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Evolutionary game dynamics is an important research, which is widely used in many �elds such as social networks, biological
systems, and cooperative behaviors.  is paper focuses on the Hopf bifurcation in imitative dynamics of three strategies (Rock-
Paper-Scissors) with mutations. First, we verify that there is a Hopf bifurcation in the imitative dynamics with no mutation. en,
we �nd that there is a critical value of mutation such that the system tends to an unstable limit cycle created in a subcritical Hopf
bifurcation. Moreover, the Hopf bifurcation exists for other kinds of the considered mutation patterns. Finally, the theoretical
results are veri�ed by numerical simulations through Rock-Paper-Scissors game.

1. Introduction

Evolutionary game dynamics combines game theory and
nonlinear dynamics to describe the evolution of the fre-
quencies of strategies in one or more large population [1, 2].
It has edged into many �elds such as networks population
[3–6], economics [7, 8], biology [9, 10], management
[11, 12], and cooperative behaviors [13–16].  ere are many
important evolutionary game dynamics such as replicator
dynamics, imitative dynamics [17], best-response dynamics
[18], and so on [19].  e Rock-Paper-Scissors (RPS) [20, 21]
is a famous three-strategy game, which describes in-
teractions among three competing species in ecology, so-
ciological systems [22], and theoretical biology [23, 24].
Replicator dynamics is the best-known evolutionary dy-
namics, which was �rstly de�ned by Taylor and Jonker [25],
and has been researched in various �elds [26, 27]. In
practice, imitative dynamics is a generalized replicator dy-
namics, which investigates the spreading of strategies in the
context of imitation instead of inheritance.

 ere are some research studies about the imitative dy-
namics [28–30]. Cheung [28] studied the imitative dynamics
for games with continuous strategy space and obtained global

convergence and local stability results for imitative dynamics.
Wang et al. [29] investigated the imitation dynamics with
delay, and they discussed the two-phenotype and three-
phenotype model and obtained some relevant results for
stability. Hu et al. [30] researched the imitative dynamics with
discrete delay, and they discovered that the stability would be
changed in the discrete delay dynamics and obtained some
su¢cient conditions.  e emphasis of the literatures is the
e£ect of delay in the imitative dynamics. However, the
mutation is also a noticeable factor on the study of the stability
of the evolutionary dynamics in reality.

Until now, many researchers have studied the e£ect of
mutations in the replicator dynamics [31–34]. Mobilia [31]
investigated the oscillatory dynamics in generic RPS games
with mutations and found out the existence of the hetero-
clinic cycles in the RPS model. Nagatani et al. [32] studied a
metapopulation model for RPS game with mutation, and
they found that the mutation would lead to the phase
transitions among three strategies. Toupo et al. [33, 34]
researched the e£ect of mutations in the repeated prisoner’s
dilemma game and RPS game, and they found that the
mutations would result in the Hopf bifurcation in the
replicator dynamics.  eir research studies illustrate that
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mutation could change the stability of the dynamics, es-
pecially lead to bifurcation.

*e bifurcation is an important behavior in dynamical
systems [35], which has been researched by many scholars
[36–39]. Wesson et al. [36, 37] investigated the Hopf bi-
furcation in two-strategy and three-strategy delayed replicator
dynamics, and they demonstrated the existence of Hopf bi-
furcation and presented an analysis of the limit cycles through
Lindstedt’s method. Nesrine et al. [38] researched the Hopf
bifurcation in RPS game with distributed delays. Umezuki
[39] studied the bifurcation of RPS game with discrete-time
logit dynamics and showed that some bifurcations would
destroy the coexistence of the attractors in the RPS game.

According to the previous literatures, there are few research
studies about the bifurcation in imitative dynamics. In this
paper, we aim to discuss the Hopf bifurcation in imitative
dynamics withmutation. Our research will illustrate that (i) the
imitative dynamics appears to be a Hopf bifurcation at the
parameter c in the RPS game; (ii) the stability would be
changed in the mutative imitation dynamics; and (iii) a sub-
critical Hopf bifurcation would be exhibited in this dynamics.

