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Previous urban tra�c network-based studies have been based mostly on single-layer networks. Based on their shortcomings,
starting from the perspective of a multilayer urban tra�c network, this paper takes the di�erent anticongestion abilities and
network characteristics of various network structures under the condition of tra�c congestion as the research object. �en, a
comparative experiment is performed via simulation, and the optimal multilayer urban tra�c network topology is obtained under
di�erent conditions. It is found that these scale-free related multilayer networks have relatively strong ability to support more
tra�c 
ows and have higher anticongestion abilities, regardless of whether it is a lower-layer or upper-layer network.�e research
results are helpful to deepen our understanding of the characteristics of tra�c network structures, help scholars further cognize
the structural properties of multilayer urban tra�c networks, practically help urban tra�c network planners to further optimize
the urban tra�c network, and broaden the study of multilayer tra�c networks.

1. Introduction

With the critical role of urban tra�c networks in the urban
economy, the characteristics and properties of urban tra�c
network topology have recently gained increasing attention
[1–12]. Scholars have presented in-depth discussions of the
process of tra�c planning and design from the perspectives
of network topology, tra�c 
ow, tra�c congestion, network
evolution, cascade failure, and network optimization [13–
20]. Nevertheless, few studies on optimal network topology
consider which network structure can bear more tra�c 
ow,
how to achieve a more e�cient network structure, or which
network can have the greatest anticongestion ability. Since
the study of Wu et al. [21], related studies have received
increased focus. �e Gastner–Newman model assumes that
tra�c on a network moves with free speeds without con-
sidering tra�c impedance [22]. However, in real-world
situations, network impedance is widely used to assess the
ability of networks. For example, Wu et al. [21] uses three
types of networks (random, small-world, and scale-free) to

determine which network structure su�ers most from tra�c
congestion. �eir work has shown that when the tra�c 
ow
is low, the random network has relatively strong ability to
support considerable of tra�c 
ow, but the scale-free net-
work can support much more tra�c 
ow as the total tra�c

ow increase. Later, considering the mechanisms of dy-
namical network evolution and rewiring links, Sun et al. [23]
generated community-correlated scale-free transportation
networks that can support higher tra�c 
ow.

However, these studies are mainly based on planar
networks. Recently, with the study of urban tra�c networks
and the missing part of the complex coupling mechanisms
between di�erent tra�c modes, progressively more scholars
have paid attention to multilayer urban tra�c networks
[24–30]. From the review of Wu et al. [20], which com-
prehensively discussed recent studies on multilayer network
topology, we can clearly see that only a few studies have
concentrated on the multilayer urban tra�c network to-
pology and tra�c congestion problems, which means which
type of multilayer network works best under di�erent
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conditions has rarely been considered. Yue et al. [31] ana-
lyzed the traffic dynamics on layered complex networks and
found that the “physical layer is much more important to the
network capacity of two-layer complex networks than the
logical layer.” In this case, the two-layer complex networks
are random network (E) on E, E on scale-free network (S), S
on E, and S on S. Later, Zhang et al. [32], Tan et al. [16], and
Li et al. [33] used the S on S type of multilayer network to
illustrate the attributes and properties of coupling networks.
Furthermore, the majority of these studies are based on a few
types of network topology and ignore the comparison with
other topologies.

Based on the shortcomings of the above research,
starting from the perspective of a multilayer urban traffic
network, this paper takes different anticongestion abilities
and network characteristics of various network structures
under the condition of traffic congestion as the research
object and conducts a comparative simulation experiment to
determine the optimal multilayer urban traffic network
topology under different conditions. ,e research results are
helpful in deepening our understanding of the character-
istics of traffic network structures and can help scholars to
further cognize the structural properties of multilayer urban
traffic networks, thereby helping urban traffic network
planners to further optimize urban traffic networks.

In this paper, we first review related studies and then
propose urban single-layer and multilayer traffic network
representation methods. Next, the optimal topology of
single-layer urban traffic networks is presented. ,en, the
optimal topology of multilayer urban traffic networks under
different conditions is discussed. Perspectives and conclu-
sions are given at the end of this paper.

2. Methodology

For urban traffic networks, two methods are generally used
to represent the network topology: single-layer and multi-
layer network representation methods. ,e single-layer
network representation method is used to represent street
networks or rail networks, while the multilayer represen-
tation method is used to represent the coupling of multilayer
urban traffic networks. ,e related network topology
structures are introduced. Later, the coupling methods of
different networks are illustrated. ,en, the measurement
method of congestion factor is proposed, and the combi-
nation of these methods and the novelty of this research are
discussed.

