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This paper focuses on the modeling of a rumor spreading in heterogeneous networks. Using the probability generating function
method and pair approximation method, the current research obtains nonlinear differential equations to describe the dynamics
of rumor spreading. The comparison between numerical simulations and Monte Carlo simulations confirms the accuracy of
our model. Furthermore, the threshold condition is also obtained in this paper. The numerical simulation results show that the
heterogeneity of the network accelerates the outbreak of rumors but reduces the maximum density of spreader and the scale of
rumors. The present study also examines the effects of parameters on rumor transmission and the differences between rumor
transmission recovery mechanisms and disease transmission recovery mechanisms.

1. Introduction

Rumor is an important form of human communication. It
can be interpreted as an infection of the mind, which is also
defined as a typical social phenomenon which runs through
the whole evolution of mankind [1]. Its spreading can cause
damage to personal reputations, affect the financial markets,
and cause social panic and instability [2, 3]. Traditionally,
rumors are propagated byword ofmouth [4].Nowadays, with
the emergence of the Internet, people can spread rumorswith
instant messengers, emails or microblogs, and so on, which
speeds up the dissemination of rumors virtually and makes
rumors more influential than ever before [5]. The research
on rumor propagation will offer us a thorough understanding
of this issue and allow us to predict and reduce the possible
harms caused by rumor propagation.

The study of the spread of the rumor began in the 1960s.
Daley and Kendall [6, 7] first proposed the classical DK
model of rumor spreading in which the total population is
divided into three groups: the people who are spreading the
rumor (spreaders), those who have never heard the rumor

(ignorants), and the ones who have heard the rumor but do
not spread it (stiflers), and they denoted them as 𝑆, 𝐼, and 𝑅,
respectively. Afterwards, Maki and Thomson [8] developed
another classical MK model in 1973, which focused on the
analysis of the rumor spreading based on mathematical
theory via direct contact between spreaders and others. After
that, more and more scholars paid attention to the spread
of rumors. On one hand, more refined rumor spreading
models are derived to model more detailed processes; on the
other hand, the impacts of network structure on the rumor
spreading are noticed.

To describe the process of rumor spread more carefully,
the population is divided more finely. Xia et al. [9] extended
the classic SIR rumor spreading model to a new SEIR rumor
propagation model considering hesitating mechanism in
complex social networks. Exposed (E) are those who have
been infected, in the hesitating state, and do not spread
rumors. In addition, in real life, there may be some people
who do not agree with the rumor. They may persuade
others to resist the rumor propagation. So Zan et al. [10]
presented a susceptible-infected-counter-susceptible (SICS)
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rumor spreading model with counter mechanism in complex
social networks. Then they derived mean-field equations to
describe their dynamics in homogeneous networks and study
the steady-state. In many cases, a rumor that concerns one
event does not spread along, as a rumor cannot always spread
without being affected by another rumor. To investigate the
effects of interactions between two rumors, Jie et al. [11] built
a model of a two-rumor interaction in which each individual
has two states, which correspond to the attitudes toward
each of the two rumors, and they built the corresponding
ODE system. Gu et al. [12] revealed that the forgetting and
remembering mechanism has great influence on the spread
of rumors by extensive simulations. In view of this, Zhao
et al. [13] added a new compartment, Hibernators, to the
classic SIR model and they derived a new rumor spreading
model, Ignorant-Spreader-Hibernator-Stifler (SIHR) model
in homogeneous networks. They [13] investigated the final
size of the rumor spreading under various spreading rates,
stifling rates, forgetting rates, and average degrees of the
network. All the above work studied rumor propagation in
homogeneous networks, and the models were mean-field
equations. Since the model loses a lot of information on the
network, the threshold, below which the rumor final size
is necessarily proportional to the fraction of initial speaker
nodes but above which it is proportional to a fraction of the
population, and the rumor final size may be missing in such
case.

As early as in 1994, Lefevre and Picard [14] revealed
the importance of network structure to rumor spreading. In
fact, the topology of social networks shows highly complex
connectivity in which each individual has a random number
of connections to other individuals [15]. Zenette [16, 17] and
Buvna et al. [18] performed a series of simulations in both
static and small-world networks and showed the existence of
a critical threshold of rumor spreading. So the influence of
network structure on rumor spreading had been paid more
andmore attention to. Nekovee et al. [19] extended the former
dynamicmodel to scale-free networkswith assortative degree
correlations and noticed the effect of degree correlation on
rumor spreading. Moreno et al. [20] took into account that
not only could nodes be in three different states (𝑆, 𝐼, 𝑅), but
also they belong to different connectivity classes 𝑘 and built
a mean-field equations which is degree-dependent. Zhao et
al. [21] also extended their work in [13] to describe rumor
propagation by means of the degree-dependent mean-field
equation. See more similar work in [22–27].

Heterogeneity makes it difficult to derive differential
equations to describe the epidemic. In fact, the heterogeneity
of the network is not only reflected in the heterogeneity
of degree distribution, but also in the locality of rumor
spreading along the edge. So we try to find a better way
to describe rumor spreading, rather than mean-field theory.
Volz et al. [28] resolved this dilemma by showing the SIR-
epidemic dynamics with a system of three nonlinear ODE’s
which involves the PGF. See more similar work in [29, 30].
In this work, we try to describe the rumor spreading in
[13, 21] by themethod based onPGF.There are still differences
between rumor spreading and disease spreading mechanism.
In the process of disease transmission, the recovery of the

infected persons is not related to other nodes.The recovery is
not dependent on the network structure. However, since the
spreading wants to recover, he has to contact a node that is
not an ignorant, so, the rumor recovery mechanism depends
on the network structure. What is more, the population can
move between the compartment of the hibernators and the
spreaders in the rumor spreading. For these reasons, the
establishment of rumor propagation model based on PGF
encounters irresolvable difficulties. So we have to combine
the PGF and the pair approximation method to model this
process. Our results show that this method is indeed a
better way to describe the rumor propagation. Then we also
examine the effects of parameters on rumor transmission
and the differences between rumor transmission recovery
mechanisms and disease transmission recovery mechanisms.

The remainder of this paper is organized as follows. We
derive the nonlinear ODE’s model to describe the dynamics
of the rumor spreading in Section 2. Furthermore, we obtain
the rumor spreading threshold. In Section 3, we test this
model in Poisson network and a refined scale-free network
and compare the numerical simulations with Monte Carlo
simulations, which shows that the numerical simulations of
our model more consistently fit in with the Monte Carlo
simulations. Then numerical simulations are conducted to
further investigate the properties of parameters on the spread
of the rumor. Finally, conclusions and discussions are given.

2. SIHR Model in Random Networks

This section introduces a low-dimensional system that mod-
els the percolation of an SIHR-rumor spreading in a hetero-
geneous network. It also obtains the disease thresholds.

2.1. Rumor Propagation Mechanism. This paper uses the
rumor spreading rules proposed in Zhao et al. [13], which can
be summarized as follows. (1)When a spreader contacts with
an ignorant, the last one becomes a spreader with probability𝜆, namely, spreading rate. (2) When an ignorant contacts a
spreader, the ignorant becomes a stifler with probability 𝛽
directly, namely, refusing rate. (3)The hibernators reflect the
repeatability of rumor spreading. The spreaders could forget
the rumor and then remember it. Spreaders spontaneously
forget the rumor and switch their state to hibernators at
the rate 𝛿 as a result of the forgetting mechanism, namely,
forgetting rate. The remembering mechanism also exists
for hibernators. Hibernators spontaneously remember the
rumor and become the spreaders at the rate 𝜉 that is called
spontaneous remembering rate. Besides, when a Hibernator
contacts a spreader, the hibernator switches to be a spreader
with probability 𝜂, namely, wakened remembering rate. (4)
When a spreader contacts another spreader or a hibernator
or a stifler, only the initiating spreader turns into a stifler with
probability 𝛼, namely, stifling rate.