*e rest of this paper is organized as follows. Section 2
sets the imitation dynamics model without mutation and
analyses the stability and bifurcation. Section 3 researches
the Hopf bifurcations with mutations in the imitative dy-
namics. Section 4 gives numerical simulations of the equi-
librium and an unstable periodic solution. Section 5 offers
concluding remarks.

2. RPS Model without Mutation

2.1. Derivation. We consider a symmetric three-phenotype
model with pure strategies Rock (R), Scissors (S), and Paper
(P) and with payoff matrix:

R
S
P

R S P
1 1 + γ 0
0 1 1 + γ

1 + γ 0 1
, γ > 0. (1)

*e payoff matrix means that each strategy gets a payoff
1 when playing against itself, and the loser gets a payoff 0
while the winner gets 1 + c. Let (x1, x2, x3) denote the
frequency of (R, S,P) and (f1, f2, f3) the expected payoff of
(R, S,P) with fi(x) � 

3
j�1xjaij, where x � (x1, x2, x3) with


3
i�1xi � 1 and aij denotes the payoff of Si-individual plays

against a Sj individual in which i, j � 1, 2, 3.
*e classic imitation dynamics tacitly supposes that an

individual is randomly selected from the population and
awarded the same opportunity to change the strategy. *at
is, when an individual using Si plays against an individual
using Sj, the imitation rate that the Sj strategist switches to Si

is denoted by Fij for i, j � 1, 2, 3. In the previous literature, it
is assumed that the imitation rate Fij depends on the ex-
pected payoffs fi(x) and fj(x):

Fij(x) � F fi(x), fj(x) , (i, j � 1, 2, 3), (2)

where the function F(u, v) defines the imitation rule. Here,
we take F(u, v) � u/(u + v), i.e.,

Fij(x(t)) �
fi(x(t))

fi(x(t)) + fj(x(t))
, (i, j � 1, 2, 3). (3)

For ease of notation, write (x1, x2, x3) � (x, y, z). Under
this condition, the imitation dynamics equations can be
written as follows:

_x � x
f1 − f2

f1 + f2
y +

f1 − f3

f1 + f3
z ,

_y � y
f2 − f1

f2 + f1
x +

f2 − f3

f2 + f3
z ,

_z � z
f3 − f1

f3 + f1
x +

f3 − f2

f3 + f2
y .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Since x, y, and z are the frequencies of the three strat-
egies, the region of interest is the three-dimensional simplex
in R3:




≡ (x, y, z) ∈ R

3
: x + y + z � 1, (x, y, z≥ 0) . (5)

So, we can eliminate z using z � 1 − x − y and the
projection of 

 into the x − y plane: S ≡ (x, y) ∈ R2 :

(x, y, 1 − x − y) ∈}. In this case, equation (4) can be
written as

_x � x y
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)


+(1 − x − y)
(1 − c)x +(2 + c)y − 1

(1 + c)x + cy + 1
,

_y � y − x
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)


+(1 − x − y)
− x − (1 + c)y + 2 + c

− (1 + c)x − cy + c
.

(6)

2.2. Stability of Equilibria. System (6) has four equilibria:

e1 � (0, 0),

e2 � (0, 1),

e3 � (1, 0),

x
∗

�
1
3
,
1
3

 .

(7)

In order to discuss the stability of these equilibria, we
linearize equation (6). As a result, we can analyze the stability
of each point through the eigenvalues of the Jacobian. *e
eigenvalues of the three corner equilibria can be calculated as
shown in Table 1.

From above analysis, in the nonmutation RPS equation,
each corner of S is a saddle point.
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Next, we consider an important equilibrium x∗; first, we
discuss the stability in the nonmutation system. Since there
are two imaginary eigenvalues at this equilibrium point, we
think there might be a Hopf bifurcation at x∗.

