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H7N9 virus in the environment plays a role in the dynamics of avian influenza A (H7N9). A nationwide poultry vaccination with
H7N9 vaccine programwas implemented in China in October of 2017. To analyze the effect of vaccination and environmental virus
on the development of avian influenza A (H7N9), we establish an avian influenza A (H7N9) transmission model with vaccination
and seasonality among human, birds, and poultry.The basic reproduction number for the prevalence of avian influenza is obtained.
The global stability of the disease-free equilibrium and the existence of positive periodic solution are proved by the comparison
theorem and the asymptotic autonomous system theorem. Finally, we use numerical simulations to demonstrate the theoretical
results. Simulation results indicate that the risk of H7N9 infection is higher in colder environment. Vaccinating poultry can
significantly reduce human infection.

1. Introduction

In general, the avian influenza virus does not infect human.
However, in 1997, Hong Kong reported for the first time 18
cases of human infection with avian influenza A (H5N1), of
which 6 cases died. It caused widespread concern worldwide
[1–3]. Further, H5N1, H7N4, H7N7, H7N9, H9N2, and
other avian influenza viruses with pathogenicity have great
potential threat to human. Especially, the virus subtypeH7N9
is mainly transmitted through the respiratory tract, infected
poultry and their secretions, excreta, andwater contaminated
by the virus. In February 2013, 3 people were firstly infected,
and by May 31, 132 cases were found, including 37 deaths,
and the mortality rate even reached 30%. These cases are
distributed in some provinces such as Shanghai, Jiangsu,
Zhejiang, Anhui, Fujian, and so on [4–7]. At present, infected
humans of avian influenza A (H7N9) are still sporadic, and it
has not yet found the ability that the virus can spread among
humans. Sporadic infections almost contact with poultry

mainly in farms, live-poultrymarkets, wetmarkets, and other
regions [8–12].

Zhang et al. [13] analyzed the source of infection of avian
influenza A (H7N9). According to theirs analysis, the most
probable transmission route of avian influenza A (H7N9) is
that migratory birds carry the virus and transmit it to local
birds through physical space transitions, which then transmit
the virus to poultry and to human with direct or indirect
contact with poultry. Vaidya and Wahl [14], considering the
seasonal bird migration, studied the relationship between the
time-varying environment-temperature and the decline of
the avian influenza A (H7N9) virus in the environment. Xiao
et al. [12] proposed and analyzed a mathematical model to
mimic its transmission dynamics to assess the transmission
potential of the novel avian influenza A (H7N9) virus. Xing
et al. [15] fitted the dynamic model with the actual data
and found that the main reason for the recurrence of avian
influenza A (H7N9) in winter was temperature cycling. Che
et al. [16] studied the model of highly pathogenic avian
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influenza with saturated contact rate. Li et al. [17] established
an avian influenza A (H7N9) dynamics model with different
groups in specific environment and studied the transmission
of H7N9 avian influenza in the epidemic-prone areas, which
reflected the impact of farms, live-poultry markets, and wet
markets.

Note that birds and poultry are the natural storage hosts
of avian influenza virus. The direct contact transmission
between birds and poultry is very little and the cross infection
between them happens through H7N9 virus carried in
coexistence environment. Exposed and infected birds and
poultry can shed virus into the environment due to secretions
and excreta. The virus can survive for several weeks, or
even months in the feces or contaminated environment
under suitable conditions. So, environment transmission is
indispensable during the process of the spread of influenza
virus.Themost easily infectious source of human infection is
poultry with the virus, and the main routes of transmission
are poultry-human and environment-human transmissions.
In addition, the high-risk humans infected with avian
influenza virus are mainly concentrated on humans who are
often in contact with poultry, including slaughter, breeding,
processing, trafficking in poultry, and low immunity groups.
In order to reduce the production of sick poultry and the
concentration of viruses in the environment, vaccinating
poultry and disinfecting the environment are used.

The organization of this paper is as follows. In Section 2,
we have constructed an avian influenza A (H7N9) epidemic
model with vaccination and seasonality to study the spread of
avian influenza A (H7N9). In Sections 3 and 4, the threshold
value 𝑅0 is obtained. By using the comparison theorem, and
the asymptotic autonomous system theorem and so on, it
is found that there exists a globally asymptotically stable
disease-free equilibrium when 𝑅0 < 1 and at least a positive
periodic solution when 𝑅0 > 1, respectively. The numerical
simulations used to illustrate the theoretical results and some
conclusions are included in Sections 5 and 6.

2. Formulation of the Model

We combine birds, poultry, and viruses in the environment
with human to establish a mathematical model of the spread
of avian influenza A (H7N9). Their total numbers of birds,
poultry, and human at any time 𝑡 are denoted by𝑁𝑏(𝑡),𝑁𝑎(𝑡),
and 𝑁ℎ(𝑡), respectively. The concentration of viruses in the
environment is denoted by 𝑊(𝑡), and the average number
of viruses that causes a H7N9 individual case is called an
infectious unit (IU) [13, 18]. The infectivity of virus in the
environment to birds, poultry, or humans is more affected
by the temperature, and we will consider it is periodic.
The infectivities among birds, poultry, and human-poultry
are related to themselves, which are less affected by the
temperature, so periodicities are not considered. It is assumed
that there is no transmission between humans and humans.
Therefore, human individuals are infected by two ways:
poultry-human and environment-human transmissions. The
human population is classified into four subclasses: ordinary
susceptible, high-risk susceptible, infected, and recovered,
denoted by 𝑆ℎ1(𝑡), 𝑆ℎ2(𝑡), 𝐼ℎ(𝑡), and 𝑅ℎ(𝑡), respectively. 𝑆𝑏(𝑡)

and 𝐼𝑏(𝑡) denote the number of susceptible and infective
individuals in the bird population. 𝑆𝑎(𝑡), 𝑉𝑎(𝑡), and 𝐼𝑎(𝑡)
denote the number of susceptible, vaccinated, and infective
individuals in the poultry population, respectively. Transmis-
sion process of avian influenza A (H7N9) virus among these
populations is described in Figure 1.

The dynamic model of avian influenza A (H7N9) is
described as the following ordinary differential equations:𝑑𝑆𝑏 (𝑡)𝑑𝑡 = 𝐴𝑏 − 𝛽𝑏𝑆𝑏𝐼𝑏 − 𝛽𝑤𝑏 (𝑡) 𝑆𝑏𝑊− 𝑑𝑏𝑆𝑏,𝑑𝐼𝑏 (𝑡)𝑑𝑡 = 𝛽𝑏𝑆𝑏𝐼𝑏 + 𝛽𝑤𝑏 (𝑡) 𝑆𝑏𝑊− 𝑑𝑏𝐼𝑏 − 𝛼𝑏𝐼𝑏,𝑑𝑆𝑎 (𝑡)𝑑𝑡 = 𝐴𝑎 − 𝛽𝑎𝑆𝑎𝐼𝑎 − 𝛽𝑤𝑎 (𝑡) 𝑆𝑎𝑊− 𝑑𝑎𝑆𝑎 − 𝑝𝑎𝑆𝑎+ 𝜂𝑎𝑉𝑎,𝑑𝑉𝑎 (𝑡)𝑑𝑡 = 𝑝𝑎𝑆𝑎 − 𝜎1𝛽𝑎𝑉𝑎𝐼𝑎 − 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉𝑎𝑊− 𝑑𝑎𝑉𝑎− 𝜂𝑎𝑉𝑎,𝑑𝐼𝑎 (𝑡)𝑑𝑡 = 𝛽𝑎𝑆𝑎𝐼𝑎 + 𝛽𝑤𝑎 (𝑡) 𝑆𝑎𝑊+ 𝜎1𝛽𝑎𝑉𝑎𝐼𝑎+ 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉𝑎𝑊− 𝑑𝑎𝐼𝑎 − 𝛼𝑎𝐼𝑎,𝑑𝑊 (𝑡)𝑑𝑡 = 𝑞𝑏𝐼𝑏 + 𝑞𝑎𝐼𝑎 − 𝑑𝑤𝑊− 𝛿𝑤𝑊,𝑑𝑆ℎ1 (𝑡)𝑑𝑡 = 𝐴ℎ − 𝛽ℎ1𝑆ℎ1𝐼𝑎 − 𝛽𝑤ℎ1 (𝑡) 𝑆ℎ1𝑊− 𝑑ℎ𝑆ℎ1− 𝜉ℎ𝑆ℎ1,𝑑𝑆ℎ2 (𝑡)𝑑𝑡 = 𝜉ℎ𝑆ℎ1 − 𝛽ℎ2𝑆ℎ2𝐼𝑎 − 𝛽𝑤ℎ2 (𝑡) 𝑆ℎ2𝑊− 𝑑ℎ𝑆ℎ2,𝑑𝐼ℎ (𝑡)𝑑𝑡 = 𝛽ℎ1𝑆ℎ1𝐼𝑎 + 𝛽𝑤ℎ1 (𝑡) 𝑆ℎ1𝑊+ 𝛽ℎ2𝑆ℎ2𝐼𝑎+ 𝛽𝑤ℎ2 (𝑡) 𝑆ℎ2𝑊− 𝑑ℎ𝐼ℎ − 𝛼ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ,𝑑𝑅ℎ (𝑡)𝑑𝑡 = 𝛾ℎ𝐼ℎ − 𝑑ℎ𝑅ℎ.

