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In this paper, a novel bearing intelligent fault diagnosis method based on a novel krill herd algorithm (NKH) and kernel extreme
learning machine (KELM) is proposed. Firstly, multiscale dispersion entropy (MDE) is used to extract fault features of bearings to
obtain a set of fault feature vectors composed of dispersion entropy.­en, it is imported into the kernel extreme learning machine
for fault diagnosis. But considering the kernel function parameters σ and the error penalty factor C will a�ect the classi�cation
accuracy of the kernel extreme learning machine, this paper uses the novel krill herd algorithm (NKH) for their optimization.­e
opposite populations are added to the NKH in the initialization of population to improve its speed and prevent local optimum,
and during the period of looking for the optimal solution, the impulse operator is introduced to ensure it has enough impulse to
rush out of the local optimal once into the local optimum. Finally, in order to verify the e�ectiveness of the proposed method, it
was applied to the bearing fault experiment of Case Western Reserve University and XJTU-SY bearing data set. ­e results show
that the proposed method not only has good fault diagnosis performance and generalization but also has fast convergence speed
and does not easily fall into the local optimum. ­erefore, this paper provides a method for fault diagnosis under di�erent loads.
Meanwhile, the new method (NKH-KELM) is compared and analyzed with other mainstream intelligent bearing fault diagnosis
methods to verify the e�ectiveness and accuracy of the proposed method.

1. Introduction

­e rolling bearing is an indispensable part of the most
rotating mechanical equipment.­e loss of life and property
and damage to the environment caused by the failure of the
rolling bearing are very serious. In order to avoid bearing
failure as much as possible, we can improve the bearing
design, study and apply better materials and new technol-
ogies in the design and manufacturing stage, strengthen the
quality control measures in the production process, and
improve the assembly level of the bearing. In addition,
another way to prevent catastrophic events of the rotating
machinery equipment is to monitor and diagnose the
working state of the equipment in real time so as to achieve
e�ective control of the equipment. ­erefore, it is of great

signi�cance to monitor the working state of the bearing in
real time.

In recent years, various novel methods have been widely
used to solve practical engineering problems [1–5]. And
learning these novel methods [6–10] provides many ideas for
fault diagnosis. In the �eld of bearing fault diagnosis, novel
intelligent fault diagnosis methods emerge one after another
in recent years, namely, the method based on statistics
having Pearson’s correlation coe¦cient (PCC) [11], the
method based on signal processing having modi�ed variable
modal decomposition (MVMD) [12], improved ensemble
local mean decomposition (IELMD) [13], maximum kur-
tosis spectral entropy deconvolution (MKSED) [14], re-
gression residual signal based on improved intrinsic time-
scale decomposition [15], enhanced singular spectrum
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decomposition (ESSD) [16], weighted cyclic harmonic-to-
noise ratio [17], time-frequency analysis [18], multipoint
optimal minimum entropy deconvolution adjusted
(MOMEDA) [19], and so on [20]. In recent years, with the
development of big data, machine learning methods and deep
learning methods have been widely used to solve practical
engineering problems [21–26]. Machine learning methods or
deep learning methods were applied in the field of bearing
fault diagnosis, including the support vector machine (SVM)
[27, 28], BP neural network (BP) [29], deep convolutional
transfer learning network (CNN) [30], and kernel extreme
learning machine (ELM) [31, 32].*ese methods are good for
fault diagnosis in most cases, but some are more subjective in
choosing parameters. For example, the method used in ref-
erence [31] is highly subjective in selecting input weights and
biases. *erefore, it is necessary to introduce the parameter
optimization algorithm in fault diagnosis.

In the era of big data, many engineering problems need
feature extraction. For example, Yin et al. used multiobjective
feature extraction optimization to detectM/ODHVI damages
[33]. And, in the bearing fault diagnosis, the first step is how
to collect useful information from the fault bearing. At
present, there are many practical engineering problems that
take vibration information as useful information, and there
are endless methods for collecting vibration information
[34–38]. And most scholars also collect bearing vibration
information in the bearing fault diagnosis [39]. *en, how to
extract the characteristic information from the vibration
signal is the primary problem of intelligent fault diagnosis
based on machine learning. As a tool to describe the un-
certainty of signals, entropy has been widely used in recent
years to extract fault features of rolling bearings [40, 41], such
as sample entropy (SampEn) [42] and permutation entropy
(PerEn) [43]. However, SampEn and PerEn need to calculate
the distance between the two embedded dimensions and the
embedded vector of each sample separately, which greatly
increases the time for extracting features. In addition, most
useful information cannot be extracted from a single time
scale when analyzing the time series. In engineering practice,
the optimal time scale of the original signal is often unknown.
In order to solve this problem, the multiscale operation is
introduced into feature extraction. Multiscale allows entropy
to be extended tomultiple time scales to provide an additional
perspective when the time scales are uncertain. Like other
entropy measurement methods, multiscale entropy aims to
evaluate the complexity of the time series. One of the main
reasons for using multiscale entropy is that the relevant time
scales in the time series are not known. *erefore, analyzing
the problem over multiple time scales will obtain more in-
formation. Moreover, bearing fault diagnosis based on
multiscale entropy has been widely used in the field of in-
telligent fault, such as multiscale fuzzy entropy (MFE) [44]
and multiscale permutation entropy (MPE) [45]. Rostaghi
and Azami have proposed dispersion entropy (DE) [46] and
multiscale dispersion entropy (MDE) [47]. MDE does not
need to sort the amplitude of each embedded vector nor does
it need to calculate the distance between any two compound
delay vectors with embedded dimensions m and m + 1, which
makes DE and MDE faster than PerEn, PerEn, and MperEn,

significantly. Moreover, MDE has obvious advantages in
distinguishing different types of dynamic signals, so MDE is
more suitable than other methods for the extraction of the
bearing vibration signal.