2.1. Single-Layer Network Representation Method. ,is
method is widely applied and accepted by scholars [34–37].
,e single-layer network representation method is based on
the primal approach, as shown in Figure 1, the streets or
roads are represented as black lines on the right, the nodes
stand for street intersections, and grey spots are buildings.
,e rail networks also can be represented by the single-layer
network representation method.

With this, the urban transportation networks can be
represented as different undirected or directed connected
networks:

G � 〈V, E, W〉, (1)

where V is the set of nodes and N is the number of nodes
when

V � vi ∣ i ∈ I ≡ 1, 2, . . . , N{ }􏼈 􏼉, (2)

E is the unordered pairs or edges of elements of V and is
denoted by eij, and

E � eij � vi, vj􏼐 􏼑 ∣ i, j ∈ I􏽮 􏽯, (3)

andW is the weight of each edge, the weight can be treated as
the traffic flows passed by.

In addition, the number of edges is denoted as M.
,e adjacency matrix of the single-layer networks is

A � aij􏽨 􏽩
n×n

, (4)

representing the connection between nodes vi and vj, which
is defined as

aij �
1, vi, vj􏼐 􏼑 ∈ V,

0, vi, vj􏼐 􏼑 ∉ V,

⎧⎪⎨

⎪⎩
(5)

where aii � 0 to remove any self-connections. In addition,
A � [aij]n×n is symmetrical and nonnegative.

2.2. Multilayer Network Representation Method. ,e un-
directed multilayer network (see Figure 2) can be repre-
sented as

G � 〈GU
, G

L〉, (6)

as the set of different layers; here, this study uses the su-
perscript U to define the upper-layer network and super-
script L to set the lower layer [28, 36].

,e rail network and urban street network can be
represented as a connected network:

G
U

� 〈VU
, E

U
, W

U〉,
G
L

� 〈VL
, E

L
, W

L〉,
G
C

� 〈EC
, W

C〉,
(7)

in its primal weighted (denoted by W in function) repre-
sentation [37]; red nodes represent rail stations and blue
nodes denote road intersections; solid lines represent their
connections and dotted lines stand for the coupling links
between different layers. ,e rail network station is con-
necting with the nearest street network intersection [30].

,e multilayer network model of urban traffic networks,
the upper layer represents rail network topology, and the
lower-layer represents the street network topology.

Similarly, based on the definition of a single-layer net-
work, we have the definition of the multilayer network:
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(8)

,e adjacency matrix of networks adj � [aij]n×n is
symmetrical and nonnegative, the connection between zones
i and j is represented, where

aij �
dij × W, vi, vj􏼐 􏼑 ∈ E,

0, vi, vj􏼐 􏼑 ∉ E,

⎧⎪⎨

⎪⎩
(9)

where dij is the Euclidean distance. Define aii � 0 to the-
oretically remove any self-connections to exclude the impact
of the network element itself. ,en, the adjacency matrix of
multilayer networks is

adjmulti
�

adjUNU×NU adjCNU×NL

adjCNL×NU adjLNL×NL

⎡⎣ ⎤⎦. (10)

2.3. Related Network Topology Structures. ,is part provides
a brief summary of network models which commonly used
in complex network studies, which are regular networks (R),
random graphs (E), small-world network (W), scale-free
network (S), relative Neighborhood graph (RNG), and
Gabriel graph (GG).

2.3.1. Regular Networks. Regular networks are the most
common network patterns in the real urban network system

from the point of view of urban morphology, especially the
square regular lattice. ,is pattern is with obvious artificial
trace and it is strictly designed by planners as UpDown cities
(Figure 3(a)), like the most famous planned city Chandigarh
and most of the American cities. Opposite to this, another
network pattern which is named Bottom Up cities
(Figure 3(c)) is generated with less man-made planning.
Between them is Mixed Pattern cities (Figure 3(b)), which
partly depends on general planning.

Regular networks are regular for the reason that each
node has the same or the nearly the same number of degree
values; in a real situation, the degree of most street in-
tersections equals four (Figure 3(a)). Regular networks are
highly ordered; particularly, a regular square lattice is a
nonrandom network where each node connects to all of its
nearest neighbours. Lattices can also be represented as
different forms. Nevertheless, sometimes regular square
lattice needs to be designed in combination with other form
of network structures to pursue better function layouts [40].

2.3.2. Erdos–Renyi Random Graphs. ,e Erdos–Renyi (ER)
random graphs model, also called simply random graphs,
was presented by Erdos and Renyi in the 1950s and 1960s.
Erdos and Renyi characterized random graphs and shown
that many of the properties of such networks can be cal-
culated analytically.,e research of random planar graphs of
the urban network is rare recently. Eisenstat [41] focused on
the shortest paths and a maximum flow of the street network
and proposed the Quadtree model. Another work consid-
ered the grid network, the static random planar graph, and
the growing random planar graph, to analyse the London
primal and dual street network in great depth [42].