(1)

The interpretations of the variables and parameters are shown
in Table 1. All variables and parameters are nonnegative.

According to [15, 19, 20], the relationships between
environmental transmission rates and temperature can be
obtained𝛽𝑤𝑏 (𝑡) = 𝑓𝑤𝑏 (𝑇)= {{{0, 𝑇 > 30∘C,𝛽𝑤𝑏0 (30 − 𝑇) 𝑒−𝑔1𝑇−𝑔2 , 𝑇 ≤ 30∘C. (2)

𝛽𝑤𝑎 (𝑡) = 𝑓𝑤𝑎 (𝑇)= {{{0, 𝑇 > 30∘C,𝛽𝑤𝑎0 (30 − 𝑇) 𝑒−𝑔3𝑇−𝑔4 , 𝑇 ≤ 30∘C. (3)
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Figure 1: Flowchart of avian influenza A (H7N9) transmission.

𝛽𝑤ℎ1 (𝑡) = 𝑓𝑤ℎ1 (𝑇)= {{{0, 𝑇 > 30∘C,𝛽𝑤ℎ10 (30 − 𝑇) 𝑒−𝑔5𝑇−𝑔6 , 𝑇 ≤ 30∘C, (4)

and 𝛽𝑤ℎ2 (𝑡) = 𝑓𝑤ℎ2 (𝑇)= {{{0, 𝑇 > 30∘C,𝛽𝑤ℎ20 (30 − 𝑇) 𝑒−𝑔7𝑇−𝑔8 , 𝑇 ≤ 30∘C, (5)

where 𝑇 = 𝑇0(1 +𝜙1sin(𝜔𝑡 +𝜙2)) is the temperature, 𝑇0 is the
average temperature, 𝜔 is a period, 𝜙1 is the amplitude, and𝜙2 is the phase difference.

We model the implementation of intervention strategies
(initiated at time 𝑡⋆) by the following piecewise functions 𝛽ℎ1
and 𝛽ℎ2 [12]: 𝛽ℎ1 (𝑡) = {{{𝛽ℎ10, 𝑡 ≤ 𝑡⋆,𝛽ℎ10𝑒−𝑘1(𝑡−𝑡⋆), 𝑡 > 𝑡⋆, (6)

and 𝛽ℎ2 (𝑡) = {{{𝛽ℎ20, 𝑡 ≤ 𝑡⋆,𝛽ℎ20𝑒−𝑘2(𝑡−𝑡⋆), 𝑡 > 𝑡⋆. (7)

From system (1), these can find that𝑑𝑁𝑏𝑑𝑡 = 𝐴𝑏 − 𝑑𝑏𝑁𝑏 − 𝛼𝑏𝐼𝑏 ≤ 𝐴𝑏 − 𝑑𝑏𝑁𝑏. (8)𝑑𝑁𝑎𝑑𝑡 = 𝐴𝑎 − 𝑑𝑎𝑁𝑎 − 𝛼𝑎𝐼𝑎 ≤ 𝐴𝑎 − 𝑑𝑎𝑁𝑎. (9)𝑑𝑁ℎ𝑑𝑡 = 𝐴ℎ − 𝑑𝑎𝑁ℎ − 𝛼ℎ𝐼ℎ ≤ 𝐴ℎ − 𝑑ℎ𝑁ℎ. (10)

Then, from (8), it follows that𝑁𝑏 (𝑡) ≤ 𝐴𝑏𝑑𝑏 + (𝑁𝑏 (0) − 𝐴𝑏𝑑𝑏 ) 𝑒−𝑑�푏𝑡, (11)

and 𝑒−𝑑�푏𝑡 → 0 as 𝑡 → +∞, so lim𝑡→+∞𝑁𝑏(𝑡) ≤ 𝐴𝑏/𝑑𝑏.
In the same way, from (9) and (10), it can be obtained

that lim𝑡→+∞𝑁𝑎(𝑡) ≤ 𝐴𝑎/𝑑𝑎, lim𝑡→+∞𝑁ℎ(𝑡) ≤ 𝐴ℎ/𝑑ℎ. The
feasible region of system (1) isΩ = {(𝑆𝑏, 𝐼𝑏, 𝑆𝑎, 𝑉𝑎, 𝐼𝑎,𝑊, 𝑆ℎ1, 𝑆ℎ2, 𝐼ℎ, 𝑅ℎ) ∈ 𝑅10+ : 𝑁𝑏≤ 𝐴𝑏𝑑𝑏 , 𝑁𝑎 ≤ 𝐴𝑎𝑑𝑎 , 𝑁ℎ ≤ 𝐴ℎ𝑑ℎ , 𝑊≤ 𝑞𝑏𝐴𝑏/𝑑𝑏 + 𝑞𝑎𝐴𝑎/𝑑𝑎𝑑𝑤 + 𝛿𝑤 } .

(12)
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Table 1: Description of parameters and variables.

Parameters Interpretation Value(week) Resource𝐴𝑏 The birth number of birds 1 ∗ 109/520 [15]𝑑𝑏 The natural mortality rate of birds 1/10/52 [13]𝛼𝑏 Themortality rate of birds caused by H7N9 0.08 Assuming𝛽𝑏 𝐼𝑏(𝑡)-to-𝑆𝑏(𝑡)transmission rate Parameter𝛽𝑤𝑏(𝑡) 𝑊(𝑡)-to-𝑆𝑏(𝑡)transmission rate Parameter𝛽𝑤𝑏0 Parameter𝑔1 0.0313 [15]𝑔2 3.0624 [15]𝐴𝑎 The birth number of poultry 1.0438 ∗ 109/8 [13]𝑑𝑎 The natural mortality rate of poultry 1/8 [13]𝑝𝑎 The vaccination rate of poultry [0, 1] Assuming𝜂𝑎 The vaccine failure rate of poultry [0, 1] Assuming𝜎1 Probability of 𝐼𝑎(𝑡)-to-𝑉𝑎(𝑡) 0.12 Assuming𝜎2 Probability of𝑊(𝑡)-to-𝑉𝑎(𝑡) 0.08 Assuming𝛼𝑎 Themortality rate of poultry caused by H7N9 Parameter𝛽𝑎 𝐼𝑎(𝑡)-to-𝑆𝑎(𝑡)transmission rate Parameter𝛽𝑤𝑎(𝑡) 𝑊(𝑡)-to-𝑆𝑎(𝑡)transmission rate Parameter𝛽𝑤𝑎0 Parameter𝑔3 0.0313 [15]𝑔4 3.0624 [15]𝑞𝑏 The discharging concentration of H7N9 virus by 𝐼𝑏(𝑡) 5 [15]𝑞𝑎 The discharging concentration of H7N9 virus by 𝐼𝑎(𝑡) 5 [15]𝑑𝑤 The natural mortality rate of virus 0.7 Assuming𝛿𝑤 The effective disinfection rate Parameter𝐴ℎ The birth number of human 2.269741 ∗ 108/70/52 [13]𝑑ℎ The natural death rate of human 1/70/52 [13]𝜉ℎ The proportion of 𝑆ℎ1(𝑡)-to-𝑆ℎ2(𝑡) 0.0071 Assuming𝛾ℎ The recovery rate of human 2 [15]𝛼ℎ Themortality rate of human caused by H7N9 0.36 [13]𝛽ℎ1 𝐼𝑎(𝑡)-to-𝑆ℎ1(𝑡) transmission rate Parameter𝛽𝑤ℎ1(𝑡) 𝑊(𝑡)-to-𝑆ℎ1(𝑡) transmission rate Parameter𝛽ℎ10 The baseline transmission rate from poultry to ordinary humans Parameter𝛽𝑤ℎ10 Parameter𝑔5 0.0313 [15]𝑔6 3.0624 [15]𝑘1 Intervention intensity to 𝑆ℎ1(𝑡) Parameter
t⋆ The initiated time for implementation of measures Parameter𝛽ℎ2 𝐼𝑎(𝑡)-to-𝑆ℎ2(𝑡) transmission rate Parameter𝛽𝑤ℎ2(𝑡) 𝑊(𝑡)-to-𝑆ℎ2(𝑡) transmission rate Parameter𝛽ℎ20 The baseline transmission rate from poultry to high-risk humans Parameter𝛽𝑤ℎ20 Parameter𝑔7 0.0313 [15]𝑔8 3.0624 [15]𝑘2 Intervention intensity to 𝑆ℎ2(𝑡) Parameter
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3. The Basic Reproduction Number

