 pairs of I-V
data points measured at 55°C

*e search ranges for the involved parameters are
presented in Table 1. In this work, both the SDM and DDM
are used to model all of these four PV models. In addition,
ten state-of-the-art algorithms including comprehensive
learning particle swarm optimizer (CLPSO) [50], hybrid
differential evolution with biogeography-based optimization
(DE/BBO) [51], generalized oppositional teaching-learning-
based optimization (GOTLBO) [22], improved JAYA op-
timization algorithm (IJAYA) [23], improved whale opti-
mization algorithm (IWOA) [25], teaching-learning-based
optimization with learning experience of other learners
(LETLBO) [52], modified artificial bee colony algorithm
(MABC) [53], opposition-based differential evolution
(ODE) [54], teaching-learning-based artificial bee colony
(TLABC) [55], and self-adaptive teaching-learning-based
optimization (SATLBO) [56] are employed to verify SDO.
*e parameter settings for these ten compared algorithms
are kept the same as those in their original literature and
summarized in Table 2. *e maximum number of fitness
evaluations (Max_FEs) setting as 50000 [23, 24, 26, 30, 55, 56]
serves as the stopping condition for fair comparison. In ad-
dition, for each algorithm, 50 independent runs are executed
in MATLAB 2017a.

5.1. Results on the RTC France Silicon Solar Cell. *e ex-
perimental results including theminimum (Min), maximum
(Max), mean (Mean), and standard deviation (Std Dev)
values of the RMSE values over 50 independent runs are
recorded. Because the actual values for the involved pa-
rameters are not known a priori, so the RMSE values can be
used as an index to weigh the extraction accuracy.
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Figure 3: Dynamic modes of the cobweb model. (a) Convergent mode; (b) divergent mode; (c) closed mode.
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For the RTC France silicon solar cell, the experimental
results are summarized in Table 3. *e best results are
highlighted in boldface. It can be seen that, for the SDM, five
algorithms including SDO, DE/BBO, ODE, SATLBO, and
TLABC achieve the smallest RMSE value (9.8602E − 04).
Even so, SDO gets better results in terms of the maximum

RMSE, mean RMSE, and standard deviation values, in-
dicating that it is more robust and can obtain more reliable
and accurate values for the unknown parameters. For the
DDM, SDO performs the best in all terms of RMSE values,
demonstrating its robustness and accuracy again. In addi-
tion, Wilcoxon’s rank sum test at confidence level 0.05 is

Set parameters of SDO

Output the solution Pbest and the corresponding RMSE value 

Evaluate the fitness for each solution Pi and Qi

Is the stopping criterion satisfied?

End

Start

Generate a random initial market population M = {P, Q} with ps candidate price
solutions P = {P1, P2, ..., Pps} and ps possible quantity solutions Q = {Q1, Q2, ..., Qps} 

t = t + 1

Initialize the iteration counter t = 1 

Remain Qi 

For each market

NoYes
F (Qi) ≤ F (Pi)?

Choose a random quantity solution using roulette wheel
selection and set it as the equilibrium quantity vector Qe 

Choose a random price solution
using roulette wheel selection
and set it as the equilibrium

price vector Pe 

r2 < 0.5?

Update weights α and β 

Generate a quantity trial vector TQi using equation (20) 

Generate a price trial vector TPi using equation (21) 

Evaluate the fitness for TQi and TPi 

F (TQi) ≤ F (Qi)? F (TPi) ≤ F (Pi)?

F (Qi) ≤ F (Pi)?

Accept TQi as Qi 

Remain Pi Accept Qi as Pi 

Remain Pi Accept Qi as Pi

NoYes

oNYes

Accept TPi as Pi Remain Pi 

No Yes

No

NoYes

Determine the best price solution Pbest

Update the best price solution Pbest 

Yes

Set the average price vector P t

as the equilibrium price vector Pe 

Figure 4: *e flowchart of SDO.
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used to compare the significance between SDO and other
algorithms. *e marks “†,” “‡,” and “≈” denote that SDO is
better than, worse than, and similar to the compared al-
gorithm, respectively. It is clear that SDO is significantly
better than all of the other ten compared algorithms on the
SDM. With regards to the DDM, SDO wins other nine
algorithms except ODE while both SDO and ODE get the

similar results statistically. Moreover, the convergence
curves illustrated in Figure 5 are provided to study the
convergence property of SDO. It shows that IJAYA con-
verges the fastest at the large part of evolutionary process.
Nevertheless, it is gradually overtaken and finally surpassed
by SDO after about 35000 and 34000 fitness evaluations for
the SDM and DDM, respectively, indicating that SDO has a

Table 1: Search ranges of parameters of PV models.

Parameter
RTC France cell PVM 752 GaAs cell STM6-40/36

module
STP6-120/36

module
LB UB LB UB LB UB LB UB

Iph (A) 0 1 0 1 0 2 0 8
Isd (µA) 0 1 0 1 0 50 0 50
Rs (Ω) 0 0.5 0 1 0 0.36 0 0.36
Rsh (Ω) 0 100 0 1000 0 1000 0 1500
n, n1, n2 1 2 1 2 1 60 1 50

Table 2: Parameter settings for involved algorithms.

Algorithm Parameter settings
CLPSO ps� 40, w � 0.9⟶ 0.4, c� 1.49445, m� 7
DE/BBO ps� 100, F� rand (0.1, 0.9), CR� 0.9, E� I� 1
GOTLBO ps� 50, Jr� 0.4
IJAYA ps� 20
IWOA ps� 50, a� 2⟶ 0
LETLBO ps� 50
MABC ps� 150, limit� 100, P � 0.7
ODE ps� 100, F� 0.5, CR� 0.9, Jr� 0.3
SATLBO ps� 40
TLABC ps� 50, limit� 200, F� rand (0, 1)
SDO ps� 20

Table 3: Experimental results on the RTC France solar cell.

