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�e intuitionistic fuzzy calculus (IFC), based on the basic operational laws of intuitionistic fuzzy numbers (IFNs), has been put
forward. However, the interval-valued IFC (IVIFC), based on the basic operational laws of interval-valued IFNs (IVIFNs), is only
in the original stage. To further develop the theory of the IVIFC and make it be rigorous, the primary task is to systematically
investigate the characteristics of the limits and di�erentials, which is a foundation of the IVIFC. Moreover, there is quite a lot of
literature on IVIFNs; however, the scholars did not reveal the relationships between IFNs and the IVIFNs. To do that, we �rst
investigate the limit of interval-valued intuitionistic fuzzy sequences, and then, we focus on investigating the limit, the continuity,
and the di�erential of IVIFFs in detail and reveal their relationships. After that, due to the fact that the IFC and the IVIFC are
based on the basic operational laws of IFNs and IVIFNs, respectively, we reveal the relationships between the IFNs and the IVIFNs
via some homomorphic mappings. Finally, a case study about continuous data of IVIFNs is provided to illustrate the advantages of
continuous data.

1. Introduction

Since Zadeh [1] introduced fuzzy sets (FSs) in 1965, a lot
of theories addressing vagueness and uncertainties of the
data have been proposed [2–6]. �e intuitionistic fuzzy
set (IFS) [2] is one of the most widely used extensions of
the FSs. Compared with the FS, the IFS is an e�ective
approach to describe vagueness and uncertainties by
adding a nonmembership degree to each element. Later
on, Atanassov and Gargov [7] presented the de�nition of
interval-valued intuitionistic fuzzy set (IVIFS), in which
the membership degree and the nonmembership degree
are two interval values instead of two crisp numbers. To

some extent, interval values can better reveal the char-
acteristics of things: vagueness and uncertainties. Due to
the advantages of the IVIFS, it has been investigated
widely and has been successfully applied to many �elds,
such as aggregation operators [8, 9], decision-making
[10, 11], preference relations [12, 13], entropy [14, 15],
and so on.

More recently, the scholars have investigated a series of
fundamental properties with respect to the intuitionistic
fuzzy calculus (IFC) [16–22]; the key characteristic of the
IFC is that it is based on the basic operational laws of
intuitionistic fuzzy numbers (IFNs). With these opera-
tional laws, Lei and Xu [16] introduced the limits, the
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derivatives, and the differentials in intuitionistic fuzzy
circumstance and gave their basic properties. To further
develop limit theory, the intuitionistic fuzzy infinitesimals
(IFIs) [17] were introduced to reveal the relationships
between the derivatives and the differentials. Later on, the
completeness of intuitionistic fuzzy partially ordered set
[18] was discussed. As for the definite integrals in the IFC,
the scholars constructed several kinds of definite integrals
[19–22] from different points of view. Nevertheless, in-
terval-valued IFC (IVIFC), which is based on the opera-
tional laws of the interval-valued IFNs (IVIFNs), is only in
the original stage. Zhao et al. [23] first presented four
change directions of the IVIFNs and then introduced the
limits, the derivatives, and the differentials in the interval-
valued intuitionistic fuzzy circumstance, based on which
some basic properties were proposed.

In what follows, let us recall an interesting story: “Really
extensive work on series began about 1730 with Euler
aroused tremendous interest in the subject. But there was
much confusion in his thinking. Euler argued that since
1/(1 − x) � 1 + x + x2 + · · · + xn + · · · then 1/2 � 1 − 1 + 1 −

1 + 1 · · · as x � − 1, so that the sum is 1/2” [24]. Even though
Euler is such a very famous mathematician he also made
a mistake which seems very obvious for modern mathe-
matical workers. -e reason why Euler made an obvious
mistake is that the limit theory was not very rigorous at that
time, so “there was much confusion in his thinking.” From
the story, we can see that the limit theory plays a funda-
mental and significant role in the traditional calculus.
Meanwhile, the importance of the differential is self-evi-
dent, which is the base of the definite integral and the
indefinite integral. As aforementioned, the IVIFC is only in
its original stage, and thus, to further develop the theory of
the IVIFC and make it be a rigorous subject, the primary
task is to systematically investigate the characteristics of the
limits and the differentials, which are the foundation of the
IVIFC.

As is known to all, the forms of the IVIFNs are more
complicated than those of IFNs, which leads to that when
we discuss the IVIFC, correspondingly, the forms in the
IVIFC are more complicated than those in the IFC. In our
opinion, it is an interesting issue and also a challenge that
how to simplify the forms in the IVIFC. On the other
hand, if we follow the thoughts in the IFC, we can easily
obtain some corresponding results in the IVIFC. How-
ever, if we do so, it is no doubt that the computation is
considerably tedious, and the IVIFC is only a counterpart

of the IFC, the beauty of mathematics is not complicated
computation but her brilliant thoughts [18]. -erefore,
we do not prepare to follow the thoughts in the IFC and
shall reduce some tedious computations as possible as we
can. Finally, it might be well to point out that the IFN is
a particular form of the IVIFN, which means that when
we develop the theory of the IVIFC, we also improve the
corresponding theory of the IFC if we transform the
IVIFNs into the IFNs. In brief, the IVIFC and the IFC can
promote each other, and the IVIFC is not a counterpart of
the IFC.

To do so, the rest of this paper can be organized as
follows: In Section 2, we give some preparations for the
whole work. Section 3 discusses the limit theories of in-
terval-valued intuitionistic fuzzy sequences. In Sections 4
and 5, we focus on investigating the limit, continuity, and
differential theory of IVIFFs in detail. Section 6 employs an
application of continuous data in decision-making to
demonstrate the advantages of continuous data. We
compare the operational laws of IFNs with those of IVIFNs
and interpret their relationships by some homomorphic
mappings in Section 7. Finally, we offer some concluding
remarks in Section 8.

2. Preliminaries

To begin with, let us recall the concept of IVIFS and reveal
the relationship between the IVIFS and the IFS.

As described in Introduction, Atanassov and Gargov
[7] generalized the IFS [2] to the IVIFS. An IVIFS A on X

is a mapping A : X � (x, μA(x), ]A(x)) ∣ x ∈ X} , where
μA(x) and ]A(x) are two intervals in [0, 1] with sup
μA(x) + sup]A(x)≤ 1. Based on the IVIFS, Xu [25] called
the ordered pair (μA(x), ]A(x)) an interval-valued intui-
tionistic fuzzy number (IVIFN). Obviously, when supμA
(x) � infμA(x) and sup]A(x) � inf]A(x) for any x ∈ X, the
given IVIFS and IVIFN are reduced to the IFS and the IFN,
respectively.

In order to obtain two kinds of aggregation techniques,
Xu [25] introduced some basic operational laws of IVIFNs,
and Zhao et al. [23] further developed them and gave the
subtraction and division operational laws of IVIFNs, which
can be listed below.

Definition 1 (see [23, 25]). Let α1 � ([a1, b1], [c1, d1]) and
α2 � ([a2, b2], [c2, d2]) be two IVIFNs. -en,

α1 ⊕ α2 � 1 − 1 − a1(  1 − a2( , 1 − 1 − b1(  1 − b2(  , c1c2, d1d2 ( ,

α1 ⊗ α2 � a1a2, b1b2 , 1 − 1 − c1(  1 − c2( , 1 − 1 − d1(  1 − d2(  ( ,

λα1 � 1 − 1 − a1( 
λ
, 1 − 1 − b1( 

λ
 , c

λ
1, d

λ
1  , λ> 0,

αλ1 � a
λ
1, b

λ
1 , 1 − 1 − c1( 

λ
, 1 − 1 − d1( 

λ
  , λ> 0,
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α1 ⊖ α2 �

a1 − a2

1 − a2
,

b1 − b2

1 − b2
 ,

c1

c2
,

d1

d2
  ,

a1 ≥ a2, b1 ≥ b2, c1 ≤ c2,

d1 ≤ d2, c2 > 0, d2 > 0,

c1 1 − a2( ≤ c2 1 − a1( ,

d1 1 − b2( ≤d2 1 − b1( ,

(0, 1), otherwise,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 ⊘ α2 �

a1

a2
,

b1

b2
 ,

c1 − c2

1 − c2
,

d1 − d2

1 − d2
  ,

a1 ≤ a2 , b1 ≤ b2, c1 ≥ c2,

d1 ≥d2, a2 > 0, b2 > 0,

a1 1 − c2( ≤ a2 1 − b1( ,

b1 1 − d2( ≤ b2 1 − d1( ,

(1, 0), otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

After investigating the addition, subtraction, multipli-
cation, and division operational laws, Zhao et al. [23] defined
four regions for a given IVIFN; the four regions of α0 can be
shown in Figure 1, where I is a collection of all IVIFNs and
A◇α0

� α0◇β ∣ β ∈ I, ◇∈ ⊕,⊗,⊖,⊘{ } . Based on the four
regions of α0, correspondingly, they defined four types of
limits. For brevity, below we only offer the notion of the
addition limit.