The last equation is independent of the first nine equations of
system (1); we can only consider the following subsystem of
system (1):𝑑𝑆𝑏 (𝑡)𝑑𝑡 = 𝐴𝑏 − 𝛽𝑏𝑆𝑏𝐼𝑏 − 𝛽𝑤𝑏 (𝑡) 𝑆𝑏𝑊− 𝑑𝑏𝑆𝑏,𝑑𝐼𝑏 (𝑡)𝑑𝑡 = 𝛽𝑏𝑆𝑏𝐼𝑏 + 𝛽𝑤𝑏 (𝑡) 𝑆𝑏𝑊− 𝑑𝑏𝐼𝑏 − 𝛼𝑏𝐼𝑏,𝑑𝑆𝑎 (𝑡)𝑑𝑡 = 𝐴𝑎 − 𝛽𝑎𝑆𝑎𝐼𝑎 − 𝛽𝑤𝑎 (𝑡) 𝑆𝑎𝑊− 𝑑𝑎𝑆𝑎 − 𝑝𝑎𝑆𝑎+ 𝜂𝑎𝑉𝑎,𝑑𝑉𝑎 (𝑡)𝑑𝑡 = 𝑝𝑎𝑆𝑎 − 𝜎1𝛽𝑎𝑉𝑎𝐼𝑎 − 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉𝑎𝑊− 𝑑𝑎𝑉𝑎− 𝜂𝑎𝑉𝑎,𝑑𝐼𝑎 (𝑡)𝑑𝑡 = 𝛽𝑎𝑆𝑎𝐼𝑎 + 𝛽𝑤𝑎 (𝑡) 𝑆𝑎𝑊+ 𝜎1𝛽𝑎𝑉𝑎𝐼𝑎+ 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉𝑎𝑊− 𝑑𝑎𝐼𝑎 − 𝛼𝑎𝐼𝑎,𝑑𝑊 (𝑡)𝑑𝑡 = 𝑞𝑏𝐼𝑏 + 𝑞𝑎𝐼𝑎 − 𝑑𝑤𝑊− 𝛿𝑤𝑊,𝑑𝑆ℎ1 (𝑡)𝑑𝑡 = 𝐴ℎ − 𝛽ℎ1𝑆ℎ1𝐼𝑎 − 𝛽𝑤ℎ1 (𝑡) 𝑆ℎ1𝑊− 𝑑ℎ𝑆ℎ1− 𝜉ℎ𝑆ℎ1,𝑑𝑆ℎ2 (𝑡)𝑑𝑡 = 𝜉ℎ𝑆ℎ1 − 𝛽ℎ2𝑆ℎ2𝐼𝑎 − 𝛽𝑤ℎ2 (𝑡) 𝑆ℎ2𝑊− 𝑑ℎ𝑆ℎ2,𝑑𝐼ℎ (𝑡)𝑑𝑡 = 𝛽ℎ1𝑆ℎ1𝐼𝑎 + 𝛽𝑤ℎ1 (𝑡) 𝑆ℎ1𝑊+ 𝛽ℎ2𝑆ℎ2𝐼𝑎+ 𝛽𝑤ℎ2 (𝑡) 𝑆ℎ2𝑊− 𝑑ℎ𝐼ℎ − 𝛼ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ.

(13)

It is easy to see that system (13) always has the disease-free
equilibrium 𝐸0 = (𝑆0𝑏, 0, 𝑆0𝑎, 𝑉0𝑎 , 0, 0, 𝑆0ℎ1, 𝑆0ℎ2, 0), where𝑆0𝑏 = 𝐴𝑏𝑑𝑏 ,𝑆0𝑎 = 𝐴𝑎 (𝑑𝑎 + 𝜂𝑎)𝑑𝑎 (𝑑𝑎 + 𝑝𝑎 + 𝜂𝑎) ,𝑉0𝑎 = 𝑝𝑎𝑆0𝑎𝑑𝑎 + 𝜂𝑎 ,𝑆0ℎ1 = 𝐴ℎ𝑑ℎ + 𝜉ℎ ,𝑆0ℎ2 = 𝜉ℎ𝑆0ℎ1𝑑ℎ .

(14)

From system (13), we know that human dynamic equa-
tions do not affect the basic reproduction number. But for
the convenience of dynamic analysis, we add human dynamic

equations when calculating the basic reproduction number.
According to the method of Wang and Zhao [21], we can
obtain
F (𝑡)

=
(((((((((((((
(

𝛽𝑏𝑆𝑏𝐼𝑏 + 𝛽𝑤𝑏 (𝑡) 𝑆𝑏𝑊𝛽𝑎𝑆𝑎𝐼𝑎 + 𝛽𝑤𝑎 (𝑡) 𝑆𝑎𝑊+ 𝜎1𝛽𝑎𝑉𝑎𝐼𝑎 + 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉𝑎𝑊0𝛽ℎ1𝑆ℎ1𝐼𝑎 + 𝛽𝑤ℎ1 (𝑡) 𝑆ℎ1𝑊+ 𝛽ℎ2𝑆ℎ2𝐼𝑎 + 𝛽𝑤ℎ2 (𝑡) 𝑆ℎ2𝑊00000

)))))))))))))
)
, (15)

and

V (𝑡)

=
(((((((((((((
(

𝛼𝑏𝐼𝑏 + 𝑑𝑏𝐼𝑏𝛼𝑎𝐼𝑎 + 𝑑𝑎𝐼𝑎𝛿𝑤𝑊+ 𝑑𝑤𝑊− 𝑞𝑏𝐼𝑏 + 𝑞𝑎𝐼𝑎𝛼ℎ𝐼ℎ + 𝑑ℎ𝐼ℎ + 𝛾ℎ𝐼ℎ𝛽𝑏𝑆𝑏𝐼𝑏 + 𝛽𝑤𝑏 (𝑡) 𝑆𝑏𝑊+ 𝑑𝑏𝑆𝑏 − 𝐴𝑏𝛽𝑎𝑆𝑎𝐼𝑎 + 𝛽𝑤𝑎 (𝑡) 𝑆𝑎𝑊+ 𝑑𝑎𝑆𝑎 + 𝑝𝑎𝑆𝑎 − 𝜂𝑎𝑉𝑎 − 𝐴𝑎𝜎1𝛽𝑎𝑉𝑎𝐼𝑎 + 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉𝑎𝑊+ 𝑑𝑎𝑉𝑎 + 𝜂𝑎𝑉𝑎 − 𝑝𝑎𝑆𝑎𝛽ℎ1𝑆ℎ1𝐼𝑎 + 𝛽𝑤ℎ1 (𝑡) 𝑆ℎ1𝑊+ 𝑑ℎ𝑆ℎ1 + 𝜉ℎ𝑆ℎ1 − 𝐴ℎ𝛽ℎ2𝑆ℎ2𝐼𝑎 + 𝛽𝑤ℎ2 (𝑡) 𝑆ℎ2𝑊+ 𝑑ℎ𝑆ℎ2 − 𝜉ℎ𝑆ℎ1

)))))))))))))
)
. (16)

Then𝐹(𝐸0) (𝑡)
=(𝛽𝑏𝑆0𝑏 0 𝛽𝑤𝑏 (𝑡) 𝑆0𝑏 00 𝛽𝑎𝑆0𝑎 + 𝜎1𝛽𝑎𝑉0𝑎 𝛽𝑤𝑎 (𝑡) 𝑆0𝑎 + 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉0𝑎 00 0 0 00 𝛽ℎ1𝑆0ℎ1 + 𝛽ℎ2𝑆0ℎ2 𝛽𝑤ℎ1 (𝑡) 𝑆0ℎ1 + 𝛽𝑤ℎ2 (𝑡) 𝑆0ℎ2 0), (17)

and𝑉(𝐸0)
=(𝛼𝑏 + 𝑑𝑏 0 0 00 𝑑𝑎 + 𝛼𝑎 0 0−𝑞𝑏 −𝑞𝑎 𝛿𝑤 + 𝑑𝑤 00 0 0 𝑑ℎ + 𝛼ℎ + 𝛾ℎ). (18)

Assume𝑌(𝑡, 𝑠), 𝑡 ≥ 𝑠 is the evolution operator of the linear𝜔-periodic system 𝑑𝑦𝑑𝑡 = −𝑉(𝐸0)𝑦. (19)

That is, for each 𝑠 ∈ 𝑅, the 4 × 4matrix 𝑌(𝑡, 𝑠) satisfies𝑑𝑌 (𝑡, 𝑠)𝑑𝑡 = −𝑉(𝐸0)𝑌 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠, 𝑌 (𝑠, 𝑠) = 𝐼, (20)
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where 𝐼 is the 4 × 4 identity matrix. Thus, the monodromy
matrixΦ−𝑉

(�퐸0)
of (19) is equal to 𝑌(𝑡, 0), 𝑡 ≥ 0.