2.3.3. Watts–Strogatz Small-World Network. In 1998,
Duncan J. Watts and Steven Strogatz published in Nature of
the first small-world network model, which through a single
parameter smoothly interpolates between a random graph
and a lattice. Not very later, Newman and Duncan J. Watts
presented another model. ,eir models demonstrated that
with the reconnection or addition of only a small number of
long-range edges, a regular graph, in which the diameter is
proportional to the network size, can be transformed into a

GC

GU

GL

Figure 2: ,e multilayer network representation method.

(a) (b)

Figure 1: ,e single-layer network representation method.
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“small-world” in which the average path length of the network
is relatively small, while their clustering coefficient stays large.
It has been observed that some of the urban networks exhibit
and obey the small-world property [43–46], and Latora and
Marchiori [36] analytically proved the whole transportation
system of Boston is following this behaviour. Further, for
reconnecting the edges, the model is named as WS small-
world, and for addition of the edges, the model is named as
NW small-world. ,e existence of the small-world in an
urban area is identical intuitive (Figure 4); these urban traffic
networks which have overpass or shortcuts or bridges are
nature representation of small-world networks.

2.3.4. Barabasi–Albert Scale-free Network. Recent attention
in scale-free networks started since 1999, with the efforts of
Albert and Barabasi at the University of Notre Dame where
they mapped the topology of a portion of the networks,
fundamentally based on the research of Watts and Strogatz
(small-world model). Scale-free networks are widely ob-
served in natural and human-made systems [47], including
street traffic networks ([35, 48–50]). ,e degree distribution
of scale-free network is following the power-law, at least
asymptotically, an empirical law formulated by mathemat-
ical statistics, which refers to the fact that many types of
urban networks can be approximated with the family of
power-law probability distributions.

,e generation of algorithm (network growth and
preferential attachment) is the most important part, which
procedure is as follows. At first, the network begins with an
initially connected network of m0 nodes. ,en, new nodes
are added to the network one at a time. Each new node is
connected to m<m0 existing nodes with a probability p that
is proportional to the number of links that the existing nodes
already have. Formally, the probability 􏽑i denotes that the
new node is connected to node i which is 􏽑i � ki/􏽐jkj, and
the sum is made over all preexisting nodes j. Hub nodes tend
to quickly accumulate even more links, while nodes with
only a few links are unlikely to be chosen as the destination
for a new link. ,e preferential attachment can be observed
everywhere and can be applied in the urban traffic networks
modelling as normally for the representation method of dual
approach. Many researches have shown that traffic networks
are typically and theoretically scale-free [35, 50, 51] with dual

approach rather than primal approach, with power-law
distribution in log-log plot, and the degree distribution
exponent has large effects on the performances of traffic
network, and the distribution of urban traffic flows also
following scale-free properties [52, 53]. Zhang [54] proved
that 50 extracted dual urban traffic networks of USA are
following scale-free properties, and Kalapala et al. [55] found
that, with the dual representation, the degree distribution of
the urban street networks can better fit with the power-law
functions with

P(k) ∼ k
− λ

, (11)

while some other researches also pointed out similar
properties but with different ranges of λ [42, 56].

2.3.5. Relative Neighborhood Graph and Gabriel Graph.
According to the planar restriction with no crossing links, a
network has sparse characteristics and the number of
neighbor nodes in the generated topology is smaller than a
constant. In this context, minimal spanning tree (MST) [57],
relative neighborhood graph (RNG), and Gabriel graph
(GG) can be introduced for a simple description and can be
used to construct planar network topology structures.

,e RNG was proposed by Lankford [58] and Toussaint
[59]. Ten years later, Jaromczyk and Toussaint [60] provided
clear definitions and functions for the RNG and its relatives.
Let V be a set of points in a plane. Each pair of nodes p, q
(unordered) has its own “lune” as Ap,q � A(p, δ
(p, q))∩A(q, δ(p, q)), where Ap,q is the intersection of the
circular region of points p and q, with the radius being the
distance between points p and q as δ(p, q). If there does not
exist such a point g in Ap,q(q≠g), point q is called a “relative
neighbor” of point p. ,e RNG is widely used in wireless
networks, circuits, navigation, and location [61].

,eGGwas proposed by Gabriel and Sokal [62]. LetV be
a set of points in a plane. For each pair of nodes p, q
(unordered), connect the points p, q with the line Ep,q, and
generate a circular region with Ep,q as the diameter. If there
does not exist such a point g in the circular region, then the
GG can be generated.