Model Algorithm Min Max Mean Std. dev. Significance

SDM

CLPSO 1.0016E − 03 1.4520E − 03 1.1329E − 03 1.0917E − 04 †
DE/BBO 9.8602E− 04 1.2373E − 03 1.0533E − 03 5.0412E − 05 †
GOTLBO 9.8627E − 04 1.4071E − 03 1.0796E − 03 9.8773E − 05 †
IJAYA 9.8603E − 04 1.0019E − 03 9.8934E − 04 3.5283E − 06 †
IWOA 9.8829E − 04 3.2095E − 03 1.4633E − 03 3.7745E − 04 †
LETLBO 9.8604E − 04 1.1558E − 03 1.0145E − 03 3.7825E − 05 †
MABC 1.0154E − 03 1.8145E − 03 1.1980E − 03 1.6722E − 04 †
ODE 9.8602E− 04 1.4627E − 03 1.0628E − 03 1.1279E − 04 †

SATLBO 9.8602E− 04 1.0416E − 03 9.9082E − 04 9.3056E − 06 †
TLABC 9.8602E− 04 1.0311E − 03 9.9051E − 04 9.3740E − 06 †
SDO 9.8602E− 04 9.8616E− 04 9.8603E − 04 2.5141E− 08

DDM

CLPSO 1.0084E − 03 1.7444E − 03 1.2000E − 03 1.4938E − 04 †
DE/BBO 9.8589E − 04 1.7089E − 03 1.1715E − 03 1.8756E − 04 †
GOTLBO 9.8736E − 04 1.4216E − 03 1.1419E − 03 1.2637E − 04 †
IJAYA 9.8439E − 04 1.1977E − 03 1.0045E − 03 3.6754E − 05 †
IWOA 9.8629E − 04 2.1982E − 03 1.3907E − 03 3.0524E − 04 †
LETLBO 9.8270E − 04 1.3936E − 03 1.0648E − 03 1.0259E − 04 †
MABC 9.8707E − 04 1.2597E − 03 1.0740E − 03 5.8610E − 05 †
ODE 9.8271E − 04 1.1779E − 03 9.9590E − 04 3.1806E − 05 ≈

SATLBO 9.8301E − 04 1.1634E − 03 1.0024E − 03 3.5296E − 05 †
TLABC 9.8349E − 04 1.2529E − 03 1.0247E − 03 6.0243E − 05 †
SDO 9.8250E− 04 1.0271E− 03 9.8822E − 04 8.8518E− 06
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relatively fast convergence speed throughout the evolu-
tionary process.

*e extracted values obtained by SDO for the involved
unknownparameters corresponding to theminimumRMSE are
listed in Table 4. With these extracted parameters, the I-V and
P-V characteristic curves can be reconstructed easily as shown in
Figure 6. It is obvious that the calculated data achieved by SDO
agree with the measured data well throughout the entire voltage
range. In addition, the individual absolute error (IAE) between
the calculated current and measured current is recorded in
Table 5. All of the IAE values are smaller than 0.0016, meaning
that the values extracted by SDO for the involved parameters of
both the SDM and DDM are very accurate.

Additionally, comparing the results of the SDM and
DDM, we can find that the minimum RMSE value provided
by the DDM is lower than that given by the SDM.*e sum of
IAE obtained by the DDM is 0.01730620 which is smaller
than that (0.1770381) given by SDM, indicating that the
DDMmay be more suitable for the RTC France silicon solar
cell. On the other side, we also observe that the SDM is better
than the DDM in terms of the maximum RMSE, mean
RMSE, and standard deviation values.*is is mainly because
the DDM has seven unknown parameters that need to be
extracted while the SDM only has five. *erefore, the DDM
is more complex with more local minima and the solution
algorithms are more likely to get into them.

5.2. Results on PVM 752 GaAs >in Film Cell. For the PVM
752 GaAs thin film cell, the RMSE values are presented in
Table 6. It is clear that IJAYA achieves the best values in all
terms of RMSE for the SDM while SDO gets the second best
minimumRMSE value. Considering themaximumRMSE and
mean RMSE, besides IJAYA, both SATLBO and TLABC are
also better than SDO while SDO performs better than the rest

seven algorithms, which is also verified by Wilcoxon’s rank
sum test results. For the DDM, IJAYA still performs well but it
is worse than SDO in terms of minimum RMSE where IWOA
gets the least value. In addition, SDO beats both SATLBO and
TLABC for the DDM, indicating SDO is more effective in
solving this complex model. *e test results show SDO is
better than the nine algorithms except IJAYA. *e conver-
gence curves in Figure 7 show that IJAYA is the fastest while
SDO maintains a relatively fast speed even at the later stage.

*e extracted optimal parameters obtained by SDO are
tabulated in Table 7, and the reconstructed I-V and P-V
characteristic curves corresponding to these optimal param-
eters are presented in Figure 8. Figure 8 shows that the cal-
culated data achieved by SDO with both the SDM and DDM
are in good coincidence with the measured data. *e IAE
values in Table 8 are all smaller than 0.0004, which demon-
strates the good accuracy of SDO again. Table 8 also reveals
that the DDM provides a smaller value of the sum of IAE than
the SDM, which results in an inference of good adaptability of
the DDM for the PVM 752 GaAs thin film cell.

5.3. Results on the STM6-40/36 Monocrystalline Module.
Table 9 presents the experimental results on the STM6-40/36
monocrystalline module. It clearly shows that SDO provides
the least values in all terms of RMSE for both the SDM and
DDM. In addition, the standard deviation values of SDO for
both the SDM and DDM are at least one order of magnitude
lower than those of the other compared algorithms, in-
dicating its good robustness on this PV module. Wilcoxon’s
rank sum test results demonstrate that SDO is significantly
better than ten and nine algorithms for the SDM and DDM,
respectively. Both IJAYA and SDO get the similar result for
the DDM statistically. *e convergence curves in Figure 9
manifest that IJAYA still performs well but it is surpassed by
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Figure 5: Convergence curves for the RTC France silicon solar cell. (a) SDM; (b) DDM.
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Figure 6: Comparison between the measured and calculated data achieved by SDO for the RTC France silicon solar cell. (a) I-V
characteristic; (b) P-V characteristic.

Table 5: Calculated results for the RTC France solar cell by SDO.

