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Time delays and fractional order play a vital role in biological systems with memory. In this paper, we propose an epidemic model
for Zika virus infection using delay di�erential equations with fractional order. Multiple time delays are incorporated in the model
to consider the latency of the infection in a vector and the latency of the infection in the infected host. We investigate the necessary
and su�cient conditions for stability of the steady states and Hopf bifurcation with respect to three time delays τ1, τ2, and τ3.  e
model undergoes a Hopf bifurcation at the threshold parameters τ∗1 , τ

∗
2 , and τ

∗
3 . Some numerical simulations are given to show the

e�ectiveness of obtained results.  e numerical simulations con�rm that combination of fractional order and time delays in the
epidemic model e�ectively enriches the dynamics and strengthens the stability condition of the model.

1. Introduction

Zika infection is a mosquito-borne disease, transmitted to
humans through the bite of an infectedAedesmosquito. It was
�rst discovered in Uganda in 1947 in rhesus monkey. e �rst
human cases were reported in Nigeria in 1954. Zika was
thought to cause mild symptoms in humans, including mild
fever, skin rashes, conjunctivitis, muscle and joint pain, and
headache, which lasts for three to twelve days normally.
However, the World Health Organization (WHO) has con-
cluded that Zika virus infection during pregnancy is also
a cause of congenital brain abnormalities, including micro-
cephaly [1].Moreover, Zika virus is a trigger of Guillain–Barre
syndrome [2].  ere is no doubt that mathematical modeling
of Zika infection plays an important role in gaining un-
derstanding of transmission of disease and to predict the
behaviour of any outbreak [3, 4].

Recently, mathematical modeling of dynamics of in-
fectious diseases, using di�erential equations with memory
(time-delay terms or fractional orders), has attracted much
attention of many researchers (see, e.g., [5] and references
therein). Time delay in models of population dynamics and

in particular in macroscopic models of the immune response
are natural and common [6]. Naturally, time delay or
memory is an unavoidable factor in dynamics of most real-
life phenomena. Time delay has in¥uence on dynamical
behaviours of biological systems in various aspects.  ere-
fore, considering time delays in the investigation of bi-
ological systems is signi�cant in both theoretical and
practical point of views. In fact, when immune system works
against the non-self-cells, it may take some time (time lag) to
interact with the pathogen.  erefore, time delays cannot be
ignored in models for immune response. Accordingly, the
analysis of dynamical properties of system with time delays
is important (see [5, 7–12]). Dengue fever is analyzed in [13],
using a system of four nonlinear di�erential equations with
two time delays. In [12], the authors considered the vector-
borne epidemic model with time delay.  e authors in-
tensively discussed the impact of time delay in the host-to-
vector transmission term that can destabilize the system.
Periodic solutions can also be raised through Hopf
bifurcation.

In the existing literature, most of the biological problems
are studied through the integer-order mathematical modeling
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by using ordinary, partial, and delay differential equations
[9, 10, 14]. In the last few decades, fractional-order models
have been incorporated in several areas of science, engi-
neering, appliedmathematics, economics, and bioengineering
[15–20]. One advantage of the fractional-order differential
equation is that they provide a powerful instrument for in-
corporation of memory and hereditary properties of the
systems as opposed to the integer-order models, where such
effects are neglected or difficult to incorporate. In addition,
when fitting data, the fractional models have one more degree
of freedom than the integer-order model (see [21]). Based on
these advantages, some authors have developed interesting
applications to investigate the dynamics of such fractional-
order models with systems of memory [22–26]. In [5, 22], the
authors studied fractional-order cancer immune systems. In
[25], a fractional-order model for HIV with nonlinear in-
cidence has been considered and stability for various equi-
librium points has also been discussed. )e authors in [27]
investigated the dynamics of Ebola virus with time delay and
fractional order and reported that combination of time delay
and fractional order can effectively enrich the dynamics and
strengthen the stability condition of the infection model.
Analysis and dynamics of Zika transmission have been ex-
amined by many researchers (see, e.g., [3, 28, 29]. In [3],
a mathematical model for transmission of Zika virus has been
proposed with control measures of Zika virus. Stability
properties of the Zika infection model have been investigated
in [30]. )e authors in [31] have compared the Zika infection
model with dengue to show effect of the virus on population.
)e dynamical analysis of the SIS model is studied by con-
sidering bifurcation parameters in [32].)e authors [33] have
discussed absence and presence of diffusion in the Zika virus
disease model. )e stability analysis and Hopf bifurcation
point for various generalized epidemic models have been
discussed in the literature [33–35]. However, the dynamics of
fractional order with multiple time-delay models for Zika
virus infection has not been yet studied in mathematical
epidemiology.

Herein, we demonstrate that a nonlinear fractional-or-
der differential equations model, with multiple time delays,
can simulate the dynamics of Zika virus infection much
more than the classical epidemic models. )e application of
fractional derivatives is in several cases justified because they
provide a better model than integer-order derivative models
do [36, 37]. One important feature of fractional derivatives is
that they are nonlocal opposed to the local behaviour of
integer derivatives. In this way, the next state of a fractional
system depends not only upon its current state but also upon
all of its historical states [38–40].

Motivated by the above discussion, in this paper, we
investigate the dynamics of Zika virus infection with
fractional order and time delays. In Section 2, we formulate
the model and study the nonnegativity of the solutions. In
Section 3, we investigate the asymptotic stability analysis
and Hopf bifurcation properties by taking time-delay pa-
rameters as bifurcation parameters. Sufficient conditions
are derived to ensure the asymptotic stability and Hopf
bifurcation behaviours of the addressed model. Finally,
some numerical simulations are provided with various

fractional orders and time delays to demonstrate the ef-
fectiveness of our theoretical findings in Section 4. We then
conclude in Section 5.

Before we start analysis, we provide some useful
preliminaries.

1.1.Preliminaries. Herein, we provide some basic definitions
and properties of integration and differentiation with
fractional-order (free order) α (see [41]).

Definition 1. Let α ∈ (0,∞), the operator Iαa on L1[a, b] is
defined by

I
α
af(t) �

1
Γ(α)

􏽚
t

a
(t − s)

α− 1
f(s)ds, f ∈ L1[a, b], t ∈ [a, b],

(1)

which is called the fractional integral (or Riemann–Liouville
integral) of order α, where I0a � Id is the identity operator.

Definition 2. Let α ∈ [0,∞) and n � [α], where
[x] � min k ∈ Z : k≥x{ }, and the operator RLDα

a is defined
for f ∈ L1[a, b] by

RLD
α
af(t) �

1
Γ(n − α)

d
dt

􏼠 􏼡

n

􏽚
t

a
(t − s)

n− α− 1
f(s)ds, (2)

which is called the Riemann–Liouville fractional derivative
of order α.

Definition 3. Let α ∈ [0,∞) and f is such that In− α
a f(n) exists,

where n � [α], f ∈ An[a, b] (the set of all function
f : [a, b]⟶ R provided that f(n− 1) be absolutely contin-
uous), then we define the operator CDα

a by

CD
α
af(t) �

1
Γ(n − α)

􏽚
t

a
(t − s)

n− α− 1
f

(n)
(s)ds, (3)

which exists for almost everywhere x ∈ [a, b]. )e operator
CDα

af(t) is called the Caputo fractional derivative of order α.
In particular, when 0< α≤ 1, we have

CD
α
af(t) �

1
Γ(1 − α)

􏽚
t

a

f′(s)

(t − s)α
ds. (4)

Remark 1. Let β, c ∈ R+ and α ∈ (0, 1). )en,

(i) If Iβa : L1⟶ L1 and if f(t) ∈ L1, then
IβaIc

af(t) � Iβ+c
a f(t)

(ii) limβ⟶nIβaf(x) � In
af(t) uniformly on [a, b],

n � 1, 2, 3, . . ., where I1af(t) � 􏽒
t

a
f(s)ds

(iii) limβ⟶0I
β
af(t) � f(t) weakly

(iv) If f(t) is absolutely continuous on [a, b], then
limα⟶1D

α
af(t) � df(t)/dt

(v) )us, Dα
af(t) � (d/dt)I1− α

a f(t) (Riemann–
Liouville sense) and Dαf(t) � I1− α

a (d/dt)f(t)

(Caputo sense)
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Remark 2. We notice that the fractional derivatives involve
an integration and are nonlocal operators, which can be used
for modeling systems with memory.