,ese graphs are related as MST⊆RNG⊆GG [61];
generally, the RNG can be created easily using a distributed
algorithm, but the accessibility and connectivity are

(a) (b) (c)

Figure 3: Difference between urban network patterns, from regular to random. (a) Up Down cities. (b) Mixed Pattern cities. (c) Bottom Up
cities (source: maps of Mexico, Barcelona, and Toscana).
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relatively poorer than those of GG [61, 63]. Referring to Ding
et al. [25], we can see that the RNG and GG can be used to
represent connected rail networks and road networks.

2.4. Coupling of Different Networks. For coupling of these
different structures of networks, a coupling matrix is gen-
erated, as shown in Figure 5. ,e R-E coupling structure
indicates that the lower-layer network (regular networks) is
coupled with the upper-layer network (Erdos–Renyi ran-
dom graph).

Although GG and RNG can in some way represent real
traffic networks, they might not be the best network
structures; hence, we test them separately and compare them
with various multilayer networks.

Two types of methods can be used to connect the dif-
ferent layers: random connection and complete connection.
In the first method, the nodes on the upper layer are ran-
domly chosen to connect with the nearest nodes on the lower
layer with probability p � 0.5. In the second method, the
nodes on the upper layer are completely connected with the
nearest nodes on the lower layer. Additionally, there is
another construction condition, that is, whether the lower
layer and upper layer have the same number of nodes.

,e coupled networks are weighted networks, with the
traffic capacity determined and the traffic flow assigned and
attached.

Clearly, the traffic congestion status will change when the
upper layer and lower layer have different traffic capacities.
Multilayer networks might have different levels of link ca-
pacity; here, we roughly set the link capacity of the upper-
layer link to Θ times that of the lower-layer link. We first set
Θ � 10; later, its influence will be assessed. We set the
tunable parameter Θ to show the influence of the link ca-
pacities of different layers. ,e function can be written as
Cupper− layer � ΘClower− layer. ,e measurement of this tunable
parameter can help us to determine the capacity ratio be-
tween different layers.

2.5. Measurement of Congestion Factor. Consistent with the
research of Wu et al. [21] and Sun et al. [23], we set N � 100
for the proposed R, E, W, and S and generate the related
networks. For R, 〈k〉 � 4. E, W, and S are in line with Wu
et al. [21]. ForW, we have p � 0.1, and for S, we have λ � 2.5.

We can see from Wu et al. [21] that changing λ has little
influence on the performance of S when λ ∈ [2.2, 3]; hence,
we choose λ � 2.5.

,e link capacity Ca (the maximum possible crossing
flows) on link “a” is assigned randomly in a given range [20,
60], and the flows must obey the function

fa > τ × Ca. (12)

,en, traffic can be defined as congested. Here, τ is a
tunable parameter with τ ≥ 1. When the tunable parameter τ
is larger than 1, the assigned traffic flow is larger than the
designed traffic capacity, which might cause traffic con-
gestion. In line withWu et al. [21], we set the value of τ to 1.5
first for the single-layer networks, which means that when
the traffic flow passing one link is 1.5 times its designed
traffic capacity, the link will be totally congested. However,
in Wu et al.’s study [21] and some related studies, the in-
fluence of τ is still unclear. In the research of Wu et al. [21]
and Sun et al. [64], they treat τ � 1.5, while in the research of
Sun et al. [23] and Maniadakis and Varoutas [65], they treat
τ � 1. Hence, in this paper, we expand the interval and
choose τ ∈ [1, 2] to better assess and illustrate the changing
trends of multilayer networks.

Here,fa is the traffic flow on the corresponding link, and
total traffic flow Q � Σfa. If we increase the total traffic flow
Q, the traffic flows on each link will increase, and the total
number of congested links will increase.

To discuss the congestion effects, a Frank-Wolfe-BPR
flow assignment method is introduced, combined with the
widely used and well-known Bureau of Public Roads (BPR)
function:

R E S W

R R-R R-E R-S R-W

E E-R E-E E-S E-W

S S-R S-E S-S S-W

W W-R W-E W-S W-W

Figure 5: ,e coupling matrix of multilayer networks.

(a) (b) (c)

Figure 4: ,e nature representation of small-world networks in urban traffic networks (source: maps of Shanghai, Chongqing, and
Chendu).
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v
c
a � v

f
a 1 + α

fa

Ca

􏼠 􏼡

β
⎡⎣ ⎤⎦. (13)

It is used to reflect the relationship of the free flow speed
v

f
a and congested speed vc

a on link a. vc
a and v

f
a can be

converted to travel cost, and α and β are correction factors
equal to 0.15 and 4, respectively.

,en, the total traffic flow is increased at each time step.
,e traffic flows are assigned again by the Frank-Wolfe-BPR
method [66, 67], and the travel cost on the congested links is
set as infinite. ,en, in each iteration, TCC is calculated to
represent the number of links with traffic flows exceeding the
link capacity:

TCC �
TCC + 1, if fa > τ × Ca,

TCC, otherwise.
􏼨 (14)

,en, the congestion factor J can be measured as

J �
TCC
M

, (15)

where M is the total number of edges.