Item VL (V) IL measured (A)
SDM DDM

IL calculated (A) IAE (A) IL calculated (A) IAE (A)
1 − 0.2057 0.7640 0.76408765 0.00008765 0.76397865 0.00002135
2 − 0.1291 0.7620 0.76266264 0.00066264 0.76260103 0.00060103
3 − 0.0588 0.7605 0.76135473 0.00085473 0.76133641 0.00083641
4 0.0057 0.7605 0.76015424 0.00034576 0.76017502 0.00032498
5 0.0646 0.7600 0.75905593 0.00094407 0.75911090 0.00088910
6 0.1185 0.7590 0.75804334 0.00095666 0.75812616 0.00087384
7 0.1678 0.7570 0.75709159 0.00009159 0.75719293 0.00019293
8 0.2132 0.7570 0.75614207 0.00085793 0.75624879 0.00075121
9 0.2545 0.7555 0.75508732 0.00041268 0.75518142 0.00031858
10 0.2924 0.7540 0.75366447 0.00033553 0.75372478 0.00027522
11 0.3269 0.7505 0.75138806 0.00088806 0.75139526 0.00089526
12 0.3585 0.7465 0.74734834 0.00084834 0.74729210 0.00079210
13 0.3873 0.7385 0.74009688 0.00159688 0.73998463 0.00148463
14 0.4137 0.7280 0.72739678 0.00060322 0.72725709 0.00074291
15 0.4373 0.7065 0.70695328 0.00045328 0.70682936 0.00032936
16 0.4590 0.6755 0.67529492 0.00020508 0.67522713 0.00027287
17 0.4784 0.6320 0.63088433 0.00111567 0.63088881 0.00111119
18 0.4960 0.5730 0.57208207 0.00091793 0.57214459 0.00085541
19 0.5119 0.4990 0.49949167 0.00049167 0.49957588 0.00057588
20 0.5265 0.4130 0.41349364 0.00049364 0.41356039 0.00056039
21 0.5398 0.3165 0.31721950 0.00071950 0.31724334 0.00074334
22 0.5521 0.2120 0.21210317 0.00010317 0.21207988 0.00007988
23 0.5633 0.1035 0.10272136 0.00077864 0.10266820 0.00083180
24 0.5736 − 0.0100 − 0.00924878 0.00075122 − 0.00930040 0.00069960
25 0.5833 − 0.1230 − 0.12438136 0.00138136 − 0.12439113 0.00139113
26 0.5900 − 0.2100 − 0.20919308 0.00080692 − 0.20914419 0.00085581
Sum of IAE 0.01770381 0.01730620

Table 4: Extracted value for the parameters of the RTC France solar cell by SDO.

Model Iph (A) Isd1 (µA) Rs (Ω) Rsh (Ω) n1 Isd2 (µA) n2 RMSE
SDM 0.7608 0.3230 0.0364 53.7185 1.4812 — — 9.8602E − 04
DDM 0.7608 0.7879 0.0368 55.5705 2.0000 0.2214 1.4493 9.8250E − 04
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SDO after about 43000 and 31000 fitness evaluations for the
SDM and DDM, respectively, indicating that SDO performs
highly competitively at the later stage.

Table 10 reports the extracted optimal parameters
yielded by SDO, and Figure 10 illustrates the reconstructed
I-V and P-V characteristic curves. We can see that the

Table 6: Experimental results on the PVM 752 GaAs thin film cell.

Model Algorithm Min Max Mean Std. dev. Significance

SDM

CLPSO 2.3769E − 04 6.2527E − 04 5.2031E − 04 7.0536E − 05 †

DE/BBO 4.4257E − 04 5.4430E − 04 4.9571E − 04 2.2319E − 05 †

GOTLBO 2.9492E − 04 4.9484E − 04 4.0204E − 04 4.7484E − 05 †

IJAYA 2.2880E − 04 2.7167E − 04 2.5378E − 04 1.1645E − 05 ‡

IWOA 2.4740E − 04 5.7399E − 04 4.5156E − 04 8.9898E − 05 †

LETLBO 2.7261E − 04 3.9623E − 04 3.3354E − 04 3.1904E − 05 †

MABC 2.8780E − 04 6.2992E − 04 4.9864E − 04 8.6429E − 05 †

ODE 3.3079E − 04 5.1531E − 04 4.5800E − 04 3.7762E − 05 †

SATLBO 2.3507E − 04 3.1341E − 04 2.7396E − 04 1.6165E − 05 ‡

TLABC 2.5814E − 04 3.4267E − 04 2.8923E − 04 2.0936E − 05 ‡

SDO 2.3487E − 04 3.7700E − 04 3.1727E − 04 2.7687E − 05

DDM

CLPSO 3.6535E − 04 8.0492E − 04 6.3929E − 04 9.0095E − 05 †

DE/BBO 4.0709E − 04 5.8587E − 04 5.2992E − 04 3.5679E − 05 †

GOTLBO 3.0186E − 04 5.5029E − 04 4.1337E − 04 6.0833E − 05 †

IJAYA 2.1537E − 04 3.5937E − 04 2.5929E − 04 2.2873E − 05 ‡

IWOA 2.0527E − 04 5.7609E − 04 3.8642E − 04 9.3900E − 05 †

LETLBO 2.7139E − 04 4.9192E − 04 3.4188E − 04 4.6623E − 05 †

MABC 3.8852E − 04 6.7013E − 04 5.6206E − 04 6.1736E − 05 †

ODE 3.4568E − 04 5.0415E − 04 4.2829E − 04 3.7022E − 05 †

SATLBO 2.3785E − 04 5.4593E − 04 3.2119E − 04 6.7473E − 05 †

TLABC 2.3397E − 04 5.8888E − 04 3.4127E − 04 5.9141E − 05 †

SDO 2.1318E − 04 4.7178E − 04 2.8703E − 04 5.1523E − 05
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Figure 7: Convergence curves for the PVM 752 GaAs thin film cell. (a) SDM; (b) DDM.

Table 7: Extracted value for the parameters of PVM 752 GaAs thin film cell by SDO.