*e result of feature extraction of each sample forms a
feature vector. How to classify the feature vector accurately is
the most critical problem of intelligent fault diagnosis. *ree
common classification methods based on machine learning
are the BP neural network (BP), support vector machine
(SVM), and extreme learning machine (ELM). However, in
the traditional BP neural network, a large part of the network
training parameters need to be set artificially, which is very
random. In addition, BP is adjusted by the gradient descent
method, which not only is easy to get into the local optimal
but also suffers slow convergence [48]. More importantly, this
operation is likely to lead to training failure. On the contrary,
because the network structure model is not single, the pa-
rameters of the neural network need to be constantly adjusted
in each iteration, so the diagnosis efficiency is not high, and it
will easily fall into the phenomenon of underlearning or
overfitting [49]. *e SVM has great advantages in solving
binary classification problems with small sample size [50], but
it is difficult to implement large-scale sample training and
solve multiple classifications [51]. However, the fault di-
agnosis of the rolling bearing is often a multiclassification
problem, which means it is difficult for an SVM to implement
the fault diagnosis of the rolling bearing and the high-level
accuracy rate is difficult to reach. *e ELM is a novel algo-
rithm based on the single-hidden-layer feedforward neural
network, which has the advantages of the simple mathe-
matical model, global optimal solution, fast learning speed,
less parameter selection, and high generalization, which has
been applied in many fields [52]. However, the ELM ran-
domly generates input weights and hidden-layer thresholds,
resulting in instability of the algorithm. In order to solve this
problem, the kernel function is introduced into the basis of
the ELM to obtain the kernel extreme learning machine
(KELM). *e KELM solves the problem of random initiali-
zation in the ELM algorithm, and the number of nodes in the
hidden layer can be determined accordingly, instead of being
specified manually. In addition, in solving some practical
engineering problems, the KELM shows high classification
accuracy, good promotion ability, and high robustness [53].

In the intelligent fault diagnosis, the parameter optimi-
zation of the diagnosismethod is also a key point. For example,
particle swarm optimization (PSO) was used to optimize the
filtering coefficient of deconvolution [54] and ant colony al-
gorithm [55]. Gandomi proposed a krill herd optimization
algorithm (KH) to solve the optimization problem in 2012
[56], which is based on the behavior of constantly updating the
position of krills because of the predation of krills in nature.
*is algorithm can adjust the participation amount of ex-
ploration and development by observing the progress of
solving the problem through various steps dynamically. In
addition, Gandomi also compared the KHwith eight common
optimizationmethods [56], and the final result showed the KH
converges faster than other optimization algorithms and does
not easily fall into the local optimal. So, the KH can effectively
solve various optimization problems and is superior to other
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optimization algorithms. In addition, the online optimal
method can also be used to solve such problems, and the
research on online optimal methods is endless. For example,
Yin et al. proposed the multivariate extremum seeking ap-
proach with the Newton method [57] and the multivariate
fractional-order gradient-based extremum seeking approach
[58], and the authors also verified their feasibility and ad-
vantages. *erefore, the online optimal method will be an
important direction of parameter optimization in the future.

In the above context, the proposed optimization algo-
rithms belong to the optimization algorithm of the pop-
ulation class but generally belong to the optimal problem
[59]. *at is to say, when an individual is in an optimal
position, but other individuals cannot know whether this
position is the local optimal or the global optimal, then all
other individuals will move towards this optimal position
and the whole population will fall into the local optimal
eventually. At present, in order to solve this problem, the
inertia weight of some individual movements can be in-
creased so as to jump out of the local optimal through the
high weight motion. But increasing the weight of a motion
only works in one individual or one position adjustment,
and it not only does not work in other positions but also may
be the reason for falling into the local optimal. When an
individual falls into the optimal position, the gradient of its
position function changes greatly. If the individual moves
than it normally does at the next position more, it is still near
the optimal position after the move. In other words, each
individual has an impulse associated with the previous step,
which means the impulse is large when the previous step is
large or the impulse is small when the previous step is small.
However, the individual trapped in the optimal still does not
rush out of the current optimal state after a certain number
of moves, so it can be considered that this position is the
global optimal position. In addition, it is also an effective
method to improve the optimization algorithm by im-
proving the initialization of the population. *e OBL
method proposed by Tizhoosh is one of the most effective
methods to improve the initialization of population [60].
*is algorithm increases the diversity of the search range and
global search ability by adding the opposite population in the
initial population, which avoids the whole population falling
into the local optimal from the origin. When the whole
population is searching for the global optimal, if the current
optimal individual falls into the local optimal, then it may
mislead other individuals to also enter the local optimal.
However, the opposite of the individual does not usually go
with it, but away from it. *erefore, the OBL method can
effectively prevent the whole population from falling into the
local optimum to some extent.

Under the same working conditions and the same
bearing type, the vibration signals between different fault
types are different because of different bearing fault types
and fault diameters [61]. In addition, because the gearbox
load is often changing according to the actual work re-
quirements, the bearing of the axial and radial loads is
constantly changing in practice. Too large or too small axial
and radial loads may aggravate the vibration of the bearing
[62] or increase the noise, or even produce screaming [63],

whichmay lead to large fluctuation of the vibration signal and
further affect the classification performance of the algorithm.
In other words, an algorithm may only work properly under
one load and not under other loads. In the actual gearbox fault
diagnosis, in order to detect the health condition of a gearbox
bearing, the load is deliberately set to a certain value, that is to
say, to stop the normal operation of the gearbox to detect the
health condition of the bearing, which will greatly reduce the
economic benefit of the gearbox. *erefore, it is of great
significance to consider various load conditions when
studying intelligent fault diagnosis of bearings.

Based on the above, this paper proposed a novel bearing
intelligent fault diagnosis method based on the kernel extreme
learningmachine (KELM). A novel krill herd algorithm (NKH)
is used to optimize kernel function parameters σ and the error
penalty factor C in the KELM. Opposite-based learning (OBL)
and impulse operator are introduced in the optimization al-
gorithm to improve the global search ability of the individual
krill and prevent the krill group from falling into the local
optimal and increase the robustness of the algorithm. Firstly, in
order to verify the correctness of the algorithm proposed in this
paper, the bearing data set of Case Western Reserve University
is used for this experiment, and the influence of different loads
on the experimental results is considered in this experiment.
*en, in order to test the performance of the intelligent fault
diagnosis method proposed in this paper, it is compared with
other methods based on machine learning.

