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�e paper presents an application of milli- and micro-XCT to mesostructure characterization of CGPs and failure patterns
analysis using dynamic impact simulations. In this study, XCTscanning experiments are �rstly conducted on CGPs, followed by a
series of image analyses with qualitative results. �en, the 3D mesomorphological parameters and internal composition of
individual particles are quantitatively characterized. Finally, dynamic impact loading in y-axis direction is modelled to investigate
the 3D mesostructure and di�erent impact velocity e�ects on failure patterns of individual particles. �e studies show that the
mesomorphological parameters present di�erent distribution characteristics in individual CGPs. �e approximate location of
gangue phase is the key parameter that should be taken into account to study failure patterns as well as fracture mechanism of the
heterogeneous rock materials. �e XCT image-based numerical model proved to be an e�ective tool that gives insights into the
mesodeformation mechanisms of heterogeneous coal rock (HCR) undergoing dynamic impact failure behavior.

1. Introduction

Multiscale experiments and modelling of multiphase mineral
materials, such as coal, gangue, and various composite ma-
terials, are of critical importance for the detailed analysis of
the mesostructure and failure patterns of coal ores. In general,
the crushing performance for CGPs depends on the statistical
characteristics of geometric shape and mesostructures, such
as internal composition distribution, phase continuity, and
initial damage. Currently, research studies on the charac-
terization of morphological and mechanical properties of
individual CGPs are mainly based on experimental analysis
[1–4]. Although the experimental method could provide
statistic results, unavoidable sampling errors are widely
existed by using experimental analysis. Especially, the geo-
metric shape and mesostructure characteristics of individual
particles are the determinant of their fragmentation

characteristics. �erefore, it is important to link the crushing
performances for CGPs to their complex mesostructures.

Qualitative and quantitative analyses of the meso-
structure characteristics and mesocrack evolution mecha-
nism will lead to more accurate descriptions and thus
improvement to the crushing process [5]. Two-dimensional
mesoscale �nite element models with realistic mesostructure
of concrete are developed using micro-XCT images to
simulate complex nonlinear fracture [6, 7]. �e micro-
structural characteristics of asphalt mixture under di�erent
compaction powers are investigated [8, 9]. Physical and
hydraulic properties of a coastal sand aquifer were derived
using micro- and macro-X-ray computed tomography
(XCT) techniques [10, 11]. �e copper and iron ores were
crushed using a jaw crusher �rst, and then the products were
evaluated for particle damage and copper grain exposure by
X-ray computed tomography [12, 13]. A �nite element
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model of coke was generated using micro-X-ray CT, and
coke strength was numerically evaluated using its micro-
structure [14]. .e principle, the advantages, and the lim-
itations of XCT itself are presented, together with an
overview of some current applications of micro-CT in
geomaterials [15–19].

Characterization of multiphase mineral using XCT
techniques would be extremely helpful for an improved
understanding of coal particle crushing processes. Novel
image processing techniques combined with stochastic
analysis are also used to analyze the 3D images of the porous
structure of coal [20]. .e fraction of mineral exposed and
the ultimate recovery for a given particle size distribution
can be established by X-ray microtomography [21]. .e
characterization of individual multiphase particle has been
studied by Arias and Miller [22], and several effective al-
gorithms were also proposed by Miller and Lin to study the
mesostructure of different minerals [23–25]. From the
abovementioned analysis, most of the studies have in-
vestigated the mesostructure of individual particles, but only
a small number of coal gangue samples have been studied by
the very limited XCT scanning studies and the results are
inconclusive. Besides, the inclusions in individual particles
are usually assumed to be a polygonal irregular body, which
has huge difference with the real internal mesostructure in
individual CGPs. .is may also lead to theoretical and
numerical models that cannot study the fracture charac-
teristics of individual CGPs inaccurately.

In this study, we aim to improve the understanding of
mesomorphologies of CGPs (such as geometric shape, 3D
mesomorphological parameters, and internal composition)
and their correlations with loading conditions, combining
the micro-XCT scanning tests and numerical simulations. A
large number of raw coal gangue samples with different
internal mesostructures are examined in detail using dif-
ferent image processing techniques. A reliable 3D meso-
scopic numerical approach (the image-based DE model) is
also proposed to study 3D fracture evolution process of HCR
under different impact velocities at the mesolevel.

