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The purpose of this paper is to propose a variable fractional-ordermodel with a constant time delay of the coinfection of HIV/AIDS
and malaria. The proposed model describes the interaction between HIV/AIDS and malaria. This model is presented by using
variable fractional-order derivative which is an extension of the constant fractional-order derivative to explain a certain pattern
in the development of infection of several patients. The presented model has been solved numerically via the predictor-corrector
scheme. The local and global stability conditions of the disease-free equilibrium are investigated. Also, numerical simulations are
presented for different variable fractional-order derivatives in Caputo sense.

1. Introduction

The human immunodeficiency virus (HIV) and malaria
are considered among the most challenging global public
health issues in the last few decades. HIV and malaria
are life-threatening diseases which have similar geographic
distributions [1]. They cause millions of deaths every year in
several areas especially in Africa, Asia, and Latin America. In
2017, HIV killed about one million people [2] while malaria
killed roughly 435 000 people worldwide [3]. HIV can be
transmitted through certain body fluids while malaria is
transmitted through bites of infected mosquitoes.

HIV is considered as one of the most deadly infec-
tious diseases which strikes the human immune system
and destroy the CD4+ cells. AIDS is the last stage of HIV
which occurs when the CD4+ cells of the human body
count drops below 200 cells/mm [4]. In this stage, the
immune system cannot defend the body against the attacks by
several opportunistic diseases. On the other hand, if malaria
parasite invades the bloodstream, then, it destroys red blood
cells. So, malaria infection may be developed to anemia or
cerebral malaria, which can cause disabilities and death [5].

The coinfection of HIV and malaria has become endemic
in several developing countries. World health organization
(WHO) reports indicating that more than twomillion people
die every year because of the malaria/AIDS coinfection [6].
The interaction between HIV and malaria in Sub-Saharan
Africa has become among the major public health problems
[7] and has resulted in many economic disasters [1] by
negatively affecting the contribution of the labor force to the
national economy.

Recently, increasing research efforts have been made
to obtain an effective vaccine to halt the progression and
transmission of malaria. Vaccination target is to reduce the
rate of human infection, the severity of the disease [8–10],
and the parasite’s transmission to mosquitoes. Clinical trials
in Africa proved that a malaria vaccine is partially protective
[11].

Frommathematicians’ perspective, mathematical models
are significant tools that help us to understand the current
state and the future progress of infectious diseases in human
networks in order to control and prevent such diseases. Sev-
eral mathematical models have been presented to study the
prevalence and the coinfection of HIV and malaria, but most
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of such models are integer or constant fractional-order mod-
els [12–22]. This paper is devoted to propose a delay variable
fractional-order model for the coinfection of HIV/AIDS and
malaria. In thismodel, a discrete time delay 𝜏ℎ is incorporated
in the variables of active humans who are infected by malaria
and the coinfected humans while a discrete time delay 𝜏𝑚
is incorporated in the variable of the infectious mosquitoes.
After a time 𝜏ℎ, susceptible people become infected by
malaria while exposed individuals become infectious after
the same time. On the other hand, mosquitoes become
infectious after time 𝜏𝑚. Introducing such a time delay to
the proposed model is essential to characterize the time
needed to start in vaccination and treatments processes. The
merits of the proposed model are clear from putting in
the time delay with the variable fractional-order derivative
which is an extension of the constant fractional-order in the
same model. Hence, using the proposed variable fractional-
order model with time delay gives a better understanding
of the interaction between malaria and HIV. To the best
of our knowledge, the presented model is the first variable
fractional-order model with a time delay which describes the
prevalence and interactions betweenHIV andmalaria. In this
model, the integer order derivative is used to distinguish the
short memory of systems, while the variable fractional-order
derivative is utilized to characterize the variable memory of
systems.

This paper is organized as follows. In Section 2, some
preliminaries of fractional calculus and the algorithm of the
predictor-corrector method are presented while Section 3
describes the proposed model. In Section 4, the disease-free
equilibrium and stability are presented. The basic reproduc-
tion number is computed in Section 5. Section 6 is devoted
to the numerical results and discussions. Our conclusion is
illustrated in Section 7.

2. Preliminaries

2.1. Fractional Calculus. The fractional calculus is considered
as a mathematical tool for characterizing memory of biolog-
ical and epidemiological systems. The classical integer order
derivative can be used to describe the short memory of the
dynamical systems, while fractional-order derivative has the
merit of describing the long memory of dynamical systems.
The variable fractional-order derivative is an extension of the
constant fractional-order derivative and has been introduced
in several scientific fields [23–25]. Also, it is a powerful
tool to characterize memory that varies from point to point.
Furthermore, the variable fractional-order derivative can
be applied to describe the variable memory of dynamical
systems [26].