We should mention here that Caputo’s definition of
fractional derivative is a modification of the Riemann–
Liouville definition and has the advantage of dealing with
initial value problems in a proper way.

2. Model Formulation

)e literature reveals that most mathematical modeling of
biological systems with memory is based either on delay
differential equations (DDEs) with integer-order or frac-
tional-order differential equations without a delay. However,
fractional-order calculus is more suitable, than integer-order
ones, in modeling biological systems with intrinsic memory
and long-range interactions such as epidemic evolution
systems [42]. Modeling of such systems by fractional-order
differential equations has more advantages than classical
integer-order mathematical modeling, in which the effects of
memory or long-range interactions are neglected. Indeed,
memory effects play an essential role in the spreading of
diseases. Including memory effects in the susceptible-in-
fected-recovered (SIR) epidemic models seems very ap-
propriate for such an investigation (see Remark 2). Herein,
we investigate the impact of combining both time delays and
fractional order in an epidemic model for Zika virus
infection.

)e underlying model is governed by a system of
fractional-order differential equations with multiple time
delays for Zika virus infection. )e model includes the
dynamics of susceptible individuals, HS(t), with Zika
symptoms and infected portion, HI(t), and recovered
portion, HR(t), individuals recovered from Zika, the sus-
ceptible mosquitoes, MS(t), in infected mosquitoes, MI(t).
)us, the total human population NH(t) � Hs(t) +

HI(t) + HR(t). )e overall vector (mosquito) population, at
time t, is Nm(t) � Ms(t) + MI(t). Assume that βh is the
transmission rate from humans to mosquitoes. βm is the
transmission rate of Zika from the vector (mosquitoes) to
humans. Natural death rate of host is denoted by dh. )e
recruitment rate into susceptible population is denoted by
λh. Natural death rate of vector is denoted by dm. η is the
recovery rate from treatment. λm is the recruitment rate into
susceptible mosquito population. Also, c is the average
infectious period for humans. We use time delays in the
model to consider the latency of the infection in a vector and
the latency of the infection in an infected host. In our model,
we consider time-delay τ1 to represent the transferring of the
infection from infected mosquitoes into suspected humans.
)e incubation period (time delay) τ2 is incorporated to
represent the time required for an individual/susceptible to
become infectious, after becoming infected. τ3 is the in-
cubation period of susceptible mosquitoes to become in-
fectious (see Figure 1). )e memory of the earlier times,
which are represented by time lags, could have less effect on
the present situation, as compared to more recent times.
However, it is expected that long-range memory,

represented by fractional order, effects decay in time more
slowly than an exponential decay but can typically behave
like a power-law damping function. )e model then takes
the following form:

D
α
HS(t) � λh − βhHS t − τ1( 􏼁MI t − τ1( 􏼁

− βhHS t − τ2( 􏼁HI t − τ2( 􏼁 − dhHS,

D
α
HI(t) � βhHS t − τ1( 􏼁MI t − τ1( 􏼁

+ βhHS t − τ2( 􏼁HI t − τ2( 􏼁 − dhHI − cHI,

D
α
HR(t) � cHI − dhHR + ηHI,

D
α
MS(t) � λm − βmMS t − τ3( 􏼁HI t − τ3( 􏼁 − dmMs,

D
α
MI(t) � βmMS t − τ3( 􏼁HI t − τ3( 􏼁 − dmMI.

(5)

)e initial conditions for system (5) should be provided
so that HR(0) � HR0

, HS(t) � ϕ1(t), HI(t) � ϕ2(t),
MS(t) � ϕ3(t), and MI(t) � ϕ4(t), when t ∈ [max − τi􏼈 􏼉, 0]

for i � 1, 2, 3., time lag, τi ≥ 0.

Remark 3. )e fractional derivative α ∈ (0, 1] is defined by
Caputo sense (4), so that introducing a convolution integral
with a power-law memory kernel is useful to describe
memory effects in dynamical systems. )e decaying rate of
the memory kernel (a time correlation function) depends on
α. A lower value of α corresponds to more slowly decaying
time-correlation functions (long memory). )erefore, as
α⟶ 1, the influence of memory decreases.

2.1. Nonnegative Solution. Since model (5) monitors the
dynamics of human populations, therefore, all the param-
eters are assumed to be nonnegative. Furthermore, it can be
shown that all state variables of the model are nonnegative
and bounded for all time t≥ 0 (see [42]).

Lemma 1. 4e closed set Ω � (Hs, HI, HR, MS,􏼈 MI) ∈ R5
+ :

HS + HI + HR ≤ (λh/dh), MS + MI ≤ (λm/dm)} is positively
invariant with respect to model (5).

Proof. In order to prove the nonnegativity of system (5), it is
assumed that there exists a t∗ > t0 such that HS(t∗) � 0 and
HS(t)< 0 for t ∈ (t∗, t1] where t1 is sufficiently close to t∗. If
HS(t) � 0,

D
α
HS t∗( 􏼁 � λh. (6)

)us, one obtains DαHS(t)> 0 for all t ∈ [t∗, t1] and
DαHS > ϵHS, where ϵ> 0. Hence, one derives

HS(t)>HS t∗( 􏼁Eα ϵ t − t∗( 􏼁
α

( 􏼁, t ∈ t∗, t1􏼂 􏼃. (7)

Since HS(t∗) � 0, one gets HS(t)> 0, t ∈ [t∗, t1], which
contradicts the assumption. Hence, HS(t)> 0 for any t> t0.
In the same manner, we have HI(t), HR(t),

MS(t), andMI(t) are nonnegative.
To show that the system is bounded, we add the first

three equation of System (5), and we get
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D
α

HS + HI + HR( 􏼁 � λh − dhHs − dhHI − dhHR + ηHI.

(8)

We know that all parameters value is positive, and one
can obtain

D
α

HS + HI + HR( 􏼁≤ λh − dh HS + HI + HR( 􏼁,

D
α
NH ≤ λh − dhNH,

(9)

where NH � HS(t) + HI(t) + HR(t), and solving this
equation, we have

NH(t)≤ −
λh

dh

+ NH(0)􏼠 􏼡Eα − dht
α

( 􏼁 +
λh

dh

. (10)

)e solution is given by NH(t) � NH(0)Eα,1
(− dhtα) + λhtαEα,α+1(− dhtα), where Eα,β is the Mittag-Leffler
function. Considering the fact that Mittag-Leffler function
has an asymptotic behaviour,

Eα,β(z)∼ − 􏽘

ω

K�1

z− K

Γ(β − αK)
+ O |z|

− 1− ω
􏼐 􏼑,

|z|⟶∞,
απ
2
< |arg(z)|≤ π.

(11)

One can observe that NH(t)⟶ λh/dh as t⟶∞. )e
proof of the mosquitoes (vector) population is similar to
human (host) population, and we obtain NM(t)⟶ λm/dm.
)erefore, all solutions of the model with initial conditions
inΩ remain bounded in the positively invariant regionΩ for
all t ∈ [0,∞). )e region Ω is positively invariant with
respect to model (5). □

)e equilibrium points (steady states) are obtained by
setting DαHS � DαHI � DαHR � DαMS � DαMI � 0, in
model (5). )e model has two equilibrium points: (i)
disease-free equilibrium point E0 � (H0

S, H0
I , H0

R, M0
I , M0

R)

� ((λh/dh), 0, 0, (λm/dm), 0) and (ii) endemic steady state
E∗, which is

E
∗ λh

βh βmλmH∗I /dm βmH∗I + dm( 􏼁( 􏼁 + βhH∗I + dh

,􏼠

H
∗
I ,

H∗I (η + c)

dh

,
λm

βmH∗I + dm

,
βmλmH∗I

dm βmH∗I + dm( 􏼁
􏼡.