2.6. Combination of Bese Methods and the Novelty of Bis
Research. Recent researches on multilayer traffic network
are mainly based on the combination of a small number of
network structures, such as the study of Yue et al. [31],
Zhang et al. [32], and Tan et al. [16]; they only considered the
combination of random networks and scale-free networks
but did not take into account other network structures. ,ey
are more focused on the relationships between average
transmission time and packet generation rate to reflect the
structural characteristics of networks. However, their results
may not seem intuitive at first and did not take into account
the particularity of traffic network impedance. Some earlier
studies relate to the optimal network structures, such as Wu
et al. [21], Sun et al. [64], Sun et al. [23], and Maniadakis and
Varoutas [65], did not consider the situation of multilayer
traffic networks, and simply take single-layer network as
their research objects, which were not in line with the actual
situations. ,erefore, our study is relatively novel, which
united these two aspects together. It not only considers the
coupling of these different networks from the perspective of
multilayer traffic network theory but also considers the
impedance of these traffic networks. ,e results are more
intuitive and convenient for traffic planners to directly use.

3. Optimal Topology of Single-Layer Urban
Traffic Networks

,e change in network performance as the total traffic flow
of single-layer urban traffic networks increases is shown in
Figure 6. It shows that the scale-free network can support
much more traffic flow, which means that, for the design of a
traffic network, the proposed network structure should
mainly obey the scale-free network property. All the average
results are from 100 simulation iterations.

4. Optimal Topology of Multilayer Urban
Traffic Networks

In line with the creation of these single-layer networks, we
have the basic network structures of upper-layer and lower-
layer networks. With the coupling of these different network
structures, we further consider different network con-
struction conditions. In this section, the optimal topology of
multilayer urban traffic networks under different conditions
will be discussed.

4.1. Lower Layer and Upper Layer Have the Same Number of
Nodes. Using the same multilayer network generation
methods, we set the lower layer and upper layer to haveNL �

NU � 100 and then connect the nodes of the lower layer and
upper layer with the strategies presented in Section 2.4.

,e link capacity Ca is set randomly in the given range
[20, 60]. Q is initially set to increase until approximately
4 × 104, at which point different groups are clearly separated
and results get stable.

If different layers are randomly connected, as shown in
Figure 7, these scale-free related multilayer networks have
relatively strong ability to support more traffic flow, re-
gardless of whether it is a lower-layer or upper-layer net-
work. ,e first group is S-S, which has the greatest
anticongestion ability initially. ,e second group has 3
different network topologies, R-S, E-S, and W-S, which are
networks with S as the upper-layer network. ,e next group
includes networks with S as the lower-layer network, e.g., S-
R, S-W, and S-E. Clearly, GG-RNG, RNG-GG, RNG-RNG,
and GG-GG have relatively weak anticongestion ability; they
belong to the fourth group. ,e remaining networks all
belong to the fifth group. When the total traffic flow is small,
all the networks can support more traffic flow. As the total
traffic flow increases, differences emerge and the networks
can be divided into groups.

0 1000 2000 3000 4000 5000 6000
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0.1
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0.3

0.4
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0.7
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Q

Figure 6: Network performance as the total traffic flow increases.
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If different layers are completely connected, as shown in
Figure 8, when the traffic flow is lesser, the networks all run
functionally. ,e figure is different from the randomly
connected one, but the general trend does not change
substantially. As the traffic flow increases, these scale-free
multilayer networks have relatively strong ability to support
more traffic flow and have higher anticongestion ability. ,e
second group is the same, R-S, E-S, and W-S, with S as the
upper-layer network.,e next group includes networks with
S as the lower-layer network. ,e characteristics of the other
networks are similar and hold for less traffic flow.

4.2. Lower Layer and Upper Layer Have Different Numbers of
Nodes. ,e number of nodes in the upper layer is normally
smaller than that in the lower layer. ,e upper-layer nodes
are randomly selected from the lower layer and NU � 36 and
NL � 400. ,e total traffic flow Q is set to increase until
approximately 4 × 104.

In the first condition, if different layers are randomly
connected, as shown in Figure 9, multilayer networks with a
scale-free network as the lower-layer network have relatively
strong ability to support increased traffic flow, regardless of
the type of upper-layer network. ,e remaining networks
belong to the second group. ,e networks with random
networks as the upper-layer networks have similar ability
except S-E. Clearly, GG-RNG, RNG-GG, RNG-RNG, and
GG-GG can support less traffic flow. When the total traffic
flow Q reaches approximately 2 × 104, all the changing
trends of these networks become stable and jammed.