In this section, we present some basic definitions of
constant/variable fractional-order derivatives as follows.

Definition 1 (Riemann–Liouville derivatives of fraction-
al-order 𝛼). Let 𝛼 be a bounded and continuous function;
then Riemann–Liouville fractional-order derivative of 𝑓(𝑡) :[𝑎, 𝑏] → R is defined as follows [27].

(i) Left Riemann–Liouville derivative of fractional-order𝛼 is defined by

𝑅𝐿

𝑎𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼)
𝑑𝑑𝑡 ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(1)

(ii) Right Riemann–Liouville derivative of fractional-
order 𝛼 is defined by

𝑅𝐿

𝑡𝐷𝛼𝑏𝑓 (𝑡) = 1Γ (1 − 𝛼)
𝑑𝑑𝑡 ∫
𝑏

𝑡
(𝑡 − 𝜔)−𝛼 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(2)

Definition 2 (Caputo derivatives of fractional-order 𝛼). Let𝛼 be a bounded and continuous function; then the Caputo
fractional-order derivative of 𝑓(𝑡) : [𝑎, 𝑏] → R is defined as
follows [27].

(i) Left Caputo derivative of fractional-order 𝛼 is defined
by

𝐶

𝑎𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼) ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(3)

(ii) Right Caputo derivative of fractional-order 𝛼 is
defined by

𝐶

𝑡𝐷𝛼𝑏𝑓 (𝑡) = −1Γ (1 − 𝛼) ∫
𝑏

𝑡
(𝑡 − 𝜔)−𝛼 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 ≤ 1
(4)

Definition 3 (Riemann–Liouville derivatives of variable frac-
tional-order 𝛼(𝑡)). Let 𝛼(𝑡) be a bounded and continuous
function; thenRiemann–Liouville fractional-order derivative
of 𝑓(𝑡) : [𝑎, 𝑏] → R is defined as follows [27].

(i) Left Riemann–Liouville derivative of variable
fractional-order 𝛼(𝑡) is defined by

𝑅𝐿

𝑎𝐷𝛼(𝑡)𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼 (𝑡)) 𝑑𝑑𝑡 ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(5)

(ii) Right Riemann–Liouville derivative of fractional-
order 𝛼 is defined by

𝑅𝐿

𝑡
𝐷𝛼(𝑡)𝑏 = 1Γ (1 − 𝛼 (𝑡))

𝑑𝑑𝑡 ∫
𝑏

𝑡
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(6)

Definition 4 (Caputo derivatives of variable fractional-order𝛼(𝑡)). Let 𝛼(𝑡) be a bounded and continuous function; then
the Caputo fractional-order derivative of 𝑓(𝑡) : [𝑎, 𝑏] → R

is defined as follows [27].
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Figure 1: HIV infected individuals showing symptoms of AIDS at 𝛼(𝑡) = 0.8 with ]2 = 1.5 (solid line), ]2 = 10 (dashed line), and ]2 = 100
(dotted line). Parameters values are in Table 1 with 𝛽ℎ = 0.01.

(i) Left Caputo derivative of fractional-order 𝛼(𝑡) is
defined by

𝐶

𝑎𝐷𝛼(𝑡)𝑡 𝑓 (𝑡) = 1Γ (1 − 𝛼 (𝑡)) ∫
𝑡

𝑎
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(7)

(ii) Right Caputo derivative of fractional-order 𝛼(𝑡) is
defined by

𝐶

𝑡
𝐷𝛼(𝑡)𝑏 𝑓 (𝑡) = −1Γ (1 − 𝛼 (𝑡)) ∫

𝑏

𝑡
(𝑡 − 𝜔)−𝛼(𝑡) 𝑓 (𝜔) 𝑑𝜔,

0 < 𝛼 (𝑡) ≤ 1
(8)

2.2. Predictor-Corrector Method. There are many techniques
for solving a delay variable fractional-order models such
as finite difference [28], Hermite wavelet [29], and Adams-
Bashforth-Morton [30] methods. In this section, we state
a predictor-corrector method for solving a delay variable
fractional-order model [31].