When a rumor spreads through a network, the nodes can
be in any of the exclusive states: ignorants (I), spreaders (S),
hibernators (H), and stiflers,(R), respectively.Weuse 𝑆, 𝐼,𝐻,
and𝑅 to denote the fraction of nodes in the setsI,S,H, and
R, respectively. In addition, they satisfy the normalization
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Figure 1: SIHR rumor spreading process.

condition: 𝑆(𝑡) + 𝐼(𝑡) + 𝐻(𝑡) + 𝑅(𝑡) = 1. The SIHR rumor
spreading process is shown in Figure 1.

2.2. Our Model. To model the above rumor spreading
progress in a heterogeneous network, we consider a closed
and mixed population 𝐺 = (𝑉, 𝐸) with N individuals,
where 𝑉 = {V1, V2 ⋅ ⋅ ⋅ , V𝑁} is the set of vertices representing
the individuals and 𝐸 is the set of edges representing the
connections among individuals.We also assume that contacts
are symmetric, that is, if an edge (V1, V2) ∈ 𝐸 connects V1 to V2,
then an edge also connects V2 to V1. Although the network is
undirected (i.e., rumor can spread from each other), we wish
to keep track of who spread.Therefore, for each edge (V1 , V2) ∈𝐸, we define two arcs as the ordered pairs (V1, V2) and (V2, V1).
The first and second elements in the ordered pair (V1, V2) are
frequently called the ego and the alter, respectively [28]. Let𝑝𝑘 be the degree distribution. Then 𝑝(𝑘) is the proportion of
nodes having 𝑘 network contacts; i.e., 𝑝(𝑘) = [𝑘]/𝑁, which
can reveal the structure of this network. Then the probability
generating functions (PGFs) of the degree distribution are
given by

𝑔 (𝑥) = ∑
𝑘
𝑝𝑘𝑥𝑘. (1)

Let 𝑘 and 𝑘2 be the averaged degree and averaged second-
moment. Then they are 𝑔(1) and 𝑔(1) + 𝑔(1), respectively.

Since the network is heterogeneous, we use 𝑆𝑘(𝑡), 𝐼𝑘(𝑡),𝐻𝑘(𝑡), and𝑅𝑘(𝑡) to denote the density of spreaders, ignorants,
hibernators, and stiflers with degree k at time t, respectively.
In addition, they satisfy the normalization condition: 𝑆𝑘(𝑡) +𝐼𝑘(𝑡)+𝐻𝑘(𝑡)+𝑅𝑘(𝑡) = 1. Since ourmodel is an extension of the
network SIR model of Volz [28], we also need some notations
in [28]. Let 𝜃 represent the fraction of degree one nodes that
remain ignorant at time 𝑡 and 𝑃𝐵𝐴 represent the probability
that an arc with an ego in state 𝐴 has an alter in state 𝐵, where𝐴 and 𝐵may be 𝐼, 𝑆,𝐻, or 𝑅. Given 𝜃, it is easy to determine
the fraction of nodes which remain ignorants at time t; i.e.,

𝐼 = 𝑝0 + 𝑝1𝜃 + 𝑝2𝜃2 + ⋅ ⋅ ⋅ = 𝑔 (𝜃) . (2)

The model is formulated as follows:

̇𝜃 = − (𝜆 + 𝛽) 𝑃𝑆𝐼 𝜃,
̇𝑆𝑘 = −𝛿𝑆𝑘 + 𝜉𝐻𝑘 + 𝜆𝑘𝐼𝑘𝑃𝑆𝐼 + 𝜂𝑘𝐻𝑘𝑃𝑆𝐻

− 𝛼(𝑘𝑆𝑘 − 𝑘𝑆𝑘 𝜃𝑔
 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑝𝑘𝑆𝑘 ) ,

�̇�𝑘 = 𝛿𝑆𝑘 − 𝜉𝐻𝑘 − 𝜂𝑘𝐻𝑘𝑃𝑆𝐻,
̇𝑃𝑆𝐼 = − (𝜆 + 𝛽 + 𝛿)𝑃𝑆𝐼 + 𝜉𝑃𝐻𝐼 + 𝜆𝜃𝑔

 (𝜃) 𝑃𝐼𝐼𝑃𝑆𝐼𝑔 (𝜃)
+ (𝜆 + 𝛽) (𝑃𝑆𝐼 )2 + 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘Σ𝑘𝑘𝑝𝑘𝐻𝑘 𝑃𝐻𝐼 𝑃𝑆𝐻

− 𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 (1 − 𝜃𝑔 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 ) ,

̇𝑃𝐼𝐼 = (𝜆 + 𝛽) 𝑃𝐼𝐼𝑃𝑆𝐼 − (𝜆 + 𝛽) 𝜃𝑔 (𝜃) 𝑃𝐼𝐼𝑃𝑆𝐼𝑔 (𝜃) ,
̇𝑃𝐻𝐼 = −𝜉𝑃𝐻𝐼 + 𝛿𝑃𝑆𝐼 + (𝜆 + 𝛽) 𝑃𝑆𝐼𝑃𝐻𝐼

− 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝐻𝐼 𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘 ,

̇𝑃𝑆𝐻 = 𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘 (𝑃
𝑆
𝑆 − 𝑃𝑆𝐻)

Σ𝑘𝑘𝑝𝑘𝐻𝑘 + 𝜉𝑃𝐻𝐻 + 𝜆𝜃
2𝑔 (𝜃) 𝑃𝑆𝐼𝑃𝐻𝐼Σ𝑘𝑘𝑝𝑘𝐻𝑘

+ 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝐻𝐻𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘 − (𝛿 + 𝜂 + 𝛼) 𝑃𝑆𝐻

− 𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝑆𝑘 (1 − 𝜃𝑔 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 )
+ 𝜂 (𝑃𝑆𝐻)2 ,

̇𝑃𝐻𝐻 = 2𝛿𝑃𝑆𝐻 − 𝜉𝑃𝐻𝐻 − 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃
𝐻
𝐻𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘

− 𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑝𝐻𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘 + 𝜂𝑃𝑆𝐻𝑃𝐻𝐻 ,
̇𝑃𝑆𝑆 = (−𝛼 − 𝛿) 𝑃𝑆𝑆

+ Σ𝑘𝑘𝑝𝑘𝐻𝑘Σ𝑘𝑘𝑝𝑘𝑆𝑘 (2𝜉𝑃
𝑆
𝐻 − 𝜉𝑃𝑆𝑆 + 2𝜂𝑃𝑆𝐻 − 𝜂𝑃𝑆𝐻𝑃𝑆𝑆 )

+ 𝜆𝜃2𝑔 (𝜃)Σ𝑘𝑘𝑝𝑘𝑆𝑘 𝑃
𝑆
𝐼 (2𝑃𝑆𝐼 − 𝑃𝑆𝑆 )
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+ 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘Σ𝑘𝑘𝑝𝑘𝑆𝑘 𝑃𝑆𝐻 (2𝑃𝑆𝐻 − 𝑃𝑆𝑆 )

+ 𝜆 𝜃𝑔 (𝜃)
Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑃

𝑆
𝐼 (2 − 𝑃𝑆𝑆 )

− 𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝑆Σ𝑘𝑘𝑝𝑘𝑆𝑘
+ 𝛼𝜃𝑔 (𝜃) Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝑆𝑃𝑆𝐼(Σ𝑘𝑘𝑝𝑘𝑆𝑘)2

− 𝛼𝜃𝑔 (𝜃) 𝑃𝑆𝐼𝑃𝑆𝑆Σ𝑘𝑘𝑝𝑘𝑆𝑘 .
(3)

It should be noted that since the spreaders and the hibernators
can be transformed into each other, the model cannot be
established by simply using the methods in the literature [28],
which is the difficulty of the modeling process.Themodeling
process is given in detail in Appendix.