Model Iph (A) Isd1 (µA) Rs (Ω) Rsh (Ω) n1 Isd2 (µA) n2 RMSE
SDM 0.1000 5.9440E − 06 0.6499 668.5946 1.6467 — — 2.3487E − 04
DDM 0.1001 7.2313E − 04 0.6684 637.3026 2.0000 6.2352E − 05 1.5152 2.1318E − 04
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calculated data achieved by SDO are in good agreement with
the measured data over the entire voltage range. Besides,
Table 11 shows that all of the IAE values are less than
0.00607. Table 11 also testifies to that both the SDM and
DDM obtain a comparable sum of IAE value, indicating that
the DDM brings no benefit in terms of accuracy for the
STM6-40/36 monocrystalline module. Moreover, Table 9
shows that the DDM gives larger values in all terms of
RMSE except the minimum RMSE, meaning that the DDM
is more complex and the solution algorithms are harder to
get comparable results as those given by the SDM under the
same considered condition (i.e., with the same Max_FEs).

5.4. Results on the STP6-120/36 Polycrystalline Module.
With regards to the STP6-120/36 polycrystalline module, the
experimental results tabulated in Table 12 show that ODE and
SDO achieve the same least values (1.6601E − 02) for both the
SDM and DDM. However, SDO beats ODE in the rest terms
of RMSE. Actually, Wilcoxon’s rank sum test results also
declare that SDO is significantly better than all of the other
algorithms including ODE. *e convergence curves in Fig-
ure 11 demonstrate that although SDO is relatively slow at the
first stage, it has the ability of jumping out of local optima and
keeping a relatively fast speed to search more promising areas
at the later stage. Finally, it surpasses all compared algorithms
after about 43000 and 46000 fitness evaluations for the SDM
and DDM, respectively.

*e extracted optimal parameters obtained by SDO are
provided in Table 13. Using these parameters, the output
currents and powers corresponding to themeasured voltages
can be calculated easily and they are summarized in Table 14.
It can be seen that all IAE values are less than 0.0375. *e
reconstructed I-V and P-V characteristic curves presented in
Figure 12 show again that the calculated data acquired by
SDO with both the SDM and DDM all fit with the measured

data well. Besides, although the value of sum of IAE given by
the DDM in Table 14 is slightly smaller than that of the SDM,
the difference (0.00000089) is in practice very small, which
concludes that both the SDM and DDM provide a similar
accuracy for the STP6-120/36 polycrystalline module.
Furthermore, Table 12 also proves that optimizing the DDM
is more difficult than optimizing the SDM.

5.5. Overall Performance. In the above four sections, only
the single-model statistical analysis by Wilcoxon’s rank sum
test is implemented to compare SDO with the other algo-
rithms. As recommended in [57], the multiple-model sta-
tistical analysis that considers all the involved models
simultaneously is also very momentous to verify the per-
formance of SDO. In this section, the popular Friedman test
at confidence level 0.05 is used to check the overall behavior
of SDO in solving the problem concerned here. *e test
result is given in Figure 13. Clearly, SDO obtains the first
overall best ranking, followed by IJAYA, TLABC, SATLBO,
LETLBO, ODE, GOTLBO, DE/BBO, IWOA, CLPSO, and
MABC. In conclusion, it can be confirmed by combining the
single-model statistical analysis results in Tables 3, 6, 9, and
12 with the multiple-model statistical analysis result in
Figure 13 that the overall performance of SDO is the best
among all of involved algorithms in terms of the final so-
lution quality, i.e., extraction accuracy.

5.6. Influence of Population Size on SDO. Population size is
always a key parameter in metaheuristics and choosing an
appropriate value is very important in solving different
problems [58, 59]. In this section, the influence of ps on SDO
in solving the parameter extraction problem of PV models is
investigated. Five values of ps from 10 to 50 with an interval of
10 are tested.*e value of Max_FEs is kept the same as that in
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Figure 8: Comparison between the measured and calculated data achieved by SDO for the PVM 752 GaAs thin film cell. (a) I-V
characteristic; (b) P-V characteristic.
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Section 5.1.*e experimental results over 50 independent runs
are illustrated in Figure 14. It is obvious that ps does affect the
performance of SDO. Specifically, a smaller value (e.g.≤20) is
beneficial to SDO. When the value of ps exceeds 20, the larger
the value of ps, the worser the performance of SDO. In ad-
dition, SDO obtains the best mean RMSE values with ps � 20
on three PV models including the RTC France silicon solar
cell, STM6-40/36 monocrystalline module, and STP6-120/36
polycrystalline module.While on the PVM752 GaAs thin film
cell, SDO with ps � 10 is slightly better than that with ps � 20.
*e main reasons are as follows:

(i) *e parameter extraction problem of PV models
belongs to a low-dimensional optimization problem.
*ere is no need to set a relatively large population.
Notwithstanding enriching the population diversity
with a large population, all markets (i.e., individuals)
scatter in the whole search domain, which is not
good for the convergence. Additionally, a large
population means that a considerable number of
fitness evaluations will be expended, especially that
SDO expends 2 × ps fitness evaluations at each it-
eration. In this context, the number of iterations will

Table 8: Calculated results for the PVM 752 GaAs thin film cell by SDO.