Let
𝐶𝐷𝛼(𝑡)𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜍)) , 0 ≤ 𝑡 ≤ 𝑇,

𝑦 (𝑡) = 𝑔 (𝑡) , − 𝜍 ≤ 𝑡 ≤ 0 (9)

where 0 < 𝛼(𝑡) ≤ 1, 𝑇 ∈ R+, and 𝑔(𝑡) is a smooth
function. Suppose a uniform grid {𝑡𝑗 = 𝑗ℎ : 𝑗 = −𝑞, 𝑞 +1, . . . , −1, 0, 1, . . . , 𝑛}, where 𝑛 and 𝑞 are integers such that𝑛 = 𝑇/ℎ and 𝑞 = 𝜍/ℎ.

The predictor approximation 𝑦𝑝𝑛+1 is defined by

𝑦𝑝𝑛+1 = 𝑦 (0) + 1
Γ (𝛼 (𝑡𝑛+1))

𝑛∑
𝑗=0

𝐵𝑗,𝑛+1𝑓 (𝑡𝑗, 𝑦𝑗, 𝑦𝑗−𝑞) , (10)

where

𝐵𝑗,𝑛+1 = ℎ𝛼(𝑡𝑛+1)
𝛼 (𝑡𝑛+1) [(𝑛 − 𝑗 + 1)𝛼(𝑡𝑛+1) − (𝑛 − 𝑗)𝛼(𝑡𝑛+1)] ,

0 ≤ 𝑗 ≤ 𝑛.
(11)

The corrector approximation 𝑦𝑛+1 is defined by

𝑦𝑛+1 = 𝑦 (0) + ℎ𝛼(𝑡𝑛+1)
Γ (𝛼 (𝑡𝑛+1) + 2)𝑓 (𝑡𝑛+1, 𝑦𝑝𝑛+1, 𝑦𝑛+1−𝑞)

+ ℎ𝛼(𝑡𝑛+1)
Γ (𝛼 (𝑡𝑛+1) + 2)

𝑛∑
𝑗=0

𝐴𝑗,𝑛+1𝑓 (𝑡𝑗, 𝑦𝑗, 𝑦𝑗−𝑞)
(12)

where

𝐴𝑗,𝑛+1 =
{{{{{{{{{

𝑛𝛼(𝑡𝑛+1)+1 − [𝑛 − 𝛼 (𝑡𝑛+1)] (𝑛 + 1)𝛼(𝑡𝑛+1) , 𝑗 = 0,
(𝑛 − 𝑗 + 2)𝛼(𝑡𝑛+1)+1 − 2 (𝑛 − 𝑗 + 1)𝛼(𝑡𝑛+1)+1 + (𝑛 − 𝑗)𝛼(𝑡𝑛+1)+1 , 1 ≤ 𝑗 ≤ 𝑛,
1, 𝑗 = 𝑛 + 1.

(13)
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Figure 2: HIV infected individuals showing symptoms of AIDS with ]2 = 10. Parameters values are in Table 1 with 𝛽ℎ = 0.01. (a) 𝛼(𝑡) = 0.8
comparing with 𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

3. The Model

Theproposed variable fractional-ordermodel with a constant
delay in this paper is based on the constant fractional
delay model proposed in [32]. This model consists of 12
compartments, as follows:

𝐶𝐷𝛼(𝑡)𝑁ℎ (𝑡)
= 𝐴ℎ − 𝑎ℎ1 [𝐼ℎ (𝑡) + (1 − 𝜃2) 𝑌ℎ (𝑡)] − 𝜏𝑎ℎ1𝐼𝑚ℎ𝑖V (𝑡)

− [𝜏𝑎ℎ1 + 𝜓𝛿𝐻] 𝐴𝑚ℎ𝑖V (𝑡) − 𝛿𝐻𝐴ℎ𝑖V (𝑡)

− 𝜇ℎ𝑁ℎ (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑆ℎ (𝑡)

= (1 − 𝑝)𝐴ℎ − 𝑓ℎ (𝑡) 𝑆ℎ (𝑡) − 𝛽ℎ𝑖V (𝑡) 𝑆ℎ (𝑡)
+ 𝑟ℎ [𝐼ℎ (𝑡) + 𝜃1𝑌ℎ (𝑡)] + 𝜎𝑉ℎ (𝑡) − 𝜇ℎ𝑆ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝑉ℎ (𝑡)
= 𝑝𝐴ℎ − 𝑓ℎ (𝑡) (1 − 𝛾)𝑉ℎ (𝑡) − [𝜎 + 𝜇ℎ] 𝑉ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝐼ℎ (𝑡)
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Figure 3: HIV infected individuals showing symptoms of AIDS with ]2 = 100. Parameters values are in Table 1 with 𝛽ℎ = 0.01. (a) 𝛼(𝑡) = 0.8
comparing with 𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