2. Feature Extraction

2.1. Multiscale Operation. In the analysis of fault vibration
signals, a more appropriate choice of the time scale usually
means that more useful information can be obtained from
the original signal. However, in the engineering practice, the
best time scale of the original signal is often unknown. In
order to solve this problem, the signal of multiple time scales
should be considered comprehensively.

Multiscale allows entropy to be extended to multiple time
scales to provide an additional perspective when time scales
are uncertain. Like other entropy measurement methods,
multiscale entropy aims to evaluate the complexity of the time
series. *erefore, analyzing the problem through multiple
time scales will obtain more information. For a given time
series x � x1, x2, x3, . . . , xN􏼈 􏼉 whose length is N, the con-
version equation of the multiscale operation is as follows:

u
(τ)
j �

1
τ

􏽘

jτ

b�(j− 1)τ+1
xb, 1≤ j≤

L

τ
􏼔 􏼕 � N, (1)

where u
(τ)
j represents the jth element in the sequence u with

the time scale of τ, N represents the length of the sequence u,
and xb represents the bth element in the sequence x.

A multiscale coarse granulation operation with a time
scale of 2 and 3, respectively, is shown in Figures 1 and 2.

2.2. Dispersion Entropy (DE). Dispersion entropy can be
used to express the dispersion degree of a time series. For a
given time series x � x1, x2, x3, . . . , xN􏼈 􏼉 whose length is N,
the DE consists of the following four steps:
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(1) Firstly, x is linearly mapped to a sorting sequence of
positive integers from 1 to c. However, considering
the irregularity of the signal, that is to say, whether
the maximum or minimum value of a signal is much
larger or much smaller than the mean or median
value of the signal, the signal is mostly concentrated
in a subset of the sequence.*erefore, x is mapped to
a sequence y � y1, y2, y3, . . . , yN􏼈 􏼉 from 0 to 1
through the normal cumulative distribution function
(NCDF). *e equation of the normal cumulative
distribution function (NCDF) is as follows:

yj �
1

σ
���
2π

√ 􏽚
xj

− ∞
e

− (x− μ)2( )/ 2σ2( )( )dt, (2)

where σ is the standard deviation of the sequence and
μ is the mean of the sequence.
Secondly, after obtaining the sequence y, it is linearly
mapped to z, and the equation is as follows:

z
c
j � round c × yi + 0.5( 􏼁, (3)

where c represents the number of types of classifi-
cations, zc

j represents the jth element of the se-
quence, and round(·) represents the rounding
operation.

(2) *e equation of the embedding vector zm,c
i is as

follows:

z
m,c
i � z

c
i , z

c
i+d, z

c
i+2d, . . . , z

c
i+(m− 1)d􏽮 􏽯, (4)

where i � 1, 2, 3, . . . , N − (m − 1)d, m is the em-
bedding dimension, and d is the time delay.
*en, each embedded vector is mapped to the dis-
persion pattern; the mapping relationship is as follows:

zc
i � v0, zc

i+d � v1, . . . , zc
i+(m− 1)d � vm− 1,

zm,c
i ⟶ πv0v1v2 ···vm− 1

.

⎧⎨

⎩ (5)

So there are cm different dispersion patterns.
(3) For each possible dispersion pattern, the equation of

its relative probability is

p πv0v1v2 ···vm− 1
􏼐 􏼑 �

number i | i≤N − (m − 1)d, zm,c
i has type πv0v1v2 ···vm− 1

􏽮 􏽯

N − (m − 1)d
. (6)

(4) According to the definition of entropy proposed by
Shannon, dispersion entropy can be obtained as follows:

DE(x, m, c, d) � − 􏽘
cm

π�1
p πv0v1v2 ···vm− 1

􏼐 􏼑 × ln p πv0v1v2···vm− 1
􏼐 􏼑􏼐 􏼑.

(7)
(5) Finally, the standard dispersion entropy is obtained

from the dispersion entropy standardization equa-
tion. It is expressed as follows:

NDE �
DE

ln cm( )
. (8)

Here is a simple example: supposing there is a time series
x � 9, 8, 1, 12, 5, − 3, 1.5, 8.01, 2.99, 4, − 1, 10{ } whose length
is 12, the embedding dimension m is 2, the time delay d is 1,
and the types of classifications c are 3. *e sequence y �

0.82, 0.75, 0.21, 0.94, 0.52, 0.05, 0.241, 0.75, 0.35, 0.43, 0.11,{

0.87} is obtained by the standard normal cumulative dis-
tribution function. And the classification sequence is
z � 3, 3, 1, 3, 2, 1, 1, 3, 2, 2, 1, 3{ }. In this example, the

possibilities of the dispersion pattern are 32 � 9, that is,
πv0v1v2 ···vm− 1

� π11, π12, π13, π21, π22, π23, π31, π32, π33􏼈 􏼉. Its
detailed equation is as follows:

z
2,3
1 � 3, 3{ }⟶ π33,

z
2,3
2 � 3, 1{ }⟶ π31,

z
2,3
3 � 1, 3{ }⟶ π13,

z
2,3
4 � 3, 2{ }⟶ π32,

z
2,3
5 � 2, 1{ }⟶ π21,

z
2,3
6 � 1, 1{ }⟶ π11,

z
2,3
7 � 1, 3{ }⟶ π13,

z
2,3
8 � 3, 2{ }⟶ π32,

z
2,3
9 � 2, 2{ }⟶ π22,

z
2,3
10 � 2, 1{ }⟶ π21,

z
2,3
11 � 1, 3{ }⟶ π13.

(9)

xi
x1 x2 x3 x4 x5 x6

(2)uj
(2)u1

(2)u2
(2)u3

(2)u(i+1)/2
(2)u(i+4)/2

xi–1 xi xi+1 xi+2 xi+3

… …

Figure 1: Multiscale coarse granulation of the time series with scale 2.

x1 x2 x3 x4 x5 x6

(3)uj
(3)u1

(3)u2
(3)u(i/3)

xi–1 xi xi+1 xi+2 xi+3

x1

… …

Figure 2: Multiscale coarse granulation of the time series with scale 3.
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So the probability of each dispersion pattern is as follows:

p π11( 􏼁 �
1
11

,

p π12( 􏼁 �
0
11

,

p π13( 􏼁 �
3
11

,

p π21( 􏼁 �
2
11

,

p π22( 􏼁 �
1
11

,

p π23( 􏼁 �
0
11

,

p π31( 􏼁 �
1
11

,

p π32( 􏼁 �
2
11

,

p π33( 􏼁 �
1
11

.