In view of the periodic environment, we assume that𝜑(𝑠), 𝜔-periodic in 𝑠, is the initial distribution of infectious
individuals. Then 𝐹(𝐸0)(𝑠)𝜑(𝑠) is the rate of new infections
produced by the infected individuals who were introduced
at time 𝑠. Given 𝑡 ≥ 𝑠, then 𝑌(𝑡, 𝑠)𝐹(𝐸0)(𝑠)𝜑(𝑠) gives the
distribution of those infected individuals who were newly
infected at time 𝑠 and remain in the infected compartments
at time 𝑡.

Let C𝜔 be the ordered Banach space of all 𝜔-periodic
functions from𝑅 to𝑅4, which is equippedwith themaximum
norm ‖ ∙ ‖ and the positive cone C+𝜔 = {𝜑 ∈ C𝜔 : 𝜑(𝑡) ≥0, ∀𝑡 ∈ 𝑅}. Then we can define a linear operator 𝐿: C𝜔 →
C𝜔 by (𝐿𝜑)(𝑡) = ∫+∞0 𝑌(𝑡, 𝑡 − 𝜁)𝐹(𝐸0)(𝑡 − 𝜁)𝜑(𝑡 − 𝜁)𝑑𝜁. From
Wang and Zhao [21], we call 𝐿 the next infection operator and
define the basic reproduction number as 𝑅0 = 𝜌(𝐿), where 𝜌
is the spectral radius of 𝐿.
Theorem 1. For system (13), if 𝑅0 < 1, the disease-free
equilibrium 𝐸0 is locally asymptotically stable; if 𝑅0 > 1, it is
unstable.

4. The Stability of
the Disease-Free Equilibrium and
Existence of Periodic Solutions

4.1. 	e Stability of the Disease-Free Equilibrium

Theorem 2. For system (13), if 𝑅0 < 1, the disease-free
equilibrium 𝐸0 is globally asymptotically stable.

Proof. Let (𝑆𝑏, 𝐼𝑏, 𝑆𝑎, 𝑉𝑎, 𝐼𝑎,𝑊, 𝑆ℎ1, 𝑆ℎ2, 𝐼ℎ) be a nonnegative
solution of system (13). To complete the proof, it is sufficient
to show that this nonnegative solution tends to the disease-
free equilibrium 𝐸0 as 𝑡 → +∞.

The first, third, fourth, seventh, and eighth equations of
system (13) with𝑉𝑎 ≤ 𝑁𝑎 − 𝑆𝑎 give the respective inequalities𝑑𝑆𝑏 (𝑡)𝑑𝑡 ≤ 𝐴𝑏 − 𝑑𝑏𝑆𝑏,𝑑𝑆𝑎 (𝑡)𝑑𝑡 ≤ 𝐴𝑎 + 𝜂𝑎𝑁𝑎 − 𝑑𝑎𝑆𝑎 − 𝑝𝑎𝑆𝑎 − 𝜂𝑎𝑆𝑎,𝑑𝑉𝑎 (𝑡)𝑑𝑡 ≤ 𝑝𝑎𝑁𝑎 − 𝑝𝑎𝑉𝑎 − 𝑑𝑎𝑉𝑎 − 𝜂𝑎𝑉𝑎,𝑑𝑆ℎ1 (𝑡)𝑑𝑡 ≤ 𝐴ℎ − 𝑑ℎ𝑆ℎ1 − 𝜉ℎ𝑆ℎ1,𝑑𝑆ℎ2 (𝑡)𝑑𝑡 ≤ 𝜉ℎ𝑆ℎ1 − 𝑑ℎ𝑆ℎ2.

(21)

Hence, for any 𝜀 > 0, it exists 𝑡𝜀 > 0; when 𝑡 ≥ 𝑡𝜀, we have𝑆𝑏 ≤ 𝑆0𝑏 + 𝜀,𝑆𝑎 ≤ 𝑆0𝑎 + 𝜀,𝑉𝑎 ≤ 𝑉0𝑎 + 𝜀,𝑆ℎ1 ≤ 𝑆0ℎ1 + 𝜀,𝑆ℎ2 ≤ 𝑆0ℎ2 + 𝜀.
(22)

The second, fifth, sixth, and ninth equations of system (13),
with 𝑆𝑏 ≤ 𝑆0𝑏 + 𝜀, 𝑆𝑎 ≤ 𝑆0𝑎 + 𝜀, 𝑉𝑎 ≤ 𝑉0𝑎 + 𝜀, 𝑆ℎ1 ≤ 𝑆0ℎ1 + 𝜀, and𝑆ℎ2 ≤ 𝑆0ℎ2 + 𝜀, give the respective inequalities𝑑𝐼𝑏 (𝑡)𝑑𝑡 ≤ 𝛽𝑏 (𝑆0𝑏 + 𝜀) 𝐼𝑏 + 𝛽𝑤𝑏 (𝑡) (𝑆0𝑏 + 𝜀)𝑊 − 𝑑𝑏𝐼𝑏− 𝛼𝑏𝐼𝑏,𝑑𝐼𝑎 (𝑡)𝑑𝑡 ≤ (𝛽𝑎𝐼𝑎 + 𝛽𝑤𝑎 (𝑡)𝑊) (𝑆0𝑎 + 𝜀)+ (𝜎1𝛽𝑎𝐼𝑎 + 𝜎2𝛽𝑤𝑎 (𝑡)𝑊) (𝑉0𝑎 + 𝜀)− 𝑑𝑎𝐼𝑎 − 𝛼𝑎𝐼𝑎,𝑑𝑊 (𝑡)𝑑𝑡 = 𝑞𝑏𝐼𝑏 + 𝑞𝑎𝐼𝑎 − 𝑑𝑤𝑊− 𝛿𝑤𝑊,𝑑𝐼ℎ (𝑡)𝑑𝑡 ≤ (𝛽ℎ1𝐼𝑎 + 𝛽𝑤ℎ1 (𝑡)𝑊) (𝑆0ℎ1 + 𝜀)+ (𝛽ℎ2𝐼𝑎 + 𝛽𝑤ℎ2 (𝑡)𝑊) (𝑆0ℎ2 + 𝜀) − 𝑑ℎ𝐼ℎ− 𝛼ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ.

(23)

We consider the auxiliary system of system (23), where
the coefficient matrix is𝑀𝜀
=(𝛽𝑏𝜀 0 𝛽𝑤𝑏 (𝑡) 𝜀 00 𝛽𝑎𝜀 + 𝜎1𝛽𝑎𝜀 𝛽𝑤𝑎 (𝑡) 𝜀 + 𝜎2𝛽𝑤𝑎 (𝑡) 𝜀 00 0 0 00 𝛽ℎ1𝜀 + 𝛽ℎ2𝜀 𝛽𝑤ℎ1 (𝑡) 𝜀 + 𝛽𝑤ℎ2 (𝑡) 𝜀 0) . (24)