Definition 2 (see [23]). Let αn  be an addition sequence of
α0, that is, αn ∈ A⊕α0

for all but finitely many n. If for a given
ε � ([aε, bε], [cε, dε])>L(0, 1), there exists a positive integer
N, such that αn ⊖ α0 <L ε for n>N, then α0 is called the
addition limit of αn , and we write limn⟶+∞α⊕n � α0 or
α⊕n⟶ α0 as n⟶∞. For α1 � ([a1, b1], [c1, d1]) and
α2 � ([a2, b2], [c2, d2]), the symbol <L indicates that
α1 <L α2⟺ α1 ≤L α2 and α1 ≠ α2, and the symbol ≤L means
α1 ≤L α2⟺ a1 ≤ a2, b1 ≤ b2, c1 ≥ c2 and d1 ≥d2.

Besides, Zhao et al. [23] also introduced the concepts of
continuous interval-valued intuitionistic fuzzy functions
(IVIFFs) and investigated the properties with respect to
differentiable IFFs; for the same reason, here we only list the
concept and property concerning addition continuous and
differentiable IVIFF.

Definition 3 (see [23]). Let F( X) � ([f1(μ1, μ2, ]1, ]2),
f2(μ1, μ2, ]1, ]2)], [g1(μ1, μ2, ]1, ]2), g2(μ1, μ2, ]1, ]2)]) be
an IVIFF of X � ([μ1, μ2], []1, ]2]). If for any
ε � ([μ1ε, μ2ε], []1ε, ]2ε])>L(0, 1), there exists δ � ([μ1δ,

μ2δ], []1δ, ]2δ]), such that X∈ S⊕ ( X0,F) � X ∣ X∈A⊕X0
,

0≤(gi(μ1, μ2, ]1, ]2)/gi(μ10, μ20,]10, ]20))≤ ((1 − fi(μ1, μ2,
]1, ]2)/1) − (fi(μ10, μ20, ]10, ]20))) ≤ 1, i � 1, 2}, we have
F( X)⊖F( X0)<L ε for (0, 1) <L X ⊖ X0 <L δ, then F( X) is
additive continuous at X0 � ([μ10, μ20], []10, ]20]), denoted
by limX⟶X

⊕
0

F( X) � F( X0).
Incidentally, from Definition 3 we can see that both

F( X)⊖F( X0) and X⊖ X0 are IVIFNs for any given
X ∈ S⊕ ( X0, F). After giving the notion of continuity, it is

natural to investigate the interval-valued intuitionistic fuzzy
derivative and differential operations.

Theorem 1 (see [23]). Let F( X) � ([f1(μ1, μ2, ]1, ]2), f2(μ1,
μ2, ]1, ]2)], [g1(μ1, μ2, ]1, ]2), g2(μ1, μ2, ]1, ]2)]) be an IVIFF
of X � ([μ1, μ2], []1, ]2]), if limX′

⊕
⟶X0

F( X′)⊖F( X0)/
X′ ⊖ X0 is an IVIFN, then we say that F( X) is addition
differentiable at X0 � ([μ10, μ20], []10, ]20]). Moreover, if
F( X) is additive differentiable at X0, then F( X) � ([f1
(μ1), f2(μ2)], [g1(]1), g2(]2)]), 0≤ (1 − μ20/1 − f2(μ20))f2′
(μ20)≤ (]20/g2(]20))g2′(]20)≤ 1, 0≤ (1 − μ10/1 − f1(μ10))f1′
(μ10)≤ 1, and 0≤ (]10/g1(]10)) g1′(]10)≤ 1; in this case,
we have dF( X)/d X| X�X0

� ([(1 − μ10/1 − f1(μ10)) f1′(μ10),
(1 − μ20/1 − f2(μ20))f2′(μ20)], [1 − (]10/g1(]10))g1′(]10), 1−

(]20/g2(]20))g2′(]20)]).

-eorder is ≤L inDefinition 3. Indeed, the IFC has its own
orders ⊲ and ⊲⊗ , based on which we can define two kinds of
neighborhoods of an IFN, and then we can obtain two kinds of
accumulation points; here, we only list the first kind:

Definition 4 (see [18]). Let (α, β) � c ∣ α⊲ c⊲ β  be an
open interval, where α⊲ β⟺ β � α⊕ η and η≠ (0, 1). We
call U(α0, δ) � (α0 ⊖ δ, α0 ⊕ δ) a neighborhood of α0, if each
U(α0, δ) contains infinitely many points of a set S ⊂ I, where
I is a collection of all IFNs, then α0 is called an accumulation
point of the set S; if each U(α0, δ) only contains the point α0
in S, then α0 is called an isolated point of the set S.

Based on the above definition, Cantor intersection
theorems can be obtained, whose roles are the same as
Cantor intersection theorem in the classical calculus;
here, we only list Cantor intersection theorem of the first
kind.

Theorem 2 (see [18]). If [αn, βn]  is a nested closed interval,
then there exists an IFN c0 such that c0 ∈ [αn, βn],

n � 1, 2, · · ·, that is, αn ⊴ c0 ⊴ βn for any n ∈ N+, where c0 �

limn⟶∞αn � limn⟶∞βn.
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As mentioned in Introduction, using the IFIs, we can
reveal the relationships between the derivatives and the
differentials, using the intuitionistic fuzzy infinitesimals and
the operator |•| (if β⊴ α, then |α⊖ β| � α⊖ β, and if α⊴ β,
then |α⊖ β| � β⊖ α.) [17]. -e relationship between the
derivatives and the differentials with respect to the addition
and the subtraction can be obtained, and their relationships
are the same as those of the derivative and the differential in
the classical calculus: the relationship between the de-
rivatives and the differentials with respect to the addition
and the subtraction can be listed as follows.

Theorem 3 (see [17]). Let F(X) � (f1(μ), f2(v)) be an IFF
of X, if limX⟶X0

F(X) � (0, 1), then F(X) is said to be an IFI
at X0. Let F(X) and G(X) be two IFIs at X0, where
G(X) � (g1(μ), g2(v)), if F(X) � (o(g1(μ)), 1 − o(1 − g2
(]))), then we say that F(X) is a higher order at X0 than
G(X), denoted by F(X) � o(G(X)). F(X) has the derivative
at X0, if and only if ||F(X0)⊖F(X)|⊖ (A |⊗X0 ⊖X|)| �

o(|X0 ⊖X|) for X ∈ S⊕ (X0, F)∪ S⊖ (X0, F), where A � F′
(X0) � ((1 − μ0/1 − f1(μ0))f1′(μ0), 1 − (]0/f2(]0))f2′(]0)).

We end this section with the notions of homomorphism
and isomorphism which emerge in abstract algebra.

Definition 5 (see [26]). Let (A, ∘) and (A, ∘ ) be two alge-
braic structures. A homomorphism is a map from A to A

such that φ(α ∘ β) � φ(α) ∘ φ(β) holds for all α, β ∈ A, and if
the map is a surjection, then we write (A, ∘)∼(A, ∘ ) or
A∼A; if the map φ(α) mappingA onto A is one-to-one, then
we call it an isomorphism, denoted by (A, ∘) � (A, ∘ ) or
A � A.

3. Limit Theory of Interval-Valued
Intuitionistic Fuzzy Sequences

To begin with, we point out a fact that in Definition 2
there are four variables in ε, in other words, ε �

(([ε1, ε2], [1 − ε3, 1 − ε4]), which is a little tedious. In
order to apply the limits in the IVIFC, it is necessary to
simplify Definition 2 and give its equivalent counterpart.
We present the following result.

Theorem 4. Let αn  be an addition sequence of α0,
limn⟶+∞α⊕n � α0 if and only if for a given IFN (ε, 1 − ε),

corresponding to this ε, there exists a positive integer N, such
that αn ⊖ α0 < L(ε, 1 − ε) for n>N.

Proof. According to Definition 1, if limn⟶+∞α⊕n � α0, then
for a given ε � ([ε1, ε2], [1 − ε3, 1 − ε4])>L(0, 1), there ex-
ists a positive integer N, such that αn ⊖ α0 <L([ε1, ε2], [1 −

ε3, 1 − ε4]) for n>N. If we set ε � max ε1, ε2, ε3, ε4 , then
([ε1, ε2], [1 − ε3, 1 − ε4])<L(ε, 1 − ε), and thus, αn ⊖ α0 <L
(ε, 1 − ε) for n>N.

Conversely, if we put ε � min ε1, ε2, ε3, ε4 , then we
have (ε, 1 − ε)<L([ε1, ε2], [1 − ε3, 1 − ε4]), by assumption,
αn ⊖ α0 <L(ε, 1 − ε) for n>N, which implies αn ⊖ α0 < L

([ε1, ε2], [1 − ε3, 1 − ε4]), for n>N; in view of Definition 2,
we obtain that limn⟶+∞α⊕n � α0, which completes the
proof.

As described in Introduction, the IFC has its own
system and strictly obeys intuitionistic fuzzy operational
laws, which is also the most significant characteristic, so is
the IVIFC. And thus, we propose the following partial
orders rather than the partial order < L in Definition 1
and -eorem 4.

Definition 6. If there is an IVIFN η, which satisfies
α⊕ η � β, then we say that the IVIFN α is less than or equal
to the IVIFN β, denoted by α⊴ β or α⊴⊕ β, and if η≠ (0, 1),
then we write β⊲⊗ α. If there is an IVIFN κ, which satisfies
α⊗ κ � β, then we say that β is less than or equal to α,
denoted by β⊴⊕ α, particularly, if κ≠ (1, 0), then β⊲⊗α.