(10)

Its dispersion entropy is calculated as DE(x, m, c, d) �

DE(xi, 2, 3, 1) � 1.8642 and normalized as NDE �

(DE/ln(32)) � 0.85.

2.3. Multiscale Dispersion Entropy (MDE). When dealing
with the fault of the bearing vibration signal, it is often
difficult to know the most suitable time scales, and signal
nonstationarity and irregularity tend to be very strong; in
order to solve this problem well, Azami et al. proposed
multiscale discrete entropy (MDE) in 2017 [47] and proved
that the MDE approach based on processing of the non-
stationary signal has a strong ability of feature extraction.
*e flow of MDE is shown in Figure 3.

x � 9, 8, 7.2, 5.3, 6.4, 3.2, 0.89, 10.6, 5.2, 4.3, 6.4, 7.8{ }.

(11)
Here is a simple example: supposing there is a set of time

series, the embedding dimension m is 2, the time delay d is 1,
the types of classifications c are 3, and the time scale is 3.
Firstly, the coarse granulation of the sequence is carried out
according to the time scale. And the time scale 2 of the
sequence y(2) � 8.5, 6.25, 4.8, 5.745, 4.75, 7.2{ } and the time
scale 3 of the sequence y(3) � 8.07, 4.97, 5.56, 6.17{ } are
obtained. *en, the dispersion entropy of each sequence is
calculated to get MDE � DE(1),DE(2),DE(3)􏽮 􏽯 � 2.0198,{

1.0549, 1.0986}. Finally, it is normalized to NMDE �

0.9193, 0.4801, 0.5{ }.

3. The Proposal of NKH-KELM

3.1. Novel Krill Herd Algorithm (NKH). Gandomi proposed
the krill herd algorithm (KH) in 2012 by studying krill herd

activity rules [56]. In this algorithm, the solution of the
optimization problem is expressed by the position state of
the krill, and the optimal solution is constantly sought by the
change of the individual position in the process of krill
foraging. *e Lagrange model is used to describe the Kth
location change of the ith krill in a group of krills including L

krills during the foraging process:

dXi

dt
� Ni + Fi + Di, (12)

where Ni is the induced movement among krills, Fi is the
foraging movement among krills, and Di is the random
disturbance of krills.

*e induced motion velocity N
(k)
i of the ith krill is

expressed as follows:

N
(k)
i � Nmaxα

(k)
i + ωnN

(k− 1)
i ,

α(k)
i � α(k)

ilocal + α(k)
itarget,

αlocali � 􏽘
L

j�1
KijXij,

Xij �
Xj − Xi

Xj − Xi

�����

����� + ε
,

Kij �
Ki − Kj

Kworst − Kbest,

(13)

where Nmax is the maximum induced velocity; ωn is the
inertia weight (ωn ∈ [0, 1]); α(k)

i is the krill movement in-
duced by the direction; α(k)

ilocal is the local impact from the
neighbor krill; α(k)

itarget is the current local influence from the
optimal krill; Ki and Kj are the fitness function values of
krills i and j, respectively; Kworst and Kbest are the worst and
the best fitness function value of the current krill, re-
spectively; Kij is the fitness function value of the ith krill
related to the jth krill; Xij is the position of the ith krill
related to the jth krill; and ε is a normal number which
avoided the singularity of equation (18).

Calculate discrete entropy

Constitute the eigenvector

Coarse granulation
according to the time scale

τmax ≥ τ τ = τ + 1

A set of time series xi

Set time scale τmax, embedding
dimension m, and time delay d

Figure 3: Flow chart of MDE.

Complexity 5



*e foragingmovement F
(k)
i of the ith krill is represented

by the following equation:

F
(k)
i � vf β(k)

ifood + β(k)
ibest􏼐 􏼑 + ωfF

(k− 1)
i , (14)

where vf is the speed of foraging; F
(k− 1)
i is the direction

of the last foraging; β(k)
ifood is the attraction of food to the ith

krill; β(k)
ibest is the influence of the optimal krill on the ith krill

until the current moment; and ωf is the inertia weight
(ωf ∈ [0, 1]).

*e random disturbance D
(k)
i of the ith krill is expressed

by the following equation:

D
(k)
i � D

(k)
maxδ, (15)

where D(k)
max is the maximum velocity of random diffusion

and δ is the direction vector of random diffusion disturbance
(δ ∈ [− 1, 1]).

In order to improve the global search ability and conver-
gence speed of the krill herd algorithm, the opposite population
in the initialization of the krill herd is added. Assuming that the
position of the krill is Xi � (c1, c2, c3, · · · , cD) in the D-di-
mensional space, where cj ∈ [c

(j)

min, c
(j)
max], j ∈ [1, D], the po-

sition equation of the opposite krill is

Xi
′ � c1′, c2′, c3′, . . . , cD

′( 􏼁,

cj
′ � c

(j)
min + c

(j)
max − cj.

⎧⎪⎨

⎪⎩
(16)

*rough opposite-based learning (OBL), the diversity of
the krill group is increased so as to increase the exploration
scope and robustness of the krill group.

*ere may not only be one optimal solution in the D-
dimensional space that describes the krill herd algorithm;
that is to say, there are many local solutions. *e impulse
operator is introduced to make a krill whose previous
movement is very large have a high velocity in the next
movement so as to rush out of the local optimal solution. So
equation (8) can be improved to get the following equation:

dXnew
i

dt
� Ni + Fi + Di + p

d2Xold
i

dt2
, (17)

where p is the impulse coefficient and (d2Xold
i )/(dt2) is the

acceleration of the ith krill in the last movement. *e flow
chart of the NKH is shown in Figure 4.

3.2.<eKernelExtremeLearningMachineOptimizedbyNovel
Krill HerdAlgorithm (NKH-KELM). Consider a sample data
set (xi, ti) whose capacity is N, where xi � [xi1, xi2, xi3, . . . ,

xiN]T is the sample input data, N is the length of each vector
xi, and ti � [t1, t2, t3, . . . , ti]

T is the sample output value. For
a single-layer forward neural network (SLFN) with L nodes
of the hidden layer, its flow is shown in Figure 5.