,en, if the different layers are completely connected, as
shown in Figure 10, the changing trends are similar as those
of randomly coupled networks, but these networks can
support more traffic flow. Additionally, a scale-free network

as the lower-layer network maintains relatively strong
support.,e same, those networks with random networks as
the upper-layer networks have similar ability except S-E.
Correspondingly, GG-RNG, RNG-GG, RNG-RNG, and
GG-GG can support less traffic flow.

4.3.Be Influence of Tunable Parameter τ. In the last section,
we demonstrated the performance of network coupling

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Q ×104

0

0.1
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0.8
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1
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W-W
GG-RNG
RNG-GG
RNG-RNG
GG-GG

Figure 7: Randomly coupled multilayer network performance as
the total traffic flow increases.
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Figure 8: Completely coupled multilayer network performance as
the total traffic flow increases.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Q ×104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

J

R-R
R-E
R-S
R-W
E-R

E-E
E-S
E-W
S-R
S-E

S-S
S-W
W-R
W-E
W-S

W-W
GG-RNG
RNG-GG
RNG-RNG
GG-GG

Figure 9: Randomly coupled multilayer network performance as
the total traffic flow increases.
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methods in different situations with the same value of pa-
rameter τ. To further understand the influence of τ, we tested
multilayer networks where the lower layer and upper layer
have the same or different number of nodes, and we set
τ ∈ [1, 2] to check the changing trend of the congestion
factor J as Q increases.

First, multilayer networks with the same number of
nodes and randomly connected layers are shown in Fig-
ure 11. ,en, multilayer networks with the same number of
nodes and completely connected layers are shown in
Figure 12. Multilayer networks with different numbers of
nodes and randomly connected layers are shown in Fig-
ure 13. Finally, multilayer networks with different numbers
of nodes and completely connected layers are shown in
Figure 14.

Clearly, as τ increases, the anticongestion ability of each
multilayer network increases until reaching a stable plateau,
and the figures become less compact, and the division of
these groups became more clear.

4.4. Be Influence of Tunable Parameter Θ. We set the link
capacity of upper-layer links to Θ times that of the lower-
layer links. To test the influence of the adjustable parameter
Θ to the general system, we examined the anticongestion
ability of the S-S network with different values of Θ, ranging
from 1 to 30. Figure 15 shows that as Θ increases, the
anticongestion ability of the S-S network generally increases.
When Θ� 20, the network has the highest anticongestion
ability. As Θ increases further, the anticongestion ability
decreases slightly and then continues to fluctuate.

5. Discussions and Conclusions

First, this paper reviews some recent studies on optimal
network structure and analyzes research trends and hot
spots. Although some studies on the optimal structure of
multilayer networks have been conducted recently, most are
based on very few types of networks, and the carrying ca-
pacity and anticongestion abilities of traffic networks are not
considered [16, 31, 32]. Hence, this research is based on
anticongestion ability and analyzes different traffic con-
gestion conditions to test the network characteristics of
various multilayer network structures to propose the opti-
mal multilayer urban traffic network topology. ,en, dif-
ferent basic network structures are described and
introduced, namely, regular network (R), random graph (E),
small-world network (W), scale-free network (S), relative
neighbor graph (RNG), and Gabriel graph (GG), so that
readers can gain a more comprehensive understanding of
these traffic networks. ,e novelty of this study is that based
on the coupling of these different network structures, the
multilayer network properties are fully discussed, and the
traffic impedance, a relatively novel research objective in the
research of complex networks, is discussed. Although our
study does not include all network models, it considers most
of the combination of networks and is more comprehensive
than previous studies. ,e representation of the results is
more intuitive and convenient for traffic planners to use
directly.

,is study is based on simulation methods and using
simulated data to test the properties of networks under
different situations, which is in line with recent research
trends. ,e results show that general network design is
strongly related to the network topology of the different
layers and their parameters and that the improved operation
of existing networks also relies on these indicators. Large
differences are observed when the upper-layer and lower-
layer networks are randomly or completely connected.
Additionally, for upper-layer and lower-layer networks with
the same or different number of nodes, we have considered
all these conditions and compared all the coupling methods
for multilayer networks.