Definition 6 shows that if α ∈ A⊕α0
, then α0 ⊴ α, and

if α ∈ A⊖α0
, then α⊴ α0. For the multiplication and divi-

sion regions, α ⊲⊗ α0 holds for α ∈ A⊗α0
, and α0 ⊴ ⊗α is valid

for α ∈ A⊘α0
. If we compare ⊴ with <L, we can see that

α⊴ β⟹ α<L β, but α<L β⟹ α⊴ β does not always hold.
In other words, α⊴ β means that α ∈ A⊖β

or β ∈ A⊕α .
However, when α<L β, α may not be in A⊖β

.

Finally, we introduce two symbols | • | and 〈 • 〉, | • |

means that if αn ∈ A⊖α0
, then |αn ⊖ α0| � αn ⊖ α0, and

|αn ⊖ α0| � α0 ⊖ αn holds for αn ∈ A⊕α0
. 〈 • 〉 implies that if

αn ∈ A⊗α0
, then 〈αn ⊘ α0〉 � α0 ⊘ αn, and 〈αn ⊘ α0〉 � αn ⊘ α0

for αn ∈ A⊘α0
. By this technique, we can reduce four kinds of

sequences to two kinds: if αn ∈ A⊕α0
∪A⊖α0

, then we call αn  as
the first kind of sequence or refer to it as a sequence; if
αn ∈ A⊗α0

∪A⊘α0
, then we say that αn  is the second kind of

sequence and denote it as α∗n  so as to distinguish the first
kind of sequence.

Based on the above analysis, we can provide a desirable
definition with respect to the sequence of the first kind as
follows.

Definition 7. Let αn  be a sequence of α0, that is,
αn ∈ A⊕α0

∪A⊖α0
. If for a given ε � (ε, 1 − ε)⊳(0, 1), there

exists a positive integer N, such that |αn ⊖ α0|⊲ε for n>N,
then we say that αn converges to α0 (or has the limit α0), and
we write limn⟶+∞αn � α0 (or in the concise form αn⟶ α0
as n⟶∞).

Incidentally, similar to the classical calculus, it is obvious
that for a given intuitionistic fuzzy sequence, when we omit,

Ĩ

α0˜

ã⊗

α0˜

ã⊖

α0˜ ã⊘

α0˜

ã⊕

α0˜

Figure 1: -e four regions of α0 [23].
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add, or vary finite many elements of this sequence, the limit
of this new sequence is the same if the original sequence
converges. Hence, for the convenience of discussion, we
omit the words “for all but finitely many n” in Definition 7.
Compared with Definition 2, Definition 7 shows that it can
better reflect “intuitionistic fuzzy” since the symbol ⊲ is
based on intuitionistic fuzzy operational laws. Moreover,
Definition 7 has unified the addition and subtraction limits,
and the form is more similar to that of the limit in the
classical calculus. Analogously, we can obtain the limit of the
second kind. For the sake of simplification, here we omit it.

After a series of preliminary work, in the following, we
only need to discuss the limit theory from two aspects rather
than four aspects: the sequence of the first kind and the
sequence of the second kind.

3.1. Limit?eory with respect to the Sequence of the First Kind.
As we know, due to the complexity of the intuitionistic fuzzy
operational laws, if we directly investigate the limit theory
via the intuitionistic fuzzy operational laws, it will be very
complex and the computation is very tedious. Particularly, in
the interval-valued intuitionistic fuzzy circumstance, it will
be more complex and tedious. In the classical calculus, we
discuss the limit theory in a metric space: for the one hand,
by this technique, we can simplify the computation; for the
other hand, we can unify the limit forms of the one-di-
mensional and the multi-dimensional sequences. So, it is
necessary to define the interval-valued intuitionistic fuzzy
metric space.

Let I be a collection of all IVIFNs, for any α1 � ([μ11,
μ21], []11, ]21]) and α2 � ([μ12, μ22], []12, ]22]), we define
d(α1, α2) � (1/2)

��������������������������������������������

(μ11 − μ12)
2 + (μ21 − μ22)

2 + (]11 − ]12)
2 + (]21 − ]22)

2


.
It is clear that d(α1, α2) is a distance measure. Hence, (I, d)

is a metric space, and we call it the interval-valued intui-
tionistic fuzzy metric space. Based on (I, d), below we offer
an equivalent counterpart of the limit of the first kind:

Theorem 5. Let αn  be a sequence of α0 in (I, d), where
αn � ([μ1n, μ2n], []1n, ]2n]) and α0 � ([μ10, μ20], []10, ]20]).
limn⟶+∞αn � α0 if and only if for every ε> 0, there is
a positive integer N such that d(αn, α0)< ε for n>N.

Proof. In view of Definition 7, if limn⟶+∞αn � α0, then
for a given ε> 0, there is a positive integer N such that
when n>N, we have |μ1n − μ10|< (1 − μ10)ε1, |μ2n − μ20|<
(1 − μ20)ε1, |]1n − ]10|< ]10ε1, and |]2n − ]20|< ]20ε1. If we let
ε � max (1 − μ10)ε1, (1 − μ20)ε1, ]10ε1, ]20ε1 , then |μ1n −

μ10|, |μ2n − μ20|, |]1n − ]10|, and |]2n − ]20| are all less than ε,
which implies that d(αn, α0)< ε for n>N.

Conversely, if d(αn, α0)< ε for n>N, then |μ1n−

μ10|< 2d(αn, α0)< 2ε for n>N, that is, |μ1n − μ10/1 − μ10|
< 2ε/1 − μ10. Analogously, when n>N, we have |μ2n − μ20/
1 − μ20|< 2ε/1 − μ20, |]1n/]10|> 1 − (2ε/]10), and |]2n/]20|> 1
− (2ε/]20). Consequently, if we let ε′ � max (2ε/1 − μ10),

(2ε/1 − μ20), (2ε/]10), (2ε/]20)}, then we have |αn ⊖ α0|⊲
(ε′, 1 − ε′), that is, limn⟶+∞αn � α0, which completes the
proof.

-eorem 5 shows that when we investigate the limit
theory in the interval-valued intuitionistic fuzzy circum-
stance, we can discuss them in (I, d). For example, by
-eorem 5, we have the following uniqueness property:

Theorem 6. Let αn  be a sequence of α0. If αn  converges to
α0 and β0, then α0 � β0.

Proof. By-eorem 5, for a given ε> 0, there are two positive
integers N1 and N2 such that when n>N1, we have
d(αn, α0)< ε and d(αn, β0)< ε. If we put N � lim(N1, N2),
then for all n>N, we have d(α0, β0)≤d(αn, α0) +

d(αn, β0)< 2ε. Considering that ε is arbitrary, we can deduce
that α0 � β0, which completes the proof.

Theorem 7. Let αn  be a sequence of α0, where
αn � ([μ1n, μ2n], []1n, ]2n]) and α0 � ([μ10, μ20], []10, ]20]),
then limn⟶+∞αn � α0 if and only if limn⟶+∞μ1n �

μ10, limn⟶+∞μ2n � μ20, limn⟶+∞]1n � ]10, and limn⟶+∞
]2n � ]20.

Proof. According to -eorem 5, if limn⟶+∞αn � α0, then
for a given 0< ε≤ 1, there is a positive integer N such that
d(αn, α0)< ε for n>N. Considering that all of
|μ1n − μ10|, |μ2n − μ20|, |]1n − ]10|, and |]2n − ]20| are less
than 2 d(αn, α0) for n>N, that is, all of them are less than 2ε
for n>N, we have limn⟶+∞μ1n � μ10, limn⟶+∞μ2n � μ20,
limn⟶+∞]1n � ]10, and limn⟶+∞]2n � ]20.

Conversely, if the four limits exist, then for a given ε> 0,
there is a positive integer N such that all of
|μ1n − μ10|, |μ2n − μ20|, |]1n − ]10|, and |]2n − ]20| are less than
ε for n>N. -erefore, we have d(αn, α0)< ε for n>N. Using
-eorem 5 again, we have limn⟶+∞αn � α0, which com-
pletes the proof.

It is well-known that when a metric space is not complete,
the limit operation may be meaningless. Hence, the com-
pleteness is a significant issue in the classical mathematic
analysis. For the same reason, suppose that αn  is a sequence,
if its limit may be not an IVIFN, then a series of problemsmust
arise: the limits of interval-valued intuitionistic fuzzy functions
(IVIFFs) at a pointmaybe not an IVIFN, which leads to that we
cannot conveniently discuss the continuity, the derivatives, the
differentials, and the indefinite integrals in the IVIFC.
Moreover, we cannot conveniently build the definite integrals
either, since all of them may be meaningless. Fortunately, we
have the following theorem:

Theorem 8. Let αn  be a sequence of α0, where αn �

([μ1n, μ2n], []1n, ]2n]) and α0 � ([μ10, μ20], []10, ]20]). If
limn⟶+∞αn � α0, then the limit α0 is an IVIFN.