= 𝑓ℎ (𝑡 − 𝜏ℎ) 𝑆ℎ (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ − 𝜀2𝛽ℎ𝑖V (𝑡) 𝐼ℎ (𝑡)
− [𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ] 𝐼ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝐼𝑚ℎ𝑖V (𝑡)
= 𝜐1𝑓ℎ (𝑡 − 𝜏ℎ) 𝐼ℎ𝑖V (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ + 𝜀2𝛽ℎ𝑖V (𝑡) 𝐼ℎ (𝑡)

− [𝜁𝑎ℎ2 + 𝜙2 + 𝜏𝑎ℎ1 + 𝜇ℎ] 𝐼𝑚ℎ𝑖V (𝑡) ,
𝐶𝐷𝛼(𝑡)𝐼ℎ𝑖V (𝑡)

= 𝛽ℎ𝑖V (𝑡) 𝑆ℎ (𝑡) + 𝜙2𝐼𝑚ℎ𝑖V (𝑡) − 𝜐1𝑓ℎ (𝑡) 𝐼ℎ𝑖V (𝑡)

− [𝑎ℎ2 + 𝜇ℎ] 𝐼ℎ𝑖V (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑌ℎ (𝑡)

= 𝑓ℎ (𝑡 − 𝜏ℎ) (1 − 𝛾)𝑉ℎ (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ
− [𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ] 𝑌ℎ (𝑡) ,

𝐶𝐷𝛼(𝑡)𝐴𝑚ℎ𝑖V (𝑡)
= 𝜁𝑎ℎ2𝐼𝑚ℎ𝑖V (𝑡) + 𝜐2𝑓ℎ (𝑡 − 𝜏ℎ) 𝐴ℎ𝑖V (𝑡 − 𝜏ℎ) 𝑒−𝜇ℎ𝜏ℎ

− [𝜇ℎ + 𝜙3 + 𝜏𝑎ℎ1 + 𝜓𝛿𝐻] 𝐴𝑚ℎ𝑖V (𝑡) ,
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Figure 4: Individuals infected with malaria at 𝛼(𝑡) = 0.8with 𝜓 = 1.002 (solid line),𝜓 = 2 (dashed line), and𝜓 = 3 (dotted line). Parameters
values are in Table 1 with 𝛽ℎ = 0.05.

𝐶𝐷𝛼(𝑡)𝐴ℎ𝑖V (𝑡)
= 𝑎ℎ2𝐼ℎ𝑖V (𝑡) + 𝜙3𝐴𝑚ℎ𝑖V (𝑡) − 𝜐2𝑓ℎ (𝑡) 𝐴ℎ𝑖V (𝑡)

− [𝜇ℎ + 𝛿𝐻] 𝐴ℎ𝑖V (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑁𝑚 (𝑡) = 𝐴𝑚 − 𝑎𝑚𝐼𝑚 (𝑡) − 𝜇𝑚𝑁𝑚 (𝑡) ,
𝐶𝐷𝛼(𝑡)𝑆𝑚 (𝑡) = 𝐴𝑚 − 𝑓𝑚 (𝑡) 𝑆𝑚 (𝑡) − 𝜇𝑚𝑆𝑚 (𝑡) ,
𝐶𝐷𝛼(𝑡)𝐼𝑚 (𝑡)

= 𝑓𝑚 (𝑡 − 𝜏𝑚) 𝑆𝑚 (𝑡 − 𝜏𝑚) 𝑒−𝜇𝑚𝜏𝑚
− [𝜇𝑚 + 𝑎𝑚] 𝐼𝑚 (𝑡) .

(14)

where the population of mosquitoes as follows:

𝑁𝑚 (𝑡) = 𝐼𝑚 (𝑡) + 𝑆𝑚 (𝑡) , (15)

where 𝐼𝑚(𝑡) are the infectious mosquitoes and 𝑆𝑚(𝑡) are the
susceptible mosquitoes.