2. XCT Image Acquisition, Processing,
and Analysis

2.1. XCT Scanning. .e packed crushed CGPs with particle
size range from 10∼100mm, which were provided by
Dengfeng mining in China, are simply packed in a cylin-
drical container (Figure 1(a)) and scanned on Philips milli-
CT equipment (Figure 1(b)). .e 3D image data obtained
from Philips milli-CT equipment contain 901 projections of
512× 512 pixels with a voxel resolution of 470 μm. Another
micro-XCT-400 machine with much higher resolution
(Figure 1(c)) is used to scan the fine particles with size
1∼5mm [26]. Figures 1(d) and 1(e) show the sample con-
tainer with a diameter of 40mm and 5mm, respectively.
.ese fine samples are tightly packed in the containers to
obtain higher quality images with voxel size 32 μm for
subsequent data analyses.

Figure 2 shows the variation of CT values of the sec-
tioned 2D images along the probeline AB. .e sensitivity to

location was examined by using line probe to verify that
most of CGPs are multiphase particles. As shown in Figure 2,
different mineral phases are clearly distinguished in different
grey scale levels. .e dark grey, light grey, and light white
regions represent sections of coal, gangue, and pyrite
mineral grains, respectively. .ese raw CT images are then
processed and analyzed to acquire the quantitative in-
formation to characterize the 3D mesostructure of indi-
vidual CGPs.

2.2. CT Image Processing and Segmentation. A series of
image processing procedures, including image denosing and
image enhancing, should be applied to original CT images
that aim to increase the precision of subsequent processing
algorithms. It is clear that segmentation is one of the most
critical steps to obtain accurate morphological parameters in
the process of boundary regions between particle phases and
cracks. For quantitatively analyzing particle damage accu-
rately, segmentation of the particle phases and cracks from
the background is accomplished by the conventional
threshold algorithm or feature-based classification algo-
rithm [27, 28], depending on the different particle phases
and crack characteristics in particles. .e conventional
threshold segmentation algorithm works well for most
coarse coal gangue particles, due to the high-contrast
boundaries in internal particles and sufficient scanning
resolutions. However, for a fine particle image with a scale
parameter (i.e., the ratio of particle size and voxel size [28])
less than 30 (Figure 3(a)) or artificial CT images
(Figure 3(d)), the conventional threshold often provides
unsatisfactory results because of some noises similar to our
interest regions and the insufficient contrast boundaries, as
shown in Figures 3(b) and 3(e), where the segmented image
is not satisfactory for detailed analysis of internal compo-
sitions and internal damages. Correctly identifying internal
composition and internal damage in particles by XCTcan be
challenging, due to insufficient contrast boundaries or small
characteristics near the resolution limit.

In this regard, a feature-based classification method,
which not only takes image intensities but also a series of
image features into account to identify particle boundaries
[29], is proposed to extract useful features to realize better
segmentation effect [30]. Firstly, red and green lines are
annotated as the training set of the particle phase and
background, respectively (Figure 4(a)). .en, the random
classifier was trained from the selected data, and the par-
ticles’ extraction image and background image are shown in
Figures 4(b) and 4(c), respectively. Finally, the improved
segmentation results of the small-scale image and artificial
CT image are shown in Figures 3(c) and 3(f), respectively. It
proved that the feature-based classification method is a
powerful tool to improve the accuracy of the specific image.

Similarly, different mineral phases and background re-
gions are selected as a training set to segment different
mineral phases from the background (air). .e improved
segmentation results for the small-scale image and artificial
CT image shown in Figure 5 are satisfactory for subsequent
segmentation process and for detailed quantitative analysis
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of multiphase particles. Table 1 shows the comparative re-
sults of composite analysis for different algorithms. As
shown in Table 1, the feature-based segmentation algorithm
has been found to perform very well in the analysis of small-
scale images of CGPs. In fact, for the small-scale image of
CGPs (scale parameter 28), the precision difference between
the two algorithms can reach to 28.08% when traditional
image segmentation was replaced by feature-based seg-
mentation. For the artificial image of CGPs (scale parameter

84), the range of error was 6.34% when traditional image
segmentation was replaced by feature-based segmentation.