Proof. In view of -eorem 7, if limn⟶+∞αn � α0, then
limn⟶+∞μ2n � μ20 and limn⟶+∞]2n � ]20, since αn  is
a sequence of IVIFNs, then for each n, we have 0≤ μ2n +

v2n ≤ 1 and μ1n, μ2n, v1n, v2n ∈ [0, 1], and thus, 0≤ limn⟶∞
(μ2n + v2n)≤ 1, 0≤ limn⟶∞μin ≤ 1 and 0≤ limn⟶∞]in ≤ 1
for i � 1, 2. In other words, 0≤ μ20 + v20 ≤ 1, μi0 ∈ [0, 1], and
]i0 ∈ [0, 1] for i � 1, 2, that is to say, α0 is an IVIFN, which
completes the proof.
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Furthermore, if α and β are two IVIFNs, Definition 7
implies that A◇

α0
� α0◇β | β ∈ I, ◇∈ ⊕ , ⊗ , ⊖ , ⊘{ }  are all

IVIFNs, so are λα and αλ, we summarize them as a theorem:

Theorem 9. Let αn  and βn  be two sequences, then all of
the limits αn ⊕ βn, αn ⊖ βn, αn ⊗ βn, αn ⊘ βn, λαn, and αλn are
IVIFNs.

-eorem 7 shows that the limit of an interval-valued
intuitionistic fuzzy sequence can be transformed into the
limits of the membership degrees and the nonmembership
degrees. -eorems 8 and 9 indicate that the limit process is
closed in interval-valued intuitionistic fuzzy circumstance.
Based on which, we have the following desirable properties:

Theorem 10. Let αn  and βn  be two sequences,
limn⟶+∞αn � α0 and limn⟶+∞

βn � β0, then,

(a) limn⟶+∞(αn ⊕ βn) � α0 ⊕ β0
(b) limn⟶+∞(αn ⊖ βn) � α0 ⊖ β0 for α0 ⊳ β0
(c) limn⟶+∞(αn)λ � (α0)

λ, where λ> 0
(d) limn⟶+∞λαn � λα0, where λ> 0
(e) limn⟶+∞(αn ⊗ βn) � α0 ⊗ β0
(f ) limn⟶+∞(αn ⊘ βn) � α0 ⊘ β0 for α0 ⊲⊗ β0

Proof. We only prove (a), the rest can be proven in the same
way.

(a) Let αn and βn be ([μ1n, μ2n], []1n, ]2n]) and ([μ1n
′ ,

μ2n
′ ], []1n
′ , ]2n
′ ]), respectively. Since limn⟶+∞αn � α0 and

limn⟶+∞
βn � β0, then we have limn⟶+∞(αn ⊕ bn) �

limn⟶+∞([μ1n + μ1n
′ − μ1nμ1n

′ , μ2n + μ2n
′ − μ2nμ2n

′ ], []1n]1n
′ ,

]2n]2n
′ ]) � (limn⟶+∞[(μ1n + μ1n

′ − μ1nμ1n
′ ), limn⟶+∞(μ2n +

μ2n
′ − μ2nμ2n

′ )], [limn⟶+∞]1n]1n
′ , limn⟶+∞]2n]2n

′ ]) � α0 ⊕ β0,
which completes the proof.

Till now, we have investigated the limit theory with respect
to the sequence of the first kind. As described in preliminaries,
for an IVIFN (μA(x), ]A(x)), when supμA(x) � infμA(x)

and sup]A(x) � inf]A(x) for any x ∈ X, the IVIFN are re-
duced to an IFN, which means that the above results in this
subsection also hold for a sequence of IFNs. Indeed, we obtain
some theorems, even though we cannot find the corre-
sponding theorems in the IFC either. Hence, these results not
only enrich the theory of the IVIFC but also develop the theory
of the IFC. For the other hand, the proof methods of these
theorems in this subsection are considerably different from
those in the existing literature [16, 17, 23]. For example, as for
-eorem 7, Zhao et al. [19] did not unify the addition sequence
and the subtraction sequence, comparing the corresponding
proof in reference [23] with the one of -eorem 7, the latter is
considerably simple.

3.2. Limit ?eory with respect to the Sequence of the Second
Kind. In this subsection, for the sake of simplicity, we only
list a conception and two theorems.

Definition 8. Let α∗n  be a sequence of α0, that is,
α∗n ∈ A⊗α0

∪A⊘α0
. If for a given ε � (1 − ε, ε)⊳⊗(0, 1), there

exists a positive integer N, such that 〈αn ⊘ α0〉⊲⊗ ε for n>N.
In this case, we say that α∗n converges to α0 (or has the limit
α0), and we write limn⟶+∞α∗n � α0 (or in the concise form
α∗n⟶ α0 as n⟶∞).

Theorem 11. Let α∗n  and β
∗
n  be two second kinds of

sequences, the following properties are valid:

(a) Let α∗n  be in (I, d), limn⟶+∞α∗n � α0 if and only if
for every ε> 0, there is a positive integer N such that
d(α∗n , α0)< ε for n>N

(b) If α∗n  converges to α0 and β0, then the limits α0 and
β0 are IVIFNs and α0 � β0

(c) If α∗n � ([μ∗1n, μ∗2n], []∗1n, ]∗2n]) and α0 � ([μ∗10,
μ∗20], []∗10, ]∗20]), then limn⟶+∞α∗n � α0 if and only if
limn⟶+∞μ∗1n � μ10, limn⟶+∞μ∗2n � μ20, limn⟶+∞
]∗1n � ]10, and limn⟶+∞]∗2n � ]20

(d) All of the limits α∗n ⊕ β
∗
n , α∗n ⊖ β

∗
n , α∗n ⊗ β

∗
n , and α∗n ⊘ β

∗
n

are IVIFNs

Theorem 12. Let α∗n  and β
∗
n  be two second kinds of

sequences, limn⟶+∞α∗n � α0 and limn⟶+∞
β
∗
n � β0, then,

(a) limn⟶+∞(α∗n ⊕ β
∗
n ) � α0 ⊕ β0

(b) limn⟶+∞(α∗n ⊖ β
∗
n ) � α0 ⊖ β0 for α0 ⊳ β0

(c) limn⟶+∞(α∗n )λ � (α0)
λ, where λ> 0

(d) limn⟶+∞λα∗n � λα0, where λ> 0
(e) limn⟶+∞(α∗n ⊗ β

∗
n ) � α0 ⊗ β0

(f ) limn⟶+∞(α∗n ⊘ β
∗
n ) � α0 ⊘ β0 for α0 ⊲⊗ β0

4. Limit and Continuity Theory of IVIFFs

To begin with, let us recall Definition 3. -e authors defined
F( X) � ([f1(μ1, μ2, ]1, ]2), f2(μ1, μ2, ]1, ]2)], [g1(μ1, μ2, ]1,
]2), g2(μ1, μ2, ]1, ]2)]), and in-eorem 1, the authors pointed
out that if an IVIFF is differentiable at a point, then the IVIFF
has the form F( X) � ([f1(μ1), f2(μ2)], [g1(]1), g2(]2)]),
where X � ([μ1, μ2], []1, ]2]). Hence, in our opinion, it is
appropriate to define the IVIFF F( X) � ([f1(μ1), f2(μ2)],
[g1(]1), g2(]2)]), which can unify the form of the IVIFF. For
brevity, we write (f(μ), g(])) instead of ([f1(μ1), f2(μ2)],
[g1(]1), g2(]2)]) without causing confusion.

Analogous to Section 3, we can discuss the limit and
continuity theories of IVIFFs from two aspects if we use the
symbols |•| and 〈•〉.

4.1. Limit and Continuity ?eory of IVIFFs for the First Kind.
In modern mathematics, the set is a significant tool. Hence,
below we provide the definition for the limit of an IVIFF
which is different from the existing literature [16, 17, 23]:

Definition 9. Let F( X) : D⟶ I be an IVIFF, and X0 be an
accumulation point of D. If for any given 0< ε≤ 1, there
exists an IVIFN δ⊳(0, 1), such that |F( X)⊖ A|⊲ (ε, 1 − ε)

holds for X ∈ D∩U
o

( X0,
δ), where U

o

( X0,
δ), the deleted
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neighborhood of X0, is (0, 1)⊲ | X⊖ X0|⊲ δ; then we call
that F( X) converges to A (or has the limit A) as X tends to
X0, which is denoted by limX⟶X0

F( X) � A.
It should be noted that X ∈ D∩U

o

(α0, δ) rather than
X ∈ U

o

(α0, δ), for instance, F( X) is defined over D � ([μ1,
μ2], []1, ]2]), where μ1, μ2, ]1, and ]2 are all rational
numbers, then X ∈ U

o

(α0, δ) means that μ1, μ2, ]1, and ]2
can be irrational numbers. Obviously, in this case,
|F( X)⊖ A|⊲ (ε, 1 − ε) is meaningless since F( X) is mean-
ingless. Furthermore, inDefinition 9we have unified the forms
of the addition and subtraction limits via the symbol |•|.
Incidentally, we can follow the ideas in Section 3 to obtain
a series of corresponding properties with respect to the limits
of the IVIFFs, in other words,-eorems 5–10 also hold for the
IVIFFs. For the sake of brevity, here we omit them.

Based on Definition 9, we offer the notions of the in-
terval-valued IFI (IVIFI) and its order and then investigate
its basic properties.

Definition 10. Let F( X) be an IVIFF. If limX⟶X0
F( X) � (0, 1), then F( X) is said to be an IVIFI (or infinitely
small) at X0; let F1(

X) and F2(
X) be two IVIFIs at X0.

If limX⟶X0
(F1(

X)/F2(
X)) � (0, 1), then we say that F1(

X)

is IVIFI of a higher order at X0 than F2(
X); denoted

by F1(
X) � o(F2(

X)); if limX⟶X0
(F1(

X)/F2(
X)) � (1, 0),

then F1(
X) and F2(

X) are equivalent IVIFIs at X0, denoted
by F1(

X) ∼ F2(
X).