2.3. Hopf Bifurcation. First, we introduce a lemma about
Hopf bifurcation in the vector field.

Lemma 1 (see [40]). Suppose that system
_x � fμ(x), x ∈ Rn

, μ ∈ R, (8)

has an equilibrium (x0, μ0) at which the following properties
are satisfied:

(H1) Dxfμ0(x0) has a simple pair of pure imaginary
eigenvalues and no other eigenvalues with zero real
parts

(H2) d � d/dμ(Reλ(μ))|μ�μ0 ≠ 0
(H3) a � a(μ0)≠ 0, where a(μ0) is the first Lyapunov

coefficient

6en, the system undergoes a Hopf bifurcation at μ � μ0.
The coefficient a(μ) can be calculated as follows. On the

center manifold, fμ(x) has the following form near the
origin:

_x

_y
  �

Reλ(μ) − Imλ(μ)

Imλ(μ) Reλ(μ)
 

x

y
  +

f1(x, y, μ)

f2(x, y, μ)
 ,

(9)

where f1 andf2 are nonlinear functions in x and y and
λ(μ) and λ(μ) are the eigenvalues of the linearized system
around the equilibrium at the origin. Especially, at the bi-
furcation point (i.e., μ � 0, λ1,2 � ± iω), the coefficient is
given by

a(μ) �
f1

xxx + f1
xyy + f2

xxy + f2
yyy

16

+
f1

xy f1
xx + f1

yy  − f2
xy f2

xx + f2
yy 

16ω

+
f1

yyf2
yy − f1

xxf2
xx

16ω
.

(10)

Lemma 2 (see [41]). Consider the system form (8); for
sufficiently small μ, the following four cases hold:

(i) d> 0, a> 0: unstable equilibrium for μ> 0 and as-
ymptotically stable equilibrium for μ< 0, with un-
stable periodic orbit (i.e., subcritical) for μ< 0

(ii) d> 0, a< 0: unstable equilibrium for μ> 0 and as-
ymptotically stable equilibrium for μ< 0, with as-
ymptotically stable periodic orbit (i.e., supercritical)
for μ> 0

(iii) d< 0, a> 0: unstable equilibrium for μ< 0 and as-
ymptotically stable equilibrium for μ> 0, with un-
stable periodic orbit (i.e., subcritical) for μ> 0

(iv) d< 0, a< 0: unstable equilibrium for μ> 0 and as-
ymptotically stable equilibrium for μ< 0, with as-
ymptotically stable periodic orbit (i.e., supercritical)
for μ< 0

Next, we give a theorem to illustrate the bifurcation in
dynamics (6).

Theorem 1. 6e imitation dynamics (6) exhibits a subcritical
Hopf bifurcation at c � 1. Moreover, when c> 1, the interior
equilibrium is locally stable, and it is unstable when c< 1.

Proof. (i) When c≠ 1, the sign of the real part of eigenvalues
can be determined through Table 1. *at is,

c> 1, Re(λ) �
1 − c

4(c + 2)
< 0, (stability),

c< 1, Re(λ) �
1 − c

4(c + 2)
> 0, (instability).

(11)

(ii) When c � 1, as the formula in Lemma 1, we obtain
the nonlinear function form,

f
1
(x, y) � x (1 − x − y)

3y − 1
2x + y + 1

+ y
3x + 3y − 2
− x + 2y + 2

 

+

�
3

√

6
y,

f
2
(x, y) � y (1 − x − y)

− x − 2y + 3
− 2x − y + 1

− x
3x + 3y − 2
− x + 2y + 2

 

−

�
3

√

6
x.

(12)

We can obtain the Lyapunov coefficient through Matlab
as follows:

a(c) �
27 c3 + 4c2 + 2c − 3( 

16(c + 2)3
|c�1 �

1
4
> 0.

d(c) �
d

d(c)
(Reλ(c)) � −

3
4(c + 2)2

|c�1 < 0.

(13)

Table 1: *e eigenvalues of equilibria.

Points Eigenvalues
(1, 0) λ1 � − 1, λ2 � c/c + 2
(0, 1) λ2 � c/c + 2, λ1 � − 1
(0, 0) λ1 � − 1, λ2 � c/c + 2
(1/3, 1/3) λ1,2 � 1 − c/4(c + 2) ± (

�
3

√
(1 + c)/4(c + 2))i
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According to Lemma 2, the Hopf bifurcation is sub-
critical at c � 1. □

3. RPS Model with Mutations

In this section, we examine the imitative dynamics with all
kinds of mutations, including global mutations, single
mutation, double mutations, and so on.

3.1. Global Mutations in RPS Model. First, we discuss the
global mutations in imitative dynamics. *e relationship of
mutations is shown in Figure 1.