And the population of human 𝑁ℎ(𝑡) is divided into the
following classes:

𝑆ℎ are the susceptible individuals𝑉ℎ are the individuals vaccinated against malaria
𝐼ℎ are the individuals infected with malaria
𝑌ℎ are individuals infected and vaccinated against
malaria
𝐼𝑚ℎ𝑖V are the coinfected individuals showing no symp-
toms of AIDS
𝐼ℎ𝑖V are the individuals asymptomatically infected
with HIV/AIDS

𝐴ℎ𝑖V are the HIV infected individuals showing symp-
toms of AIDS
𝐴𝑚ℎ𝑖V are the coinfected individuals showing symp-
toms of AIDS

Besides, all human are subject to natural death, occurring
at a rate 𝜇ℎ. Susceptible individuals get in the human
population at a rate 𝐴ℎ. The parameter p is the proportion
of individuals successfully vaccinated, where (1 − 𝑝)𝐴ℎ is the
proportion getting in the class 𝑆ℎ(𝑡) and𝑝𝐴ℎ is the proportion
getting in the class 𝑉ℎ(𝑡). Susceptible individuals enter the
class 𝐼ℎ(𝑡) after some time 𝜏ℎ. The rate of infection by malaria
parasite of susceptible individuals 𝑓ℎ(𝑡) is given by

𝑓ℎ (𝑡) = 𝛽ℎ𝑐 (1 − 𝑏𝑧) 𝐼𝑚 (𝑡)𝑁ℎ (𝑡) (16)

where 0 < 𝑏 ≤ 1 is the proportion of individuals in the
community and 0 < 𝑧 ≤ 1 models the efficacy of adopted
strategies for individuals protection. 𝑐 is the rate of female
mosquitoes’ bites. The value of the probability that a bite of
an infectious mosquito leads to the infection of a susceptible
human is 𝛽ℎ. The efficacy of the preerythrocytic vaccine is
given by 0 < 𝛾 ≤ 1. Vaccinated individuals may become
susceptible at a rate 𝜎. The rate of infection with HIV/AIDS
of susceptible individuals is 𝛽ℎ𝑖V(𝑡):
𝛽ℎ𝑖V (𝑡)
= 𝛽𝐻 [𝐼ℎ𝑖V (𝑡) + 𝜂𝐻𝑀𝐼𝑚ℎ𝑖V (𝑡) + 𝜂𝐴 [𝐴ℎ𝑖V (𝑡) + 𝜂𝐻𝑀𝐴𝑚ℎ𝑖V (𝑡)]]𝑁ℎ (𝑡)

(17)

where 𝜂𝐴 > 1 is the infectiousness of individuals in the AIDS
stage of HIV infection. 𝛽𝐻 is the effective contact rate forHIV
infection. Infectiousness to malaria of coinfected individuals
showing symptoms of AIDS is 𝜂𝐻𝑀 > 1.
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Figure 5: Individuals infected with malaria with 𝜓 = 2. Parameters values are in Table 1 with 𝛽ℎ = 0.05. (a) 𝛼(𝑡) = 0.8 comparing with𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

Parameter 0 < 𝜃2 ≤ 1 models the effect of the preery-
throcytic vaccine in the raising of the recovery. Parameter𝜃1 ≥ 1 models the effect of the preerythrocytic vaccine
in the decreasing of mortality due to disease. The rate of
recovery of individuals infected with malaria and going to
the susceptible class is 𝑟ℎ. The rate of death of individuals
infected with malaria is 𝑎ℎ1. 𝜀2 < 1 models the decrease in
sexual activity due tomalaria disease.𝜙2 is the rate of recovery
of the coinfected individuals showing no symptoms of AIDS
from malaria. 𝜏 refers to the increased malaria mortality of
individuals coinfected with HIV. 𝜓 indicates the rise in HIV
mortality due to the coinfection with malaria. 𝑎ℎ2 is the rate
of development of 𝐼ℎ𝑖V(𝑡) to AIDS. The rate of death from

AIDS is 𝛿𝐻. The rate of natural death of 𝐼ℎ𝑖V(𝑡) is 𝜇ℎ. 𝜐1 is the
assumed rise in susceptibility to malaria as a result of HIV
infection. The rate of recovery of 𝐴𝑚ℎ𝑖V(𝑡) from malaria is𝜙3. 𝜐2 is the rise in susceptibility to malaria of individuals of𝐴ℎ𝑖V(𝑡). 𝜁 > 1 defines those coinfected individuals develop to
AIDS faster than those infected only with HIV.