2.3. Initial Conditions and Spreading �reshold. If the proba-
bility of a node with degree 𝑘 selected uniformly at random
and initial spreader is 𝜖𝑘, we can anticipate the following
initial condition.

(1) 𝑆𝑘 = 𝜖𝑘𝑁𝑘/𝑁𝑘 = 𝜖𝑘,𝑀𝑆 = Σ𝑘𝑝𝑘𝜖𝑘/Σ𝑘𝑝𝑘,𝑀𝐼𝑆 ≈ 𝑀𝑆 =Σ𝑘𝑝𝑘𝜖𝑘/Σ𝑘𝑝𝑘.
(2) 𝑀𝐼 = 1 −𝑀𝐼𝑆 = 1 −Σ𝑘𝑝𝑘𝜖𝑘/Σ𝑘𝑝𝑘,𝑀𝐼𝐼 = 𝑀𝐼 −𝑀𝐼𝑆 =1 − 2Σ𝑘𝑝𝑘𝜖𝑘/Σ𝑘𝑝𝑘.
(3) 𝑃𝑆𝐼 (𝑡 = 0) = 𝑀𝐼𝑆/𝑀𝐼 = Σ𝑘𝑝𝑘𝜖𝑘/(Σ𝑘𝑝𝑘 − Σ𝑘𝑝𝑘𝜖𝑘),𝑃𝐼𝐼 (𝑡 = 0) = 𝑀𝐼𝐼/𝑀𝐼 = (Σ𝑘𝑝𝑘 − 2Σ𝑘𝑝𝑘𝜖𝑘)/(Σ𝑘𝑝𝑘 −Σ𝑘𝑝𝑘𝜖𝑘).
(4) 𝐻𝑘 = 0, 𝑃𝐻𝐼 = 0 (because there is no hibernator

initially).

(5) 𝜃 ≈ 1, which can be interpreted as the fraction of
nodes remaining ignorant.

Applying the initial conditions above into the ̇𝑃𝑆𝐼 and consid-
ering 𝜖𝑘 ≪ 1 give

̇𝑃𝑆𝐼 (𝑡 = 0)
≈ − (𝜆 + 𝛽 + 𝛿) Σ𝑘𝑝𝑘𝜖𝑘Σ𝑘𝑝𝑘 − Σ𝑘𝑝𝑘𝜖𝑘
+ 𝜆𝑔 (1)

𝑔 (1)
Σ𝑘𝑝𝑘𝜖𝑘Σ𝑘𝑝𝑘 − Σ𝑘𝑝𝑘𝜖𝑘

Σ𝑘𝑝𝑘 − 2Σ𝑘𝑝𝑘𝜖𝑘Σ𝑘𝑝𝑘 − Σ𝑘𝑝𝑘𝜖𝑘
+ (𝜆 + 𝛽) ( Σ𝑘𝑝𝑘𝜖𝑘Σ𝑘𝑝𝑘 − Σ𝑘𝑝𝑘𝜖𝑘)

2

− 𝛼Σ𝑘 (𝑘 − 1) 𝑝𝑘𝜖𝑘Σ𝑘𝑝𝑘 − Σ𝑘𝑝𝑘𝜖𝑘 + 𝛼𝑔
 (1) Σ𝑘 (𝑘 − 1) 𝑝𝑘𝜖𝑘

(Σ𝑘𝑝𝑘 − Σ𝑘𝑝𝑘𝜖𝑘)2 .

(4)

For (4), giving up the higher order items gets

̇𝑃𝑆𝐼 (𝑡 = 0) ≈ − (𝜆 + 𝛽 + 𝛿) Σ𝑘𝑝𝑘𝜖𝑘Σ𝑘𝑝𝑘 + 𝜆𝑔 (1)
𝑔 (1)

Σ𝑘𝑝𝑘𝜖𝑘Σ𝑘𝑝𝑘
− 𝛼Σ𝑘 (𝑘 − 1) 𝑝𝑘𝜖𝑘𝑔 (1) + 𝛼Σ𝑘 (𝑘 − 1) 𝑝𝑘𝜖𝑘𝑔 (1)

= [𝜆𝑔 (1)𝑔 (1) − (𝜆 + 𝛽 + 𝛿)] Σ𝑘𝑝𝑘𝜖𝑘𝑔 (1) .

(5)

Because Σ𝑘𝑝𝑘𝜖𝑘/𝑔(1) > 0, the condition to guarantee 𝑃𝑆𝐼 > 0
is

𝜆𝑔 (1)
𝑔 (1) − (𝜆 + 𝛽 + 𝛿) > 0. (6)

Therefore, the threshold is

𝜆𝑐 = (𝛽 + 𝛿) 𝑔 (1)
𝑔 (1) − 𝑔 (1) (7)

On the basis of above theoretical analysis, a nonzero
rumor diffusion threshold 𝜆𝑐 would be present. If 𝜆 >𝜆𝑐, the rumor diffuses and necessarily occupies a fraction
of population even as 𝜖𝑘 → 0. And the rumor only
spreads an infinitesimally small number of spreaders which
approximates to zero compared with large population while𝜆 is below threshold 𝜆𝑐. Next, take different values for 𝜖𝑘
as 𝜖𝑘 = 𝜖, 𝜖𝑘 = 𝜖𝑘 and 𝜖𝑘 = 𝜖1/𝑘. Equation (5) shows that
the choice of 𝜖𝑘 does not affect the outbreak of the rumor.
However,

̇𝑃𝑆𝐼 𝜖𝑘=𝜖1/𝑘 > ̇𝑃𝑆𝐼 𝜖𝑘=𝜖 > ̇𝑃𝑆𝐼 𝜖𝑘=𝜖𝑘 . (8)

Hence, the selection of initial spreader nodes will not affect
the threshold, but will affect the speed of rumor expansion.

We should also note that there is a threshold for rumor
spreading in this paper, which is absent in the literature [13,
21]. Furthermore, the threshold depends not only on averaged
degree 𝑔(1) but also on the fluctuations of the connectivity
distribution 𝑔(1).
3. Numerical Simulations and Monte
Carlo Simulations

In this section, we carry out Monte Carlo simulations and
numerical simulations to verify the above analytical results
and further investigate the effects of parameters on the rumor
spreading model. For Monte Carlo 𝑁 = 104. The detailed
process can be seen in [31]. If no otherwise specified, the
numerical simulations of model (3) are performed with𝑁 =104. Since model (3) involves 𝑆𝑘 and 𝐻𝑘, (𝑘 = 1, 2, . . .),
to simplify the problem, we truncated the network to a
maximumdegree of 30.The initial condition of the numerical
simulations of the model is 𝜖 = 10−4. For the sake of
conveniences, we define the cumulative rumor incidence as
the fraction of nodes spreaders, stiflers, or hibernators. The
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Figure 2: Simulations with 𝜆 = 0.7, 𝛽 = 0.3, 𝛼 = 0.2, 𝛿 = 0.1, 𝜉 = 0.1, and 𝜂 = 0.2. The black lines correspond to 100Monte Carlo simulations
for an SIHR rumor model in a network with the Poisson degree distribution with 𝑘 = 10. The red solid lines and green star lines represent
numerical simulation trajectories based on the mean-field system in [13] and [21], respectively. The blue dashed lines represent numerical
simulation trajectories based on system (3). (a) The trajectories of the density of spreaders. (b) The trajectories of the densities of spreaders,
stiflers, and hibernators.

peak value of spreader density max{𝑆(𝑡)} can be used to
measure the maximum rumor influence.