In Figure 5, h(aixi + bi) is the activation function, ai is
the weight vector between the ith node of the hidden layer
and the node of the input layer, bi is the bias of the ith hidden
layer, βi is the weight vector between the ith node of the
hidden layer and the output layer, and yi is the output value.
So the output equation is

yi � 􏽘
L

i�1
βih aixi + bi( 􏼁, i � 1, 2, 3, . . . , N. (18)

When the actual output of the extreme learning machine
can approximate the expected output infinitely, in other
words, 􏽐

N
i�1‖yi − ti‖ � 0,

ti � 􏽘
L

i�1
βih aixi + bi( 􏼁, i � 1, 2, 3, . . . , N. (19)

*e output of the hidden layer is represented by a matrix

H �
hi(a1x1 + b1) · · · hi(a1x1 + b1)

⋮ ⋱ ⋮
hi(a1x1 + b1) · · · hi(a1x1 + b1)

􏼢 􏼣, and T is the expected output

vectors. *e least-square method is used to determine the
output weight vector βi of the ELM. Its equation is as follows:

β � H
+
T � H

T I

C
+ HH

T
􏼒 􏼓

− 1
T, (20)

where H+ is the Moore–Penrose generalized inverse matrix
of the hidden-layer output matrix, C is the penalty factor,
and I is the identity matrix. In order to prevent the roots
from deviating from zero, a constant matrix I/C is added to
the matrix HHT to improve the stability and generalization
ability of the results.

In terms of classification, for any linear indivisible data
set X in a low-dimensional space, there is always a mapping
k that maps the samples to a high-dimensional feature space
X⟶ k(x), which enables the data set to be linearly sep-
arated. However, the high-dimensional feature space will
greatly increase the calculation amount, and more impor-
tantly, the generalization performance of the algorithm will
decline with the increase of the dimension, which is very
unfavorable to the intelligent fault diagnosis of bearings. In
other words, an algorithm is only applicable to intelligent
fault diagnosis of bearings under one working condition, but
it is often not applicable to intelligent fault diagnosis of
bearings under another working condition. *e kernel ex-
treme learning machine (KELM) is borrowed from the idea
of the support vector machine (SVM) and adopts kernel
function to replace the feature mapping of the ELM hidden-
layer node, which can avoid the problem of the dimension
disaster to a certain extent. Compared with the ELM, the
KELM does not need to artificially determine the number of
hidden-layer nodes and also avoids the randomization
operation of input weight and input bias, thus improving the
generalization ability and classification accuracy of the
model. In the KELM, only the appropriate kernel function
parameters need to be selected to obtain the output weight.

For the KELM, the output vector is expressed as follows:

y � ker(x)H
T I

C
+ HH

T
􏼒 􏼓

− 1
T. (21)

*e kernel function is expressed as follows:

ker xi, xj􏼐 􏼑 � k xi( 􏼁k xj􏼐 􏼑. (22)

In the selection of kernel function, since there is no prior
knowledge about the classification of fault bearings, and the

6 Complexity



KELM is often expected to have a strong ability to explore the
local optimum after a certain time of use, radial basis function
(RBF) is selected as the kernel function of the KELM [64]. *e
equation of the Gaussian kernel function is as follows:

ker xi, xj􏼐 􏼑 � exp −
xi − xj

�����

�����
2

2σ2
⎛⎜⎜⎝ ⎞⎟⎟⎠, (23)

where xi is the input vector during training, xj is the input
vector during testing, and σ is the width parameter of the
kernel function.

So the output equation of the KELM is

y �

ker x, x1( 􏼁

⋮
ker x, xL( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

H
T I

C
+ HH

T
􏼒 􏼓

− 1
T, (24)

where L is the dimension of the input vector.
Considering that the kernel function parameters σ and

the error penalty factor C in the KELMhave a great influence
on the results, the novel krill herd algorithm (NKH) is used
to optimize the two parameters to improve the classification
accuracy and robustness of the KELM. *e generalized

mean-square error GMSE can directly reflect the regression
performance of the KELM [65].*e equation of the GMSE is

GMSE �

�������������

1
n

􏽘

n

i�1
yi

∧
− yi􏼒 􏼓

2

􏽶
􏽴

, (25)

where n is the number of test samples and yi

∧
and yi are the

estimated and actual values of test samples, respectively.
In this paper, the KELM algorithm is used to solve the

classification problem, and the accuracy of the algorithm
classification can be verified by 10-fold cross-validation. In
other words, the data set is divided into ten parts, and turns
are taken to use nine of them as training data and the
remaining one as test data, which can be used to evaluate the
performance of parameters, reduce overfitting to a certain
extent, and obtain as much effective information as possible
from limited data to improve model performance [66].

*en, the GMSEs which are obtained ten times are
averaged. Finally, the result is used as the fitness function K:

K � GMSE �
1
k

􏽘

10

i�1
GMSE, (26)

where k is the number of experiments and is taken as 10.
From what has been discussed above, the flow chart of

NKH-KELM is shown in Figure 6. As can be seen from
Figure 6, the fault diagnosis method proposed in this paper
consists of three parts, namely, fault feature extraction,
NKH-KELM training, and NKH-KELM testing. In feature
extraction, vibration signals are collected by accelerometers,
sample design is carried out, and MDE feature extraction is
finally carried out so as to extract useful information from
the original vibration signals. In NKH-KELM training, the
NKHwith OBL and impulse operator is used to optimize the
width parameters σ and penalty factors C of kernel function,
and then the feature space extracted from the training set
is imported into the KELM for training. In the testing of
NKH-KELM, the feature space extracted from the feature set
is imported into the classifier which is trained in the previous
step so as to conduct fault diagnosis and verify the feasibility
of the method proposed in this paper.
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Figure 4: Flow chart of the NKH.
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4. Bearing Intelligent Fault Diagnosis
Based on NKH-KELM

4.1. Fault Diagnosis Experiment Based on Case Western
Reserve University Bearing Data Set

4.1.1. Description of Data. In order to verify the feasibility of
the proposed method, this paper adopts the test bearing data
set provided by Case Western Reserve University to carry
out the experiment. *e program code of all algorithms was
written in MATLAB R2016a, and then it was run on a
computer with CPU i7-5500U@2.40GHz, RAM 12.00GB,
and 64 bit Win10 operating system.