3. 3D Individual Particle Characterization
Using XCT

3.1. Internal Composition Characterization of Individual
CGPs. Intensity histograms of the randomly selected ten
particles are shown in Figure 6. It is clear from Figure 6 that

(a) (b)

(c) (d) (e)

Figure 1: CTscanning facilities used (a) presents the raw coal gangue samples; (b) presents the Philips Tomoscan 60/TX CTscanner for raw
samples; (c) presents the micro-XCT-400 scanner for crushed particles; (d) presents the 40mm diameter container for fine CGPs samples;
and (e) presents the 5mm diameter container for fine CGPs.
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Figure 2: Variation of CT values of the sectioned 2D images along the probeline AB cutting are shown to reveal detailed information of the
packed samples. .is figure (a) presents the line-probe path AB and (b) presents the variation of CT values along AB.
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the intensity characteristics of individual particles show
different distribution characteristics, and a higher density
mineral phase has a higher intensity value. .e intensity-
frequency distribution curve of the multiphase particle
shows multipeak characteristics. Further analysis validated
that individual CGPs can be divided into three types: single-
phase particle, biphase particle, and triphase particle. In this
regard, three typical particles were selected and their in-
tensity histograms were determined, respectively, to

illustrate the difference of individual particles. Frequency
distribution curves and 3D volume-rendering images are
shown in Figures 7–9, respectively.

Intensity-frequency distribution curves and 3D volume-
rendering images of the selected single-phase particles are
shown in Figures 7(a) and 7(b), respectively. It is clear that
the intensity histograms of individual CGPs are fitted well
using the normal distribution model. .e coal intensity
histogram varies from 0 to 450, and its peak value is 315. For
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Figure 3: Segmentation results of small-scale CT image and the artificial CT image-based different segmentation algorithms. In this figure,
(a) and (d) presents the original small-scale image and artificial image, respectively; (b) and (e) presents the segmentation results based on
the conventional threshold algorithm; (c) and (f) presents the improved segmentation results based on the feature-based segmentation
algorithm.

(a) (b) (c)

Figure 4: Training of small-scale CT images using trainable Weka segmentation tool. .is figure (a) presents the segmented image after
applying the forest classifier; (b) presents foreground (particle); and (c) presents background extraction.
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a gangue particle, the intensity histogram varies from 1200
to 2400, and its peak value is 1763..e intensity histogram of
the gangue particle has only one peak, which further in-
dicates that the selected gangue particle is a single-phase
mineral. It can also be concluded from Figure 7 that big

difference exists between the intensity histogram distribu-
tion of coal and gangue, which can be distinguished from the
intensity histogram easily.

Figure 8 shows the results of the intensity-frequency
distribution curve and the 3D volume-rendering image of
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Figure 5: Segmentation results for the small-scale CT image and the artificial image based on the feature-based algorithm. .is figure (a)
presents the small-scale CT image and (b) presents the artificial image.

Table 1: Comparison for segmentation and validation results of CGPs.

Sample
size
(mm)

Resolution
(μm)

Scale
parameter

Segmentation
algorithm

Composition
analysis (%) Error

(%)
Coal Gangue

1∼2 35.35 28 .resholding 62.79 37.21 28.0835.35 28 Feature-based 73.24 26.76

3∼5 35.35 84 .resholding 56.68 43.32 6.3435.35 84 Feature-based 59.43 40.57
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Figure 6: Intensity histograms of the randomly selected ten CGPs.
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the selected biphase particles. As indicated from the curves
shown in Figure 8, the intensity value varies from 100 to 2100,
and the frequency distribution curve of intensity has two
peaks, which indicated that the selected particle is a biphase
particle (the individual particles are composited by coal and
gangue, respectively). .e intensity histogram of biphase
particle is analyzed through multinormal distribution. It can
be seen that the experimental data fit well, relating the fre-
quency distribution and the intensity values. Further analysis

shows that the volume proportion distributions of coal and
gangue are 82.91% and 17.09%, respectively.

Figure 9 shows the intensity histogram and volume
rendering of the selected triphase particle. .e intensity
histogram presents a trimodal distribution, and the intensity
value varies from 120 to 3100..e peak value of three phases
can reach to 710, 1500, and 3078, respectively. .e volume
proportion distributions of coal, gangue, and pyrite are
23.27%, 41.58%, and 35.15%, respectively.
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Figure 7: Intensity-frequency distribution curves and 3D volume-rendering images for the selected single-phase particles. .is figure
presents (a) the coal particle and (b) the gangue particle.
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Figure 8: Intensity-frequency distribution curve and 3D volume-rendering image for the selected biphase particle. .is figure presents (a)
the original CT image; (b) the whole particle; (c) the gangue phase; (d) the coal phase; (e) the frequency distribution curve of intensity.
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3.2. Characterization of 3D Mesomorphological Parameters.
In order to illustrate internal damage of the individual CGPs,
the original CT image of the selected coal particle shown in
Figure 10(a) is typically segmented and reconstructed
(Figure 10(b)) from the packed particle bed. It is clear that
cracks in different slices and internal damage can be clearly
identified from original CT images. .ese raw coal CT
images are processed using different segmentation algo-
rithms to get the satisfied binary images shown in Figure 11.