(12)

Here, H∗I is the positive root of the following equation:

βh

λh

βh βmλmH∗I /dm βmH∗I + dm( 􏼁( 􏼁 + βhH∗I + dh

βmλmH∗I
dm βmH∗I + dm( 􏼁

􏼠 􏼡 +

βh

λh

βh βmλmH∗I /dm βmH∗I + dm( 􏼁( 􏼁 + βhH∗I + dh

H
∗
I􏼠 􏼡 − dhH

∗
I − cH

∗
I � 0.

(13)

Human

Mosquitoes

λh

λm

γβhHSHI

βhHSMI βmMSHI

dh

dmdm

dhdh

HS HI

MI MS

HR

η

Figure 1: Transmission and dynamics of Zika virus infection between the host (human) and the vector (mosquitoes).
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3. Stability and Bifurcation Analysis

To study the stability of model (5), suppose
E∗(H∗S , H∗I , H∗R, M∗S , M∗I ) is the steady state of the linearized
system:

D
α
HS(t) � − βhH

∗
S MI t − τ1( 􏼁 − βhM

∗
I HS t − τ1( 􏼁 − βhH

∗
S HI t − τ2( 􏼁 − βhH

∗
I HS t − τ2( 􏼁 − dhHS,

D
α
HI(t) � βhH

∗
S MI t − τ1( 􏼁 + βhM

∗
I HS t − τ1( 􏼁 + βhH

∗
S HI t − τ2( 􏼁 + βhH

∗
I HS t − τ2( 􏼁 − dhHI − cHI,

D
α
HR(t) � cHI + ηHI − dhHR,

D
α
MS(t) � − βmM

∗
S HI t − τ3( 􏼁 − βmH

∗
I MS t − τ3( 􏼁 − dmMS,

D
α
MI(t) � βmM

∗
S HI t − τ3( 􏼁 + βmH

∗
I MS t − τ3( 􏼁 − dmMI.

(14)

Taking Laplace transform [43] on both sides of the
linearized system (14), we obtain

s
α
X1(s) � s

α− 1φ1(0) + βhH
∗
S e

− sτ1 − X5(s) − 􏽚
0

− τ1
e

− stφ5(t)dt􏼢 􏼣

+ βhM
∗
I e

− sτ1 − X1(s) − 􏽚
0

− τ1
e

− stφ1(t)dt􏼢 􏼣 + βhH
∗
S e

− sτ2 − X2(s) − 􏽚
0

− τ2
e

− stφ2(t)dt􏼢 􏼣

+ βhH
∗
I e

− sτ2 − X1(s) − 􏽚
0

− τ2
e

− stφ1(t)dt􏼢 􏼣 − dhX1(s),

s
α
X2(s) � s

α− 1φ2(0) + βhH
∗
S e

− sτ1 X5(s) + 􏽚
0

− τ1
e

− stφ5(t)dt􏼢 􏼣

+ βhM
∗
I e

− sτ1 X1(s) + 􏽚
0

− τ1
e

− stφ1(t)dt􏼢 􏼣 + βhH
∗
S e

− sτ2 X2(s) + 􏽚
0

− τ2
e

− stφ2(t)dt􏼢 􏼣

+ βhH
∗
I e

− sτ2 X1(s) + 􏽚
0

− τ2
e

− stφ1(t)dt􏼢 􏼣 − dhX2(s) − cX2(s),

s
α
X3(s) � s

α− 1φ3(0) + cX2(s) + ηX2(s) − dhX3(s),

s
α
X4(s) � s

α− 1φ4(0) + βmM
∗
S e

− sτ3 − X2(s) − 􏽚
0

− τ3
e

− stφ2(t)dt􏼢 􏼣

+ βmH
∗
I e

− sτ3 − X4(s) − 􏽚
0

− τ3
e

− stφ4(t)dt􏼢 􏼣 − dmX4(s),

s
α
X5(s) � s

α− 1φ5(0) + βmM
∗
S e

− sτ3 X2(s) + 􏽚
0

− τ3
e

− stφ2(t)dt􏼢 􏼣

+ βmH
∗
I e

− sτ3 X4(s) + 􏽚
0

− τ3
e

− stφ4(t)dt􏼢 􏼣 − dmX5(s),

(15)

where X1(s), X2(s), X3(s), X4(s), and X5(s) are Laplace
transforms of HS, HI, HR, MS, and MI, respectively, with
X1(s) � L HS(t)􏼈 􏼉, X2(s) � L HI(t)􏼈 􏼉, X3(s) � L HR(t)􏼈 􏼉,
X4(s) � L MS(t)􏼈 􏼉, and X5(s) � L MI(t)􏼈 􏼉. )en, (15) can
be written in the following matrix form as

Δ(s)

X1(s)

X2(s)

X3(s)

X4(s)

X5(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

k1(s)

k2(s)

k3(s)

k4(s)

k5(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (16)
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in which

Δ(s) �

sα + a1e
− sτ1 + a2e

− sτ2 + a3 a4e
− sτ2 0 0 a4e

− sτ1

− a1e
− sτ1 − a2e

− sτ2 sα − a4e
− sτ2 + a5 0 0 − a4e

− sτ1

0 a6 sα + a3 0 0

0 a7e
− sτ3 0 sα + a8e

− sτ3 + a9 0

0 − a7e
− sτ3 0 − a8e

− sτ3 sα + a9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k1(s) � s
α− 1φ1(0) − βhe

− sτ1H
∗
S 􏽚

0

− τ1
e

− stφ5(t)dt − βhe
− sτ1M

∗
I 􏽚

0

− τ1
e

− stφ1(t)dt

− βhe
− sτ2H
∗
S 􏽚

0

− τ2
e

− stφ2(t)dt − βhe
− sτ2H
∗
I 􏽚

0

− τ2
e

− stφ1(t)dt,

k2(s) � s
α− 1φ2(0) + βhe

− sτ1H
∗
S 􏽚

0

− τ1
e

− stφ5(t)dt + βhe
− sτ1M

∗
I 􏽚

0

− τ1
e

− stφ1(t)dt

+ βhe
− sτ2H
∗
S 􏽚

0

− τ2
e

− stφ2(t)dt + βhe
− sτ2H
∗
I 􏽚

0

− τ2
e

− stφ1(t)dt,

k3(s) � s
α− 1φ3(0),

k4(s) � s
α− 1φ4(0) − βmM

∗
S e

− sτ3 􏽚
0

− τ3
e

− stφ2(t)dt − βme
− sτ3H
∗
I 􏽚

0

− τ3
e

− sτ3φ4(t)dt,

k5(s) � s
α− 1φ5(0) + βmM

∗
S e

− sτ3 􏽚
0

− τ3
e

− stφ2(t)dt + βme
− sτ3H
∗
I 􏽚

0

− τ3
e

− sτ3φ4(t)dt,

(17)

where a1 � βhM∗I , a2 � βhH∗I , a3 � dh, a4 � βhH∗S , a5 � dh+

c, a6 � − η − c, a7 � βmM∗S , a8 � βmH∗I , and a9 � dm and
Δ(s) is considered as the characteristic matrix of system (5)
)e characteristic polynomial is then

P(s) � P1(s) + P2(s)e
− sτ1 + P3(s)e

− sτ2 + P4(s)e
− sτ3

+ P5(s)e
− 2sτ1 + P6(s)e

− 2sτ2

+ P7(s)e
− s τ1+τ2( ) + P8(s)e

− s τ2+τ3( )

+ P9(s)e
− s τ1+τ3( ) + P10(s)e

− 2sτ1− sτ3

+ P11(s)e
− 2sτ2− sτ3 + P12(s)e

− s τ1+τ2+τ3( ).