Clearly, if 𝑅0 < 1, it is known from Theorem 2.2 in [21]
that 𝜌(Φ𝐹−𝑉(𝜔)) < 1. We can choose 𝜀 > 0 small enough
giving 𝜌(Φ𝐹−𝑉+𝑀�휀(𝜔)) < 1. It can be concluded from Lemma
2.1 in Zhang and Zhao [22] that there exists a positive, 𝜔-
periodic function 𝑓(𝑡) = (𝐼𝑏(𝑡), 𝐼𝑎(𝑡),𝑊(𝑡), 𝐼ℎ(𝑡)) such that𝑓(𝑡) = 𝑒Θ𝑡𝑓(𝑡) is a solution of the auxiliary system, whereΘ = (1/𝜔) ln(𝜌(Φ𝐹−𝑉+𝑀�휀(𝜔))). Here, 𝜌(Φ𝐹−𝑉+𝑀�휀(𝜔) < 1 ⇒Θ < 0, which implies 𝑓(𝑡) → 0 as 𝑡 → +∞. Therefore, the
zero solution of the auxiliary system is globally asymptotically
stable. For any nonnegative initial value, there is a sufficiently
large 𝑀. Applying the comparison theorem [23], it can be
obtained that 𝑓(𝑡) ≤ 𝑀𝑓(𝑡), ∀𝑡 > 0. Therefore, we obtain𝐼𝑏(𝑡) → 0, 𝐼𝑎(𝑡) → 0,𝑊(𝑡) → 0, 𝐼ℎ(𝑡) → 0 as 𝑡 → +∞.
By the theory of asymptotic autonomous systems [24], we get𝑆𝑏(𝑡) → 𝑆0𝑏, 𝐼𝑏(𝑡) → 0, 𝑆𝑎(𝑡) → 𝑆0𝑎, 𝑉𝑎(𝑡) → 𝑉0𝑎 , 𝐼𝑎(𝑡) →0,𝑊(𝑡) → 0, 𝑆ℎ1(𝑡) → 𝑆0ℎ1, 𝑆ℎ2(𝑡) → 𝑆0ℎ2, 𝐼ℎ(𝑡) → 0 as𝑡 → +∞. Hence, if 𝑅0 < 1, the disease-free equilibrium 𝐸0
is globally asymptotically stable.
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4.2. 	e Existence of Positive Periodic Solutions. Define𝑋 fl Ω,𝑋0 fl {(𝑆𝑏, 𝐼𝑏, 𝑆𝑎, 𝑉𝑎, 𝐼𝑎,𝑊, 𝑆ℎ1, 𝑆ℎ2, 𝐼ℎ) ∈ 𝑋 : 𝐼𝑏 (𝑡)> 0, 𝐼𝑎 (𝑡) > 0, 𝑊 (𝑡) > 0, 𝐼ℎ (𝑡) > 0} ,𝜕𝑋0 fl 𝑋\𝑋0.
(25)

Let 𝑃 : 𝑋 → 𝑋 be the Poincaré map associated with system
(13); that is, 𝑃(𝑧0) = 𝑢(𝜔, 𝑧0), ∀𝑧0 ∈ 𝑋, where 𝜔 is the period.𝑢(𝑡, 𝑧0) is the unique solution of system (13) with𝑢(0, 𝑧0) = 𝑧0 = (𝑆𝑏(0), 𝐼𝑏(0), 𝑆𝑎(0), 𝑉𝑎(0), 𝐼𝑎(0),𝑊(0), 𝑆ℎ1(0),𝑆ℎ2(0), 𝐼ℎ(0)). It is easy to see that 𝑃𝑛(𝑧0) = 𝑢(𝑛𝜔, 𝑧0), ∀𝑛 ≥ 0.
Lemma 3. For system (13), if 𝑅0 > 1, then there exists a 𝜇 > 0
such that, for any 𝑧0 = (𝑆𝑏(0), 𝐼𝑏(0), 𝑆𝑎(0), 𝑉𝑎(0), 𝐼𝑎(0),𝑊(0),𝑆ℎ1(0), 𝑆ℎ2(0), 𝐼ℎ(0)) ∈ 𝑋0 with ‖𝑧0 − 𝐸0‖ ≤ 𝜇, we have
lim𝑛→+∞sup 𝑑[𝑃𝑛(𝑧0), 𝐸0] ≥ 𝜇.
Proof. Since 𝑅0 > 1, Theorem 1 implies that 𝐸0 is unstable;
i.e., 𝜌(Φ𝐹−𝑉(𝜔)) > 1. We can choose 𝜀1 > 0 small enough
such that 𝜌(Φ𝐹−𝑉−𝑀�휀1 (𝜔)) > 1, where𝑀𝜀1
=(𝛽𝑏𝜀1 0 𝛽𝑤𝑏 (𝑡) 𝜀1 00 𝛽𝑎𝜀1 + 𝜎1𝛽𝑎𝜀1 𝛽𝑤𝑎 (𝑡) 𝜀1 + 𝜎2𝛽𝑤𝑎 (𝑡) 𝜀1 00 0 0 00 𝛽ℎ1𝜀1 + 𝛽ℎ2𝜀1 𝛽𝑤ℎ1 (𝑡) 𝜀1 + 𝛽𝑤ℎ2 (𝑡) 𝜀1 0). (26)
To the contrary, if possible suppose that the limit

lim𝑛→+∞sup 𝑑[𝑃𝑛(𝑧0), 𝐸0] < 𝜇 for some 𝑧0 ∈ 𝑋0. Without
loss of generality, we assume that 𝑑[𝑃𝑛(𝑧0), 𝐸0] < 𝜇, ∀𝑛 ≥ 0.
By the continuity of the solution with respect to the initial
value, it follows that𝑢 (𝑡, 𝑃𝑛 (𝑧0)) − 𝑢 (𝑡, 𝐸0) < 𝜀1, ∀𝑛 ≥ 0, ∀𝑡 ∈ [0, 𝜔] . (27)

From the periodicity of the system, for 𝜀1 > 0, there exists𝑡𝜀1 such that, for all 𝑡 > 𝑡𝜀1 , there holds𝑆𝑏 ≥ 𝑆0𝑏 − 𝜀1,𝑆𝑎 ≥ 𝑆0𝑎 − 𝜀1,𝑉𝑎 ≥ 𝑉0𝑎 − 𝜀1,𝑆ℎ1 ≥ 𝑆0ℎ1 − 𝜀1,𝑆ℎ2 ≥ 𝑆0ℎ2 − 𝜀1.
(28)

Then 𝑑𝐼𝑏 (𝑡)𝑑𝑡 ≥ 𝛽𝑏 (𝑆0𝑏 − 𝜀1) 𝐼𝑏 + 𝛽𝑤𝑏 (𝑡) (𝑆0𝑏 − 𝜀1)𝑊− 𝑑𝑏𝐼𝑏 − 𝛼𝑏𝐼𝑏,𝑑𝐼𝑎 (𝑡)𝑑𝑡 ≥ (𝛽𝑎𝐼𝑎 + 𝛽𝑤𝑎 (𝑡)𝑊) (𝑆0𝑎 − 𝜀1)+ (𝜎1𝛽𝑎𝐼𝑎 + 𝜎2𝛽𝑤𝑎 (𝑡))𝑊) (𝑉0𝑎 − 𝜀1)− 𝑑𝑎𝐼𝑎 − 𝛼𝑎𝐼𝑎,𝑑𝑊 (𝑡)𝑑𝑡 = 𝑞𝑏𝐼𝑏 + 𝑞𝑎𝐼𝑎 − 𝑑𝑤𝑊− 𝛿𝑤𝑊,𝑑𝐼ℎ (𝑡)𝑑𝑡 ≥ (𝛽ℎ1𝐼𝑎 + 𝛽𝑤ℎ1 (𝑡)𝑊) (𝑆0ℎ1 − 𝜀1)+ (𝛽ℎ2𝐼𝑎 + 𝛽𝑤ℎ2 (𝑡)𝑊) (𝑆0ℎ2 − 𝜀1)− 𝑑ℎ𝐼ℎ − 𝛼ℎ𝐼ℎ − 𝛾ℎ𝐼ℎ.

(29)

Now, consider the auxiliary system of (29); it can be
concluded from Lemma 2.1 in Zhang and Zhao [22] that
there exists a positive, 𝜔-periodic function 𝑓(𝑡) = (𝐼𝑏(𝑡),𝐼𝑎(𝑡),𝑊(𝑡), 𝐼ℎ(𝑡)) such that 𝑓(𝑡) = 𝑒Θ1𝑡𝑓(𝑡) is a solution of
the auxiliary system, where Θ1 = (1/𝜔) ln(𝜌(Φ𝐹−𝑉−𝑀�휀1 (𝜔))).
Here, 𝜌(Φ𝐹−𝑉−𝑀�휀1 (𝜔)) > 1 ⇒ Θ1 > 0, which implies
that, for nonnegative integer 𝑛, 𝑓(𝑛𝜔) → +∞ as 𝑛 →+∞. For any nonnegative initial value, there is a sufficiently
small 𝑚 > 0. Applying the comparison theorem [23], it can
be obtained that 𝑓(𝑡) ≥ 𝑚𝑓(𝑡), ∀𝑡 > 0. Thus, we obtain𝐼𝑏(𝑡) → +∞, 𝐼𝑎(𝑡) → +∞,𝑊(𝑡) → +∞, 𝐼ℎ(𝑡) → +∞
as 𝑡 → +∞, which is a contradiction. This completes the
proof.