Theorem 13. Let F1(
X) and F2(

X) be two IVIFIs at X0,
where F1(

X) � ([f11(μ1), f21(μ2)], [g11(]1), g21(]2)])
and F2(

X) � ([f12(μ1), f22(μ2)], [g12(]1), g22(]2)]). If
F1(

X) � o(F2(
X)) at X0, then F1(

X) � ([o(f12(μ1)),
o(f22(μ2))], [1 − o(1 − g12(]1)), 1 − o(1 − g22(]2))]); if
F( X) ∼ G( X) at X0, then fi1 ∼ fi2, gi1 � gi2 + o(1 − gi2)

for i � 1, 2.

Proof. Since F1(
X) � o(F2(

X)) at X0, then limX⟶X0
(F1(

X)/F2(
X)) � (0, 1), that is to say, limμi⟶μi0

(fi1(μi)/
fi2(μi)) � 0 and lim]i⟶]i0

(gi1(]i) − gi2(]i)/1 − gi2(]i)) � 1
for i � 1, 2. For the former, it is obvious that fi1(μi) � o(fi2
(μi)) for i � 1, 2; for the latter, we have lim]i⟶]i0

(1 − gi1(]i)/1 − gi2(]i)) � 0, (i � 1, 2). -us, we conclude
that 1 − gi1(]i) � o(1 − gi2(]i)) for i � 1, 2, which implies
that gi1(]i) � 1 − o(1 − gi2(]i)) for i � 1, 2. As for F( X) ∼
G( X) at X0, we can prove it in the same way, here we omit it,
which completes the proof.

-eorem 13 reveals the concrete forms concerning the
higher order and the equivalently infinitesimals, based on
which we can deduce the following results:

Theorem 14. If F( X) is an IVIFI at X0, then o(F( X))⊕
o(F( X)) � o(F( X)); if G( X) � o(F( X)), then o(F( X))⊕
o(G( X)) � o(F( X)).

-e following theorem reveals why we call the two
IVIFIs to be equivalent IVIFIs.

Theorem 15. Let F1(
X)∼F2(

X) and G1(
X) ∼ G2(

X) at
X0, and H( X) is meaningful in U

o

( X0). If the limits of
F1(

X)/F2(
X) and G1(

X)/G2(
X) exist at X0, then limX⟶X0

(F1(
X)/G1(

X)) � limX⟶X0
(F2(

X)/G2(
X)); if limX⟶X0

(F1(
X)⊗H( X)) � A, then limX⟶X0

(F2(
X)⊗H( X)) � A.

Proof. limX⟶X0
(F1(

X)/G1(
X)) � limX⟶X0

((F1(
X)/

G1( X)) ⊗ (F2( X)/F1( X)) ⊗ (G1( X)/G2( X))) � limX⟶X0
((G1(

X)/G1(
X)) ⊗ (F1(

X)/F1(
X)) ⊗ (F2(

X)/G2(
X))) �

limX⟶X0
(F2(

X)/G2(
X)); Since limX⟶X0

F1(
X)⊗H ( X) �

limX⟶X0
(F1(

X)/F2(
X))⊗F2(

X)⊗H(X) �(1, 0)⊗ limX⟶X0
(F2( X)⊗H( X)) � A, then we have limX⟶X0

F2( X)⊗
H( X) � A, which completes the proof.

Subsequently, we reveal the relationship between the
IVIFI and the limit.

Theorem 16. Let F( X) be an IVIFF. limX⟶X0
F( X) � A if

and only if |F( X)⊖ A| � α, where α is an IVIFI at X0.

-e proof of -eorem 13 is obvious, here we omit it.
As we know, the continuity of a function is based on the

notion of the limit. In what follows, we offer the concept of
the continuity in the interval-valued intuitionistic fuzzy
circumstance.

Definition 11. Let F( X) : D⟶ I be an IVIFF, and X0 ∈ D

(X0 can be an accumulation point of D or be an isolated point
of D ). If for any given 0< ε≤ 1, there exists an IVIFN δ ⊳(0,

1), such that |F( X)⊖F( X0)|⊲ (ε, 1 − ε) holds for X ∈ D

∩U( X0,
δ); then we say that the IVIFF F( X) is continuous at

X0 in D. We also say that F( X) is continuous at X0 without
causing confusion. If F( X) is continuous at each point of the
set D, then we say that F( X) is continuous on D.

Definition 11 indicates that if F( X) is continuous at an
accumulation point X0 in D, then limX⟶X0

F( X) � F( X0).
If X0 is an isolated point of D, then it is clear that
|F( X)⊖F( X0)|⊲ (ε, 1 − ε) holds; in other words, F( X) is
continuous at any isolated point.

As mentioned above, -eorems 5–10 also hold for the
IVIFFs, and therefore, we have the following theorem:

Theorem 17. If the IVIFFs F( X) and G( X), defined on a set
D, are both continuous at X0 ∈ D, then all of the IVIFFs
F( X)⊕G( X), F( X)⊖ G( X) (for F( X)⊳G( X)), F( X)⊗
G( X), and F( X)⊘G( X) (for F( X) ⊲⊗G( X)) are continuous
at X0.

We end this subsection with the intermediate value
theorem to show that the IVIFC has its own system.

Theorem 18. If F( X) is continuous on the closed intui-
tionistic fuzzy interval [α0, β0] � c|α0 ⊲ c⊲ β0 , if F(α0)≠
F(β0) and χ is an arbitrary IVIFNwithF(α0)⊲ χ ⊲F(β0), then
there is at least one IVIFN ξ (ξ ∈ (α0, β0)) such that F(ξ) � χ.
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Proof. For simplicity, we only consider a particular case.
-e IVIFNs reduce to the IFNs; in the interval-valued
intuitionistic fuzzy circumstance, we can prove the result in
the same manner. In the intuitionistic fuzzy circumstance,
F(α0) and F(β0) become F(α0) and F(β0), respectively, the
others can be expressed in the same manner.

Without loss of generality, assume that F(α0)⊲F(β0)
and F(α0)⊲ χ ⊲F(β0), we define I0 � [α0, β0] and
In � [αn, βn] (n � 1, 2, 3, · · ·) in the following; on the one
hand, we show how to define In+1 if we have defined In; on
the other hand, we also show how to seek out the point ξ.

As shown in Figure 2, if F(P0) � χ, then we only take
ξ � P0. Otherwise, we decompose [α0, β0] into four parts:
S1, S2, S3, and S4. ξ should be in one of the regions S1, S2, S3,
and S4 since F(α0)⊲ χ ⊲F(β0) and F(ξ) � χ. Let us assume
that ξ is in S2; in this case, we can take [α1, β1] � S2 with
F(α1)⊲ χ ⊲F(β1). Repeating the process, we can get a nested
closed interval In � [αn, βn] (n � 0, 1, 2, · · ·). -eorem 2
shows that there exists an IFV ξ such that ξ ∈ [αn, βn], (n �

0, 1, 2, · · ·) and ξ � limn⟶∞αn � limn⟶∞βn. Finally, we
should prove F(ξ) � χ. In view of the continuity of F( X), we
have f(ξ) � limn⟶∞f(αn); it follows from F(αn)⊲ χ that
limn⟶∞f(αn)⊲ χ, that is, f(ξ)⊲ χ. On the other hand,
f(ξ)⊳ χ can be obtained if we investigate the sequence
f(βn). Consequently, F(ξ) � χ, which completes the proof.

-e proof of-eorem 18 shows that it is more complicated
than the corresponding proof in the classical mathematics
analysis. Particularly, it is interesting and key to decompose the
domain of F( X). -e complexities of intuitionistic fuzzy
operational laws lead to those of the IFC; we cannot take it for
granted that the corresponding result holds in the IFC if the
result is valid in the classical calculus [13] even though
sometimes they seem to be very similar. Since they are dif-
ferent in essence, we must offer a rigid proof when we in-
vestigate a property which seems to be true.

4.2. Limit and Continuity?eory of IVIFFs with respect to the
Second Kind. In this subsection, for the sake of simplicity,
two conceptions and a theorem are listed.

Definition 12. Let F( X
∗
) : D⟶ I be the second kind of

IVIFF, and X0 be an accumulation point of D. If for any
given 0< ε≤ 1, there exists an IVIFN δ⊳(0, 1), such that

〈F( X
∗
)⊘ A〉⊲⊗(1 − ε, ε) holds for X

∗ ∈ D∩U⊗
o

( X0,
δ),

where U⊗
o

( X0,
δ), the deleted multiplication and division

neighborhood of X0, is 〈 X⊘ X0〉⊲⊗δ; then, we call that
F( X
∗
) converges to A with respect to the multiplication and

the division (or has the limit A) as X
∗ tends to X0, which is

denoted by limX
∗
⟶X0

F( X
∗
) � A.

If limX
∗
⟶X0

F( X
∗
) � F( X0) holds for X0 ∈ D ( X0 can

be an accumulation point of D or be an isolated point of D ),
then we say that the IVIFF F( X

∗
) is the multiplication and

the division continuous at X0 in D. We also say that F( X
∗
) is

continuous at X0 without causing confusion. If F( X
∗
) is

continuous at each point of the setD, then we say that F( X
∗
)

is continuous on D.