(18)

)e coefficients Pi(s), i � 1, . . . , 12, are estimated by
Mathematica and given in Appendix.

Case 1. τ1 > 0, τ2 � 0, and τ3 � 0.

When τ1 > 0, τ2 � 0, and τ3 � 0, the characteristic
equation (18) becomes

P1(s) + P2(s)e
− sτ1 + P3(s)e

− 2sτ1 � 0, (19)

where

P1(s) � P1(s) + P3(s) + P4(s) + P6(s) + P8(s) + P11(s)

� s
5α

+ D1s
4α

+ D2s
3α

+ D3s
2α

+ D4s
α

+ D5,

P2(s) � P2(s) + P7(s) + P9(s) + P12(s)

� G1s
4α

+ G2s
3α

+ G3s
2α

+ G4s
α

+ G5,

P3(s) � P5(s) + P10(s) � H1s
3α

+ H2s
2α

+ H3s
α

+ H4.

(20)

Now, we prove that the characteristic equation (19) has
no pure imaginary roots for any τ1 > 0. Assume that char-
acteristic equation (19) has pure imaginary root, and let it be
s � iξ � ξ(cos(π/2) + i sin(π/2)), ξ > 0. If we multiply esτ1 on
both sides of equation (19), we get

P1(s)e
sτ1 + P2(s) + P3(s)e

− sτ1 � 0. (21)

Now, we substitute the expression of s into (21) to have

A1 + iB1( 􏼁e
sτ1 + A2 + iB2 + A3 + iB3( 􏼁e

− sτ1 � 0. (22)

)e coefficients A1,A2, andA3 and B1,B2, andB3
are real and imaginary parts of P1(s),P2(s), and P3(s),
respectively, so that
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A1 � ξ5α cos
5απ
2

+ D1ξ
4α cos

4απ
2

+ D2ξ
3α cos

3απ
2

+ D3ξ
2α cos

2απ
2

+ D4ξ
α cos

απ
2

+ D5,

B1 � ξ5α sin
5απ
2

+ D1ξ
4α sin

4απ
2

+ D2ξ
3α sin

3απ
2

+ D3ξ
2α sin

2απ
2

+ D4ξ
α sin

απ
2

,

A2 � G1ξ
4α cos

4απ
2

+ G2ξ
3α cos

3απ
2

+ G3ξ
2α cos

2απ
2

+ G4ξ
α cos

απ
2

+ G5,

B2 � G1ξ
4α sin

4απ
2

+ G2ξ
3α sin

3απ
2

+ G3ξ
2α sin

2απ
2

+ G4ξ
α sin

απ
2

,

A3 � H1ξ
3α cos

3απ
2

+ H2ξ
2α cos

2απ
2

+ H3ξ
α cos

απ
2

+ H4,

B3 � H1ξ
3α sin

3απ
2

+ H2ξ
2α sin

2απ
2

+ H3ξ
α sin

απ
2

.

(23)

Separating real and imaginary parts yields

A1 cos ξτ1 − B1 sin ξτ1 � − A3 cos ξτ1 + B3 sin ξτ1 + A2( 􏼁,

A1 sin ξτ1 − B1 cos ξτ1 � − B3 cos ξτ1 − A3 sin ξτ1 + B2( 􏼁.

(24)

It follows from (14) that

A
2
1 + B

2
1 − A

2
2 − B

2
2 − A

2
3 − B

2
3 � 2 B3 A2 sin ξτ1(􏼂

+ B2 cos ξτ1􏼁 + A3 A2 cos ξτ1 − B2 sin ξτ1( 􏼁􏼃.

(25)

Using the fact that cos2 θ + sin2 θ � 1, we have
sin ξτ1 �

����������
1 − cos2 ξτ1

􏽰
, and then (25) can be written in the

following form:

A
2
1 + B

2
1 − A

2
2 − B

2
2 − A

2
3 − B

2
3 − 2 B2B3 + A2A3( 􏼁cos ξτ1􏽨 􏽩

2

� 2
����������

1 − cos2 ξτ1
􏽱

B3A2 − A3B2( 􏼁􏼔 􏼕
2
.

(26)

It can be concluded from (26) that

Q1cos
2 ξτ + Q2 cos ξτ + Q3 � 0, (27)

where

Q1 � 4A2
2A

2
3 + 4A2

3B
2
2 + 4A2

2B
2
3 + 4B2

2B
2
3,

Q2 � 4 B2B3 + A2A3( 􏼁 − A
2
1 − B

2
1 + A

2
2 + B

2
2 + A

2
3 + B

2
3􏼐 􏼑,

Q3 � A
2
1 − A2 − B3( 􏼁

2
− A3 − B1 + B2( 􏼁 A3 + B2 + B1( 􏼁􏽨 􏽩

· A
2
1 − A2 + B3( 􏼁

2
− A3 − B1 − B2( 􏼁 A3 + B1( 􏼁 − B2􏽨 􏽩.

(28)

)e quadratic equation (27) has roots, so we can obtain
the expression of cos ξτ1 and denote cos ξτ1 � f1(ξ), where
f1(ξ) is a function of ξ.

Substituting the expression of cos ξτ1 �

����������

1 − sin2 ξτ1
􏽱

into (27), we can get expression of sin ξτ1. Assume that
sin ξτ2 � f2(ξ). Moreover, we have f2

1(ξ) + f2
2(ξ) � 1.

)us, it follows from cos ξτ1 � f1(ξ) that

τ1 �
1
ξ

arccos f1(ξ)( 􏼁 + 2kπ􏼂 􏼃, k � 0, 1, 2, . . . . (29)

We suppose that f2
1(ξ) + f2

2(ξ) � 1 has at least one
positive root, and thus, the bifurcation point is defined as

τ∗1 � min τ(k)
1􏽮 􏽯, k � 0, 1, 2, . . . . (30)

Now, differentiating equation (21) with respect to τ1, we
obtain

P1′(s)e
sτ1 ds

dτ1
+ P1e

sτ1 τ1
ds

dτ1
+ s􏼠 􏼡 + P2′(s)

ds

dτ1

+ P3′(s)e
− sτ1 ds

dτ1
+ P3e

− sτ1 − τ1
ds

dτ1
− s􏼠 􏼡 � 0,

(31)

where P1′(s),P2′(s), and P3′(s) are derivatives of
P1(s),P2(s), and P3(s), respectively. It follows that

ds

dτ1
�

− sP1(s)esτ1 + sP3(s)e− sτ1

P1′(s)esτ1 + τ1P1(s)esτ1 + P2′(s) + P3′(s)e− sτ1 − τ1P3(s)e− sτ1
�

M(s)

N(s)
. (32)

From (32), by some computation, we deduce that

Re
ds

dτ1
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ1�τ∗1 ,ξ�ξ0

�
M1N1 + M2N2

N2
1 + N2

2
, (33)

where M1, N1 and M2, N2 are the real and imaginary parts
of M(s), N(s). Also, ξ0 stands for the critical value and τ∗1
denotes the bifurcation point. Here,