Lemma 4. 	e following equation is established:𝑀𝜕 fl {𝑧0 ∈ 𝜕𝑋0 : 𝑃𝑛 (𝑧0) ∈ 𝜕𝑋0, ∀𝑛 ≥ 0}= {(𝑆0𝑏, 0, 𝑆0𝑎, 𝑉0𝑎 , 0, 0, 𝑆0ℎ1, 𝑆0ℎ2, 0) ∈ 𝑋 : 𝑆0𝑏 ≥ 0, 𝑆0𝑎≥ 0, 𝑉0𝑎 ≥ 0, 𝑆0ℎ1 ≥ 0, 𝑆0ℎ2 ≥ 0} . (30)

Proof. It is easy to know that{(𝑆0𝑏, 0, 𝑆0𝑎, 𝑉0𝑎 , 0, 0, 𝑆0ℎ1, 𝑆0ℎ2, 0)}⊆ {𝑧0 ∈ 𝜕𝑋0 : 𝑃𝑛 (𝑧0) ∈ 𝜕𝑋0, ∀𝑛 ≥ 0} . (31)

Proof by contradiction can be used to prove{(𝑆0𝑏, 0, 𝑆0𝑎, 𝑉0𝑎 , 0, 0, 𝑆0ℎ1, 𝑆0ℎ2, 0)}⊇ {𝑧0 ∈ 𝜕𝑋0 : 𝑃𝑛 (𝑧0) ∈ 𝜕𝑋0, ∀𝑛 ≥ 0} . (32)

If possible suppose that𝑧0 = (𝑆𝑏 (0) , 𝐼𝑏 (0) , 𝑆𝑎 (0) , 𝑉𝑎 (0) , 𝐼𝑎 (0) ,𝑊 (0) , 𝑆ℎ1 (0) ,𝑆ℎ2 (0) , 𝐼ℎ (0)) ∈ {(𝑧0 ∈ 𝜕𝑋0 : 𝑃𝑛 (𝑧0) ∈ 𝜕𝑋0, ∀𝑛≥ 0)} \ {(𝑆0𝑏, 0, 𝑆0𝑎, 𝑉0𝑎 , 0, 0, 𝑆0ℎ1, 𝑆0ℎ2, 0)} . (33)

Without loss of generality, we assume that 𝐼𝑏(𝑛𝜔) > 0. By
solving the general solution of system (13), we can derive



8 Complexity𝐼𝑏(𝑡) > 0, 𝐼𝑎(𝑡) > 0,𝑊(𝑡) > 0, 𝐼ℎ(𝑡) > 0. Meaning, (𝑆𝑏(𝑡),𝐼𝑏(𝑡), 𝑆𝑎(𝑡),𝑉𝑎(𝑡), 𝐼𝑎(𝑡),𝑊(𝑡), 𝑆ℎ1(𝑡), 𝑆ℎ2(𝑡), 𝐼ℎ(𝑡)) ∉ 𝜕𝑋0, which
contradictswith (𝑆𝑏(0), 𝐼𝑏(0), 𝑆𝑎(0), 𝑉𝑎(0), 𝐼𝑎(0),𝑊(0), 𝑆ℎ1(0),𝑆ℎ2(0), 𝐼ℎ(0)) ∈ 𝜕𝑋0. Therefore, the equation is established.
Theorem 5. If 𝑅0 > 1, then there exists 𝜀∗ > 0 such that
any solution (𝑆𝑏(𝑡), 𝐼𝑏(𝑡), 𝑆𝑎(𝑡), 𝑉𝑎(𝑡), 𝐼𝑎(𝑡),𝑊(𝑡), 𝑆ℎ1(𝑡), 𝑆ℎ2(𝑡),𝐼ℎ(𝑡)) of system (13) with initial value 𝑧0 = (𝑆𝑏(0), 𝐼𝑏(0),𝑆𝑎(0), 𝑉𝑎(0), 𝐼𝑎(0),𝑊(0), 𝑆ℎ1(0), 𝑆ℎ2(0), 𝐼ℎ(0)) ∈ 𝑋0 satisfies

lim
𝑡→+∞

inf 𝐼𝑏 (𝑡) ≥ 𝜀∗,
lim
𝑡→+∞

inf 𝐼𝑎 (𝑡) ≥ 𝜀∗,
lim
𝑡→+∞

inf𝑊(𝑡) ≥ 𝜀∗,
lim
𝑡→+∞

inf 𝐼ℎ (𝑡) ≥ 𝜀∗, (34)

and system (13) admits at least one positive periodic solution.

Proof. It is now proved that {𝑃𝑛}𝑛≥0 is uniformly persistent
with respect to (𝑋0, 𝜕𝑋0). For any 𝑧0 ∈ 𝑋0, from the first
equation of system (13), it follows that

𝑆𝑏 (𝑡) = 𝑒−∫�푡0 (𝛽�푏𝐼�푏(𝑠)+𝛽�푤�푏(𝑠)𝑊(𝑠)+𝑑�푏)𝑑𝑠 [𝑆𝑏 (0)
+ 𝐴𝑏 (∫𝑡

0
𝑒∫�푠10 (𝛽�푏𝐼�푏(𝑠)+𝛽�푤�푏(𝑠)𝑊(𝑠)+𝑑�푏)𝑑𝑠𝑑𝑠1)] . (35)

Then, 𝑆𝑏(𝑡) > 0, ∀𝑡 > 0. Similarly, 𝑆𝑎(𝑡) > 0, 𝑉𝑎(𝑡) >0, 𝑆ℎ1(𝑡) > 0, 𝑆ℎ2(𝑡) > 0, ∀𝑡 > 0. As generalized to nonau-
tonomous systems [25], the irreducibility of the cooperative
matrix �̃�(𝑡) implies that 𝐼𝑏(𝑡) > 0, 𝐼𝑎(𝑡) > 0,𝑊(𝑡) > 0, 𝐼ℎ(𝑡) >0, ∀𝑡 > 0, where

�̃� (𝑡) = (𝛽𝑏𝑆𝑏 − 𝑑𝑏 − 𝛼𝑏 0 𝛽𝑤𝑏 (𝑡) 𝑆𝑏 00 𝛽𝑎𝑆𝑎 + 𝜎1𝛽𝑎𝑉𝑎 𝛽𝑤𝑎 (𝑡) 𝑆𝑎 + 𝜎2𝛽𝑤𝑎 (𝑡) 𝑉𝑎 0𝑞𝑏 𝑞𝑎 −𝑑𝑤 − 𝛿𝑤 00 𝛽ℎ1𝑆ℎ1 + 𝛽ℎ2𝑆ℎ2 𝛽𝑤ℎ1 (𝑡) 𝑆ℎ1 + 𝛽𝑤ℎ2 (𝑡) 𝑆ℎ2 −𝑑ℎ − 𝛼ℎ − 𝛾ℎ). (36)

Thus, both 𝑋 and 𝑋0 are positively invariant. Clearly, 𝜕𝑋0 is
relatively closed in𝑋.

The disease-free equilibrium 𝐸0 of system (13) is globally
asymptotically stable. Lemmas 3 and 4 imply that 𝐸0 is a
unique fixed point of 𝑃 in 𝑀𝜕. Moreover, 𝐸0 is an isolated
invariant set in 𝑋, and 𝑊𝑠(𝐸0)⋂𝑋0 = 𝜙. Note that every
orbit in 𝑀𝜕 approaches 𝐸0 and 𝐸0 is acyclic in 𝑀𝜕. By
[26], it follows that {𝑃𝑛}𝑛≥0 is uniformly persistent with
respect to (𝑋0, 𝜕𝑋0) and the solutions of system (13) are
uniformly persistent with respect to (𝑋0, 𝜕𝑋0); i.e., if𝑅0 > 1, there exists 𝜀∗ > 0 such that any solution (𝑆𝑏(𝑡),𝐼𝑏(𝑡), 𝑆𝑎(𝑡), 𝑉𝑎(𝑡), 𝐼𝑎(𝑡),𝑊(𝑡), 𝑆ℎ1(𝑡), 𝑆ℎ2(𝑡), 𝐼ℎ(𝑡)) of system
(13) with initial value 𝑧0 = (𝑆𝑏(0), 𝐼𝑏(0), 𝑆𝑎(0), 𝑉𝑎(0), 𝐼𝑎(0),𝑊(0), 𝑆ℎ1(0), 𝑆ℎ2(0), 𝐼ℎ(0)) ∈ 𝑋0 satisfies

lim
𝑡→+∞

inf 𝐼𝑏 (𝑡) ≥ 𝜀∗,
lim
𝑡→+∞

inf 𝐼𝑎 (𝑡) ≥ 𝜀∗,
lim
𝑡→+∞

inf𝑊(𝑡) ≥ 𝜀∗,
lim
𝑡→+∞

inf 𝐼ℎ (𝑡) ≥ 𝜀∗.
(37)