As shown in Figure 11, the cracks shown in black are
extracted in different slices, and the particle boundary is
marked in grey color. .e segmented CT images provide
quantitative information to characterize internal damage of
individual particles, and the quantitative analysis results can
be seen in Table 2. .e calculation indexes shown in Table 2
were described in [31–34]. It is clear that different meso-
morphological parameters (crack number, length, width,
perimeter, area, and angle) can be obtained in different
slices. .e variation tendency of the fracture ratio in dif-
ferent slices of the selected individual particle is shown in
Figure 12. As shown in Figure 12, there are two peaks during
slices 7∼15 and 45∼62, which indicates that fracture degree
of the coal particle is relatively serious in these two parts. It is
also clear from Figure 12 that different slices have different
fracture ratios, which indicates that different damage degrees
are existed in internal particles. Further 3D quantitative
analysis showed that the fracture ratio can reach to 5.06%.

From the abovementioned analysis, it proved that the
mesostructure of individual CGPs can be qualitative and
quantitative analyzed after loading (i.e., volume fractions,
sizes, shapes, and spatial distribution of mineral phases).
Due to the impact loading process always occurs within a
few microseconds, the continuous investigations of the
entire fracture process with the current XCT techniques is
not workable for technical reasons yet. In this regard, the 3D
numerical image-based DE model provides a feasible way to
examine the mesostructure damage and fracture evolution,
which is described in detail in the following section.

4. XCT Image-Based DE Simulations

4.1. 3D Image-Based DE Model Generation. A coal cube
specimen of size 32mm (Figure 13(a)) was cropped from
raw coal 3D dataset of 16 bit float with 1372 slices. For each
slices, there are 1720×1771 pixels of 32 μm in x× y direction
in the sampled image dataset. To reduce the data processing
time, the 3D data size was reduced to 500MB for the 3D
original dataset with the resolution also compressed from
32 μm to 100 μm using Avizo software. .ese raw com-
pressed CT images are segmented to get the 3D meso-
morphologies of HCR, and then reconstructed to get the 3D
surface model. .is is followed by Laplacian smoothing [35]
(Figure 13(b)) and surface simplification [36] to get the
simplified surface model (Figure 13(c)). As shown in
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Figure 9: Intensity-frequency distribution curves and 3D volume-rendering image for the selected triphase particle. .is figure presents (a)
the original CT image; (b) the whole particle; (c) the gangue phase; (d) the pyrite phase; (e) the coal phase; (f ) the frequency distribution
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Figure 13(c), there are 36386 triangles in the simplified
surface model.

In the image-based DE modelling process, the total
91672 discrete elements (balls) with the radius 0.433mm
were put into the simplified surface model to generate the 3D
DE model (Figure 13(d)). As shown in Figure 13(d), 77387
and 14285 balls were identified as coal and gangue clusters
based on the shape of the coal phase and gangue phase,
respectively. .e followed procedure is the settlement of the
balls until their total kinetic energy became insignificant.

In DEM analysis, the macroscale mechanical parameter,
such as elastic modulus E, Poisson ratio μ, and compressive
strength σ, cannot be directly imposed into the numerical
model. .erefore, it is critical to select appropriate meso-
parameters for the numerical model that aims to represent
the accurate macroscale mechanical behavior of HCR. .e
calibration approach is used to determine these appropriate
mesoparameters, and the detailed calibration procedure
[37, 38] has been demonstrated in Figure 14, which is de-
scribed in detail as follows:

(a) (b)

Figure 10: Original CT image and 3D volume-rendering image of the selected coal particle, respectively.
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Figure 11: Slices of coal obtained from the CT image and the corresponding initial isolation of segmented cracks (black). Delineation of the
particle boundary is shown in grey color.

Table 2: Quantitative analysis of coal internal cracks in the selected three slices.

CT slice Crack no. Length (mm) Width (mm) Angle (°) Perimeter (mm) Area (mm2)

Z� 33
① 23.887 3.427 43.363 25.92462 14.83195
② 16.348 1.782 127.875 15.49665 9.063892
③ 39.18 1.127 128.766 32.89973 19.05452

Z� 34
① 23.389 3.366 50.194 27.96137 15.75868
② 16.724 0.841 129.611 17.42324 10.60892
③ 34.354 0.644 129.898 37.1898 21.52674

Z� 35
① 23.489 3.187 48.576 55.11789 64.21975
② 18.052 1.335 124.439 43.6024 55.31336
③ 36.495 0.563 129.536 67.18277 81.56377
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(1) Conduct uniaxial compressive experiments on the
selected coal sample to determine the intrinsic
material parameters, such as elastic modulus, shear
modulus, Poisson’s ratio, and compressive strength.