Complexity 7



M1 � A1ξ0 sin ξ0τ
∗
1 + B1ξ0 cos ξ0τ

∗
1 + A3ξ0 sin ξ0τ

∗
1 − B3ξ0 sin ξ0τ

∗
1 ,

M2 � − A1ξ0 cos ξ0τ
∗
1 + B1ξ0 sin ξ0τ

∗
1 + ξ0A3 cos ξ0τ

∗
1 − B3ξ0 cos ξ0τ

∗
1 ,

N1 � A
∗
1 cos ξ0τ

∗
1 − B

∗
1 sin ξ0τ

∗
1 + τ∗1A1 cos ξ0τ

∗
1 − τ∗1B1 sin ξ0τ

∗
1 + A

∗
2 + A

∗
3 cos ξ0τ

∗
1 + B
∗
3 sin ξ0τ

∗
1

− τ∗1A3 cos ξ0τ
∗
1 − τ∗1B3 sin ξ0τ

∗
1 ,

N2 � A
∗
1 sin ξ0τ

∗
1 + B

∗
1 cos ξ0τ

∗
1 + τ∗1A1 sin ξ0τ

∗
1 + τ∗1B1 cos ξ0τ

∗
1 + B

∗
2 − A

∗
3 sin ξ0τ

∗
1 + B
∗
3 cos ξ0τ

∗
1

+ τ∗1A3 sin ξ0τ
∗
1 − τ∗1B3 cos ξ0τ

∗
1 ,

A
∗
1 � 5αξ5α− 1

0
cos(5α − 1)π

2
+ 4αD1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αD2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αD3ξ
2α− 1
0

cos(2α − 1)π
2

+ αD4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
1 � 5αξ5α− 1

0
sin(5α − 1)π

2
+ 4αD1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αD2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αD3ξ
2α− 1
0

sin(2α − 1)π
2

+ αD4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
2 � 4αG1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αG2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αG3ξ
2α− 1
0

cos(2α − 1)π
2

+ αG4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
2 � 4αG1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αG2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αG3ξ
2α− 1
0

sin(2α − 1)π
2

+ αG4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
3 � 3αH1ξ

3α− 1
0

cos(3α − 1)π
2

+ 2αH2ξ
2α− 1
0

cos(2α − 1)π
2

+ αH3ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
3 � 3αH1ξ

3α− 1
0

sin(3α − 1)π
2

+ 2αH2ξ
2α− 1
0

sin(2α − 1)π
2

+ αH3ξ
α− 1
0

sin(α − 1)π
2

.

(34)

Case 2. τ1 � 0, τ2 > 0, and τ3 � 0.

When τ1 � 0, τ2 > 0, τ3 � 0, the characteristic equation
(18) becomes

P4(s) + P5(s)e
− sτ2 + P6(s)e

− 2sτ2 � 0, (35)

where

P4(s) � P1(s) + P2(s) + P4(s) + P5(s) + P9(s)

+ P10(s) � s
5α

+ J1s
4α

+ J2s
3α

+ J3s
2α

+ J4s
α

+ J5,

P5(s) � P3(s) + P7(s) + P8(s) + P12(s) � L1s
4α

+ L2s
3α

+ L3s
2α

+ L4s
α

+ L5,

P6(s) � P6(s) + P11(s) � R1s
3α

+ R2s
2α

+ R3s
α

+ R4.

(36)

Now, we prove that the characteristic equation (35) has
no pure imaginary roots for any τ2 > 0. Assume that char-
acteristic equation (35) has pure imaginary root, and let it be
s � iξ � ξ(cos(π/2) + i sin(π/2)), ξ > 0. Now, multiplying
esτ2 on both sides of equation (35), we get

P4(s)e
sτ2 + P5(s) + P6(s)e

− sτ2 � 0. (37)

Substitute the expression of s into (37) to have

A4 + iB4( 􏼁e
sτ2 + A5 + iB5 + A6 + iB6( 􏼁e

− sτ2 � 0, (38)

where A4,A5,A6 and B4,B5,B6 are real and imaginary
parts of P4(s),P5(s), and P6(s), respectively. Here,

8 Complexity



A4 � ξ5α cos
5απ
2

+ J1ξ
4α cos

4απ
2

+ J2ξ
3α cos

3απ
2

+ J3ξ
2α cos

2απ
2

+ J4ξ
α cos

απ
2

+ J5,

B4 � ξ5α sin
5απ
2

+ J1ξ
4α sin

4απ
2

+ J2ξ
3α sin

3απ
2

+ J3ξ
2α sin

2απ
2

+ J4ξ
α sin

απ
2

,

A5 � L1ξ
4α cos

4απ
2

+ L2ξ
3α cos

3απ
2

+ L3ξ
2α cos

2απ
2

+ L4ξ
α cos

απ
2

+ L5,

B5 � L1ξ
4α sin

4απ
2

+ L2ξ
3α sin

3απ
2

+ L3ξ
2α sin

2απ
2

+ L4ξ
α sin

απ
2

,

A6 � R1ξ
3α cos

3απ
2

+ R2ξ
2α cos

2απ
2

+ R3ξ
α cos

απ
2

+ R4,

B6 � R1ξ
3α sin

3απ
2

+ R2ξ
2α sin

2απ
2

+ R3ξ
α sin

απ
2

.

(39)

Separating real and imaginary parts yields

A4 cos ξτ2 − B4 sin ξτ2 � − A6 cos ξτ2 + B6 sin ξτ2 + A5( 􏼁,

A4 sin ξτ2 − B4 cos ξτ2 � − B6 cos ξτ2 − A6 sin ξτ2 + B5( 􏼁.

(40)

It follows from (40) that

A
2
4 + B

2
4 − A

2
5 − B

2
5 − A

2
6 − B

2
6 � 2 B6 A5 sin ξτ2(􏼂

+ B5 cos ξτ2􏼁 + A6 A5 cos ξτ2 − B5 sin ξτ2( 􏼁􏼃.

(41)

We know that cos2 θ + sin2 θ � 1; by using it, we have
sin ξτ2 �

����������
1 − cos2 ξτ2

􏽰
, and then (41) can be written in the

following form:

􏼂A
2
4 + B

2
4 − A

2
5 − B

2
5 − A

2
6 − B

2
6

− 2 B5B6 + A5A6( 􏼁cos ξτ2􏼃
2

� 2
����������

1 − cos2 ξτ2
􏽱

B6A5 − A6B5( 􏼁􏼔 􏼕
2
.

(42)

It can be concluded from (42) that

Q4cos
2 ξτ + Q5 cos ξτ + Q6 � 0, (43)

where

Q4 � 4A2
5A

2
6 + 4A2

6B
2
5 + 4A2

5B
2
6 + 4B2

5B
2
6,

Q5 � 4 B5B6 + A5A6( 􏼁 − A
2
4 − B

2
4 + A

2
5 + B

2
5 + A

2
6 + B

2
6􏼐 􏼑,

Q6 � A
2
4 − A5 − B6( 􏼁

2
− A6 − B4 + B5( 􏼁 A6 + B5 + B4( 􏼁􏽨 􏽩

· A
2
4 − A5 + B6( 􏼁

2
− A6 − B4 − B5( 􏼁 A6 + B4( 􏼁 − B5􏽨 􏽩.

(44)

As we know, the quadratic equation (43) has roots, we
can obtain the expression of cos ξτ2 and denote
cos ξτ2 � f1(ξ), where f1(ξ) is a function of ξ.

Substituting the expression of cos ξτ2 �

����������

1 − sin2 ξτ2
􏽱

into (43), we can get expression of sin ξτ2. Let us denote
sin ξτ2 � f2(ξ), where f2(ξ) is a function with respect to ξ.
Moreover, f2

1(ξ) + f2
2(ξ) � 1.)us, it follows from cos ξτ2 �

f1(ξ) that

τ2 �
1
ξ

arccos f1(ξ)( 􏼁 + 2kπ􏼂 􏼃, k � 0, 1, 2, . . . . (45)

Clearly, f2
1(ξ) + f2

2(ξ) � 1 has at least one positive root.
)e bifurcation point is defined as

τ∗2 � min τ(k)
2􏽮 􏽯, k � 0, 1, 2, . . . . (46)

We obtain the transversality condition of the occurrence
for Hopf bifurcation at τ2 � τ∗2 .