Furthermore, 𝑃 has a fixed point (𝑆∗𝑏 (0), 𝐼∗𝑏 (0), 𝑆∗𝑎 (0),𝑉∗𝑎 (0), 𝐼∗𝑎 (0),𝑊∗(0), 𝑆∗ℎ1(0), 𝑆∗ℎ2(0), 𝐼∗ℎ (0)) ∈ 𝑋0. Further,
there exists some 𝑡 ∈ [0, 𝜔] such that 𝑆∗𝑏 (𝑡) > 0. If it is not
the case, 𝑆∗𝑏 (𝑡) ≡ 0. Then, due to the periodicity of 𝑆∗𝑏 (𝑡),
we have 𝑆∗𝑏 (𝑡) ≡ 0, for all 𝑡 ≥ 0. From the first equation of
system (13), we get 0 = 𝐴𝑏 > 0, which is a contradiction.
Thus ∀𝑡 ∈ [𝑡, 𝑡 + 𝜔], we obtain𝑆∗𝑏 (𝑡) = 𝑒−∫�푡�푡 (𝛽�푏𝐼∗�푏 (𝑠)+𝛽�푤�푏(𝑠)𝑊∗(𝑠)+𝑑�푏)𝑑𝑠 [𝑆∗𝑏 (𝑡)+ 𝐴𝑏 (∫𝑡

𝑡
𝑒∫�푠1�푡 (𝛽�푏𝐼∗�푏 (𝑠)+𝛽�푤�푏(𝑠)𝑊∗(𝑠)+𝑑�푏)𝑑𝑠𝑑𝑠1)] > 0. (38)

The periodicity of 𝑆∗𝑏 (𝑡) implies that 𝑆∗𝑏 (𝑡) > 0, ∀𝑡 ≥0. Similarly, 𝐼∗𝑏 (𝑡) > 0, 𝑆∗𝑎 (𝑡) > 0, 𝑉∗𝑎 (𝑡) > 0, 𝐼∗𝑎 (𝑡) >0,𝑊∗(𝑡) > 0, 𝑆∗ℎ1(𝑡) > 0, 𝑆∗ℎ2(𝑡) > 0, 𝐼∗ℎ (𝑡) > 0. Therefore,(𝑆∗𝑏 (𝑡), 𝐼∗𝑏 (𝑡), 𝑆∗𝑎 (𝑡), 𝑉∗𝑎 (𝑡), 𝐼∗𝑎 (𝑡),𝑊∗(𝑡), 𝑆∗ℎ1(𝑡), 𝑆∗ℎ2(𝑡), 𝐼∗ℎ (𝑡)) is
a positive 𝜔-periodic solution of system (13).

5. Numerical Simulations

In this section, based on the initial value of

𝑧10 = (999999900, 100, 1043798853, 1043, 104, 100, 226960414, 13618, 11, 57) ,𝑧20 = (999999500, 500, 1043788518, 10438, 1044, 300, 226942176, 31776, 57, 91) ,𝑧30 = (999999000, 1000, 1043765555, 31314, 3131, 500, 226451720, 522040, 113, 227) , (39)
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the temperature of the Yangtze River Delta, i.e., 𝑇 =20.8286[1 − 0.6273sin((𝜋/26)𝑡 + 19.9451)], and other param-
eter values from Table 1 [12, 13, 15, 19, 20] are taken as
some examples to simulate the stability of the disease-free
equilibrium and the existence of positive periodic solutions of
system (1), and the time-series diagram is given. At last, when
parameters take different values, the time-variation diagrams
of 𝐼ℎ are given.
Example 1. Take parameters 𝛽𝑏 = 85/100 ∗ 1.09546 ∗ 10−11,𝛽𝑤𝑏0 = 85/100 ∗ 1.09546 ∗ 10−10, 𝑝𝑎 = 0.87, 𝜂𝑎 = 0.018 ∗ 7,𝛽𝑎 = 85/100∗3.0904∗10−10, 𝛽𝑤𝑎0 = 85/100∗1.3579∗10−10,𝛼𝑎 = 0.18, 𝛿𝑤 = 0.8 ∗ 7, 𝛽ℎ10 = 85/100 ∗ 9.0876 ∗ 10−16,𝛽ℎ20 = 60/100 ∗ 1.5954 ∗ 10−15, 𝛽𝑤ℎ10 = 85/100 ∗ 9.0876 ∗10−16, 𝛽𝑤ℎ20 = 60/100 ∗ 1.5954 ∗ 10−15, 𝑘1 = 0.35, 𝑘2 = 0.48,𝑡⋆ = 7. Figure 2 shows the time-variation diagram of system
(1) state variables. It is found that if 𝑅0 < 1, the curve tends
to be stable with time, and the disease-free equilibrium 𝐸0 is
globally asymptotically stable.

Example 2. Take parameters 𝛽𝑏 = 85/100 ∗ 1.09546 ∗ 10−10,𝛽𝑤𝑏0 = 85/100 ∗ 1.09546 ∗ 10−10, 𝑝𝑎 = 0.87, 𝜂𝑎 = 0.018 ∗ 7,𝛽𝑎 = 85/100∗ 3.0904∗ 10−9, 𝛽𝑤𝑎0 = 85/100∗ 1.3579∗ 10−10,𝛼𝑎 = 0.18, 𝛿𝑤 = 0.018 ∗ 7, 𝛽ℎ10 = 85/100 ∗ 9.0876 ∗ 10−16,𝛽ℎ20 = 60/100 ∗ 1.5954 ∗ 10−15, 𝛽𝑤ℎ10 = 85/100 ∗ 9.0876 ∗10−16, 𝛽𝑤ℎ20 = 60/100 ∗ 1.5954 ∗ 10−15, 𝑘1 = 0.35, 𝑘2 = 0.48,𝑡⋆ = 7. As shown in Figure 3, it is found that if 𝑅0 > 1, the
state variables of system (1) change periodically with time.

Example 3. Take parameters 𝛽𝑏 = 85/100 ∗ 1.09546 ∗ 10−10,𝛽𝑤𝑏0 = 85/100 ∗ 1.09546 ∗ 10−10, 𝑝𝑎 = 0.87, 𝜂𝑎 = 0.018 ∗ 7,𝛽𝑎 = 85/100∗ 3.0904∗ 10−9, 𝛽𝑤𝑎0 = 85/100∗ 1.3579∗ 10−10,𝛼𝑎 = 0.18, 𝛿𝑤 = 0.018 ∗ 7, 𝛽ℎ10 = 85/100 ∗ 9.0876 ∗ 10−16,𝛽ℎ20 = 60/100 ∗ 1.5954 ∗ 10−15, 𝛽𝑤ℎ10 = 85/100 ∗ 9.0876 ∗10−16, 𝛽𝑤ℎ20 = 60/100 ∗ 1.5954 ∗ 10−15, 𝑘1 = 0.35, 𝑘2 = 0.48,𝑡⋆ = 7 and let 𝑇 = 25∘C, 15∘C, 5∘C. Figure 4 shows the curve-
trend diagram of 𝐼ℎ with time. It is found that the lower the
temperature, the larger 𝐼ℎ.
Example 4. Take parameters 𝛽𝑏 = 85/100 ∗ 1.09546 ∗ 10−10,𝛽𝑤𝑏0 = 85/100 ∗ 1.09546 ∗ 10−10, 𝑝𝑎 = 0.87, 𝜂𝑎 = 0.018 ∗ 7,𝛽𝑎 = 85/100 ∗ 3.0904 ∗ 10−9, 𝛽𝑤𝑎0 = 85/100 ∗ 1.3579 ∗10−10, 𝛼𝑎 = 0.18, 𝛿𝑤 = 0.8 ∗ 7, 𝛽ℎ20 = 60/100 ∗ 1.5954 ∗10−15, 𝛽𝑤ℎ20 = 60/100 ∗ 1.5954 ∗ 10−15, 𝑘2 = 0.48, 𝑡⋆ = 7
and let 𝑘1 = 0.35, 𝛽ℎ10 = 85/100 ∗ 3.0904 ∗ 10−14, 𝛽𝑤ℎ10 =85/100∗9.0876∗10−15;𝛽ℎ10 = 85/100∗3.0904∗10−15,𝛽𝑤ℎ10 =85/100 ∗ 9.0876 ∗ 10−15; 𝛽ℎ10 = 85/100 ∗ 3.0904 ∗ 10−14,𝛽𝑤ℎ10 = 85/100 ∗ 9.0876 ∗ 10−16 or 𝛽ℎ10 = 85/100 ∗ 3.0904 ∗10−16,𝛽𝑤ℎ10 = 85/100∗9.0876∗10−16, 𝑘1 = 0.007, 0.085, 0.35.
Figure 5 shows the curve-trend diagram of 𝐼ℎ with time. It is
found that 𝐼ℎ will increase with the increase of 𝛽ℎ1 or 𝛽𝑤ℎ1
over a period of time.