Item VL (V) IL measured (A)
SDM DDM

IL calculated (A) IAE (A) IL calculated (A) IAE (A)
1 − 0.1659 0.1001 0.10018154 0.00008154 0.10021151 0.00011151
2 − 0.1281 0.1000 0.10012506 0.00012506 0.10015227 0.00015227
3 − 0.0888 0.0999 0.10006634 0.00016634 0.10009069 0.00019069
4 − 0.0490 0.0999 0.10000688 0.00010688 0.10002834 0.00012834
5 − 0.0102 0.0999 0.09994894 0.00004894 0.09996763 0.00006763
6 0.0275 0.0998 0.09989268 0.00009268 0.09990874 0.00010874
7 0.0695 0.0999 0.09983014 0.00006986 0.09984342 0.00005658
8 0.1061 0.0998 0.09977592 0.00002408 0.09978514 0.00001486
9 0.1460 0.0998 0.09971549 0.00008451 0.09972260 0.00007740
10 0.1828 0.0997 0.09966050 0.00003950 0.09966491 0.00003509
11 0.2230 0.0997 0.09960043 0.00009957 0.09960189 0.00009811
12 0.2600 0.0996 0.09954514 0.00005486 0.09954387 0.00005613
13 0.3001 0.0997 0.09948520 0.00021480 0.09948096 0.00021904
14 0.3406 0.0996 0.09942463 0.00017537 0.09941735 0.00018265
15 0.3789 0.0995 0.09936727 0.00013273 0.09935706 0.00014294
16 0.4168 0.0994 0.09931034 0.00008966 0.09929711 0.00010289
17 0.4583 0.0994 0.09924747 0.00015253 0.09923068 0.00016932
18 0.4949 0.0993 0.09919090 0.00010910 0.09917063 0.00012937
19 0.5370 0.0993 0.09912292 0.00017708 0.09909827 0.00020173
20 0.5753 0.0992 0.09905215 0.00014785 0.09902168 0.00017832
21 0.6123 0.0990 0.09896636 0.00003364 0.09892948 0.00007052
22 0.6546 0.0988 0.09881370 0.00001370 0.09876896 0.00003104
23 0.6918 0.0983 0.09855916 0.00025916 0.09850763 0.00020763
24 0.7318 0.0977 0.09797091 0.00027091 0.09792068 0.00022068
25 0.7702 0.0963 0.09667172 0.00037172 0.09664210 0.00034210
26 0.8053 0.0937 0.09407833 0.00037833 0.09409539 0.00039539
27 0.8329 0.0900 0.09026480 0.00026480 0.09032920 0.00032920
28 0.8550 0.0855 0.08546271 0.00003729 0.08555594 0.00005594
29 0.8738 0.0799 0.07977453 0.00012547 0.07987373 0.00002627
30 0.8887 0.0743 0.07405040 0.00024960 0.07413798 0.00016202
31 0.9016 0.0683 0.06815879 0.00014121 0.06822618 0.00007382
32 0.9141 0.0618 0.06159982 0.00020018 0.06164026 0.00015974
33 0.9248 0.0555 0.05532216 0.00017784 0.05533722 0.00016278
34 0.9344 0.0493 0.04918034 0.00011966 0.04917310 0.00012690
35 0.9445 0.0422 0.04221514 0.00001514 0.04218800 0.00001200
36 0.9533 0.0357 0.03574346 0.00004346 0.03570303 0.00000303
37 0.9618 0.0291 0.02915271 0.00005271 0.02910474 0.00000474
38 0.9702 0.0222 0.02232790 0.00012790 0.02227858 0.00007858
39 0.9778 0.0157 0.01589993 0.00019993 0.01585531 0.00015531
40 0.9852 0.0092 0.00942200 0.00022200 0.00938796 0.00018796
41 0.9926 0.0026 0.00273929 0.00013929 0.00272204 0.00012204
42 0.9999 − 0.0040 − 0.00404317 0.00004317 − 0.00403767 0.00003767
43 1.0046 − 0.0085 − 0.00850506 0.00000506 − 0.00848146 0.00001854
44 1.0089 − 0.0124 − 0.01264980 0.00024980 − 0.01260726 0.00020726
Sum of IAE 0.00593491 0.00561477
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be decreased significantly under a given Max_FEs,
which is not conducive to low-dimensional opti-
mization problems.

(ii) *e problem considered here is a typical multimodal
optimization problem with many local minima.
Although a very small population size can increase
the number of iterations, the population diversity is
low, resulting in poor possible movements of in-
dividuals. All individuals are easy to swarm towards

a certain local optima and thereby suffer from
premature convergence. For example, we can see
from Figure 14 that SDO with ps � 10 suffers from
premature convergence frequently leading to rela-
tively large values of RMSE over 50 runs on many
cases such as Figures 14(a), 14(b), 14(f ), and 14(g).

In fact, there is no axiom or rule that can be used to
determine a proper population size for different optimiza-
tion problems so far. With regards to the problem

Table 9: Experimental results on the STM6-40/36 module.

Model Algorithm Min Max Mean Std. dev. Significance

SDM

CLPSO 2.3723E − 03 1.1682E − 02 4.4191E − 03 1.5097E − 03 †

DE/BBO 2.3456E − 03 3.0233E − 03 2.6869E − 03 1.6177E − 04 †

GOTLBO 1.9424E − 03 3.3244E − 03 2.7496E − 03 2.9176E − 04 †

IJAYA 1.7344E − 03 2.4448E − 03 1.8070E − 03 1.1705E − 04 †

IWOA 1.7326E − 03 3.9651E − 03 2.7463E − 03 5.1334E − 04 †

LETLBO 1.7385E − 03 3.3171E − 03 2.4289E − 03 4.2059E − 04 †

MABC 3.0221E − 03 3.0890E − 02 1.0045E − 02 6.7529E − 03 †

ODE 2.1744E − 03 3.2718E − 03 2.7751E − 03 2.4512E − 04 †

SATLBO 1.7469E − 03 2.4915E − 03 1.9018E − 03 1.2036E − 04 †

TLABC 1.7338E − 03 2.1368E − 03 1.8602E − 03 1.0641E − 04 †

SDO 1.7298E − 03 1.9500E− 03 1.7703E − 03 4.5108E− 05

DDM

CLPSO 2.7951E − 03 1.0415E − 02 4.3612E − 03 1.2092E − 03 †

DE/BBO 2.3524E − 03 3.0713E − 03 2.7546E − 03 1.7561E − 04 †

GOTLBO 2.3605E − 03 4.7391E − 03 3.4289E − 03 6.0545E − 04 †

IJAYA 1.7310E − 03 2.7828E − 03 1.8875E − 03 2.2946E − 04 ≈
IWOA 1.7305E − 03 3.7688E − 03 2.8740E − 03 5.2943E − 04 †

LETLBO 1.7646E − 03 3.6799E − 03 2.7820E − 03 4.4982E − 04 †

MABC 3.1313E − 03 2.5346E − 02 1.0901E − 02 6.7349E − 03 †

ODE 2.4339E − 03 3.2422E − 03 2.8297E − 03 2.0219E − 04 †

SATLBO 1.7556E − 03 4.2588E − 03 1.9882E − 03 3.4909E − 04 †

TLABC 1.7348E − 03 2.1727E − 03 1.8917E − 03 1.0598E − 04 †

SDO 1.7298E − 03 2.0288E− 03 1.8118E − 03 7.2421E− 05
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Figure 9: Convergence curves for the STM6-40/36 monocrystalline module. (a) SDM; (b) DDM.
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considered in this work, it is recommended to set a moderate
value with ps � 20 for SDO.