As shown in Figure 7, the bench consists of a
2 horsepower motor (left), a torque sensor/encoder (center),
a dynamometer (right), and other control equipment (not
shown in Figure 7). *e motor shaft is supported by test
bearings. *e single point failure of all test bearings was
caused by Electric Discharge Machining (EDM), and the
fault diameters were 0.007 inch, 0.014 inch, and 0.021 inch,
respectively. *e driving-end bearing (this paper only
considers the driving-end bearing data) adopts the 6205-2RS
bearing of SKF company. All vibration data were collected
by an accelerometer, which was placed at the drive end of the
motor housing with the sampling frequency of 12 kHz.

*e larger the fault size, the greater the bearing fault
degree. 0.007 inch, 0.014 inch, and 0.021 inch are considered
in this paper. In addition, for the motor load, the working
conditions with no load (0 hp), small load (1 hp), and large
load (3 hp) are considered. For the convenience of the
following instructions, a notation is used to represent the
tested data. For example, IR014_3 represents the bearing of
an inner ring failure type with a load of 3 hp and a failure
diameter of 0.014 inch. Table 1 shows the specifications of
test bearings.

As can be seen from Table 1, there are 30 kinds of test
bearing data sets. Since each fault type corresponds to 3 fault
diameters besides a healthy bearing, there are 10 kinds of
bearings. For each test bearing data set, every 5000 sampling
points are selected as one sample, so each data set has 24
samples and the whole data set can be divided into 720
samples. *e time-domain graphs of a sample in the bearing
data of each test under three loading conditions are shown in
Figures 8–10, respectively.

From the above time-domain diagram, it can be clearly
seen that, under the same load, the same fault type, and
different fault diameters, the peak size and peak occurrence
time of the time-domain diagram are significantly different.
For example, when the load is 3 hp, there are three different
time-domain diagrams corresponding to the ball fault. In
addition, in the case of the same fault type and fault diameter
under different loads, there are obvious differences in the
peak size and peak occurrence time of time-domain graphs.
Moreover, as can be seen from Table 2, the maximum value
of the signal may increase or decrease with the increase of
load. For example, in the rolling body fault with the fault
diameter of 0.007 inch, with the increase of load, the
maximum value of the signal is 3.4254, 3.0960, and 3.1301
successively. Moreover, with the increase of load, the

minimum value, peak value, and root-mean-square value all
change to some extent. In addition, with the same load and
fault type, but with different fault diameters, the peak values
of time-domain graphs also have obvious differences.
*erefore, this further proves the necessity of considering
load and fault diameter in intelligent fault diagnosis.

4.1.2. Fault Bearing Classification in Case Western Reserve
University Bearing Data Set Based on NKH-KELM.
According to the intelligent fault diagnosis method pro-
posed in this paper, firstly, MDE is used to extract multiscale
features from the original vibration signals. For the choice of
the time scale τ, if the time scale is too small, that is, the
observation angle of the signal is too small, it is impossible to
extract more useful information and affect the subsequent
operations. Conversely, if the time scale τ is too large, it will
increase the memory requirements and computing time of

Drive motor Torque transducer/encoder Dynamometer

Figure 7: Rolling bearing failure simulation test bench of Case
Western Reserve University.

Table 1: Test bearing specifications.

Health
condition

Fault
diameter
(inch)

Load
(hp)

Speed
(rpm) Notation

Healthy (N) —
0 1797 N000_0
1 1772 N000_1
3 1730 N000_3

Inner ring
fault (IR)

0.007, 0.014,
0.021

0 1797 IR007_0, IR014_0,
IR021_0

1 1772 IR007_1, IR014_1,
IR021_1

3 1730 IR007_3, IR014_3,
IR021_3

Ball fault (B) 0.007, 0.014,
0.021

0 1797 B007_0, B014_0,
B021_0

1 1772 B007_1, B014_1,
B021_1

3 1730 B007_3, B014_3,
B021_3

Outer ring
fault (OR)

0.007, 0.014,
0.021

0 1797
OR007_0,
OR014_0,
OR021_0

1 1772
OR007_1,
OR014_1,
OR021_1

3 1730
OR007_3,
OR014_3,
OR021_3
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the computer. Secondly, for the selection of the embedding
dimension m, if m is too small, it is difficult to detect the tiny
dynamic behavior of signals. Moreover, as can be seen from
the time-domain graphs in the previous section, the tiny
dynamic behavior of signals may bring about changes in the
fault type or fault diameter. On the contrary, if the em-
bedding dimension m is too large, although it can obtain
more reliable entropy results, it will greatly increase the
memory requirements and computing time of the computer.

*erefore, according to the above contents, in order to
extract more useful information on the limited computer
memory, the time scale τ is assumed to be 20 and the
embedding dimension m to be 2 [67]. In addition, when the
time delay d is greater than 1, aliasing may occur. *erefore,
the time delay d in this paper is taken as 1. Figure 11 shows
the MDE extraction results of the health condition of the
bearing in the test bearing data set under three different
loads.
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Figure 8: Time-domain graph of the original signal when the load is 0 hp.
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In this experiment, the extracted feature space is a
matrix with a size of 720× 20, in which 720 is the number of
samples and the dimension of each feature vector is 20.
Before using NKH-KELM for classification, the number of
training samples is selected as 540, the number of test
samples is selected as 180, and the classification label is
selected as 4 (N, IR, B, and OR). Firstly, the training sample
set and the novel krill herd algorithm are used to optimize
the kernel function parameters σ and the error penalty
factor C in the KELM. In the initialization of the krill group,
the number of krills is selected to be 25, and the maximum
allowable number of krill position updates is 200 [68]. After
OBL, 25 opposition krills are produced, so the individual
number of whole krill groups is 50. After introducing the
impulse operator, the value of the impulse coefficient has a
great influence on the robustness of the krill herd algo-
rithm. If the impulse coefficient is too small, the krill may
fall into the local optimal and is difficult to rush out of the
local optimal because of the fact the krill’s impulse is too

small. If the impulse coefficient is too large, then the im-
pulse will be too large and the krill will always be out of the
global optimal; that is to say, once the krill enters the global
optimal, the krill herd algorithm will never reach the global
optimal. When the impulse factor is greater than or equal to
1, the next move of the krill is likely to occur in a situation
that will never be global optimal, which is the worst.
*erefore, when discussing the selection of the impulse
coefficient in this paper, it should first be set to be less than
1 and then its minimum value is set to be 0.1 and the
interval between values of two adjacent groups is set to be
0.1. *e experiment is repeated five times, and the results
are shown in Figure 12.