In Figure 2, the black solid lines show the result of 100
Monte Carlo simulations for an SIHR rumor model in a
network with the Poisson degree distribution with 𝑘 = 10.
The red solid lines and green star lines represent numerical
simulation trajectories based on the mean-field systems in
[13] and [21], respectively. The blue dashed lines represent
numerical simulation trajectories based on system (3). Fig-
ure 2(a) exhibits the trajectories of the density of spreaders
and (b) exhibits the cumulative rumor incidence (densities of
spreaders, stiflers and hibernators). And obviously, the blue
dashed lines which cut through the dense mass of simulation
trajectories are the analytical trajectories based on model (3).
This implies that the model of (3) can well describe the spread
of rumors in complex networks.

In order to further verify the reliability of model (3), we
performMonte Carlo simulations and numerical simulations
of model (3) in a refined Power-law network. The network
considered here can be generated by assigning a random
number of lines to a set of 𝑁 nodes according to the
distribution 𝑝𝑘, where

𝑝𝑘 =
{{{{{{{
1 − 30∑
𝑘=2

(4390) 𝑘(−1.2), 𝑘 = 1,
(4390) 𝑘(−1.2), 𝑘 = 2, 3, . . . , 30.

(9)

Then by the Configuration Model (CM) process [31], we can
get a new network which is shown to have characteristic
of Power-law network in Figure 3. Figure 3 shows the
degree distribution of this newnetwork in double logarithmic
coordinates system.

In Figure 4, the Monte Carlo simulations for the network
with the refined Power-law degree distribution in Figure 3

and the numerical simulation of model (3) and the mean-
field system in [13, 21] are performed with 𝑁 = 104 and𝑝𝑘 in Figure 3. The black solid lines show the results of
100 Monte Carlo simulations for the Power-law network.
The red solid lines and green star lines represent numerical
simulation trajectories based on the mean-field systems in
[13] and [21], respectively. The blue dashed lines represent
a numerical simulation trajectories based on model (3).
Obviously, the blue lines which nearly cut through the dense
mass of simulation trajectories are the analytical trajectories
based on system (3). This implies that the model of (3) can
well describe the spread of rumors in complex networks.

Figure 5 compares the spread of SIHR rumors in networks
with the Poisson degree distribution and in the network
with the refined power-law degree distribution. The results
show that the final scale of rumors in the network with
the Power-law degree distribution is smaller than that with
the Poisson degree distribution. Furthermore, the density
of spreaders reaches its maximum earlier, which is smaller
than that with the Poisson degree distribution. Although
heterogeneity accelerates the spread of rumors, it reduces the
scale of spread.

The simulation results in Figure 6 show the evolution of
rumor diffusion over time with different spreading rates 𝜆 =0.2, 𝜆 = 0.4, and 𝜆 = 0.5, respectively. In Figure 6(a), it is clear
to see that the densities of the spreaders have sharp increases
until they reach their peaks and then decrease to zero.
Meanwhile, we can see that, with the increase of the spreading
rate 𝜆, the density of spreaders reaches its maximum earlier
and larger. Figure 6(b) shows the cumulative rumor incidence
increases with the increase of spreading rate 𝜆.

Figure 7 displays how the evolution of rumor diffusion
changes over time under different refusing rates 𝛽, where we
set𝛽 = 0.1,𝛽 = 0.2, and𝛽 = 0.4, respectively. In Figure 7(a), it
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Figure 3: Degree distribution of refined power-law network.
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Figure 4: Simulations with 𝜆 = 0.7, 𝛽 = 0.3, 𝛼 = 0.2, 𝛿 = 0.1, 𝜉 = 0.1, and 𝜂 = 0.1. The black lines correspond to 100 Monte Carlo
simulations trajectories for an SIHR rumor model in a network with the refined power-law degree distribution.The red solid lines and green
star lines represent numerical simulation trajectories based on the mean-field system in [13] and [21], respectively. The dashed blue lines
represent numerical simulation trajectories based on the system (3). (a) The trajectories of the densities of spreaders. (b) The trajectories of
the densities of spreaders, stiflers, and hibernators.

is clear to see that themaximum of spreader density decreases
with the increase of refusing rate 𝛽. If more people have the
ability to see through the rumor or do not spread rumor (the
direct link from the ignorants to the stiflers), the maximum
rumor influence would become smaller. Figure 7(b) shows
the cumulative rumor incidence decreases with the increase
of refusing rate 𝛽.

Figure 8 illustrates how the evolution of rumor diffusion
changes over time under different stifling rates 𝛼, where we
set 𝛼 = 0.1, 𝛼 = 0.2, 𝛼 = 0.3, and 𝛼 = 0.4, respectively.
Figure 8 shows that both the peak value of the spreader and
the cumulative rumor incidence decrease with the increase
of stifling rate 𝛼 when 𝛼 is small, while they increase with
the increase of 𝛼 when 𝛼 is bigger. However, in this modeling

process, we assume that the probability of a spreader node
with m nonignorant neighbors recovered in unit time is 𝑚𝛼
if the stifling rate is 𝛼, but, actually, it should be 1 − (1 − 𝛼)𝑚.
That is, we use the following approximation: 1−(1−𝛼)𝑚 ≈ 𝑚𝛼,
which is obviously unreliable with larger 𝛼.

From Figure 9, we can see that the maximum of the
density of the spreader decreases with the increase of the
forgetting rate𝛿 and it has almost no effects on the cumulative
rumor incidence. Figures 10 and 11 show that the remember-
ing rate 𝜉 and the wakened remembering rate 𝜂 have weak
effects on the rumor spreading process. From Figure 11(a),
we can see that the peak value of the spreader density
increases with the increase of the wakened remembering
rate 𝜂.
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Figure 5: Numerical simulations of (3) with 𝜆 = 0.7, 𝛽 = 0.3, 𝛼 = 0.2, 𝛿 = 0.1, 𝜉 = 0.1, 𝜂 = 0.1 in the networks with different degree
distributions but with the same averaged degree.The red solid lines and the blue dashed lines correspond to numerical simulations trajectories
for an SIHR rumor model (3) in a network with the Poisson degree distribution and the refined power-law degree distribution, respectively.
(a) The trajectories of the densities of spreaders. (b)The trajectories of the densities of spreaders, stiflers, and hibernators.
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Figure 6: Numerical simulations of (3) with 𝛽 = 0.1, 𝛼 = 0.1, 𝛿 = 0.1, 𝜉 = 0.05, and 𝜂 = 0.1 and different spreading rates 𝜆 in the network
with the Poisson degree distribution. (a)The trajectories of the densities of spreaders. (b)The trajectories of the densities of spreaders, stiflers,
and hibernators.

Although the rumor spreading in social networks is
similar to the disease spreading in biological networks,
there are still differences between them. In the process of
disease transmission, the recovery mechanism of the infected
persons depends on themselves. However, a spreader turns
into a stifler that needs to meet other spreaders, hiberna-
tors, or stiflers. So the recovery of spreader relies on the

structure of network in the rumor spreading model. In order
to compare the difference between the two mechanisms,
we do the numerical simulations of SIHR model under
two mechanisms, which are depending on the structure of
network and depending on themselves. In Figure 12, we can
see that the maximum rumor influence and the cumulative
rumor incidence are lower under the mechanism depending



8 Complexity

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

D
en

sit
ie

s o
f s

pr
ea

de
rs

=0.1
=0.2
=0.4

(a)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

D
en

sit
ie

s o
f s

pr
ea

de
rs

,st
ifl

er
s a

nd
 h

ib
er

na
to

rs

=0.1
=0.2
=0.4

(b)

Figure 7: Numerical simulations of (3) with 𝜆 = 0.6, 𝛼 = 0.2, 𝛿 = 0.2, 𝜉 = 0.1, and 𝜂 = 0.2 and different refusing rates 𝛽 in the network with
the Poisson degree distribution. (a)The trajectories of the densities of spreaders. (b)The trajectories of the densities of spreaders, stiflers, and
hibernators.
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Figure 8: Numerical simulations of (3) with 𝜆 = 0.6, 𝛽 = 0.3, 𝛿 = 0.2, 𝜉 = 0.1, and 𝜂 = 0.2 and different stifling rates 𝛼 in the network with
the Poisson degree distribution. (a)The trajectories of the densities of spreaders. (b)The trajectories of the densities of spreaders, stiflers, and
hibernators.

on the structure of network than those under the mechanism
depending on themselves.