(2) Establish 3D DE models of HCR in PFC3D.
(3) Conduct uniaxial compression simulations on the

3D DE model of HCRs to determine the meso-
mechanical parameters.

(4) .e calculated simulation and experimental pa-
rameters were compared, which aims to calibrate the
mesoparameters of HCRs. If the simulation results
were not consistent with the experimental parame-
ters, a new numerical model should be created by
modifying the mesoparameters until the simulation
parameters were consistent with the experimental
parameters.

With the assumed mesoparameters of the HCR, the
DEM calculations provided the uniaxial compressive
strength of 8.9MPa, the compressive elastic modulus of
3.9GPa, and Poisson ratio of 0.21, similarly as in the
standard uniaxial compression experiments of coal rocks
(σ � 9.6MPa, E� 4.2GPa, and μ� 0.23). .e final meso-
parameters of the simulation model are shown in Table 3.
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Figure 13: 3D DE model generate of HCR. .is figure presents (a) the raw coal sample; (b) the smoothed surface model; (c) the simplified
surface model; and (d) the 3D DE model of HCR.
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4.2. Dynamic Impact Simulation. For the simulation, par-
ticle flow code in three dimensions (PFC3D) in version 5.0
[39] is selected to run the DE model under dynamic impact
loads. Dynamic impact loading in positive y-axis directions
are modelled to investigate the 3D mesostructure effects on
the damage patterns and fracturemechanism under different
impact velocities. .e 3D DE model of HCR under positive
y-load is shown in Figure 15. As shown in Figure 15, the top
and bottom walls are created to apply the load in positive y-
direction, where the desired impact velocity corresponding
to a certain height h is applied on the top wall and the bottom
wall remains fixed, and lateral deformations are allowed
freely. To describe the simulation results presented below,
the time evolutions of the wall force generated at the HCR-
wall interface and the damage ratio [40–42] (i.e., the damage
ratio of coal and gangue is defined as the ratio of the number
of broken bonds and initial bonds in the coal phase and
gangue phase, respectively) are selected as the two important
parameters to quantitatively characterize failure patterns
and load-carrying capacities.

.e impact simulations for HCR have been used to
examine how the breakage behaviors are affected by different
impact velocities in positive y-load mode. It should be noted
that the numerical simulation process was ended with the
condition of the wall force reaching 60% of the maximum
wall force. .e wall forces for HCR as functions of the time
in y-load under different impact velocities are shown in
Figure 16, with key loading points (A∼D(positive y-load))
marked at the curve of wall force under 8m/s, respectively.
As shown in Figure 16, the maximumwall forces of the HCR
are calculated to be 69.01, 69.37, 82.33, 87.43, and 83.94KN
in negative y-load with the impact velocities of 6, 8, 10, 12,
and 14m/s, respectively, with 17.78% maximum difference.
.e maximum wall force increased first then slightly de-
creased, which indicated that there exists an optimal impact
velocity with best crushing effects but without excessive
energy consumption. Figure 17 compares the damage ratio
results of HCR and different mineral phases (coal and
gangue, respectively) affected by positive y-load under dif-
ferent impact velocities. As shown in Figure 17, the damage
ratios of the HCR and coal phase are much higher than the

results of the gangue phase in positive y-load mode, which
indicated that gangue phases are less damaged in the positive
y-load mode.

.e internal damage initiation state and evolution state
of the HCR in positive y-load are shown in Figure 18. .e
four key loading points (A∼D) in the positive y-load mode of
the curves at 8m/s are selected to illustrate how the gangue
interface affects initiation and propagation of damage bands.
It should be noticed that the fragment color, which are
determined by the built-in language FISH provided by
PFC3D, mainly caused by the evolution state of HCR. As
shown in Figure 18, only few percentage of fine debris is
generated at the HCR-wall interface in loading point A. .e
damage bands tend to propagate from the gangue interface
to form several main fragments due to the relative move-
ment between the HCR and the wall, which can be seen in
the evolution states from the loading point B to D. It is clear
from the evolution images of the key points A∼D that the
damage initiates mostly around the gangue interface, which
leads to generation of several coal fragments mostly around

Table 3: Mesoparameters of the PBM used in the DE model.