In this case, the dynamics becomes the following form
with mutant coefficient μ(μ≥ 0):

_x � x(1 − x − y)
(1 − c)x +(2 + c)y − 1

(1 + c)x + cy + 1

+y
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)
 + μ(1 − 3x),

_y � y(1 − x − y)
− x − (1 + c)y + 2 + c

− (1 + c)x − cy + c

− x
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)
 + μ(1 − 3y).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

We give a theorem to illustrate the bifurcation in dy-
namics (14) as follows.

Theorem 2. 6e following two conclusions are established for
imitative dynamics (14):

(i) 6ere exists a subcritical Hopf bifurcation at μ � 1 −

c/12(c + 2) when c< 1. Moreover, for
μ> 1 − c/12(c + 2), the interior equilibrium is locally
stable, and for μ< 1 − c/12(c + 2), it is unstable

(ii) 6e interior equilibrium is locally stable when c≥ 1

Proof. *e Jacobian matrix of dynamics (14) at (1/3, 1/3) is

J
1
3
,
1
3

  �

1 − c

6(c + 2)
− 3μ

2c + 1
6(c + 2)

−
1
6

1 − c

6(c + 2)
− 3μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)

and the conjugate complex eigenvalues are

λ1,2(μ) �
1 − c

4(c + 2)
− 3μ ±

�
3

√
(c + 1)

4(c + 2)
i. (16)

Let Re(λ1,2) � 0, then μ � 1 − c/12(c + 2). One can
obtain the following:

(i) c< 1: if μ � 1 − c/12(c + 2), then the Jacobian ma-
trix has a pair of pure complex eigenvalues

(ii) c≥ 1: Re(λ)< 0 is always correct, i.e., the interior
equilibrium is locally stable

Similar to the proof in *eorem 1, the nonlinear
functions can be obtained as follows:

f1(x, y) � xy
(2 + c)x +(1 + 2c)y − (1 + c)

− cx +(1 + c)y +(1 + c)

+(1 − x − y)
(1 − c)x +(2 + c)y − 1

(1 + c)x + cy + 1


+
1 − c

12(c + 2)
(1 − 3x) +

�
3

√
(c + 1)

4(c + 2)
y,

f2(x, y) � yx
(1 + c) − (2 + c)x +(1 + 2c)y

− cx +(1 + c)y +(1 + c)

+(1 − x − y)
− x − (1 + c)y + 2 + c

− (1 + c)x − cy + c


+
1 − c

12(c + 2)
(1 − 3y) −

�
3

√
(c + 1)

4(c + 2)
x.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

*e Lyapunov coefficient can be calculated as follows:

a(c) �
27 c3 + 4c2 + 2c − 3( 

16(c + 2)3
> 0, (for 0< c< 1),

d �
d

d(μ)
(Reλ(μ)) �

d

d(μ)

1 − c

4(c + 2)
− 3μ  � − 3< 0.

(18)

According to Lemma 2, the Hopf bifurcation is sub-
critical at μ � 1 − c/12(c + 2).

*e results in *eorem 1 and *eorem 2 show that the
situation in dynamics (8) is different from dynamics (14).
While the interior equilibrium is always unstable when c< 1
in the former, the interior equilibrium is locally stable for
μ> 1 − c/12(c + 2) when c< 1 in the latter. □

3.2. Other Mutations in RPS Model. In this section, we
discuss the other mutations in imitative dynamics; the sit-
uation becomes complex as one adds more mutant path-
ways. For the ease of research, let us restrict attention to
mutant forms that ensure (x, y) � (1/3, 1/3) as the inner
equilibrium for all values of c and μ.

y
µµ

x
µ

z

Figure 1: *e global mutation in RPS.
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Here, we discuss the following three kinds of mutations
in RPS imitative dynamics (see Figure 2): (i) single mutation
between two strategies; (ii) single-cycle mutations among
three strategies; and (iii) double mutations between two
strategies. *ese mutant forms are shown in Table 2. As the
cycle symmetry of the RPS game, it suffices to consider one
of the three possible single mutation and double mutations.
In this case, we just consider the following representative
mutations.

For the imitative dynamics with these three kinds of
mutations, similar subcritical Hopf bifurcation at μ � μc

would be present. *is is different from the stability in
nonmutation imitative dynamics, which is always unstable
when c< 1.