Scale-free multilayer networks have relatively strong
ability to support more traffic flow. ,is means that the
design of urban traffic networks should be based on scale-
free multilayer networks. Four other network topologies,
GG-RNG, RNG-GG, RNG-RNG, and GG-GG, are relatively
weak, which means that we should avoid applying those
designs. ,ese measurement results have important guiding
significance for urban traffic network planning and design.
At present, the design of road routes is based mainly on the
return on investment of a single line, so it is difficult to satisfy
the needs of a comprehensive benefit analysis of traffic
networks. Additionally, it is difficult to measure such factors
such as the impact of new routes on the overall efficiency of
the network, the change in users’ travel habits, and the
impact on the regional economy. When we have a deeper
understanding of the structure of the network, we can design
the road network more scientifically and rationally.
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Figure 10: Completely coupled multilayer network performance as
the total traffic flow increases.
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Figure 11: Continued.
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Figure 11: ,e influence of tunable parameter τ on multilayer networks (with the same number of nodes) when the networks are randomly
connected. (a) τ � 1. (b) τ � 1.1. (c) τ � 1.2. (d) τ � 1.3. (e) τ � 1.4. (f ) τ � 1.5. (g) τ � 1.6. (h) τ � 1.7. (i) τ � 1.8. (j) τ � 1.9. (k) τ � 2.
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Figure 12: Continued.
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Figure 12:,e influence of tunable parameter τ onmultilayer networks (with the same number of nodes) when the networks are completely
connected. (a) τ � 1. (b) τ � 1.1. (c) τ � 1.2. (d) τ � 1.3. (e) τ � 1.4. (f ) τ � 1.5. (g) τ � 1.6. (h) τ � 1.7. (i) τ � 1.8. (j) τ � 1.9. (k) τ � 2.
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Figure 13: Continued.
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Figure 13:,e influence of tunable parameter τ onmultilayer networks (with different numbers of nodes) when the networks are randomly
connected. (a) τ � 1. (b) τ � 1.1. (c) τ � 1.2. (d) τ � 1.3. (e) τ � 1.4. (f ) τ � 1.5. (g) τ � 1.6. (h) τ � 1.7. (i) τ � 1.8. (j) τ � 1.9. (k) τ � 2.
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Figure 14: Continued.
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Figure 14: ,e influence of tunable parameter τ on multilayer networks (with different numbers of nodes) when the networks are
completely connected. (a) τ � 1. (b) τ � 1.1. (c) τ � 1.2. (d) τ � 1.3. (e) τ � 1.4. (f ) τ � 1.5. (g) τ � 1.6. (h) τ � 1.7. (i) τ � 1.8. (j) τ � 1.9. (k)
τ � 2.
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We also considered the impact of tunable parameters τ
and Θ. Regardless of the condition, as τ increases, the
anticongestion ability of each multilayer network increases.
For Θ, there exists a critical value, where before this value,
the anticongestion ability increases but beyond this value,
the anticongestion ability decreases slightly and then con-
tinues to fluctuate.

With a deeper consideration of the network topology,
we can optimize multilayer networks. Additionally, this
research deepens the understanding of the coupling re-
lationship. Meanwhile, limited by the finite computa-
tional ability, we only calculated hundreds of traffic
network nodes, which can partially represent the general
trends and properties of multilayer networks. However,
we still need more data to apply our analysis to a real
project and further the optimization process. Further-
more, the assignment of traffic and link capacity should
further consider the real location and distribution of
urban populations.
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[14] A. De Montis, M. Barthélemy, A. Chessa, and A. Vespignani,
“,e structure of interurban traffic: a weighted network
analysis,” Environment and Planning B: Planning and Design,
vol. 34, no. 5, pp. 905–924, 2007.

[15] R. Ding, N. Ujang, H. B. Hamid et al., “Application of complex
networks theory in urban traffic network researches,” Net-
works and Spatial Economics, pp. 1–37, 2019.

[16] F. Tan, J. Wu, Y. Xia, and C. K. Tse, “Traffic congestion in
interconnected complex networks,” Physical Review E: Sta-
tistical, Nonlinear, and Soft Matter Physics, vol. 89, no. 6,
Article ID 062813, 2014.

[17] P. Holme, “Congestion and centrality in traffic flow on
complex networks,” Advances in Complex Systems, vol. 6,
no. 2, pp. 163–176, 2003.

[18] Z. Su, L. Li, H. Peng, J. Kurths, J. Xiao, and Y. Yang, “Ro-
bustness of interrelated traffic networks to cascading failures,”
Scientific Reports, vol. 4, no. 1, p. 5413, 2014.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
Q ×104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

J

Θ = 1
Θ = 5
Θ = 10
Θ = 15

Θ = 20
Θ = 25
Θ = 30

Figure 15: ,e influence of tunable parameter Θ.

Complexity 17

http://arxiv.org/abs/1604.07728


[19] Z.-L. Wei, Y.-J. Gan, and P. Zhao, “Characteristic research of
urban complex traffic network,” Journal of Transportation
Systems Engineering and Information Technology, vol. 15,
no. 1, pp. 106–111, 2014.

[20] J. Wu, C. Pu, L. Li, and G. Cao, “Traffic dynamics on mul-
tilayer networks,” Digital Communications and Networks,
2018.

[21] J. J. Wu, Z. Y. Gao, H. J. Sun, and H. J. Huang, “Congestion in
different topologies of traffic networks,” Europhysics Letters
(EPL), vol. 74, no. 3, pp. 560–566, 2006.