4. Conclusion

This paper combines the PGF method and the pair approx-
imation method to obtain rumor propagation model in
heterogeneous networks. We obtained the following results.

(I) The comparison between numerical simulations and
Monte Carlo simulations confirms the accuracy of ourmodel.

(II) Different from the literature results, we get the thresh-
old condition of rumor propagation, which only depends on
the characteristics of the network and does not depend on the
choice of the initial spreader node, which further confirms
the fact that the fluctuations of the connectivity distribution
cannot be neglected even for finite size systems. In fact, the
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Figure 9: Numerical simulations of (3) with 𝜆 = 0.7, 𝛽 = 0.3, 𝛼 = 0.2, 𝜉 = 0.1, and 𝜂 = 0.2 and different 𝛿 in the network with the Poisson
degree distribution. (a)The trajectories of the densities of spreaders. (b)The trajectories of the densities of spreaders, stiflers, and hibernators.
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Figure 10: Numerical simulations of (3) with 𝜆 = 0.7, 𝛽 = 0.3, 𝛼 = 0.2, 𝛿 = 0.2, and 𝜂 = 0.2 and different 𝜉 in the network with the Poisson
degree distribution. (a)The trajectories of the densities of spreaders. (b)The trajectories of the densities of spreaders, stiflers, and hibernators.

choice of the initial spreader node only affects the spread
speed of rumors.

(III) The rumor recovery mechanism, different from the
disease recovery mechanism, is dependent on the network.
This makes its recovery rate not a constant for the rumor
propagator. In the early stage of rumor spreading, the
neighbors of a rumor spreader are ignorant, so the recovery
time of this rumor spreader is prolonged; however, in the

middle and later stage of rumor spreading, the number of
the ignorant neighbors of a rumor spreader decreases, so
that the rumor spreaders recover faster and faster. There-
fore, this recovery mechanism will reduce the scale of
transmission.

The appendix shows how the model is obtained in detail.
This systemic method can be generalized to study other
propagation in complex networks.
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Figure 11: Numerical simulations of (3) with 𝜆 = 0.7, 𝛽 = 0.3, 𝛼 = 0.2, 𝜉 = 0.1, and 𝛿 = 0.2 and different 𝜂 in the network with the Poisson
degree distribution. (a)The trajectories of the densities of spreaders. (b)The trajectories of the densities of spreaders, stiflers, and hibernators.
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Figure 12: Numerical simulations of (3) with 𝜆 = 0.6, 𝛽 = 0.3, 𝛼 = 0.3, 𝛿 = 0.2, 𝜉 = 0.1, and 𝜂 = 0.2 in the networks with the Poisson degree
distribution but under different recovery mechanisms. (a)The trajectories of the densities of spreaders. (b)The trajectories of the densities of
spreaders, stiflers, and hibernators.

Appendix

The Dynamics of SIHR Model in
Random Networks

In this section, we develop an SIHR rumor spreading model
involving the variables 𝜃, 𝑆𝑘,𝐻𝑘, 𝑃𝑆𝐼 , 𝑃𝐻𝐼 , 𝑃𝐼𝐼 , 𝑃𝑆𝐻, 𝑃𝐻𝐻 , and 𝑃𝑆𝑆 .

The method used is similar to that [28]. To model the rumor
spreading process, we need more notations given in Table 1.

To calculate the dynamics, we choose a random ignorant
ego node with degree k at time t. Then there will be a set of
k arcs (𝑒𝑔𝑜, 𝑎𝑙𝑡𝑒𝑟𝑖), (𝑖 = 1, 2, . . . , 𝑘) corresponding to the ego
node.Wewill assume that for each arc there will be a uniform
probability 𝑃𝑆𝐼 = 𝑀𝐼𝑆/𝑀𝐼 that 𝑎𝑙𝑡𝑒𝑟𝑖 is spreader. There is an
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Table 1: Key variables and parameters.

Symbol Description
𝑀𝐴 Fraction of arcs with an ego in state 𝐴 and an alter of any type
𝑀𝐴𝐵 Fraction of arcs with an ego in state 𝐴 and an alter in state 𝐵
A𝐵 Set of arcs (ego, alter) such that node ego is in set 𝐵
A𝐴𝐵 Set of arcs (ego, alter) s.t. 𝑒𝑔𝑜 ∈ 𝐴 and 𝑎𝑙𝑡𝑒𝑟 ∈ 𝐵
𝛿𝐴𝐵 Represent the average degree of nodes in set 𝐴, selected with probability proportional to the number

of arcs to nodes in set 𝐵, not counting one arc to nodes of type 𝐵
𝛿𝐴𝐵(𝐶) Set of arcs (ego, alter) but counting only arcs from ego to nodes in set 𝐶
[𝐴𝐵𝑘𝐶] The number of ordered triples of three nodes, the first node in state 𝐴, the second in state 𝐵 with

degree 𝑘, and the third in state 𝐶
[𝐴𝐵𝑘⋅] The number of ordered triples of three nodes, the first node in state 𝐴, the second in state 𝐵 with

degree 𝑘, and the third in any state

expected number 𝑘𝑃𝑆𝐼 arcs such that alter is spreaders. In a
time dt, an expected number 𝜆𝑘𝑃𝑆𝐼 𝑑𝑡 of these will be such
that the ignorant ego received rumor becoming a spreader
and 𝛽𝑘𝑃𝑆𝐼 𝑑𝑡 of these will be such that the ignorant ego, who
received a rumor without spreading it, becomes a stifler. Now
let 𝐼𝑘(𝑡) represent the fraction of degree k nodes that remain
ignorant at time t. Consequently, the hazard for the fraction of
ignorant nodes with degree k becoming spreaders or stiflers
at time t is

𝑑𝐼𝑘 (𝑡)𝑑𝑡 = − (𝜆 + 𝛽) 𝑘𝐼𝑘 (𝑡) 𝑃𝑆𝐼 (𝑡) . (A.1)

Using (A.1), we have

𝐼𝑘 (𝑡) = (𝑒− ∫𝑡0 (𝜆+𝛽)𝑃𝑆𝐼 (𝜏)𝑑𝜏)𝑘 (A.2)

For convenience, we will use the symbol 𝜃 to denote 𝐼1 =
𝑒−∫𝑡0 (𝜆+𝛽)𝑃𝑆𝐼 (𝜏)𝑑𝜏. From (A.2), it is clear that 𝐼𝑘(𝑡) = 𝜃𝑘.