Differentiating equation (37) with respect to τ2 yields

P4′(s)e
sτ2 ds

dτ2
+ P4(s)e

sτ2 τ2
ds

dτ2
+ s􏼠 􏼡 + P5′(s)

ds

dτ2

+ P6′(s)e
− sτ2 ds

dτ2
+ P6(s)e

− sτ2 − τ2
ds

dτ2
− s􏼠 􏼡 � 0,

(47)

where P4′(s),P5′(s), and P6′(s) are derivatives of
P4(s),P5(s), and P6(s), respectively. It follows that

ds

dτ2
�

− sP4(s)esτ2 + sP6(s)e− sτ2

P4′(s)esτ2 + τ2P4(s)esτ2 + P5′(s) + P6′(s)e− sτ2 − τ2P6(s)e− sτ1
�
M(s)

N(s)
. (48)

From (48), by some computation, we deduce that

Re
ds

dτ2
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ2�τ∗2 ,ξ�ξ0

�
M1N1 + M2N2

N2
1 + N2

2
, (49)

whereM1,N1 andM2,N2 are the real and imaginary parts
of M(s),N(s). Also ξ0 stands for the critical value and τ∗2
denotes bifurcation point. Here,
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M1 � A4ξ0 sin ξ0τ
∗
2 + B4ξ0 cos ξ0τ

∗
2 + A6ξ0 sin ξ0τ

∗
2 − A6ξ0 sin ξ0τ

∗
2 ,

M2 � − A4ξ0 cos ξ0τ
∗
2 + B4ξ0 sin ξ0τ

∗
2 + ξ0A6 cos ξ0τ

∗
2 − B6ξ0 cos ξ0τ

∗
2 ,

N1 � A
∗
4 cos ξ0τ

∗
2 − B

∗
2 sin ξ0τ

∗
2 + τ∗2A4 cos ξ0τ

∗
2 − τ∗2B4 sin ξ0τ

∗
2 + A

∗
5 + A

∗
6 cos ξ0τ

∗
1 + B

∗
6 sin ξ0τ

∗
2

− τ∗2A6 cos ξ0τ
∗
2 − τ∗2B6 sin ξ0τ

∗
2 ,

N2 � A
∗
4 sin ξ0τ

∗
2 + B

∗
4 cos ξ0τ

∗
2 + τ∗2A4 sin ξ0τ

∗
2 + τ∗2B4 cos ξ0τ

∗
2 + B

∗
5 − A

∗
6 sin ξ0τ

∗
2 + B

∗
6 cos ξ0τ

∗
2

+ τ∗2A6 sin ξ0τ
∗
2 − τ∗2B6 cos ξ0τ

∗
2 ,

A
∗
4 � 5αξ5α− 1

0
cos(5α − 1)π

2
+ 4αJ1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αJ2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αJ3ξ
2α− 1
0

cos(2α − 1)π
2

+ αJ4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
4 � 5αξ5α− 1

0
sin(5α − 1)π

2
+ 4αJ1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αJ2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αJ3ξ
2α− 1
0

sin(2α − 1)π
2

+ αJ4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
5 � 4αL1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αL2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αL3ξ
2α− 1
0

cos(2α − 1)π
2

+ αL4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
5 � 4αL1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αL2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αL3ξ
2α− 1
0

sin(2α − 1)π
2

+ αL4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
6 � 3αR1ξ

3α− 1
0

cos(3α − 1)π
2

+ 2αR2ξ
2α− 1
0

cos(2α − 1)π
2

+ αR3ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
6 � 3αR1ξ

3α− 1
0

sin(3α − 1)π
2

+ 2αR2ξ
2α− 1
0

sin(2α − 1)π
2

+ αR3ξ
α− 1
0

sin(α − 1)π
2

.

(50)

Case 3. τ1 � 0, τ2 � 0, and τ3 > 0.

When τ1 � 0, τ2 � 0, and τ3 > 0, the characteristic
equation (18) becomes

P7(s) + P8(s)e
− sτ3 � 0, (51)

where
P7(s) � P1(s) + P2(s) + P3(s) + P5(s) + P6(s) + P7(s)

� s
5α

+ U1s
4α

+ U2s
3α

+ U3s
2α

+ U4s
α

+ U5,

P8(s) � P4(s) + P8(s) + P9(s) + P10(s) + P11(s) + P12(s)

� V1s
4α

+ V2s
3α

+ V3s
2α

+ V4s
α

+ V5.

(52)

Again, we prove that the characteristic equation (51)
has no pure imaginary roots for any τ2 > 0. Here, we
assume that characteristic equation (51) has pure imag-
inary root, let it be s � iξ � ξ(cos(π/2) + i sin(π/2)), ξ > 0.

Now, we substitute the expression of s into (51), and we
have

A7 + iB7 + A8 + iB8( 􏼁e
− sτ3 � 0, (53)

where A7,A8 and B7,B8 are real and imaginary parts of
P7(s) and P8(s), respectively. Here,
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A7 � ξ5α cos
5απ
2

+ U1ξ
4α cos

4απ
2

+ U2ξ
3α cos

3απ
2

+ U3ξ
2α cos

2απ
2

+ U4ξ
α cos

απ
2

+ U5,

B7 � ξ5α sin
5απ
2

+ U1ξ
4α sin

4απ
2

+ U2ξ
3α sin

3απ
2

+ U3ξ
2α sin

2απ
2

+ U4ξ
α sin

απ
2

,

A5 � V1ξ
4α cos

4απ
2

+ V2ξ
3α cos

3απ
2

+ V3ξ
2α cos

2απ
2

+ V4ξ
α cos

απ
2

+ V5,

B5 � V1ξ
4α sin

4απ
2

+ V2ξ
3α sin

3απ
2

+ V3ξ
2α sin

2απ
2

+ V4ξ
α sin

απ
2

.

(54)

Separation of real and imaginary parts yields

A8 cos ξτ3 + B8 sin ξτ3 � − A7,

− A8 sin ξτ3 + B8 cos ξτ3 � − B7.
(55)

From (14), we have

cos ξτ3 �
− A7A8 − B7B8

A2
8 + B2

8
� f1(ξ),

sin ξτ3 �
B7A8 − A7B8

A2
8 + B2

8
� f2(ξ).

(56)

It is clear that cos2 θ + sin2 θ � 1; from (56),

f1(ξ)􏼐 􏼑
2

+ f2(ξ)􏼐 􏼑
2

� 1. (57)

Hence, it follows from cos ξτ3 � f1(ξ) that

τ3 �
1
ξ

arccos f1(ξ)􏼐 􏼑 + 2kπ􏽨 􏽩, k � 0, 1, 2, . . . . (58)

We suppose that (57) have at least one positive root. )e
bifurcation point is defined as

τ∗3 � min τ(k)
3􏽮 􏽯, k � 0, 1, 2, . . . . (59)

We obtain the transversality condition of the occurrence
for Hopf bifurcation at τ3 � τ∗3 .

Now, differentiating equation (51) with respect to τ3, we
obtain

P7′(s)
ds

dτ3
+ P8′(s)e

− sτ3 ds

dτ3
+ P8(s)e

− sτ3 − τ3
ds

dτ3
− s􏼠 􏼡 � 0,

(60)

whereP7′(s) andP8′(s) are derivatives ofP7(s) andP8(s),
respectively. It follows that

ds

dτ3
�

− sP8(s)esτ3

P7′(s) + P8′(s)e− sτ3 − τ3P8(s)e− sτ3
�
M(s)

N(s)
. (61)

From (61), by some computation, we deduce that

Re
ds

dτ3
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌τ3�τ∗3 ,ξ�ξ0

�
M1N1 + M2N2

N2
1 + N2

2
, (62)

whereM1,N1 andM2,N2 are the real and imaginary parts
of M(s),N(s). Also ξ0 stands for the critical value and τ∗3
denotes bifurcation point. Here,