Definition 13. Let F( X
∗
) be an IVIFF of X

∗. If
limX⟶X

∗
0
F( X
∗
) � (1, 0), then F( X

∗
) is said to be an IVIFI

with respect to the multiplication and division at X
∗
0 . Let F1

( X
∗
) and F2(

X
∗
) be two IVIFIs at X0. If limX

∗
⟶X0

(F1(
X
∗
)⊖F2(

X
∗
)) � (1, 0), then we say F1(

X) is IVIFI of
a higher order at X0 than F2(

X); denoted by F1(
X
∗
) � o

(F2(
X
∗
)); if limX

∗
⟶X0

(F1(
X
∗
)⊖F2(

X
∗
)) � (0, 1), then

F1(
X
∗
) and F2(

X
∗
) are equivalently intuitionistic fuzzy,

infinitely small at X0, denoted by F1(
X
∗
) ∼ F2(

X
∗
).

Theorem 19. ?e following results are valid:

(a) Let F1(
X
∗
) and F2(

X
∗
) be two IVIFIs at X0, where

F1(
X
∗
) � ([f11(μ∗1 ), f21(μ∗2 )], [g11(]∗1 ), g21(]∗2 )])

and F2(
X
∗
) � ([f12(μ∗1 ), f22(μ∗2 )], [g12(]∗1 ), g22

(]∗2 )]); if F1( X
∗
) � o(F2( X

∗
)) at X0, then F1( X

∗
) �

([1 − o(1 − f12(μ∗1 )), 1 − o(1 − f22(μ∗2 ))], [o(g12
(]∗1 )), o(g22(]∗2 ))]); if F( X

∗
)∼G( X

∗
) at X0, then

fi1 � fi2 + o(1 − fi2), and gi1∼gi2 for i � 1, 2.
(b) If F( X

∗
) is an IVIFI at X0, then o(F( X

∗
))⊗ o

(F( X
∗
)) � o(F( X

∗
)); if G( X

∗
) � o(F( X

∗
)), then

o(F( X
∗
))⊗ o(G( X

∗
)) � o(F( X

∗
)).

(c) Let F1(
X
∗
)∼F2(

X
∗
) and G1(

X
∗
)∼G2(

X
∗
) at X0

and H( X
∗
) is meaningful in U

o

( X0). If the limits of
F1(

X
∗
)⊖F2(

X
∗
) and G1(

X
∗
)⊖G2(

X
∗
) exist at X0,

then limX
∗
⟶X0

(F1(
X
∗
)⊖F2(

X
∗
)) � limX

∗
⟶X0

(G1

( X
∗
)⊖G2( X

∗
)). And if limX

∗
⟶X0

(F1( X
∗
)⊕H

( X
∗
)) � A, then limX

∗
⟶ X0

(F2(
X
∗
)⊕ H( X

∗
)) � A.

(d) Let F( X
∗
) be an IVIFF. limX

∗
⟶X0

F( X
∗
) � A if and

only if 〈F( X)⊘ A〉 � α, where α is an IVIFI with
respect to the multiplication and division at X0.

(e) If the IVIFFs F( X
∗
) and G( X

∗
), defined on a set D,

are both continuous at X0 ∈ D, then all of the IVIFFs
F( X
∗
)⊕G( X

∗
), F( X

∗
)⊖G( X

∗
)(for F( X)⊳G( X)),

F( X
∗
)⊗G( X

∗
), and F( X

∗
)⊘G( X

∗
) (for F( X

∗
)

⊲⊗G( X
∗
)) are continuous at X0.

(f ) If F( X
∗
) is continuous on the closed intuitionistic

fuzzy interval [α0, β0]⊗ � c|α0⊲⊗c⊲⊗β0 . If F(α0)
≠F(β0) and χ is an arbitrary IVIFN with F(α0)

ν

O 1

1

S1

S2
S4

S3
P0

A

B

α1 (α2)

α0

ξ

β1
β0β2

μ

|AP0| = |BP0|

(μα0
 + μβ0

)/2

Figure 2: Geometric interpretation of -eorem 18.
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⊲ ⊗χ⊲⊗F(β0), then there is at least one IVIFN ξ
(ξ ∈ (α0, β0)) such that F(ξ) � χ.

5. Differential Theory of IVIFFs

In the existing literature [16, 23], the notions of the de-
rivatives were first offered and then the differentials were
introduced. Indeed, in the classical textbook of mathematics
analysis, the notion of differential was first given and then
the derivative was discussed, which can better reflect the
history of the calculus. Motivated by this, in this section, we
shall first provide the concepts of the differentials regarding
IVIFFs and then investigate their derivatives.

Definition 14. An IVIFF F( X) � ([f1(μ1), f2(μ2)],
[g1(]1), g2(]2)]) is defined on a set D (D ⊂ I) , where
f1(μ1), f2(μ2), g1(]1), and g2(]2) are monotonically in-
creasing functions, A is an IVIFN, and X0 is an accumu-
lation point of D. If X ∈ S⊕ ( X0, F)∩D, then |(F( X)⊖
F( X0))⊖ (A⊗ ( X⊖ X0))| � o( X⊖ X0); in this case, F( X) is
said to be addition differentiable at X0; if |(F( X0)⊖
F( X))⊖ (A⊗ ( X0 ⊖ X))| � o( X0 ⊖ X) holds for X ∈ S⊖

( X0, F)∩D, then F( X) is said to be subtraction differen-
tiable at X0; to sum up, F( X) is differentiable at X0, if
|| |F( X)⊖F( X0)⊖ (A⊗ | X⊖ X0|) � o(| X⊖ X0|)| holds for
X ∈ S⊕ ( X0, F)∪S⊖ ( X0, F)∩D.

In what follows, we give the concrete value of A in
Definition 14:

Theorem 20. If F( X) � ([f1(μ1), f2(μ2)], [g1(]1),
g2(]2)]) is differentiable at X0, and its domain is D, and
if |F( X)⊖F( X0)⊖ (A⊗ | X⊖ X0|||) � o(| X⊖ X0|)| for X ∈
(S⊕ ( X0, F)∪ S⊖ ( X0, F))∩D, then A � ([(1 − μ10/1 − f1
(μ10))f1′(μ10), (1 − μ20/1 − f2(μ20))f2′(μ20)], [1 − (]10/g1
(]10))g1′(]10), 1 − (]20/g2(]20))g2′(]20)]), where A is called
the derivative of F( X) at X0, and denote it as F′( X0).

Proof. Without loss of generality, we only discuss
X ∈ S⊕ ( X0, F)∩D; in this case, we have |([f1(μ1), f2
(μ2)], [g1(]1), g2(]2)]⊖ [f1(μ10), f2(μ20)], [g1(]10), g2
(]20)])⊖(A⊗(([μ1, μ2], []1, ]2])⊖([μ10, μ20], []10, ]20])))|
� o(([μ1, μ2], []1, ]2])⊖ ([μ10, μ20], []10, ]20])).

As we know, the operation results of two IVIFNs
consist of four parts: ([•1, •2], [•3, •4]). First, we point
out a fact that for the above formula, if we replace ([μ1,
μ2], []1, ]2])⟶ ([μ10, μ20], []10, ]20]) by ([μ1, μ1],
[]1, ]1])⟶ ([μ10, μ10], []10, ]10]), which does not affect
the results of •1 and •3 for the above formula. In this case,
the above formula is the differential of the IFF rather than
that of the IVIFF, and thus, we can apply -eorem 3 to the
above formula and obtain that •1 and •3 are (1 − μ10/1 −

f1(μ10))f1′(μ10) and 1 − (]10/g1(]10))g1′(]10), respectively.
In the same way, we can obtain that •2 and •4 are (1 − μ20/1 −

f2(μ20))f2′(μ20) and 1 − (]20/g2(]20))g2′(]20), which com-
pletes the proof.

Moreover, the proof of -eorem 20 shows that A �

limX⟶X
⊕
0

(F( X)⊖F( X0)/ X⊖ X0) for X ∈ S⊕ ( X0, F) ∩D

and A � limX⟶X
⊖
0

(F( X0)⊖F( X)/ X0 ⊖ X) for X ∈ S⊖

( X0, F)∩D. When obtaining the value of A, we only use the
limit operation ⊖ and ⊘ , and thus, according to -eorems 8
and 9, A is also an IVIFN. Simultaneously, if recalling the
proof of -eorem 1 [23], then we can omit the conditions
0≤ (1 − μ20/1 − f2(μ20))f2′(μ20)≤ (]20/g2 (]20))g2′(]20)≤ 1,
0≤ (1 − μ10/1 − f1(μ10))f1′(μ10)≤ 1, and 0≤ ]10/g1(]10)g1′
(]10)≤ 1 since the interval-valued intuitionistic fuzzy metric
space is complete.

Since the operational results of two IVIFNs consist of
four parts: •1, •2, •3, and •4, and they are dependent each
other. -e following result can be obtained which is similar
to the corresponding one in the IFC.

Theorem 21. F( X) is differentiable at a point X0 if and only
if F( X) has the derivative at X0.

Lastly, for the addition and subtraction differential
theory of IVIFFs, the relationship between the differential
and the continuity is revealed as follows:

Theorem 22. If F( X) is differentiable at X0 ∈ D, then it is
also continuous at X0; if F( X) is differentiable on a set D,
then it is also continuous on the set D.