Given 𝜃, it is easy to determine the fraction of nodes
which remain ignorants at time t. Therefore, we have

𝐼 = 𝑝0 + 𝑝1𝜃 + 𝑝2𝜃2 + ⋅ ⋅ ⋅ = 𝑔 (𝜃) . (A.3)

where 𝑔(𝜃) is the defined probability generating function of
the degree distribution 𝑝𝑘, which greatly simplifies subse-
quent equations. Similarly, the change rate of the 𝜃 can be
calculated directly as follows:

̇𝜃 = − (𝜆 + 𝛽) 𝑃𝑆𝐼 𝜃. (A.4)

Since 𝐼 = 𝑔(𝜃) from (A.3), we have

̇𝐼 = − (𝜆 + 𝛽) 𝑃𝑆𝐼 𝜃𝑔 (𝜃) . (A.5)

This does not completely specify the dynamics of 𝜃, which
also depends on the variable𝑃𝑆𝐼 .Thedynamics of𝑃𝑆𝐼 is derived
as follows:

̇𝑃𝑆𝐼 = 𝑑
𝑑𝑡 (

𝑀𝐼𝑆𝑀𝐼 ) = ̇𝑀𝐼𝑆𝑀𝐼 −
𝑀𝐼𝑆�̇�𝐼𝑀𝐼2 . (A.6)

Our goal is to put (A.6) in terms of the variables 𝜃, 𝑃𝑆𝐼 , 𝑃𝐼𝐼 𝑃𝐻𝐼 ,
and 𝑔(𝜃). Thus we have

𝑀𝐼 = Σ𝑘𝑘𝑝𝑘𝐼𝑘Σ𝑘𝑘𝑝𝑘 = 𝜃𝑔 (𝜃)
𝑔 (1) . (A.7)

Using (A.7),𝑀𝐼𝑆 can easily be obtained as follows:

𝑀𝐼𝑆 = 𝑀𝐼 ⋅ 𝑀𝐼𝑆𝑀𝐼 = 𝑀𝐼 ⋅ 𝑃
𝑆
𝐼 = 𝑃𝑆𝐼 𝜃𝑔 (𝜃)𝑔 (1) . (A.8)

Next consider �̇�𝐼 and ̇𝑀𝐼𝑆 in time dt. Firstly, �̇�𝐼 is easily
placed in terms of these variable. So we have

�̇�𝐼 = 𝑑
𝑑𝑡 (

𝜃𝑔 (𝜃)
𝑔 (1) )

= − (𝜆 + 𝛽) 𝑃𝑆𝐼 𝜃 [𝑔 (𝜃) + 𝜃𝑔 (𝜃)]
𝑔 (1) .

(A.9)

For calculating ̇𝑀𝐼𝑆, it requires careful consideration of the
rearrangement of arcs among sets 𝐼 and 𝑆. As an ignorant
contacts a spreader, the ignorant will become a spreader with
a certain probability 𝜆 or will become a stifler directly with a
certain probability 𝛽. So𝑀𝐼𝑆 is reduced at a rate (𝜆 + 𝛽)𝑀𝐼𝑆.
And in time dt, 𝛿𝑆 spreaders forget the rumor, so 𝑀𝐼𝑆 is
reduced at a rate 𝛿𝑀𝐼𝑆.𝑀𝐼𝑆 is also increased at the rate 𝜉𝑀𝐼𝐻
because 𝜉𝐻 nodes become spreaders due to remembering
spontaneously. On the other hand, in addition to its own
side, the edge from the new spreader node to other ignorant
or spreader neighbors will also be moved into or removed
from the collection A𝐼𝑆. Therefore, as an ignorant has links
to a spreader, the ignorant becomes a spreader. The newly
spreader has on average 𝛿𝐼𝑆(𝐼) arcs connected to ignorant
nodes, where 𝛿𝐼𝑆(𝐼)will represent the average number of arcs
from ego 𝐼 to nodes in set 𝐼 not counting one arc to 𝑆. So𝑀𝐼𝑆 also increase at the rate 𝜆𝑀𝐼𝑆𝛿𝐼𝑆(𝐼). As − ̇𝐼 nodes leave
set 𝐼 in time dt, the fraction of arcs between 𝐼 and 𝑆, 𝑀𝐼𝑆
is reduced by the fraction of arcs from spreaders to the − ̇𝐼
newly spreaders or stiflers. Therefore, 𝑀𝐼𝑆 is reduced at the
rate − ̇𝐼𝛿𝐼𝑆(𝑆)/𝑔(1).The quantity𝑀𝐼𝑆 is also increased; as the
hibernator has links to spreaders, the stimulated hibernator
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will become a spreader and restart spreading the rumor. The
new spreader will have on average 𝛿𝐻𝑆(𝐼) arcs to ignorants,
so𝑀𝐼𝑆 is increased at a rate 𝜂𝑀𝐻𝑆𝛿𝐻𝑆(𝐼). Meanwhile, when a
spreader contacts another spreader, a hibernator, or a stifler,
the initiating spreader becomes a new stifler.The newly stifler
will have on average (𝛿𝑆𝐼(𝑆)+𝛿𝑆𝐼(𝑅)+𝛿𝑆𝐼(𝑅)) arcs to ignorants,
so𝑀𝐼𝑆 is decreased at a rate 𝛼𝑀𝐼𝑆(𝛿𝑆𝐼(𝑆) + 𝛿𝑆𝐼(𝑅) + 𝛿𝑆𝐼(𝑅)).
To summarize, the derivation of the dynamics of𝑀𝐼𝑆 follows:

̇𝑀𝐼𝑆 = − (𝜆 + 𝛽 + 𝛿)𝑀𝐼𝑆 + 𝜉𝑀𝐼𝐻 + 𝜆𝑀𝐼𝑆𝛿𝐼𝑆 (𝐼)
+ ̇𝐼𝛿𝐼𝑆 (𝑆)𝑔 (1) + 𝜂𝑀𝐻𝑆𝛿𝐻𝑆 (𝐼)
− 𝛼𝑀𝐼𝑆 (𝛿𝑆𝐼 (𝑆) + 𝛿𝑆𝐼 (𝑅) + 𝛿𝑆𝐼 (𝑅))

= − (𝜆 + 𝛽 + 𝛿)𝑀𝐼𝑆 + 𝜉𝑀𝐼𝐻 + 𝜆A𝐼𝑆𝛿𝐼𝑆 (𝐼)𝑔 (1)𝑁
− (𝜆 + 𝛽) A𝐼𝑆𝛿𝐼𝑆 (𝑆)𝑔 (1)𝑁 + 𝜂A𝐻𝑆𝛿𝐻𝑆 (𝐼)𝑔 (1)𝑁
− 𝛼 A𝐼𝑆𝑔 (1)𝑁 (𝛿𝑆𝐼 (𝑆) + 𝛿𝑆𝐼 (𝑅) + 𝛿𝑆𝐼 (𝑅))

= − (𝜆 + 𝛽 + 𝛿)𝑀𝐼𝑆 + 𝜉𝑀𝐼𝐻 + 𝜆Σ𝑘 [𝐼𝐼𝑘𝑆]𝑔 (1)𝑁
− (𝜆 + 𝛽) Σ𝑘 [𝑆𝐼𝑘𝑆]𝑔 (1)𝑁 + 𝜂Σ𝑘 [𝐼𝐻𝑘𝑆]𝑔 (1)𝑁
− 𝛼Σ𝑘 ([𝐼𝑆𝑘𝑆] + [𝐼𝑆𝑘𝐻] + [𝐼𝑆𝑘𝑅])𝑔 (1)𝑁 .

(A.10)

To calculate ̇𝑀𝐼𝑆 we need to first calculate the number of
ordered triples in which the second node has degree 𝑘. We
have

Σ𝑘 [𝐼𝐼𝑘𝑆] = Σ𝑘𝑘 (𝑘 − 1)𝑁𝑝𝑘𝐼𝑘𝑃𝐼𝐼𝑃𝑆𝐼
= 𝑁𝜃2𝑔 (𝜃) 𝑃𝐼𝐼𝑃𝑆𝐼 ,

Σ𝑘 [𝑆𝐼𝑘𝑆] = Σ𝑘𝑘 (𝑘 − 1)𝑁𝑝𝑘𝐼𝑘 (𝑃𝑆𝐼 )2

= 𝑁𝜃2𝑔 (𝜃) (𝑃𝑆𝐼 )2 .