The rate of natural death of mosquitoes is 𝜇𝑚. The rate of
infection by the Anopheles parasite of susceptible mosquitoes𝑓𝑚(𝑡) is given by

𝑓𝑚 (𝑡) = 𝛽𝑚𝑐 (1 − 𝑏𝑧)
⋅ 𝐼ℎ (𝑡) + 𝐼𝑚ℎ𝑖V (𝑡) + (1 − 𝜀) 𝑌ℎ (𝑡) + 𝐴𝑚ℎ𝑖V (𝑡)𝑁ℎ (𝑡)

(18)
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where 𝜀 ∈ [0, 1] defines the decreasing of transmission from
vaccinated humans to susceptible mosquitoes. The probabil-
ity that a mosquito’s bite in a malaria infective human tends
to infection of the mosquito is 𝛽𝑚. The exposed mosquitoes
turn infectious after time 𝜏𝑚. The rate of increasing mortality
due to the presence of the parasite in the body is 𝑎𝑚. In other
words, all mosquitoes are subjected to a natural death, at a
rate of 𝜇𝑚. It is assumed that the infectious mosquitoes are
subjected to death rate because of the presence of the parasite
in their bodies at a rate 𝑎𝑚 and that they do not recover before
they die [32].

4. The Disease-Free Equilibrium and Stability

Theequilibrium point of a dynamical system is a solution that
does not change with time.

To obtain the disease-free equilibrium of model (14), let

𝐶𝐷𝛼(𝑡)𝑁ℎ (𝑡) = 𝐶𝐷𝛼(𝑡)𝑆ℎ (𝑡) = 𝐶𝐷𝛼(𝑡)𝑉ℎ (𝑡)
= 𝐶𝐷𝛼(𝑡)𝐼ℎ (𝑡) = 𝐶𝐷𝛼(𝑡)𝐼𝑚ℎ𝑖V (𝑡)

= 𝐶𝐷𝛼(𝑡)𝐼ℎ𝑖V (𝑡) = 𝐶𝐷𝛼(𝑡)𝑌ℎ (𝑡)
= 𝐶𝐷𝛼(𝑡)𝐴𝑚ℎ𝑖V (𝑡) 𝐶𝐷𝛼(𝑡)𝐴ℎ𝑖V (𝑡)
= 𝐶𝐷𝛼(𝑡)𝑁𝑚 (𝑡) = 𝐶𝐷𝛼(𝑡)𝑆𝑚 (𝑡)
= 𝐶𝐷𝛼(𝑡)𝐼𝑚 (𝑡) = 0

(19)

Then the disease-free equilibrium 𝐸0 is
𝐸0 = (𝐴ℎ𝜇ℎ ,

(1 − 𝑝)𝐴ℎ (𝜎 + 𝜇ℎ) + 𝜎𝑝𝐴ℎ𝜇ℎ (𝜎 + 𝜇ℎ) , 𝑝𝐴ℎ𝜎 + 𝜇ℎ , 0, 0,

0, 0, 0, 0, 𝐴𝑚𝜇𝑚 , 𝐴𝑚𝜇𝑚 , 0)
(20)

The stability of disease-free equilibrium is defined by a sign
of real part of eigenvalues of the Jacobian matrix evaluated at
disease-free equilibrium. The Jacobian matrix is the matrix of
partial derivatives of the right-hand side with respect to state
variables.

The Jacobianmatrix ofmodel (14) around the disease-free
equilibrium 𝐸0 is

𝐽 (𝐸0)

=

[[[[[[[[[[[[[[[[[[[[[[[[[[[[
[

−𝜇ℎ 0 0 −𝑎ℎ1 −𝜏𝑎ℎ1 0 −𝑎ℎ1 (1 − 𝜃2) −𝜏𝑎ℎ1 − 𝜓𝛿𝐻 −𝛿𝐻 0 0 0
0 −𝜇ℎ 𝜎 𝑟ℎ −𝜂𝐻𝑀𝐺3 𝐺3 𝑟ℎ𝜃1 𝜂𝐴𝜂𝐻𝑀𝐺3 𝜂𝐴𝐺3 0 0 𝐺4
0 0 − (𝜎 + 𝜇ℎ) 0 0 0 0 0 0 0 0 𝐺5
0 0 0 − (𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ) 0 0 0 0 0 0 0 −𝑒−𝜇ℎ𝜏ℎ𝐺4
0 0 0 0 − (𝜁𝑎ℎ2 + 𝜙2 + 𝜏𝑎ℎ1 + 𝜇ℎ) 0 0 0 0 0 0 0
0 0 0 0 𝜙2 − 𝜂𝐻𝑀𝐺3 −𝐺3 − (𝑎ℎ2 + 𝜇ℎ) 0 −𝜂𝐴𝜂𝐻𝑀𝐺3 −𝜂𝐴𝐺3 0 0 0
0 0 0 0 0 0 − (𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ) 0 0 0 0 −𝑒−𝜇ℎ𝜏ℎ𝐺5
0 0 0 0 0 0 − (𝜇ℎ + 𝜙3 + 𝜏𝑎ℎ1 + 𝜓𝛿𝐻) 0 0 0 0
0 0 0 0 0 𝑎ℎ2 0 𝜙3 − (𝜇ℎ + 𝛿𝐻) 0 0 0
0 0 0 0 0 0 0 0 0 −𝜇𝑚 0 −𝑎𝑚
0 0 0 𝐺1 𝐺1 0 (1 − 𝜀)𝐺1 𝐺1 0 0 −𝜇𝑚 0
0 0 0 𝐺2 𝐺2 0 (1 − 𝜀)𝐺2 𝐺2 0 0 0 − (𝜇𝑚 + 𝑎𝑚)