Example 5. Take parameters 𝛽𝑏 = 85/100 ∗ 1.09546 ∗ 10−10,𝛽𝑤𝑏0 = 85/100 ∗ 1.09546 ∗ 10−10, 𝑝𝑎 = 0.87, 𝜂𝑎 = 0.018 ∗ 7,𝛽𝑎 = 85/100 ∗ 3.0904 ∗ 10−9, 𝛽𝑤𝑎0 = 85/100 ∗ 1.3579 ∗

10−10, 𝛼𝑎 = 0.18, 𝛿𝑤 = 0.8 ∗ 7, 𝛽ℎ10 = 85/100 ∗ 3.0904 ∗10−16, 𝛽𝑤ℎ10 = 85/100 ∗ 9.0876 ∗ 10−16,𝑘1 = 0.35, 𝑡⋆ = 7
and let 𝑘2 = 0.48, 𝛽ℎ20 = 85/100 ∗ 3.0904 ∗ 10−12, 𝛽𝑤ℎ20 =85/100∗9.0876∗10−16;𝛽ℎ20 = 85/100∗3.0904∗10−12,𝛽𝑤ℎ20 =85/100 ∗ 9.0876 ∗ 10−15; 𝛽ℎ20 = 85/100 ∗ 3.0904 ∗ 10−15,𝛽𝑤ℎ20 = 85/100 ∗ 9.0876 ∗ 10−15 or 𝛽ℎ20 = 85/100 ∗ 3.0904 ∗10−15, 𝛽𝑤ℎ20 = 85/100∗9.0876∗10−15, 𝑘2 = 0.008, 0.09, 0.48.
Figure 6 shows the curve-trend diagram of 𝐼ℎ with time. It is
found that 𝐼ℎ will increase with the increase of 𝛽ℎ2 or 𝛽𝑤ℎ2
over a period of time.

Example 6. Take parameters 𝑝𝑎 = 0.87, 𝜂𝑎 = 0.018 ∗ 7, 𝛽𝑎 =85/100 ∗ 3.0904 ∗ 10−9, 𝛽𝑤𝑎0 = 85/100 ∗ 1.3579 ∗ 10−10,𝛼𝑎 = 0.18, 𝛿𝑤 = 0.8∗7,𝛽ℎ10 = 85/100∗3.0904∗10−16,𝛽𝑤ℎ10 =85/100 ∗ 9.0876 ∗ 10−16, 𝑘1 = 0.15, 𝑘2 = 0.28, 𝑡⋆ = 7, 𝛽ℎ20 =85/100∗3.0904∗10−15,𝛽𝑤ℎ20 = 85/100∗9.0876∗10−15 and let𝛽𝑏 = 85/100∗1.09546∗10−10,𝛽𝑤𝑏0 = 85/100∗1.09546∗10−10;𝛽𝑏 = 85/100∗1.09546∗10−10,𝛽𝑤𝑏0 = 85/100∗1.09546∗10−15;𝛽𝑏 = 85/100∗1.09546∗10−8,𝛽𝑤𝑏0 = 85/100∗1.09546∗10−10.
Figure 7 shows the curve-trend diagram of 𝐼ℎ with time. It is
found that 𝐼ℎ will increase with the increase of 𝛽𝑏 or 𝛽𝑤𝑏 over
a period of time.

Example 7. Take parameters 𝛽𝑏 = 85/100 ∗ 1.09546 ∗ 10−10,𝛽𝑤𝑏0 = 85/100 ∗ 1.09546 ∗ 10−10, 𝑝𝑎 = 0.87, 𝜂𝑎 = 0.018 ∗ 7,𝛼𝑎 = 0.18, 𝛿𝑤 = 0.8∗7,𝛽ℎ10 = 85/100∗3.0904∗10−16,𝛽𝑤ℎ10 =85/100 ∗ 9.0876 ∗ 10−16, 𝑘1 = 0.35, 𝑘2 = 0.48, 𝑡⋆ = 7, 𝛽ℎ20 =85/100∗3.0904∗10−15, 𝛽𝑤ℎ20 = 85/100∗9.0876∗10−15 and
let𝛽𝑎 = 85/100∗3.0904∗10−5,𝛽𝑤𝑎0 = 85/100∗1.3579∗10−10;𝛽𝑎 = 85/100∗ 3.0904∗ 10−9, 𝛽𝑤𝑎0 = 85/100∗ 1.3579∗ 10−10;𝛽𝑎 = 85/100 ∗ 3.0904 ∗ 10−9, 𝛽𝑤𝑎0 = 85/100 ∗ 1.3579 ∗ 10−9.
Figure 8 shows the curve-trend diagram of 𝐼ℎ with time. It is
found that 𝐼ℎ will increase with the increase of 𝛽𝑎 or 𝛽𝑤𝑎.
Example 8. Take parameters 𝛽𝑏 = 85/100 ∗ 1.09546 ∗ 10−10,𝛽𝑤𝑏0 = 85/100∗1.09546∗10−10, 𝛽𝑎 = 85/100∗3.0904∗10−9,𝛽𝑤𝑎0 = 85/100∗1.3579∗10−10,𝛽ℎ10 = 85/100∗3.0904∗10−16,𝛽𝑤ℎ10 = 85/100 ∗ 9.0876 ∗ 10−16, 𝑘1 = 0.35, 𝑘2 = 0.48, 𝑡⋆ =7, 𝛽ℎ20 = 85/100 ∗ 3.0904 ∗ 10−15, 𝛽𝑤ℎ20 = 85/100 ∗ 9.0876 ∗10−15 and let 𝑝𝑎, 𝜂𝑎, 𝛼𝑎, and 𝛿𝑤 change each other. Figure 9
shows the curve-trend diagram of 𝐼ℎ with time. It is found
that 𝐼ℎ will increase with the increase of 𝜂𝑎 or the decrease of𝑝𝑎, 𝛼𝑎, 𝛿𝑤.
6. Discussion

Avian influenza is the potential threat to human health. The
exposure of infected poultry is a key factor for human infec-
tion with avian influenza A (H7N9) virus. Avian influenza
A (H7N9) virus mainly spreads from poultry to human
through infected poultry and its secretions, excreta, and
virus-contaminatedwater.Most humans contactwith poultry
mainly in farms, live-poultrymarkets, wetmarkets, and other
areas. In this paper, a 𝑆𝐼 − 𝑆𝑉𝐼 −𝑊− 𝑆𝑆𝐼𝑅 dynamic model of
avian influenza A (H7N9) is established by combining birds,
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Figure 2: If 𝑅0 = 0.8575 < 1, the time-variation diagram of system (1) state variables.
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Figure 8: The curve-trend diagram of 𝐼ℎ with time, when 𝛽𝑎 or 𝛽𝑤𝑎 takes different values.
poultry and human. We get the basic reproduction number𝑅0; it is the threshold which is endemic or not. If 𝑅0 < 1,
there is only the disease-free equilibrium𝐸0, and it is globally
asymptotically stable, which implies that the disease dies out.
If 𝑅0 > 1, there is at least one positive periodic solution,
that is, the disease will spread. Our numerical simulation
suggests that raising 𝛼𝑎 by killing infected poultry, reducing𝛽𝑎, 𝛽ℎ1, and 𝛽ℎ2 by closing farms, live-poultry markets, and
wet markets, reducing 𝛽𝑤𝑏, 𝛽𝑤𝑎, 𝛽𝑤ℎ1, and 𝛽𝑤ℎ2 by adjusting
the temperature of the living environment, or increasing 𝛿𝑤

and 𝑝𝑎 by routine disinfection in areas prone to outbreak
and vaccination of poultry can reduce 𝐼ℎ, so as to control the
occurrence and development of diseases. These can provide
some measures of the intensity of interventions for public-
health management on avian influenza A (H7N9) during
high-risk period. In addition, our simulation shows that the
temperature of the environment has a great effect on the
prevalence of epidemic.Therefore, at suitable temperature for
disease outbreak, human should not be in contact with birds
and live poultry as much as possible.
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Figure 9: The curve-trend diagram of 𝐼ℎ with time, when parameters take different values.
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