[22] M. T. Gastner and M. E. J. Newman, “,e spatial structure of
networks,” Be European Physical Journal B, vol. 49, no. 2,
pp. 247–252, 2006.

[23] H.-J. Sun, H. Zhang, and J.-J. Wu, “Correlated scale-free
network with community: modeling and transportation dy-
namics,” Nonlinear Dynamics, vol. 69, no. 4, pp. 2097–2104,
2012.

[24] R. Ding, N. Ujang, H. B. Hamid et al., “Detecting the urban
traffic network structure dynamics through the growth and
analysis of multi-layer networks,” Physica A: Statistical Me-
chanics and Its Applications, vol. 503, pp. 800–817, 2018.

[25] R. Ding, N. Ujang, H. B. Hamid, M. S. A. Manan, R. Li, and
J. Wu, “Heuristic urban transportation network design
method, a multilayer coevolution approach,” Physica A:
Statistical Mechanics and Its Applications, vol. 479, pp. 71–83,
2017.

[26] W.-B. Du, M.-Y. Zhang, Y. Zhang, X.-B. Cao, and J. Zhang,
“Delay causality network in air transport systems,” Trans-
portation Research Part E: Logistics and Transportation Re-
view, vol. 118, pp. 466–476, 2018.

[27] W.-B. Du, X.-L. Zhou, O. Lordan, Z. Wang, C. Zhao, and
Y.-B. Zhu, “Analysis of the Chinese airline network as multi-
layer networks,” Transportation Research Part E: Logistics and
Transportation Review, vol. 89, pp. 108–116, 2016.

[28] C.-G. Gu, S.-R. Zou, X.-L. Xu et al., “Onset of cooperation
between layered networks,” Physical Review E, vol. 84, no. 2,
Article ID 026101, 2011.

[29] N. E. Kouvaris, S. Hata, and A. D. Guilera, “Pattern formation
in multiplex networks,” Scientific Reports, vol. 5, no. 1, Article
ID10840, 2015.

[30] E. Strano, S. Shai, S. Dobson, and M. Barthelemy, “Multiplex
networks in metropolitan areas: generic features and local
effects,” Journal of Be Royal Society Interface, vol. 12, no. 111,
Article ID 20150651, 2015.

[31] Z. Yue, Y. Peng, L. Chang, Y. Liu, and K. Long, “Traffic
dynamics on layered complex networks,” Physica A-Statistical
Mechanics & Its Applications, vol. 390, no. 12, pp. 2401–2407,
2011.

[32] S. Zhang, M.-G. Liang, and H.-J. Li, “Method to enhance
traffic capacity for two-layer complex networks,” Canadian
Journal of Physics, vol. 92, no. 12, pp. 1599–1605, 2014.

[33] M. Li, M. B. Hu, and B. H. Wang, “Transportation dynamics
on coupled networks with limited bandwidth,” Scientific
Reports, vol. 6, no. 1, Article ID 39175, 2016.

[34] P. Crucitti, V. Latora, and S. Porta, “Centrality in networks of
urban streets,” Chaos: An Interdisciplinary Journal of Non-
linear Science, vol. 16, no. 1, Article ID 015113, 2006.

[35] B. Jiang and C. Claramunt, “Topological analysis of urban
street networks,” Environment and Planning B: Planning and
Design, vol. 31, no. 1, pp. 151–162, 2004.

[36] V. Latora and M. Marchiori, “Is the Boston subway a small-
world network?,” Physica A: Statistical Mechanics and Its
Applications, vol. 314, no. 1–4, pp. 109–113, 2002.

[37] M. Newman, A.-L. Barabasi, and D. J. Watts, Be Structure
and Dynamics of Networks, Princeton University Press,
Princeton, NJ, USA, 2011.

[38] H. Sun, Z. Gao, and J. Wu, “A bi-level programming model
and solution algorithm for the location of logistics distribu-
tion centers,” Applied Mathematical Modelling, vol. 32, no. 4,
pp. 610–616, 2008.

[39] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. Hwang, “Complex networks: structure and dynamics,”
Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006.

[40] C. F. Daganzo, “Structure of competitive transit networks,”
Transportation Research Part B: Methodological, vol. 44, no. 4,
pp. 434–446, 2010.

[41] D. Eisenstat, “Random road networks: the quadtreemodel,” in
Proceedings of the Eighth Workshop on Analytic Algorithmics
and Combinatorics (ANALCO), San Francisco, CA, USA,
January 2011.

[42] A. P. Masucci, D. Smith, A. Crooks, and M. Batty, “Random
planar graphs and the London street network,”Be European
Physical Journal B, vol. 71, no. 2, pp. 259–271, 2009.
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