5.7. Comparison with Reported Results. In order to further
verify the performance of SDO in solving the parameter

extraction problem of PV models, its results are compared
with the reported results of some well-designed parameter
extraction algorithms on the RTC France silicon solar cell.
*e comparison results are presented in Table 15. It shows
that SDO is highly competitive. For the SDM, although it is
worse than RF, RSS, and TSLLS, it is better than or similar

Table 10: Extracted value for the parameters of the STM6-40/36 module by SDO.

Model Iph (A) Isd1 (µA) Rs (Ω) Rsh (Ω) n1 Isd2 (µA) n2 RMSE
SDM 1.6639 1.7387 0.0043 15.9283 1.5203 — — 1.7298E − 03
DDM 1.6639 1.7385 0.0043 15.9372 1.5203 49.9985 54.5816 1.7298E − 03
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Figure 10: Comparison between the measured and calculated data achieved by SDO for the STM6-40/36 monocrystalline module. (a) I-V
characteristic; (b) P-V characteristic.

Table 11: Calculated results for the STM6-40/36 module by SDO.

Item VL (V) IL measured (A)
SDM DDM

IL calculated (A) IAE (A) IL calculated (A) IAE (A)
1 0.0000 1.6630 1.66345813 0.00045813 1.66345837 0.00045837
2 0.1180 1.6630 1.66325224 0.00025224 1.66325248 0.00025248
3 2.2370 1.6610 1.65955120 0.00144880 1.65955152 0.00144848
4 5.4340 1.6530 1.65391445 0.00091445 1.65391477 0.00091477
5 7.2600 1.6500 1.65056577 0.00056577 1.65056600 0.00056600
6 9.6800 1.6450 1.64543056 0.00043056 1.64543061 0.00043061
7 11.5900 1.6400 1.63923444 0.00076556 1.63923432 0.00076568
8 12.6000 1.6360 1.63371579 0.00228421 1.63371559 0.00228441
9 13.3700 1.6290 1.62728848 0.00171152 1.62728824 0.00171176
10 14.0900 1.6190 1.61831518 0.00068482 1.61831493 0.00068507
11 14.8800 1.5970 1.60306738 0.00606738 1.60306715 0.00606715
12 15.5900 1.5810 1.58158500 0.00058500 1.58158482 0.00058482
13 16.4000 1.5420 1.54232828 0.00032828 1.54232820 0.00032820
14 16.7100 1.5240 1.52122523 0.00277477 1.52122518 0.00277482
15 16.9800 1.5000 1.49920572 0.00079428 1.49920570 0.00079430
16 17.1300 1.4850 1.48527115 0.00027115 1.48527114 0.00027114
17 17.3200 1.4650 1.46564321 0.00064321 1.46564322 0.00064322
18 17.9100 1.3880 1.38759934 0.00040066 1.38759934 0.00040066
19 19.0800 1.1180 1.11837210 0.00037210 1.11837178 0.00037178
20 21.0200 0.0000 − 0.00002129 0.00002129 − 0.00002130 0.00002130
Sum of IAE 0.02177419 0.02177500
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to other algorithms in terms of the minimum RMSE value.
For the DDM, SDO achieves a very competitive minimum
RMSE value that is only slightly larger than that of ABC-TRR.

Additionally, in terms of other RMSE values, SDO also yields
comparable performance. In summary, the comparison
demonstrates the good performance of SDO once again.

Table 12: Experimental results on the STP6-120/36 module.

Model Algorithm Min Max Mean Std. dev. Significance

SDM

CLPSO 1.6963E − 02 4.1099E − 02 2.3735E − 02 5.8696E − 03 †

DE/BBO 2.4232E − 02 3.5363E − 02 2.8826E − 02 2.6045E − 03 †

GOTLBO 1.7125E − 02 3.4055E − 02 2.1265E − 02 3.3083E − 03 †

IJAYA 1.6622E − 02 1.6953E − 02 1.6799E − 02 7.3789E − 05 †

IWOA 1.6607E − 02 1.2215E − 01 2.7637E − 02 1.4981E − 02 †

LETLBO 1.6780E − 02 4.6301E − 02 1.9915E − 02 4.9607E − 03 †

MABC 1.7238E − 02 5.4369E − 02 4.0777E − 02 8.9788E − 03 †

ODE 1.6601E− 02 3.9657E − 02 2.5704E − 02 6.4560E − 03 †

SATLBO 1.6652E − 02 1.8713E − 02 1.7042E − 02 3.9219E − 04 †

TLABC 1.6605E − 02 1.7300E − 02 1.6784E − 02 1.6458E − 04 †

SDO 1.6601E− 02 1.6866E − 02 1.6683E − 02 7.1751E− 05

DDM

CLPSO 1.6879E − 02 4.7602E − 02 2.5034E − 02 6.7086E − 03 †

DE/BBO 2.1421E − 02 3.6806E − 02 2.9386E − 02 2.9562E − 03 †

GOTLBO 1.7208E − 02 4.3479E − 02 2.6040E − 02 7.2481E − 03 †

IJAYA 1.6632E − 02 1.7935E − 02 1.6823E − 02 1.7512E − 04 †

IWOA 1.6629E − 02 4.0750E − 02 2.2580E − 02 5.2119E − 03 †

LETLBO 1.6828E − 02 3.1588E − 02 1.9795E − 02 3.0745E − 03 †

MABC 1.8634E − 02 5.5329E − 02 4.2947E − 02 9.3427E − 03 †

ODE 1.6601E− 02 3.8352E − 02 2.5832E − 02 6.3294E − 03 †

SATLBO 1.6678E − 02 1.9395E − 02 1.7107E − 02 4.8711E − 04 †

TLABC 1.6633E − 02 1.8324E − 02 1.6836E − 02 2.5365E − 04 †

SDO 1.6601E− 02 1.7268E − 02 1.6741E − 02 1.2362E− 04
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Figure 11: Convergence curves for the STP6-120/36 polycrystalline module. (a) SDM; (b) DDM.