]]]]]]]]]]]]]]]]]]]]]]]]]]]]
]

(21)

where

𝐺1 = −𝛽𝑚𝑐 (1 − 𝑏𝑧) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ ,
𝐺2 = 𝛽𝑚𝑐 (1 − 𝑏𝑧) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ 𝑒

−𝜏𝑚(𝜆+𝜇𝑚),

𝐺3 = −𝛽𝐻(𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ ) ,

𝐺4 = −𝛽ℎ𝑐 (1 − 𝑏𝑧) 𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ ,

𝐺5 = −𝛽ℎ𝑐 (1 − 𝑏𝑧) (1 − 𝛾) 𝑝𝜇ℎ𝜎 + 𝜇ℎ .

(22)

The eigenvalues of the Jacobian matrix are

𝜆1,2 = −𝜇ℎ,

𝜆3,4 = −𝜇𝑚,
𝜆5 = − (𝜎 + 𝜇ℎ) ,
𝜆6 = − (𝜁𝑎ℎ2 + 𝜙2 + 𝜏𝑎ℎ1 + 𝜇ℎ) ,
𝜆7 = − (𝜇ℎ + 𝜙3 + 𝜏𝑎ℎ1 + 𝜓𝛿𝐻)

(23)

The remaining five eigenvalues are obtained from the follow-
ing matrix:

𝑀 =
[[[[[[[[
[

𝐹1 0 0 0 𝐹2
0 𝐹3 0 𝐹4 0
0 0 𝐹5 0 𝐹6
0 𝐹7 0 𝐹8 0
𝐹9 0 𝐹10 0 𝐹11

]]]]]]]]
]

(24)
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where
𝐹1 = − (𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ) ,
𝐹2 = 𝛽ℎ𝑐 (1 − 𝑏𝑧) 𝜎 + 𝜇ℎ (1 − 𝑝)

𝜎 + 𝜇ℎ 𝑒−𝜏ℎ(𝜆+𝜇ℎ)

𝐹3 = 𝛽𝐻𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ − (𝑎ℎ2 + 𝜇ℎ) ,

𝐹4 = 𝛽𝐻𝜂ℎ 𝜎 + 𝜇ℎ (1 − 𝑝)
𝜎 + 𝜇ℎ

𝐹5 = − (𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ) ,
𝐹6 = 𝛽ℎ𝑐 (1 − 𝑏𝑧) (1 − 𝛾) 𝑝𝜇ℎ𝜎 + 𝜇ℎ 𝑒

−𝜏ℎ(𝜆+𝜇ℎ)

𝐹7 = 𝑎ℎ2,
𝐹8 = − (𝜇ℎ + 𝛿𝐻) ,
𝐹9 = 𝛽𝑚𝑐 (1 − 𝑏𝑧) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ 𝑒

−𝜏𝑚(𝜆+𝜇𝑚)

𝐹10 = 𝛽𝑚𝑐 (1 − 𝑏𝑧) (1 − 𝜀) 𝜇ℎ𝐴𝑚𝜇𝑚𝐴ℎ 𝑒
−𝜏𝑚(𝜆+𝜇𝑚),

𝐹11 = − (𝜇𝑚 + 𝑎𝑚)

(25)

That matrix M has the characteristic equation

𝜆5 +𝑀1𝜆4 +𝑀2𝜆3 +𝑀3𝜆2 +𝑀4𝜆 +𝑀5 = 0 (26)

where

𝑀1 = − (𝐹1 + 𝐹3 + 𝐹5 + 𝐹8 + 𝐹11) (27)

𝑀2 = 𝐹11 (𝐹1 + 𝐹3 + 𝐹5 + 𝐹8) + 𝐹5𝐹8 − 𝐹10𝐹6
+ (𝐹1 + 𝐹3) (𝐹5 + 𝐹8) + 𝐹1𝐹3 − 𝐹7𝐹4 − 𝐹2𝐹9 (28)