M1 � A8ξ0 sin ξ0τ
∗
3 − B8ξ0 cos ξ0τ

∗
3 ,

M2 � A8ξ0 cos ξ0τ
∗
3 + B8ξ0 sin ξ0τ

∗
3 ,

N1 � A
∗
7 + A

∗
8 cos ξ0τ

∗
3 + B

∗
8 sin ξ0τ

∗
3 − τ∗3 A8 cos ξ0τ

∗
3 + B8 sin ξ0τ

∗
3􏼂 􏼃,

N2 � B
∗
7 + B

∗
8 cos ξ0τ

∗
3 − A

∗
8 sin ξ0τ

∗
3 − τ∗3 B8 cos ξ0τ

∗
3 − A8 sin ξ0τ

∗
3􏼂 􏼃,

A
∗
7 � 5αξ5α− 1

0
cos(5α − 1)π

2
+ 4αU1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αU2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αU3ξ
2α− 1
0

cos(2α − 1)π
2

+ αU4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
7 � 5αξ5α− 1

0
sin(5α − 1)π

2
+ 4αU1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αU2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αU3ξ
2α− 1
0

sin(2α − 1)π
2

+ αU4ξ
α− 1
0

sin(α − 1)π
2

,

A
∗
8 � 4αV1ξ

4α− 1
0

cos(4α − 1)π
2

+ 3αV2ξ
3α− 1
0

cos(3α − 1)π
2

+ 2αV3ξ
2α− 1
0

cos(2α − 1)π
2

+ αV4ξ
α− 1
0

cos(α − 1)π
2

,

B
∗
5 � 4αV1ξ

4α− 1
0

sin(4α − 1)π
2

+ 3αV2ξ
3α− 1
0

sin(3α − 1)π
2

+ 2αV3ξ
2α− 1
0

sin(2α − 1)π
2

+ αV4ξ
α− 1
0

sin(α − 1)π
2

.

(63)
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Case 4. τ1 � τ2 � τ3 � 0.

When τ1 � τ2 � τ3 � 0, the characteristic equation (18)
becomes

ω5α
+ Z1ω

4α
+ Z2ω

3α
+ Z3ω

2α
+ Z4ω

α
+ Z5 � 0. (64)

Here,

Z1 � 2a3 + a5 + 2a9 + a1 − a4 + a2 + a8,

Z2 � a
2
3 + 4a3a9 + 2a3a5 + 2a5a9 + a

2
9 + a1a3 − 2a3a4 + a1a5 + 2a1a9 − 2a4a9 + a2a3 + a2a5 + 2a2a9 + 2a3a8

+ a5a8 + a8a9 − a1a4 + a2a4 + a1a4 − a2a4 + a2a8 − a4a7 + a1a8 − a4a8,

Z3 � 2a3a
2
9 + a5a

2
9 + 2a

2
3a9 + a

2
3a5 + 4a3a5a9 − a

2
3a4 + a1a3a5 + 2a1a3a9 − 4a3a4a9 + 2a1a5a9 + a1a

2
9 − a4a

2
9

+ a2a3a5 + 2a2a3a9 + 2a2a5a9 + a2a
2
9 + a

2
3a8 + 2a3a5a8 + 2a3a8a9 + a5a8a9 − a1a3a4 − 2a1a4a9 + a2a3a4

+ 2a2a4a9 + a1a3a4 − a2a3a4 + 2a1a4a9 − 2a2a4a9 + a2a3a8 + a2a5a8 + a2a8a9 − 2a3a4a7 + a1a3a8 − 2a3a4a8

+ a1a5a8 − a4a7a9 + a1a8a9 − a4a8a9,

Z4 � a
2
3a

2
9 + 2a3a5a

2
9 + 2a

2
3a5a9 − 2a

2
3a4a9 + 2a1a3a5a9 + a1a3a

2
9 − 2a3a4a

2
9 + a1a5a

2
9 + a2a3a

2
9 + a2a5a

2
9

+ 2a2a3a5a9 + a
2
3a5a8 + a

2
3a8a9 + 2a3a5a8a9 − a1a4a

2
9 − 2a1a3a4a9 + 2a2a3a4a9 + a1a4a

2
9 − a2a4a

2
9 + a2a3a5a8

+ a2a3a8a9 + a2a5a8a9 − a
2
3a4a7 + a1a3a5a8 − a

2
3a4a8 − 2a3a4a7a9 + a1a3a8a9 − 2a3a4a8a9 + a1a5a8a9 − a1a3a4a8

− a1a4a8a9 + a2a3a4a8 + a2a4a8a9 + a1a3a4a8 − a2a3a4a8 + a1a4a8a9 − a2a4a8a9,

Z5 � a
2
3a5a

2
9 − a

2
3a4a

2
9 + a1a3a5a

2
9 + a2a3a5a

2
9 + a

2
3a5a8a9 − a1a3a4a

2
9 + a2a3a4a

2
9 − a2a3a4a

2
9 + a2a3a5a8a9 − a

2
3a4a7a9

+ a1a3a5a8a9.

(65)

From the Routh–Hurwitz criteria, if we choose
Zi > 0, i � 1, 2, 3, 4, 5, Z1Z2Z3 >Z2

3 + Z2
1Z4 and (Z1Z4 −

Z5)(Z1Z2Z3 − Z2
3 − Z2

1Z4) >Z5(Z1Z2 − Z3)
2 + Z1Z

2
5, then

the five eigenvalues of the characteristic equation (64) have
negative real parts. Hence, the steady state fractional-order
system (5) is asymptotically stable when τ1 � τ2 � τ3 � 0
(without time delays).

We arrive at the following theorem.

Theorem 1. If α ∈ (0, 1] and an endemic equilibrium point
E∗ exists for system (5), then the following results hold:

(i) When τ1 > 0, τ2 � 0, and τ3 � 0, the endemic steady
state E∗ is asymptotically stable for τ1 ∈ [0, τ∗1 ) and
the system undergoes a Hopf bifurcation at the origin
at τ1 � τ∗1 and the transversality condition holds,
Re(ds/dτ1)|τ1�τ∗1 ,ξ�ξ0 ≠ 0

(ii) When τ1 � 0, τ2 > 0, and τ3 � 0, the endemic steady
state E∗ is asymptotically stable for τ2 ∈ [0, τ∗2 ) and

system undergoes a Hopf bifurcation at the origin
when τ2 � τ∗2 and the transversality condition holds,
Re(ds/dτ2)|τ2�τ∗2 ,ξ�ξ0 ≠ 0

(iii) When τ1 � 0, τ2 � 0, and τ3 > 0, E∗ of is asymp-
totically stable for τ3 ∈ [0, τ∗3 ) and system (5) un-
dergoes a Hopf bifurcation at the origin at τ3 � τ∗3
and transversality condition holds, Re(ds/
dτ3)|τ3�τ∗3 ,ξ�ξ0 ≠ 0

(iv) When Z1Z2Z3 >Z2
3 + Z2

1Z4 and (Z1Z4 − Z5)

(Z1Z2Z3 − Z2
3 − Z2

1Z4)>Z5(Z1Z2 − Z3)
2 + Z1Z

2
5

holds, the endemic steady state E∗ is asymptotically
stable for τ1 � τ2 � τ3 � 0

Remark 4. )eorem 1 reports the asymptotic stability of
the endemic equilibrium point E∗. )e analysis can be
extended to investigate the stability of infection-free
equilibrium points E0 for the fractional-order model.

Table 1: ξ0 values and τ∗1 values for different fractional-order α.

Fractional order (α) Critical frequency (ξ0) Bifurcation point (τ∗1 )

1 0.30125 1.2104
0.9 0.17811 4.5874
0.8 0.09392 11.8356
0.7 0.04573 23.2562
0.6 0.00152 744.420
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Figure 2: State trajectories for model (5) with α � 0.9, 0.8, and 0.7 and τ1 � 10, τ2 � 0.0, and τ3 � 0.0. For α � 0.9 and τ1 � 10> τ∗1 , the
equilibrium point is unstable (red trajectory) for (5); however, for τ1 < τ∗1 and α � 0.8, 0.7, it is asymptotically stable (blue and green
trajectories).
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4. Numerical Simulations and Observations

In this section, we provide some numerical simulations for
system (5) to demonstrate the effectiveness of our main
results. )e simulations have been done by using stable
implicit Euler approximation scheme, discussed in [44]. Of
course, many other methods have been used for fractional-
order delay differential equations such as the Adams–
Bashforth–Moulton scheme [45]. )e parameter values of
system (5) are taken as follows:

λh � 0.5,

λm � 4.58,

βh � 0.05,

βm � 0.09,

η � 0.01,

c � 0.2,

dh � 0.714,

dm � 0.437.