Table 13: Extracted value for the parameters of STP6-120/36 module by SDO.

Model Iph (A) Isd1 (µA) Rs (Ω) Rsh (Ω) n1 Isd2 (µA) n2 RMSE
SDM 7.4725 2.3350 0.0046 22.2199 1.2601 — — 1.6601E − 02
DDM 7.4725 6.1168E − 02 0.0046 22.2350 48.2465 2.3354 1.2601 1.6601E − 02
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6. Conclusions and Future Work

SDO is a very new and effective metaheuristic. In this paper,
SDO is first applied to the parameter extraction problem of
PV models. Its feasibility and effectiveness are experimen-
tally verified via four PVmodels including cells and modules
with different characteristics. *e experimental results
summarize that

(i) SDO performs better or competitively compared
with other well-designed algorithms according to
both simulation results and Wilcoxon’s rank sum
test results. It, overall, obtains the first ranking
according to the Friedman test.

(ii) SDO exhibits good convergence property especially
at the later stage of evolutionary process, indicating

Table 14: Calculated results for the STP6-120/36 module by SDO.

Item VL (V) IL measured (A)
SDM DDM

IL calculated (A) IAE (A) IL calculated (A) IAE (A)
1 19.2100 0.0000 0.00116434 0.00116434 0.00115600 0.00115600
2 17.6500 3.8300 3.83228233 0.00228233 3.83228460 0.00228460
3 17.4100 4.2900 4.27392911 0.01607089 4.27393114 0.01606886
4 17.2500 4.5600 4.54628987 0.01371013 4.54629162 0.01370838
5 17.1000 4.7900 4.78583302 0.00416698 4.78583443 0.00416557
6 16.9000 5.0700 5.08193389 0.01193389 5.08193481 0.01193481
7 16.7600 5.2700 5.27376516 0.00376516 5.27376571 0.00376571
8 16.3400 5.7500 5.77681381 0.02681381 5.77681335 0.02681335
9 16.0800 6.0000 6.03749239 0.03749239 6.03749146 0.03749146
10 15.7100 6.3600 6.34872743 0.01127257 6.34872610 0.01127390
11 15.3900 6.5800 6.56792937 0.01207063 6.56792798 0.01207202
12 14.9300 6.8300 6.81486011 0.01513989 6.81485901 0.01514099
13 14.5800 6.9700 6.95844905 0.01155095 6.95844839 0.01155161
14 14.1700 7.1000 7.08813731 0.01186269 7.08813732 0.01186268
15 13.5900 7.2300 7.21776104 0.01223896 7.21776204 0.01223796
16 13.1600 7.2900 7.28413003 0.00586997 7.28413171 0.00586829
17 12.7400 7.3400 7.33148314 0.00851686 7.33148538 0.00851462
18 12.3600 7.3700 7.36326482 0.00673518 7.36326746 0.00673254
19 11.8100 7.3800 7.39587315 0.01587315 7.39587620 0.01587620
20 11.1700 7.4100 7.42026500 0.01026500 7.42026828 0.01026828
21 10.3200 7.4400 7.43909223 0.00090777 7.43909549 0.00090451
22 9.7400 7.4200 7.44671497 0.02671497 7.44671805 0.02671805
23 9.0600 7.4500 7.45253755 0.00253755 7.45254032 0.00254032
24 0.0000 7.4800 7.47098178 0.00901822 7.47097731 0.00902269
Sum of IAE 0.27797428 0.27797339
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Figure 12: Comparison between the measured and calculated data achieved by SDO for the STP6-120/36 polycrystalline module. (a) I-V
characteristic; (b) P-V characteristic.
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Figure 14: Influence of population size on SDO. (a) RTC France silicon solar cell with the SDM; (b) RTC France silicon solar cell with DDM;
(c) PVM 752 GaAs thin film cell with the SDM; (d) PVM 752 GaAs thin film cell with the DDM; (e) STM6-40/36 monocrystalline module
with the SDM; (f) STM6-40/36 monocrystalline module with the DDM; (g) STP6-120/36 polycrystalline module with the SDM; (h) STP6-
120/36 polycrystalline module with the DDM.
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it is with the capability of jumping out of local
optima and exploring more promising regions.

(iii) *e population size affects the performance of SDO
significantly. In general, a small size is relatively safe
for low-dimensional optimization problems. For the
problem considered in this work, the size setting as
20 is recommended for SDO.

*e experimental results and comparisons demonstrate
that SDO can serve as a promising alternative to extract ac-
curate and reliable parameters for PV models. In future work,
on one hand, local search methods and adaptive learning
strategies will be employed to accelerate SDO’s convergence
rate especially at the early stage and to choose appropriate
population sizes for SDO in solving different optimization

problems, respectively. On the other hand, attempts will be
made to apply SDO to other electrical engineering problems
such as MPPT, economic dispatch, and optimal power flow.

Nomenclature

Id: Diode current (A)
IL: Output current (A)
Iph: Photogenerated current (A)
Isd, Isd1, and
Isd2:

Saturation currents (A)

Ish: Shunt resistor current (A)
k: Boltzmann constant
n, n1, and n2: Diode ideality factors
Np: Number of cells in parallel

Table 15: Comparison with reported results on the RTC France solar cell.

Model Algorithm Min Max Mean Std. dev.