It can be seen from Figure 12 that when the impulse
coefficient p is 1, the optimal fitness hardly changes after
reaching 10− 5. *at is to say, the phenomenon that the
impulse is too large to enter the optimal solution area and
the next movement will rush out of the optimal solution area
may happen, which indirectly proves the correctness of the
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Figure 10: Time-domain graph of the original signal when the load is 3 hp.

Table 2: Numerical analysis of the healthy bearing and faulty bearing with a fault diameter of 0.007 inch.

Notation Load (hp) Max. Min. Peak-to-peak value Root mean square
N000_0 0 0.2316 − 0.2866 0.5182 0.0740
N000_1 1 0.2230 − 0.2384 0.4615 0.0667
N000_3 3 0.2660 − 0.2047 0.4706 0.0654
IR007_0 0 1.6258 − 1.1751 2.8009 0.2876
IR007_1 1 1.5768 − 1.2784 2.8548 0.2944
IR007_3 3 1.4579 − 1.2668 2.7247 0.3178
B007_0 0 0.4644 − 0.4136 0.8780 0.1348
B007_1 1 0.4928 − 0.5136 1.0064 0.1395
B007_3 3 0.5534 − 0.5306 1.0839 0.1585
OR007_0 0 3.4254 − 3.1346 6.5599 0.6943
OR007_1 1 3.0960 − 2.8946 5.9906 0.5953
OR007_3 3 3.1301 − 2.9742 6.1043 0.5818
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previous hypothesis. As can be seen from Figure 12, when
the impulse coefficient p is 0.6 and krill moves 200 times, the
average fitness of the optimal krill individual is 2.165 × 10− 9,
the error penalty factor C after optimization is 15, and the
width parameter σ of the kernel function is 0.53. Secondly,
the optimized KELM is used to train and test the feature
space extracted from MDE. And the input of the KELM is
composed of 720 samples of MDE, of which 540 are used for
training and the remaining 180 samples are used for testing.
*en, the process of training is according to the KELM’s
kernel mapping rules. Finally, the output of the KELM is
obtained, that is, the prediction labels of the input sample.
*ey were compared with the actual labels of samples, and
the KELMwas trained based on this basis. *e experiment is
repeated five times. *e average fault diagnosis accuracy is

shown in Table 3, and the fault diagnosis of the training and
test of a certain experiment is shown in Figure 13. In Fig-
ure 13, the abscissa is the number of sample sets, the ordinate
is the state of the sample, the circle represents the actual label
of the sample, and the asterisk represents the prediction label
of the sample. As can be seen from Figure 13, the classifi-
cation accuracy of the training process and test process
reached 99.2593% and 98.3333%, respectively. In addition,
the correct rate reached 100% in the diagnosis of the normal
bearing set, and the other three kinds of bearings all had a
few cases of wrong diagnosis. *is also explains the feasi-
bility of the proposedmethod. Moreover, the sample of error
diagnosis mainly focuses on the rolling body, which may be
related to the working environment of the rolling body and
other factors.
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Figure 11: Dispersion entropy of each scale of the vibration signal of the test bearing data set under three kinds of loads. (a) Load� 0 hp. (b)
Load� 1 hp. (c) Load� 3 hp.
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In order to objectively test the performance of the pro-
posed method, the same data set is imported into other al-
gorithms, such as the K-nearest neighbor algorithm (KNN)
[69], naive Bayes classification algorithm (NB) [70], symbol
dynamic entropy+ support vector machine (SVM) [27], ra-
dial basis network (RBF) [71], extreme learning machine

(ELM) [31], and multilayer extreme learning machine [32].
*e experiment is repeated five times, and the average value of
the five times is taken as the evaluation index. *e results are
shown in Table 4 and Figures 14 and 15.

It can be seen from Table 4 and Figure 14 that the
performance of the kernel extreme learning machine

Table 3: Training accuracy and test accuracy of each type of bearings.

Types of bearings Average accuracy of the training sample set (%) Average accuracy of the test sample set (%)
Normal 100 100
Inner ring fault 98.9 97.6
Ball fault 99.8 97.1
Outer ring fault 97.9 98.4
Average 99.1 98.3
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optimized by the krill herd algorithm which is improved by
OBL and impulse operator is better than that of the KELM
optimized by the standard krill herd algorithm, which also
proves the superiority of the novel krill herd algorithm
proposed in this paper and the correctness of the algorithm
introduced by OBL and impulse operator. Figure 15 shows
the average value of the confounding matrix of the six al-
gorithms in the five experiments, where the horizontal
coordinate is a certain prediction label, the vertical co-
ordinate is the actual label of the sample, and the number in
the grid represents the proportion of the prediction label in
the classification and the actual label. It can be seen from
Figure 15 and Table 4 that the seven methods used for
comparison and the method proposed in this paper reach
100% in the classification of healthy bearings. *e phe-
nomenon may be that vibration signals of the health bearing
and the vibration signal of the fault bearing are different
greatly, the extraction of the vibration signal level of Case
Western Reserve University is high, or the feature extraction
method (MDE) is very superior, which leads to all kinds of
algorithms on the healthy bearing reach the classification
accuracy of 100%. Among the three fault types, NKH-KELM
is superior to the other seven algorithms, which proves that
NKH-KELM has certain advantages of fault diagnosis based
on machine learning. In addition, in the fault diagnosis of
the ball, the six different algorithms used for comparison
have not more than 95%, among which NB has only 49%. It
can also be seen from Figure 15 that the six algorithms
overlap greatly in the classification of ball faults and outer
ring faults. In other words, the ability of these six algorithms

to distinguish the ball fault and outer ring fault is not high.
However, the ball fault diagnosis accuracy of NKH-KELM
reaches 97.1%, and the outer fault diagnosis accuracy reaches
98.4%, which indicates that NKH-KELM has certain ad-
vantages over other algorithms in distinguishing ball faults
and outer ring faults.