(A.11)

Obviously, we have[𝐼𝑆𝑘𝑆] + [𝐼𝑆𝑘𝐻]+ [𝐼𝑆𝑘𝑅] = [𝐼𝑆𝑘⋅] − [𝐼𝑆𝑘𝐼].
Just like (A.11), we have

Σ𝑘 [𝐼𝑆𝑘⋅] = Σ𝑘𝑘 (𝑘 − 1)𝑁𝑝𝑘𝑆𝑘𝑃𝐼𝑆 ,
Σ𝑘 [𝐼𝑆𝑘𝐼] = Σ𝑘𝑘 (𝑘 − 1)𝑁𝑝𝑘𝑆𝑘 (𝑃𝐼𝑆)2 ,
Σ𝑘 [𝐼𝐻𝑘𝑆] = Σ𝑘𝑘 (𝑘 − 1)𝑁𝑝𝑘𝐻𝑘𝑃𝐼𝐻𝑃𝑆𝐻.

(A.12)

Meanwhile, 𝑃𝐼𝑆 , 𝑃𝐼𝐻 can be represented by 𝑃𝑆𝐼 , 𝑃𝐻𝐼 separately.
So there are

𝑃𝐼𝑆 = 𝜃𝑔 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 , (A.13)

and

𝑃𝐼𝐻 = 𝜃𝑔 (𝜃) 𝑃𝐻𝐼Σ𝑘𝑘𝑝𝑘𝐻𝑘 . (A.14)

From (A.8) and (A.11)∼(A.14), we have
̇𝑀𝐼𝑆 = − (𝜆 + 𝛽 + 𝛿) 𝜃𝑔 (𝜃) 𝑃𝑆𝐼𝑔 (1) + 𝜉𝜃𝑔 (𝜃) 𝑃𝐻𝐼𝑔 (1) + 𝜆

⋅ 𝜃2𝑔 (𝜃) 𝑃𝐼𝐼𝑃𝑆𝐼𝑔 (1) − (𝜆 + 𝛽) 𝜃2𝑔 (𝜃) (𝑃𝑆𝐼 )2
𝑔 (1) + 𝜂

⋅ 𝜃𝑔 (𝜃) Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝐻𝐼 𝑃𝑆𝐻𝑔 (1) Σ𝑘𝑘𝑝𝑘𝐻𝑘 − 𝛼

⋅ Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝜃𝑔 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑔 (1) (1 − 𝜃𝑔 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 ) .

(A.15)

Now applying (A.7)∼(A.9) and (A.15), we solve for ̇𝑃𝑆𝐼 in terms
of 𝜃 and PGF as follows:

̇𝑃𝑆𝐼 = − (𝜆 + 𝛽 + 𝛿) 𝑃𝑆𝐼 + 𝜉𝑃𝐻𝐼 + 𝜆𝜃𝑔
 (𝜃) 𝑃𝐼𝐼𝑃𝑆𝐼𝑔 (𝜃)

+ 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝐻𝐼 𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘 + (𝜆 + 𝛽) (𝑃𝑆𝐼 )2

− 𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 (1 − 𝜃𝑔 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 ) .

(A.16)

This equation makes use of the variable 𝑃𝐼𝐼 , 𝑃𝐻𝐼 , 𝑃𝑆𝐻 which
changes in time. Whose calculation is very similar to 𝑃𝑆𝐼 .
Firstly, we derive the dynamics of 𝑃𝐼𝐼 . So we can get

̇𝑃𝐼𝐼 = 𝑑
𝑑𝑡 (

𝑀𝐼𝐼𝑀𝐼 ) =
̇𝑀𝐼𝐼𝑀𝐼 −

𝑀𝐼𝐼�̇�𝐼𝑀𝐼2 , (A.17)

and

̇𝑀𝐼𝐼 = −2 (𝜆 + 𝛽)𝑀𝐼𝑆𝛿𝐼𝑆 (𝐼)
= −2 (𝜆 + 𝛽) A𝐼𝑆𝑔 (1)𝑁𝛿𝐼𝑆 (𝐼)

= −2 (𝜆 + 𝛽) 𝜃2𝑔 (𝜃) 𝑃𝐼𝐼𝑃𝑆𝐼𝑔 (1) .
(A.18)

Therefore, we have

̇𝑃𝐼𝐼 = (𝜆 + 𝛽) 𝑃𝐼𝐼𝑃𝑆𝐼 − (𝜆 + 𝛽) 𝜃𝑔 (𝜃) 𝑃𝐼𝐼𝑃𝑆𝐼𝑔 (𝜃) . (A.19)

Similarly, applying the above mathematical method, the
calculation of 𝑃𝐻𝐼 can be derived. So we have
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̇𝑃𝐻𝐼 = 𝑑
𝑑𝑡 (

𝑀𝐼𝐻𝑀𝐼 ) = ̇𝑀𝐼𝐻𝑀𝐼 −
𝑀𝐼𝐻�̇�𝐼𝑀𝐼2 , (A.20)

and

̇𝑀𝐼𝐻 = − (𝜆 + 𝛽)𝑀𝐼𝑆𝛿𝐼𝑆 (𝐻) − 𝜉𝑀𝐼𝐻 + 𝛿𝑀𝐼𝑆
− 𝜂𝑀𝐻𝐼𝛿𝐻𝐼 (𝑆)

= −(𝜆 + 𝛽) 𝜃2𝑔 (𝜃) 𝑃𝑆𝐼𝑃𝐻𝐼𝑔 (1) − 𝜉𝜃𝑔 (𝜃) 𝑃𝐻𝐼𝑔 (1)
+ 𝛿𝜃𝑔 (𝜃) 𝑃𝑆𝐼𝑔 (1) − 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝐼𝐻𝑃𝑆𝐻𝑔 (1) .

(A.21)

From (A.20) and (A.21), we have

̇𝑃𝐻𝐼 = −𝜉𝑃𝐻𝐼 + 𝛿𝑃𝑆𝐼 + (𝜆 + 𝛽) 𝑃𝑆𝐼𝑃𝐻𝐼
− 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝐻𝐼 𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘 . (A.22)

Now, it is necessary to determine the derivation of 𝑃𝑆𝐻 to
complete the model. In the same way, we have

̇𝑃𝑆𝐻 = 𝑑
𝑑𝑡 (

𝑀𝐻𝑆𝑀𝐻 ) =
̇𝑀𝐻𝑆𝑀𝐻 − 𝑀𝐻𝑆 ̇𝑀𝐻𝑀𝐻2 , (A.23)

For calculating ̇𝑃𝑆𝐻, we need to obtain the following:

�̇�𝑘 = 𝛿𝑆𝑘 − 𝜉𝐻𝑘 − 𝜂𝑘𝐻𝑘𝑃𝑆𝐻, (A.24)

̇𝑀𝐻 = Σ𝑘𝑘𝑝𝑘�̇�𝑘𝑔 (1) = 𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘 − 𝜉Σ𝑘𝑘𝑝𝑘𝐻𝑘 − 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝑆𝐻 − 𝜂Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑃𝑆𝐻𝑔 (1) , (A.25)

and

̇𝑀𝐻𝑆 = 𝛿𝑀𝑆𝑆 + 𝜉𝑀𝐻𝐻 + 𝜆𝑀𝐼𝐻𝛿𝐼𝐻 (𝑆)
+ 𝜂𝑀𝐻𝐻𝛿𝐻𝐻 (𝑆) − (𝛿 + 𝜉 + 𝜂 + 𝛼)𝑀𝐻𝑆
− 𝜂𝑀𝐻𝑆𝛿𝐻𝑆 (𝑆)
− 𝛼𝑀𝑆𝐻 (𝛿𝑆𝐻 (𝑆) + 𝛿𝑆𝐻 (𝐻) + 𝛿𝑆𝐻 (𝑅))

= 𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑃𝑆𝑆𝑔 (1) + 𝜉Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑃𝐻𝐻𝑔 (1)
+ 𝜆𝜃2𝑔 (𝜃) 𝑃𝑆𝐼𝑃𝐻𝐼𝑔 (1)
+ 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑔 (1) 𝑃𝐻𝐻𝑃𝑆𝐻

− (𝛿 + 𝜉 + 𝜂 + 𝛼) Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑃𝑆𝐻𝑔 (1)

− 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘 (𝑃
𝑆
𝐻)2

𝑔 (1)
− 𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝐻𝑆𝑔 (1) (1 − 𝑃𝐼𝑆) .