SDM

RF [60] 7.7301E − 04 NA NA NA
RSS [61] 7.7301E − 04 NA NA NA
LI [62] 1.0548E − 03 NA NA NA

TSLLS [63] 7.7301E − 04 NA NA NA
Tong and Pora [49] 1.5051E − 03 NA NA NA

Tayyan [64] 2.9117E − 03 NA NA NA
MABC [65] 9.862E − 04 NA NA NA
ABSO [66] 9.9124E − 04 NA NA NA
BBO-M [67] 9.8634E − 04 NA NA NA
GGHS [68] 9.9078E − 04 NA NA NA
CARO [69] 9.8665E − 04 NA NA NA
SOS [24] 9.8609E − 04 1.1982E − 03 1.0245E − 03 5.2184E − 05
MSSO [70] 9.8607E − 04 NA NA NA
CWOA [21] 9.8604E − 04 NA NA 1.0216E − 08
CSO [71] 9.8602E − 04 NA 9.8602E − 04 5.4941E − 09

MADE [72] 9.8602E − 04 9.8602E − 04 9.8602E − 04 2.74E − 15
EO-Jaya [73] 9.8603E − 04 NA NA NA
ILCOA [74] 9.8602E − 04 NA NA NA
FPSO [75] 9.8602E − 04 NA NA 2.0142E − 08

PGJAYA [76] 9.8602E − 04 9.8602E − 04 9.8602E − 04 1.4485E − 09
OBWOA [77] 9.8602E − 04 NA NA NA
ABC-TRR [78] 9.8602E − 04 9.8602E − 04 9.8602E − 04 6.15E − 17
NM-MPSO [79] 9.8602E − 04 NA NA NA

SDO 9.8602E − 04 9.8616E − 04 9.8603E − 04 2.5141E − 08

DDM

MABC [65] 9.8276E − 04 NA NA NA
ABSO [66] 9.8344E − 04 NA NA NA
BBO-M [67] 9.8272E − 04 NA NA NA
IGHS [68] 9.8635E − 04 NA NA NA
CARO [69] 9.8260E − 04 NA NA NA
SOS [24] 9.8518E − 04 1.3498E − 03 1.0627E − 03 9.6141E − 05
MSSO [70] 9.8281E − 04 NA NA NA
CWOA [21] 9.8279E − 04 NA NA 1.1333E − 07
CSO [71] 9.8252E − 04 NA 9.9619E − 04 3.4681E − 05

MADE [72] 9.8261E − 04 9.8786E − 04 9.8608E − 04 8.02E − 05
EO-Jaya [73] 9.8262E − 04 NA NA NA
ILCOA [74] 9.8257E − 04 NA NA NA
FPSO [75] 9.8253E − 04 NA NA 3.1469E − 08

PGJAYA [76] 9.8263E − 04 9.9499E − 04 9.8582E − 04 2.5375E − 05
OBWOA [77] 9.8251E − 04 NA NA NA
ABC-TRR [78] 9.8249E − 04 9.8602E − 03 9.8256E − 03 4.95E − 07
NM-MPSO [79] 9.8250E − 04 NA NA NA

EVPS [80] 9.8510E − 04 1.1190E − 03 1.0083E − 03 2.5375E − 05
SDO 9.8250E − 04 1.0271E − 03 9.8822E − 04 8.8518E − 06

NA: not available in the literature.
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Ns: Number of cells in series
q: Electron charge
Rs: Series resistance (Ω)
Rsh: Shunt resistance (Ω)
T: Cell temperature (K)
VL: Output voltage (V)
Vt: Diode thermal voltage (V)
I-V: Current-voltage
P-V: Power-voltage
PV: Photovoltaic
N: Number of experimental data
x: Extracted parameters vector
SDM: Single diode model
DDM: Double diode model
IAE: Individual absolute error
RMSE: Root mean square error
Min: Minimum RMSE
Max: Maximum RMSE
Mean: Mean RMSE
Std. Dev: Standard deviation
D: Dimension of extracted parameters vector
ps: Size of population
t: Current iteration
tmax: Maximum number of iterations
Max_FEs: Maximum number of fitness evaluations
Ee: Equilibrium point
Pi: ith price solution
Pbest: Best price solution found so far
Qi: ith quantity solution
TPi: ith trial price solution
TQi: ith trial quantity solution
Kg: Supply slop
Kf: Demand slop
α: Supply weight
β: Demand weight
r1, r2, r3,
and r4:

Random real numbers in (0, 1)

ABSO: Artificial bee swarm optimization
ABC-TRR: Hybrid trust-region reflective algorithm
BBO-M: Biogeography-based optimization with

mutation strategies
CARO: Chaotic asexual reproduction optimization
CLPSO: Comprehensive learning particle swarm

optimizer
CSO: Cat swarm optimization
CWOA: Improved chaotic whale optimization

algorithm
DE/BBO: Hybrid differential evolution with

biogeography-based optimization
EO-Jaya: Elite opposition-based Jaya algorithm
EVPS: Enhanced vibrating particles system
FPSO: Flexible particle swarm optimization
GGHS: Grouping-based global harmony search
GOTLBO: Generalized oppositional teaching-learning-

based optimization
IGHS: Innovative global harmony search
IJAYA: Improved Jaya optimization algorithm

ILCOA: Improved Lozi map-based chaotic
optimization

IWOA: Improved whale optimization algorithm
LETLBO: Teaching-learning-based optimization with

learning experience of other learners
LI: Linear identification method
MABC: Modified artificial bee colony algorithm
MADE: Memetic adaptive differential evolution
MSSO: Modified simplified swarm optimization
NM-MPSO: Hybrid nelder–mead and modified particle

swarm optimization
OBWOA: Improved opposition-based whale

optimization algorithm
ODE: Opposition-based differential evolution
PGJAYA: Performance-guided Jaya algorithm
RF: Reduced form method
RSS: Reduced-space search
SATLBO: Self-adaptive teaching-learning-based

optimization
SDO: Supply-demand-based optimization
SOS: Symbiotic organisms search
Tayyan: Tayyan’s method
TLABC: Teaching-learning-based artificial bee colony
Tong and
Pora:

Tong and Pora’s method

TSLLS: Two-step linear least-squares method.
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