Proof. Without loss of generality, assume that F( X) is

addition differentiable at X0 ∈ E, then limX⟶X
⊕
0

(F(X)

⊖F( X0)) � limX⟶X
⊕
0

((F( X)⊖F( X0)/ X⊖ X0)⊗ ( X⊖ X0))

� limX⟶X
⊕
0

(F( X)⊖F( X)/ X⊖ X0) ⊗ limX⟶X
⊕
0

( X⊖ X0) �

F⊕′( X0)⊗ (0, 1) � (0, 1), that is, limX⟶X
⊕
0

F( X) � F( X0),
which implies that F( X) is continuous at X0. Considering
X0 ∈ D and the arbitrariness of X0, we can draw a conclu-
sion that if F( X) is differentiable on a set D, then it is also
continuous on the set D, which completes the proof.

As far as the multiplication and the division differential
theory of IVIFFs is concerned, we do not prepare to discuss
them in detail; here, we only list a definition and a theorem:

Definition 15. An IVIFF F( X
∗
) � ([f1(μ1), f2(μ2)],

[g1(]1), g2(]2)]) is defined on a set D (D ⊂ I) , where
f1(μ1), f2(μ2), g1(]1), and g2(]2) are monotonically in-
creasing functions, A is an IVIFN, and X0 is an accumu-
lation point of D. If X

∗ ∈ S⊗ ( X0, F)∩D, then 〈(F( X
∗
)

⊘F( X0))⊘ (A⊕ ( X
∗ ⊘ X0))〉 � o( X

∗ ⊘ X0); in this case,
F( X
∗
) is said to be multiplication differentiable at X0; if the

equality 〈(F( X0)⊖F( X
∗
))⊘ (A⊕ ( X0 ⊘ X

∗
))〉 � o( X0 ⊘

X
∗
) holds for X ∈ S⊖ ( X0, F)∩D, F( X

∗
) is said to be di-

vision differentiable at X0; to sum up, we say that F( X
∗
) is

multiplication and division differentiable at X0, if 〈〈F

( X
∗
)⊘F( X0)〉⊘ (A⊕ 〈 X

∗ ⊘ X0〉)〉 � o(〈 X
∗ ⊘ X0〉) holds

for X ∈ S⊕ ( X0, F)∪ S ⊖ ( X0, F)∩D.

Theorem 23. ?e following results are valid:

(a) If F( X
∗
) � ([f1(μ1), f2(μ2)], [g1(]1), g2(]2)]) is

defined on a set D (D ⊂ I) and multiplication and
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division differentiable at X0, and if 〈〈F( X
∗
)

⊘F( X0)〉⊘ (A⊕ 〈 X
∗ ⊘ X0〉)〉 � o(〈 X

∗ ⊘ X0〉) for
X ∈ S⊗ ( X0, F)∪S⊘ ( X0, F)∩D, then A � ([1 − (μ10/
f1(μ10))f1′(μ10),1 − (μ20/f2(μ20))f2′(μ20)], [(1 − ]10/
1 − g1(]10))g1′ (]10), (1 − ]20/1 − g2(]20))g2′(]20)]),
where A is called the multiplication and division
derivative of F( X

∗
) at X0, and denote it as F∗′( X0).

(b) F( X
∗
) is multiplication and division differentiable at

the point X0 if and only if F( X
∗
) has the multipli-

cation and division derivative at X0.
(c) If F( X

∗
) is multiplication and division differentiable

at X0 ∈ D, then it is also multiplication and division
continuous at X0; if F( X

∗
) is multiplication and

division differentiable on a set D, then it is also
multiplication and division continuous on the set D.

6. Homomorphism between the IVIFNs and
the IFNS

As aforementioned, the IFC is based on the basic operational
laws of IFNs, and correspondingly, the IVIFC is based on the
basic operational laws of IVIFNs, and thus, it is necessary to
reveal the relationships between the IFNs and the IVIFNs in
this section.

As we know, for the IFNs and the IVIFNs, there are six
basic operational laws: addition, subtraction, multiplication,
division, scalar-multiplication, and power. In order to dis-
tinguish them, we denote the six basic operational laws as ∘
and ∘ , respectively, and then, we obtain two algebraic
structures: (I, ∘) and (I, ∘ ). If α � ([μ1, μ2], []1, ]2]) ∈ I,
we construct the map φ([μ1, μ2], []1, ]2]) � (μ2, ]2), ob-
viously, the map is a surjection. However, it is not one-to-
one. For instance, φ([0.2, 0.4], [0.3, 0.5]) � (0.4, 0.5) and
φ([0.1, 0.4], [0.2, 0.5]) � (0.4, 0.5). It follows from the
basic operational laws for the IFNs and IVIFNs that
φ(α1∘ α2) � φ(α1)∘φ(α2). For example, for the addition, φ
(α1⊕ α2) � φ([1 − (1 − μ11)(1 − μ12), 1 − (1 − μ21)(1 − μ22)],
[]11]12, ]21]22]) � (1 − (1 − μ21) (1 − μ22), ]21]22). Since
φ(α1) � (μ21, ]21) and φ(α2) � (μ22, ]22), then
φ(α1)⊕φ(α2) � (1 − (1 − μ21) (1 − μ22), ]21]22), that is,
φ(α1 ⊕ α2) � φ(α1)⊕φ(α2).

To sum up, in view of Definition 5, we can verify that
(I, ∘ ) ∼ (I, ∘). However, we cannot obtain (I, ∘) � (I, ∘ ),
which means that (I, ∘) and (I, ∘ ) does not have the same
algebraic structure. From this point of view, it is necessary to
discuss the IVIFC. Simultaneously, it should be noted that if
(I, ∘ ) ∼ (I, ∘), then the two algebraic structures have some
inner relationships: if (I, ∘ ) satisfies some operational laws,
then (I, ∘) meets the corresponding operational laws. In
other words, if we develop the theory of the IVIFC, then we
also enhance the theory of the IFC if we note that the IFC
and the IVIFC are based on their basic operational laws,
respectively, which is also in accordance with the fact that
the IFN is a particular form of the IVIFN.

It is well known that if (A, ∘ ) ∼ (B, ∘), then the ho-
momorphism φ can map the identity to the identity, and
if a1, a2, · · · , ak are the elements of A, then φ(a1∘

a2∘ · · · ∘ ak) � φ(a1)∘φ(a2)∘ · · · ∘φ(ak). In what follows, we
only verify the former in intuitionistic fuzzy circum-
stance. (I, ⊕ ) ∼ (I, ⊕ ), and the addition identity in I is
([0, 0], [1, 1]), φ(([0, 0], [1, 1])) � (0, 1); it is clear that
the addition identity in I is (0, 1); (I, ⊗ ) ∼ (I, ⊗ ) and the
multiplication identity in I is ([1, 1], [0, 0]), φ(([1, 1],

[0, 0])) � (1, 0); it is obvious that the multiplication iden-
tity in I is (1, 0). However, when we know that the addi-
tion identity in I is (0, 1), we cannot deduce that the
addition identity in I is ([0, 0], [1, 1]) by the homomor-
phism φ since φ(([0, 0], [1, 1])) � (0, 1) and φ(([0, 0],

[0.7, 1])) � (0, 1), which also interpret that (I, ∘) and (I, ∘ )
does not have the same algebraic structure.

We summarize this section via Figure 3. For the con-
venience of exhibition, we put φ(α) � α.

7. Application to Continuous Data in
Decision Making

As for the IFC or the IVIFC, the authors have offered some
applications in real life [19, 20, 22, 23]. Of course, following
the idea in reference [23], we can easily give an application.
However, in our opinion, it is not interesting and necessary.
Particularly, to date, the researchers have not still offered the
reason why we deal with continuous date in real life. And
thus, the purpose of this section is to provide an application
of continuous data in decision-making to show the necessity
and feasibility of continuous data.

In the traditional decision-making, when the scholars
handle the information of the IFNs and the IVIFNs, the data
are usually discrete. However, in real life, some kinds of the
data are continuous. For example, the power consumption
of an electric appliance is continuous, which is a function of
time; the displacement of a car is continuous and related to
time; the height and weight of a person change with his/her
ages, and so on. -e IFMA and the IVIFMA focus on
addressing continuous information of the IFNs and the
IVIFNs, and as aforementioned, the scholars have suc-
cessfully offered some applications in the previous literature
[19, 20, 22, 23]. For instance, Zhao et al. [23] offered the
applications of the differentials of IVIFFSs in approximate
calculations, and therefore, we do not prepare to provide
similar applications although they can be easily obtained. In
what follows, we offer an example to show that in some
situations we have to use some techniques to address
continuous information in the decision-making process
since the data in nature are continuous, which can make the
result be more reasonable than that by using the traditional
techniques to address discrete data:

Example 7.1. A sales manager of a market wants to select one
of two different brands of air conditioners which are of the
same price. He invites two experts, E1 and E2, to evaluate their
comfort, and he randomly selects an air conditioner for each
brand; for convenience, we denote the two air conditioners as
A1 and A2. -e sales manager asks for E1 to give his as-
sessments to the comfort of A1 every six minutes in an hour
whenA1 operates in a closed house. Likewise,E2 is responsible
for evaluating the comfort of A2 every six minutes in an hour

10 Complexity



when A2 operates in another closed house. Since the criterion
“comfort” is of vague nature, it is more suitable for A1 and A2
to express their assessments in the form of IVIFNs which
can reflect the experts’ hesitancy intuitively. Suppose that E1
gives his assessments as ([0.08, 0.11], [0.78, 0.82]), ([0.13,

0.17], [0.68, 0.79]), ([0.26, 0.34], [0.52, 0.59]), ([0.39, 0.47],

[0.32, 0.39]), ([0.60, 0.75], [0.22, 0.24]), ([0.82, 0.85], [0.