4.2. Fault Diagnosis Experiment Based on XJTU-SY Bearing
Data Set

4.2.1. Description of Data. As shown in Figure 16, the
bearing test is composed of an AC motor, a motor speed
controller, a supporting shaft, a hydraulic loading system,
etc. [72]. *e radial force is generated by the hydraulic
loading system and applied to the bearing housing under the
test. *e speed is set and maintained by the AC induction
motor speed controller. In this experiment, the bearing
model is LDK UER204, and its specifications are shown in
Table 5.

4.2.2. Fault Bearing Classification in XJTU-SY Bearing Data
Set Based on NKH-KELM. In order to test the generalization
of the method proposed in this paper, the XJTU-SY bearing
data set with the sampling frequency of 37.5Hz was selected.
*e last 5000 points in the first 108 files of Bearing2_1 (inner
race fault), Bearing2_2 (outer race fault), and Bearing2_3
(cage fault) are selected as failure samples, and the first 5000
points in the first 36 samples of Bearing3_4 are taken as
healthy samples. In other words, the input of this experiment

Table 4: Average classification accuracy of different algorithms.

Feature extraction Classification method Average classification accuracy (%) Average computing time (s) Standard deviation

MDE

*e proposed method 98.7 0.6189 0.2226
KELM+ standard KH 88.3 0.6398 0.1059

KNN 96.5 0.5398 0.1447
NB 77.8 1.1771 0.5369
RBF 94.8 3.1687 0.3681

SDE SVM 95.5 3.3622 0.4369
mWAE ELM 95.2 0.7469 0.2173
MPE MELM 97.4 0.8312 0.0871
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Figure 14: Bearing diagnosis of the KELM optimized by the standard krill herd algorithm: results of NKH-KELM with classification
accuracy� 88.3333%.
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is 360 samples, including 36 healthy samples and 324 failure
samples. *e parameter selection of feature extraction is the
same as that of the previous experiment. *en, the feature
space after feature extraction is a matrix of 360× 20. *e
ratio of the training sample set and the test sample set is 3 to
1. In other words, the feature space of the training sample set
is 270× 20, and that of the test sample set is 90× 20. *en,
the training sample set was imported into NKH-KELM with
an impulse coefficient of 0.6 to adjust the model for training.
Finally, the test sample set was imported into the trained
model to test the performance of the model. *e test results
are shown in Figure 17.

In Figure 17, the abscissa is the number of sample sets,
the ordinate is the state of the sample, the circle represents

the actual label of the sample, and the asterisk represents the
prediction label of the sample. N stands for the healthy
bearing, IR for the inner race fault, C for the cage fault, and
OR for the outer race fault. In this experiment, the fault
classification accuracy reaches 95.5556%. *e fault classifi-
cation of the healthy bearing reaches 100%. And the fault
diagnosis of the three kinds of fault bearings mainly occurs
in the diagnosis of the cage. For example, the fault of the
inner race or the outer race is misdiagnosed as the fault of the
cage, or the fault of the cage is misdiagnosed as the fault of
the inner race or the fault of the outer race. *is indicates
that the characteristics of the three faults are similar to some
extent. However, on the whole, the method proposed in this
paper still has certain advantages in fault diagnosis on the
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Figure 15: Bearing fault diagnosis of six different algorithms.
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XJTU-SY bearing data set, which also proves the general-
ization of the method proposed in this paper.

5. Conclusion and Future Work

*is paper takes the bearing fault diagnosis of the gearbox
as the research object. Firstly, the vibration signals are
extracted by multiscale dispersion entropy (MDE). Sec-
ondly, they are imported into the kernel extreme learning
machine (KELM) for fault classification. A novel krill herd
algorithm (NKH) with opposite-based learning (OBL) and
impulse operators is used to optimize kernel function

parameters σ and the error penalty factor C in the KELM.
*en, the bearing data from Case Western Reserve Uni-
versity are imported into NKH-KELM for training and
testing. Finally, the method proposed in this paper is
compared with the other seven methods. It can be seen
from the experimental results that NKH-KELM is superior
to the other seven methods in the diagnosis of three fault
types, which also proves the superiority of NKH-KELM in
intelligent fault diagnosis of bearings. By comparing NKH-
KELM with standard KH+KELM, it can be seen that the
optimization ability of the novel krill herd algorithm is
better than that of the unimproved krill herd algorithm.
However, in the diagnosis of ball faults, although NKH-
KELM is better than the other seven algorithms, the di-
agnostic accuracy of ball faults is significantly lower than
that of the other two fault types. *is phenomenon may be
related to the low signal-to-noise ratio in the acquisition of
the vibration signal of the ball, the small proportion of
useful information on the ball extracted by the feature
extraction method (MDE), or the poor performance of
machine learning in the fault diagnosis of the ball.
*erefore, this question will be an important research
direction in the future. In addition, in the era of big data,
deep learning methods are becoming more and more
perfect, so not only is there a great demand for intelligent
fault diagnosis based on machine learning but also there
will be a great demand for intelligent fault diagnosis based
on deep learning, which will also be a key research
direction.

Table 5: Parameters of testing bearing.

Parameter Value Parameter Value
Outer race diameter 39.80mm Inner race diameter 29.30mm
Bearing mean diameter 34.55mm Ball diameter 7.92mm
Number of balls 8 Contact angle 0°
Load rating (static) 6.65 kN Load rating (dynamic) 12.82 kN

Display force display Motor speed controller

AC motor Support bearings

Support sha�

Hydraulic loading Horizontal accelerometer

Vertical accelerometer Tested bearing

Figure 16: XJTU-SY fault diagnosis laboratory.
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Figure 17: Fault diagnosis based on the XJTU-SY bearing data set:
results of NKH-KELM with classification accuracy� 95.5556%.
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