4. Numerical Simulations

In this section, we propose to compare the properties of the
bifurcating periodic solution. Here, we report two simula-
tion results for imitative dynamics with nonmutation and
mutation, respectively.

Example 1. In the imitative dynamics (6), we take

c � 1.5,

c � 1,

c � 0.8,

(19)

into the equation. *rough the Matlab software, one can
obtain the following results (see Figure 3).

In Figure 3, the numerical simulation shows that the
interior equilibrium x∗ is asymptotically stable when c> 1
(i.e., c � 1.5). However, when c � 1, the system state tends to
a unstable periodic solution, and when c< 1 (i.e., c � 0.8),
the interior equilibrium x∗ is unstable.

Example 2. In the imitative dynamics (14), let

c � 1.5,

μ � 0.02,

μ � 0.002,

c � 0.8,

μ � 0.02,

μ � 0.002,

μ � 0.00595.

(20)

*rough the Matlab software, one can obtain the fol-
lowing results (see Figures 4 and 5).

In Figure 4, the numerical simulation shows that the
interior equilibrium x∗ is asymptotically stable when c � 1.5
(i.e., c> 1) for any value of μ, such as μ � 0.02 and μ � 0.002.

In Figure 5, the numerical simulation shows the fol-
lowing: (i) the Hopf curve in dynamics (14), i.e., the
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Figure 3: *e interior equilibrium’s changing situation with different c. (a) When c � 1, the limit cycle occurs around the interior
equilibrium. (b) When c � 1.5, the interior equilibrium is stable. (c) When c � 0.8, the interior equilibrium is unstable.

y
µ

x z

y
µ

x
µ

z

µ
y

µ

x
µ

z

Figure 2: *ree representative mutations in RPS.

Table 2: Hopf curve of different mutant forms.

Forms Numbers Hopf curve
y⇄ z 2 μc � 1 − c/4(c + 2)

x⟶ y⟶ z⟶ x 3 μc � 1 − c/6(c + 2)

x⇆ z, z⇄y 4 μc � 1 − c/8(c + 2)

Complexity 5



criticality of μ, changes with c; (ii) the interior equilibrium
x∗ would be stable when c � 0.8 (i.e., c< 1); and (iii) when
μ � 0.00595, the system state tends to a unstable periodic
solution, and when μ> 0.00595, the interior equilibrium x∗

is stable and is unstable when μ< 0.00595. *e marks in
Figures 4 and 5 are same as the description in Figure 3.

5. Conclusion

In this paper, the stability of the interior equilibrium has
been mainly investigated for imitative dynamics with mu-
tations. Different from the result in replicator dynamics
[31, 34], the stability of the interior equilibrium has been
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Figure 5: (a) *e stability and limit cycle with different c and μ (Hopf curve). (b) When c � 0.8 and μ � 0.00595, the limit cycle occurs
around x∗. (c) When c � 0.8 and μ � 0.002, the interior equilibrium is unstable. (d) When c � 0.8 and μ � 0.02, the interior equilibrium is
stable.
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Figure 4: *e interior equilibrium’s changing situation with the same c and different μ. (a) c � 1.5 and μ � 0.02. (b) c � 1.5 and μ � 0.002.
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changed with the mutations, and a subcritical Hopf bi-
furcation appears.

For the imitative dynamics in the RPS game, the stability
is changed at the parameter c in the payoff matrix with no
mutation, and the mutation μ in global mutation. In the
dynamics with no mutation, the interior equilibrium is
locally stable when c> 1 and is unstable when c< 1, and a
subcritical Hopf bifurcation appears at c � 1 in given payoff
matrix. In the imitative dynamics with global mutation, the
interior equilibrium is stable when c≥ 1, and it is different
from the case when c< 1. *ere is a subcritical Hopf bi-
furcation at μ � 1 − c/12(c + 2), and the interior equilib-
rium is locally stable when μ> 1 − c/12(c + 2) and is
unstable when μ< 1 − c/12(c + 2).

If we change the number of parameters (i.e., from one to
two), the stability and bifurcation would becomemuchmore
complicated. Furthermore, some numerical examples have
been given to illustrate the effectiveness of our results. As an
extension to this work, we plan to discuss the imitation
dynamics with delays and mutations.
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