10, 0.11]), ([0.72, 0.78], [0.12, 0.17]), ([0.74, 0.81], [0.06,

0.13]), ([0.65, 0.70], [0.18, 0.21]), and ([0.68, 0.73], [0.15,

0.21]); assume that E2 gives his assessments as ([0.12,

0.15], [0.76, 0.80]), ([0.37, 0.42], [0.45, 0.51]), ([0.60, 0.62],

[0.26, 0.33]), ([0.78, 0.83], [0.12, 0.16]), ([0.83, 0.86], [0.

06, 0.08]), ([0.74, 0.76], [0.10, 0.13]), ([0.71, 0.72], [0.12,

0.18]), ([0.75, 0.81], [0.10, 0.13]),([0.81, 0.85], [0.08, 0.10]),

and ([0.73, 0.75], [0.16, 0.20]). However, due to some ob-
jective reasons, the fourth assessment is obtained in the 27th
minute rather than the 24th minute. Obviously, it is not
suitable if we directly determine whose air conditioner is more
comfortable in A1 and A2 only by the above data. How to get
a reasonable result?

Indeed, the key issue is how to obtain the assessment of
the 24thminute forA2.-eoretically, due to the fact that there
exist the assessments of “the comfort” every time if an air
conditioner operates, and thus, for A1 and A2, all of the
assessment μ1n, μ2n, ]1n, and ]2n(n � 1, 2, · · · , 10) are the
continuous functions of the time t. It is well known that we
apply the traditional techniques to handle discrete data. Since
these above-mentioned data are continuous in essence, it is
unreasonable to apply the traditional techniques to handle
them. Now, we can obtain the assessment of the 24th minute
for A2 via data fitting. As shown in Figure 4, after normalizing
the time t, we can get the function μ1 � f1 (t) by data fitting
technique, and then, we have f1 (0.4) � 0.7696. In the same

way, we obtain that the assessment of the 24th minute is
([0.7696, 0.8072], [0.1268, 0.1648]); we take its approximate
value ([0.77, 0.81], [0.13, 0.16]) instead of the IVIFN
([0.78, 0.83], [0.12, 0.16]).

TOPSIS (Technique for Order Preference by Similarity
to Ideal Solution) is a famousmethod of decision-making. In
what follows, using TOPSIS, we offer the result of Example
7.1 step by step:

Step 1. Identify the interval-valued intuitionistic fuzzy
PIS (IVIF-PIS) S+

i of each alternative Ai and the interval-
valued intuitionistic fuzzy NIS (IVIF-NIS) S−

i of each
alternative Ai. We define the IVIF-PIS S+

i and the IVIF-
NIS S+

i as follows:

S
+
i � max

n
μ1n( , max

n
μ2n(  , min

n
]1n( ,min

n
]2n(    ,

S
−
i � min

n
μ1n( , min

n
μ2n(  , max

n
]1n( ,max

n
]2n(    ,

(2)

and then,

S
+
1 � ([0.82, 0.85], [0.06, 0.11]),

S
−
1 � ([0.08, 0.11], [0.78, 0.82]),

S
+
2 � ([0.83, 0.86], [0.06, 0.08]),

S
−
2 � ([0.12, 0.15], [0.76, 0.80]).

(3)

Step 2. Calculate the separation measures D+
i and D−

i of
each alternative Ai from the S+

i and S−
i , respectively. We

calculate them by the following formula:

D
+
i �

�����������������������������������������������

1
20



10

n�1
μ1n − μ+

1i( 
2

+ μ2n − μ+
2i( 

2
+ ]1n − ]+

1i( 
2

+ ]2n − ]+
2i( 

2




,

D
−
i �

�����������������������������������������������

1
20



10

n�1
μ1n − μ−

1i( 
2

+ μ2n − μ−
2i( 

2
+ ]1n − ]−

1i( 
2

+ ]2n − ]−
2i( 

2




,

(4)

α1 ⊕ α2 α1 ⊗ α2

α1 ⊖ α2 α1 ⊖ α2

α1 ⊗ α2 α1 ⊗ α2

α1 ⊘ α2 α1 ⊘ α2

˜
˜

˜
˜ ˜

˜ ˜

˜ ˜

˜

˜

λ1α1λ1α1

αλ2 αλ2

φ(α) = α ˜φ(α) = α
⊕ αi˜
i=1

n
⊕ αii=1

n

⊗ αi˜
i=1

n
⊕ αii=1

n

⊗ αi
λi˜

i=1

n
⊗ αi

λi
i=1

n

⊕ λiαi˜
i=1

n
⊕ λiαii=1

n

Figure 3: Interpretation of homomorphism.
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where S+
i � ([μ+

1i, μ+
2i], []+

1i, ]+
2i]) and S−

i � ([μ−
1i, μ−

2i],

[]−
1i, ]−

2i]). After a series of computations, we have
D+

1 � 0.5317, D−
1 � 0.7346, D+

2 � 0.3839, and D−
2 � 0.8492.

Step 3. Find the closeness coefficient Ci of each alternative
Ai by the formula Ci � D−

i /D
−
i + D+

i , and we get C1 � 0.5801
and C2 � 0.6887.

Step 4. Rank the alternatives and select the better alter-
natives in A1 and A2, the greater the value Ci, the better the
alternative Ai. Since C1 <C2, then the comfort of A2 is better
than that of A1.

Finally, we offer a comparison of μ1 between A1 and A2.
Figure 5 shows that the comfort of A2 is superior to that of
A1; A2 can quickly reach the biggest assessment only in
25minutes and A1 reaches the biggest assessment in
30minutes. Moreover, after they reach the biggest values, the
temperature range of variation for A2 is smaller than that of
A1. In short, if we further investigate the data, then we can
see that our result is reasonable.

Let us apply the IFWA operators [27] IFWA (α1,
α2, · · · , αm) � ⊕ m

i�1ωiαi � (1 − 
m
i�1 (1 − μαi

)ωi , 
m
i�1 ]

ωi
αi

) to
solve the above example; for each interval, if we take its
midpoint and if the weights are equal, then we also have that
the comfort of A2 is better than that of A1. However, the
fourth assessment is obtained in the 27th minute rather than
the 24th minute. In other words, we cannot obtain the fourth
accurate assessment via the IFWA operators. Even if we can
obtain the fourth accurate assessment, we have to face the
fact that the aggregation result via the IFWA operators is
related to the weight of each IVIFN. However, the proposed
method does not face this predicament. Indeed, sometimes it
is difficult for the decision makers to give the weight of each
assessment in real life. And thus, our proposed method is
reasonable and progressive.

8. Concluding Remarks

In this paper, we have studied the limit theory of the interval-
valued intuitionistic fuzzy sequences, in order to avoid some
tedious computations. By introducing the interval-valued
intuitionistic fuzzy metric space, we have obtained a series of
properties whose proofs are considerably concise, which also
means that the intuitionistic fuzzy operational laws have
many considerably good properties. In other words, if these
operational laws were bad, we would have to face some
tedious computations. We have also described the charac-
terization of the limit, the continuity, and the differential
with respect to the IVIFFs and revealed their relationships.
In the literature [17], the authors did not insist on using the
two symbols | • | and 〈 • 〉 to discuss the limit, the continuity,
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and the differential theory of IFFs. In this paper, we have
overcome the weakness, which can greatly simplify the
process when we discuss the IVIFC. For the differential
theory, following the traditional calculus, we have first of-
fered the definitions of differentials which are based on the
IVIFIs, and then, we have obtained the derivatives, which are
thoroughly different from those of the existing literature. As
mentioned in Introduction, the beauty of mathematics is not
complicated computation but her brilliant thoughts. After
offering the definitions of the differentials, we have sought
out the inner relationships between the intuitionistic fuzzy
differentials and the interval-valued intuitionistic fuzzy
differentials, and we have easily obtained the concrete values
of two constants in the definitions of the differentials.
Subsequently, considering that both the IFC and the IVIFC
are based on the basic operational laws of the IFNs and
IVIFNs, respectively. We have revealed the relationships
between the IFNs and the IVIFNs: they are homomorphic
rather than isomorphic, which means that they are two
different algebraic structures, and which makes the dis-
cussion of the IVIFC be necessary. Indeed, by homomorphic
mappings, theoretically, we have also interpreted the reason
why there exist abundant papers with respect to IVIFNs
since the structure of IFNs are different that of IVIFNs. As
usual, the scholars only offered the reasons why they dis-
cussed IVIFNs in decision-making from the perspectives of
the human thought characteristic. Finally, we have offered
an application to continuous data with respect to IVIFNs to
reveal the fact that in real life we occasionally handle
continuous data since they are continuous in essence, and
the example has shown the advantages of continuous data in
the decision-making processes. Particularly, compared to
the IFWA operators, the proposed method does not depend
on the weights of the assessments, which make the result be
more objective. In future research, we will focus on the
practical applications to IVIFC and give other forms to
further reveal its advantages in dealing with continuous data.
We will also combine the other generalization [28] of the FSs
to investigate continuous data and provide its applications in
more complicated circumstances.
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