(A.26)

From (A.23)∼(A.26), we have
̇𝑃𝑆𝐻 = 𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘 (𝑃

𝑆
𝑆 − 𝑃𝑆𝐻)

Σ𝑘𝑘𝑝𝑘𝐻𝑘 + 𝜉𝑃𝐻𝐻

+ 𝜆𝜃2𝑔 (𝜃) 𝑃𝑆𝐼𝑃𝐻𝐼Σ𝑘𝑘𝑝𝑘𝐻𝑘

+ 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘Σ𝑘𝑘𝑝𝑘𝐻𝑘 𝑃𝐻𝐻𝑃𝑆𝐻 − (𝛿 + 𝜂 + 𝛼) 𝑃𝑆𝐻

− 𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝑆𝑘 (1 − 𝜃𝑔 (𝜃) 𝑃𝑆𝐼Σ𝑘𝑘𝑝𝑘𝑆𝑘 )
+ 𝜂 (𝑃𝑆𝐻)2 .

(A.27)

This equation makes use of the variable 𝑃𝑆𝑆 , 𝑃𝐻𝐻 which changes
in time. Deriving the dynamics of this variable will complete
the model. So we have the following results. Next consideṙ𝑃𝐻𝐻 ; we have

̇𝑃𝐻𝐻 = 𝑑
𝑑𝑡 (

𝑀𝐻𝐻𝑀𝐻 ) = ̇𝑀𝐻𝐻𝑀𝐻 − 𝑀𝐻𝐻 ̇𝑀𝐻𝑀𝐻2 . (A.28)

For the goal of ̇𝑀𝐻𝐻, wemust arrange the change of arcs𝐻𝐻;
we have

̇𝑀𝐻𝐻 = 2𝛿𝑀𝑆𝐻 − 2𝜉𝑀𝐻𝐻 − 2𝜂𝑀𝐻𝑆𝛿𝐻𝑆 (𝐻)
= 2𝛿Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑃𝑆𝐻𝑔 (1) − 2𝜉Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑃𝐻𝐻𝑔 (1)
− 2𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃𝐻𝐻𝑃𝑆𝐻𝑔 (1) .

(A.29)

From (A.25), (A.28), and (A.29), we have

̇𝑃𝐻𝐻 = 2𝛿𝑃𝑆𝐻 − 𝜉𝑃𝐻𝐻 − 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘𝑃
𝐻
𝐻𝑃𝑆𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘

− 𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑝𝐻𝐻Σ𝑘𝑘𝑝𝑘𝐻𝑘 + 𝜂𝑃𝑆𝐻𝑃𝐻𝐻 .
(A.30)
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Finally, it is necessary to determine the time derivative of ̇𝑃𝑆𝑆 .

̇𝑃𝑆𝑆 = 𝑑
𝑑𝑡 (

𝑀𝑆𝑆𝑀𝑆 ) = ̇𝑀𝑆𝑆𝑀𝑆 −
𝑀𝑆𝑆�̇�𝑆𝑀𝑆2 . (A.31)

Next consider �̇�𝑆 in time dt. Because �̇�𝑆 = Σ𝑘𝑘𝑝𝑘 ̇𝑆𝑘/𝑔(1),
we have

̇𝑆𝑘 = −𝛿𝑆𝑘 + 𝜉𝐻𝑘 + 𝜆𝑘𝐼𝑘𝑃𝑆𝐼 + 𝜂𝑘𝐻𝑘𝑃𝑆𝐻
− 𝛼 (𝑘𝑆𝑘 − 𝑘𝑆𝑘𝑃𝐼𝑆) .

(A.32)

From (A.32), we have

�̇�𝑆 = 𝜆Σ𝑘𝑘
2𝑝𝑘𝐼𝑘𝑃𝑆𝐼𝑔 (1) − 𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑔 (1) + 𝜉Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑔 (1)

+ 𝜂Σ𝑘𝑘2𝑝𝑘𝐻𝑘𝑃𝑆𝐻𝑔 (1) − 𝛼Σ𝑘𝑘
2𝑝𝑘𝑆𝑘 (1 − 𝑃𝐼𝑆)
𝑔 (1) .

(A.33)

For the goal of ̇𝑀𝑆𝑆, we must arrange the change of arcs 𝑆𝑆.
So we have

̇𝑀𝑆𝑆 = −2𝛿𝑀𝑆𝑆 + 2𝜉𝑀𝐻𝑆 + 2𝜆𝑀𝐼𝑆𝛿𝐼𝑆 (𝑆) + 2𝜆𝑀𝐼𝑆
+ 2𝜂𝑀𝐻𝑆 + 2𝜂𝑀𝐻𝑆𝛿𝐻𝑆 (𝑆)
− 2𝛼𝑀𝑆𝑆 (𝛿𝑆𝑆 (𝑆) + 𝛿𝑆𝑆 (𝐻) + 𝛿𝑆𝑆 (𝑅))

= −2𝛿Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑃𝑆𝑆𝑔 (1) + 2𝜉Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑃𝑆𝐻𝑔 (1)

+ 2𝜆𝜃
2𝑔 (𝜃) (𝑃𝑆𝐼 )2

𝑔 (1) + 2𝜆𝜃𝑔 (𝜃) 𝑃𝑆𝐼𝑔 (1)
+ 2𝜂Σ𝑘𝑘𝑝𝑘𝐻𝑘𝑃𝑆𝐻𝑔 (1)

+ 2𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘 (𝑃
𝑆
𝐻)2

𝑔 (1)
− 2𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃

𝑆
𝑆 (1 − 𝑃𝐼𝑆)

𝑔 (1)
− 2𝛼Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑃𝑆𝑆𝑔 (1) .

(A.34)

From (A.32)∼(A.34), we have
̇𝑃𝑆𝑆 = (−𝛼 − 𝛿) 𝑃𝑆𝑆

+ Σ𝑘𝑘𝑝𝑘𝐻𝑘Σ𝑘𝑘𝑝𝑘𝑆𝑘 (2𝜉𝑃
𝑆
𝐻 − 𝜉𝑃𝑆𝑆 + 2𝜂𝑃𝑆𝐻 − 𝜂𝑃𝑆𝐻𝑃𝑆𝑆 )

+ 𝜆𝜃2𝑔 (𝜃)Σ𝑘𝑘𝑝𝑘𝑆𝑘 𝑃
𝑆
𝐼 (2𝑃𝑆𝐼 − 𝑃𝑆𝑆 )

+ 𝜆 𝜃𝑔 (𝜃)
Σ𝑘𝑘𝑝𝑘𝑆𝑘𝑃

𝑆
𝐼 (2 − 𝑃𝑆𝑆 )

+ 𝜂Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝐻𝑘Σ𝑘𝑘𝑝𝑘𝑆𝑘 𝑃𝑆𝐻 (2𝑃𝑆𝐻 − 𝑃𝑆𝑆 )

− 𝛼Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝑆Σ𝑘𝑘𝑝𝑘𝑆𝑘
+ 𝛼𝜃𝑔 (𝜃) Σ𝑘𝑘 (𝑘 − 1) 𝑝𝑘𝑆𝑘𝑃𝑆𝑆𝑃𝑆𝐼(Σ𝑘𝑘𝑝𝑘𝑆𝑘)2

− 𝛼𝜃𝑔 (𝜃) 𝑃𝑆𝐼𝑃𝑆𝑆Σ𝑘𝑘𝑝𝑘𝑆𝑘 .

(A.35)
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