(66)

Case 1. τ1 > 0, τ2 � 0, and τ3 � 0. In this case, time-delay τ1
is chosen as the bifurcation parameter. We then discuss the
dynamic effect of system (5) with the above parameter
values. We calculate the critical frequency ξ0 and bifurcation
point τ∗1 of various fractional-order α. Figure 2 shows the
numerical simulations of model (5) when τ1 � 10, τ2 � 0.0,
and τ3 � 0.0, with different fractional orders α �

0.9, 0.8, and 0.7 and estimated bifurcation point τ∗1 � 4.587,

11.835, and 23.256 (see Table 1). Here, τ1 � 10 ∉ [0, τ∗1 ) for
the fractional-order α � 0.9 and whereas τ1 � 10 ∈ [0, τ∗1 )

which satisfies the condition (i) in )eorem 1. )e equi-
librium E∗ of the model (5) is asymptotically stable for
α � 0.8, 0.7. When τ1 � 10 ∉ [0, τ∗1 ), which does not satisfies
the condition (i) of)eorem 1, the system undergoes a Hopf
bifurcation for the functional-order α � 0.9.

Case 2. τ1 � 0, τ2 > 0, and τ3 � 0. We choose time-delay τ2
as a bifurcation parameter of system (5) with parameter
values:

λh � 0.5,

λm � 4.58,

βh � 0.05,

βm � 0.08,

η � 0.05,

c � 0.2,

dh � 0.3,

dm � 0.78.

(67)

We then calculate the critical frequency ξ0 and bi-
furcation point τ∗2 of various fractional-order α (see Table 2).
Figure 3 shows the dynamics of system (5) for τ1 �

0.0, τ2 � 14, and τ3 � 0.0, with values of α � 1, 0.9, and 0.8.

)e corresponding bifurcation point is τ∗2 � 11.176,

14.293, and 35.797. τ2 � 14 ∈ [0, τ∗2 ) satisfies the condition
(ii) of)eorem 1.)erefore, the equilibrium E∗ of the model
(5) is asymptotically stable for α � 0.9 and 0.8, which is
shown in Figure 3. However, for τ2 � 14 ∉ [0, τ∗2 ), a Hopf
bifurcation occurs for the functional-order α � 1.

Case 3. τ1 � 0, τ2 � 0, and τ3 > 0. We consider time-delay τ3
as a bifurcation parameter of system (5) with parameter
values:

λh � 0.5,

λm � 10,

βh � 0.05,

βm � 0.4,

η � 0.05,

c � 0.2,

dh � 0.714,

dm � 0.437.

(68)

We calculate the critical frequency ξ0 and bifurcation
point τ∗3 of various fractional-order α. When τ1 � 0.0,

τ2 � 0.0, and τ3 � 8.0, the dynamics of system (5) is shown
in Figure 4 with different fractional-order α � 1, 0.9, and 0.8,
its corresponding bifurcation points τ∗3 � 2.255, 3.281,

and 4.912 (see Table 1). Here, τ3 � 8 ∉ [0, τ∗3 ) and a Hopf
bifurcation occurs for the factional-order α � 1, 0.9, and 0.8
which not satisfies the condition (iii) in )eorem 1.
)erefore, the equilibrium point E∗ is of model (5) is un-
stable, which is shown in Figure 4.

Case 4. τ1 � 0, τ2 � 0, and τ3 � 0, without time delays. As-
sume the parameter values:

Table 2: ξ0 values and τ∗2 values for different fractional-order α.

Fractional order (α)
Critical

frequency (ξ0)
Bifurcation point (τ∗2 )

1 0.12290 11.1762
0.9 0.09602 14.2931
0.8 0.05174 35.797
0.7 0.0363 47.963
0.6 0.0158 131.001

Table 3: ξ0 values and τ∗3 values for different fractional-order α.

Fractional order (α)
Critical

frequency (ξ0)
Bifurcation point (τ∗3 )

1 0.3777 2.255
0.9 0.2943 3.281
0.8 0.2172 4.912
0.7 0.01490 7.755
0.6 0.0920 13.404
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Figure 3: State trajectories for model (5) for α � 1, 0.9, and 0.8 and τ1 � 0.0, τ2 � 14, and τ3 � 0.0, when α � 1 and τ2 � 14> τ∗2 ; the
equilibrium point is unstable (red trajectory) for (5). However, for τ2 < τ∗2 with α � 0.9 and 0.8, it is asymptotically stable (blue and green
trajectories).
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Figure 4: State trajectories for the model (5) for various values of α � 1, 0.9, and 0.8 and τ1 � 0.0, τ2 � 0.0, and τ3 � 8.)e equilibrium point
E∗ is unstable when τ3 ∉ [0, τ∗3 ).
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Figure 5: State trajectories of model (5) for various values of α � 0.9, 0.8, and 0.7, when τ1 � τ2 � τ3 � 0. )e steady state of the system is
asymptotically stable.
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λh � 0.5,

λm � 10,

βh � 0.05,

βm � 0.4,

η � 0.05,

c � 0.2,

dh � 0.714,

dm � 0.437.

(69)

Hence, system (5) is asymptotically stable, which is
shown in Figure 5.

5. Conclusion

Fractional derivatives have the unique property of capturing
the history of the variable; that is, they have short and long
memory.)is cannot be easily done by means of the integer-
order derivatives. In this paper, we proposed a fractional-
order model for Zika virus infection with multiple time
delays τ1, τ2, and τ3. We studied the asymptotic stability and
Hopf bifurcation properties for the model. Time delays and

fractional order play a vital role in the stability and com-
plexity of the model. By evaluating the characteristics, some
sufficient conditions have derived to ensure the asymptotic
stability in terms of the fractional order and time delays.
Moreover, we estimated the thresholds bifurcation param-
eters: τ∗1 , τ∗2 , and τ∗3 . )e transversality conditions have been
obtained to confirm the existence of Hopf bifurcations for
different values at the threshold parameters and particular
values of fractional orders. Our findings illustrate that using
the time delays as bifurcation points, one can conclude that
when time delay increases, the equilibrium loses its stability
and Hopf bifurcation occurs. )ese models can be used to
understand key aspects of the viral life cycle and to predict
antiviral efficacy. Finally, numerical simulations show that
a combination of fractional order and time delays in the
model effectively enriches the dynamics and strengthens the
stability condition of the model.

Including control variables in the model is desirable to
determine the best strategy of treatment and control and
eliminate the infection, which will be considered in future
work.

Appendix

)e coefficients of equation (18) are as follows:

P1(s) � s
5α

+ s
4α

a3 + 2a9( 􏼁 + s
3α

a
2
3 + 2a3a5 + 2a5a9 + a

2
9􏼐 􏼑 + s

2α
a
2
3a5 + 4a3a5a9 + 2a3a

2
9 + a5a

2
9􏼐 􏼑

+ s
α 2a

2
3a5a9 + 2a3a5a

2
9􏼐 􏼑 + a

2
3a

2
9,

P2(s) � s
4α

a1 + s
3α

a1a3 + a1a5 + 2a1a9( 􏼁 + s
2α
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2
9􏼐 􏼑 + s

α 2a1a3a5a9 + a1a3a
2
9 + a1a5a

2
9􏼐 􏼑

+ a1a3a5a
2
9,

P3(s) � s
4α

a2 − a4( 􏼁 + s
3α

a2a3 − 2a3a4 + a2a5 + 2a2a9 − 2a4a9( 􏼁 + s
2α

− a
2
3a4 + a2a3a5 + 2a2a3a9 − 4a3a4a9 + a2a5a9􏼐

+ a2a
2
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2
9􏼑 + s

α
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2
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