Mesoparameters Value Mesoparameters Value

Coal

Ball density ρc (kg/m3) 1540 Ball stiffness ratio kn/ks 2.17
Effective modulus E∗ (Pa) 2.3e9 Tensile strength σc (Pa) 7.90e6

Friction coefficient f 0.3 Cohesion c (Pa) 3.95e6
Installation gap gr (m) 1e − 4 Friction angle φ (°) 28
Radius multiplier λ 1 Normal damping ratio βn 0.75

Gangue

Ball density ρg (kg/m3) 2950 Ball stiffness ratio kn/ks 2.582
Effective modulus E∗ (Pa) 6.0e9 Tensile strength σc (Pa) 3.65e7

Friction coefficient f 0.3 Cohesion c (Pa) 3.04e7
Installation gap gr (m) 1e − 4 Friction angle φ (°) 34
Radius multiplier λ 1 Normal damping ratio βn 0.75

Interfaces

Effective modulus E∗ (Pa) 4.15e9 Tensile strength σc (Pa) 3.42e7
Friction coefficient f 0.3 Cohesion c (Pa) 1.72e7

Installation gap gr (m) 1e − 4 Friction angle φ (°) 31
Ball stiffness ratio kn/ks 2.38 Normal damping ratio βn 0.75

h

v

Z

X

Y

Figure 15: 3D DE model of HCR generation and in the positive y-
load mode.
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the gangue interface, and only the upper part of the gangue
phase is changed to the failure state. It indicated that the
damage bands tend to propagate along the gangue interface
under the condition of the loading direction, which is almost
perpendicular to the growth direction of the gangue
interface.

5. Conclusions

.is paper presents an application of milli- and micro-XCT
to mesostructure characterization of individual CGPs and

failure patterns analysis using dynamic impact simulations.
A detailed study has been presented on the quantitative
computational characterization of the mesostructure of
individual CGPs, and the quantitative numerical simulation
results are also showed as follows:

(1) .e conventional threshold segmentation algorithm
and the feature-based classification algorithm are
proposed to identify particle boundaries and mineral
phase boundaries of CGPs. It proved that the feature-
based classification algorithm has good segmenta-
tion results of the small-scale CT image and the
artificial CT image. .e volume proportion distri-
bution of internal composition and initial damage of
individual CGPs can be determined through dif-
ferent XCT image analysis methods.

(2) Internal composition and 3D spatial distribution of
mineral phases in individual particle can be char-
acterized using XCT techniques. .e meso-
morphological parameters of individual particles are
also carefully quantified using various image pro-
cessing techniques. All the defined mesomorpho-
logical parameters of the individual CGPs, including
the crack length, angle, width, and fracture ratio,
present different distribution characteristics in the
individual CGPs.

(3) .e impact simulations for HCR have been used to
examine how the breakage behaviors are affected by
the 3D mesostructure under different impact veloc-
ities. Both the shape of the gangue phase and ap-
proximate location of interfaces are the key
parameters that should be taken into account to study
the evolution process of mesocracks from bridging
into several main fragments. .is study demonstrates
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Figure 17: Variations of damage ratios of the HCR, coal phase, and
gangue phase in the positive y-load mode under different impact
velocities.
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Figure 16: Wall forces for HCR as functions of the time in positive
y-load modes under different impact velocities.
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Figure 18: Damage initiation and evolution states under positive y-
load at loading points A∼D (in this figure, a and b represent the
failure zone of coal and gangue phases, respectively, c and d
represent the undamaged zone of coal and gangue phases,
respectively).
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that combining the milli- and micro-XCT tests and
image-basedDEmodelling is an effective technique to
investigate the internal damage and failure patterns in
HCRs.

Nomenclature

ρc: .e density of the coal phase (kg/m3)
ρg: .e density of the gangue phase (kg/m3)
Ec: .e elastic modulus of the coal phase (Pa)
Eg: .e elastic modulus of the gangue phase (Pa)
vc: Poisson’s ratio of the coal phase
vg: Poisson’s ratio of the gangue phase
R: .e bond radius (m)
σmax: .e maximum tensile stresses (Pa)
τmax: .e maximum shear stresses (Pa)
β: .e moment contribution factor
kn/ks: Ball stiffness ratio
σc: Tensile strength, (Pa)
c: Cohesion (Pa)
φ: Friction angle (°)
βn: Normal damping ratio.
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