𝑀3 = −𝐹5𝐹8 (𝐹1 + 𝐹3 + 𝐹11) + 𝐹10𝐹6 (𝐹1 + 𝐹3 + 𝐹8)
− (𝐹1 + 𝐹3) (𝐹5 + 𝐹8) 𝐹11
− 𝐹1𝐹3 (𝐹5 + 𝐹8 + 𝐹11)
+ 𝐹7𝐹4 (𝐹1 + 𝐹5 + 𝐹11)
+ 𝐹2𝐹9 (𝐹3 + 𝐹5 + 𝐹8)

(29)

𝑀4 = 𝐹3𝐹5𝐹11 (𝐹1 + 𝐹3) + 𝐹1𝐹3𝐹11 (𝐹5 + 𝐹8)
+ 𝐹1𝐹3𝐹5𝐹8 − 𝐹7𝐹4 (𝐹1𝐹11 + 𝐹1𝐹5 + 𝐹5𝐹11)
− 𝐹6𝐹10 (𝐹1𝐹8 + 𝐹3𝐹8 + 𝐹1𝐹3 − 𝐹4𝐹7)
− 𝐹2𝐹9(𝐹5𝐹8 + 𝐹3𝐹5 + 𝐹3𝐹8 − 𝐹4𝐹7

(30)

𝑀5 = −𝐹1𝐹5𝐹11 (𝐹3𝐹8 − 𝐹4𝐹7)
+ 𝐹6𝐹10 (𝐹1𝐹3𝐹8 − 𝐹1𝐹4𝐹7)
+ 𝐹2𝐹9 (𝐹3𝐹5𝐹8 − 𝐹4𝐹5𝐹7)

(31)

Using the results in [33], the disease-free equilibrium𝐸0 is locally asymptotically stable if the Routh-Hurwitz
determinants Δ 1, Δ 2, Δ 3, Δ 4, Δ 5 are

Δ 1 = 𝑀1,
Δ 2 =


𝑀1 1
𝑀3 𝑀2

 ,

Δ 3 =


𝑀1 1 0
𝑀3 𝑀2 𝑀1
𝑀5 𝑀4 𝑀3



Δ 4 =


𝑀1 1 0 0
𝑀3 𝑀2 𝑀1 1
𝑀5 𝑀4 𝑀3 𝑀2
0 0 𝑀5 𝑀4


,

Δ 5 =



𝑀1 1 0 0 0
𝑀3 𝑀2 𝑀1 1 0
𝑀5 𝑀4 𝑀3 𝑀2 𝑀1
0 0 𝑀5 𝑀4 𝑀3
0 0 0 0 𝑀5



(32)

satisfying Δ 𝑖 > 0, 𝑖 = 1, 2, 3, Δ 4 = 0, and 𝑀5 > 0.
These conditions are the needed sufficient conditions to verify| arg(𝜆)| > 𝛼(𝑡)𝜋/2 for 𝛼(𝑡) ∈ [0, 1).

We can put system (14) in the following form:

𝐶𝐷𝛼(𝑡)𝑦𝑖 (𝑡) = 𝑓 (𝑡, 𝑦𝑖 (𝑡) , 𝑦𝑖 (𝑡 − 𝜏ℎ) , 𝑦𝑖 (𝑡 − 𝜏𝑚)) ,
0 ≤ 𝑡 ≤ 𝑇,

𝑦𝑖 (𝑡) = 𝑔 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0, 𝑖 = 1, 2, . . . , 12
(33)

Let 𝑦𝑖(𝑡) = 𝑢𝑖, 𝑦𝑖(𝑡 − 𝜏ℎ) = 𝑤𝑖, 𝑦𝑖(𝑡 − 𝜏𝑚) = 𝑧𝑖; then𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) ∈ 𝐶([0, 𝑇] × R12) is continuous with respect
to 𝑡 and globally Lipschitz continuous with respect to 𝑢𝑖, 𝑤𝑖,
and 𝑧𝑖 in the following norm: that is,

𝑓 (𝑡, 𝑢1, 𝑤1, 𝑧1) − 𝑓 (𝑡, 𝑢2, 𝑤2, 𝑧2)
≤ 𝐿1 𝑢1 − 𝑢2 + 𝐿2 𝑤1 − 𝑤2 + 𝐿3 𝑧1 − 𝑧2 (34)

for some Lipschitz constants 𝐿1 > 0, 𝐿2 > 0, and𝐿3 > 0, and 𝑡 ∈ [0, 𝑇], 𝑢1, 𝑢2, 𝑤1, 𝑤2, 𝑧1, 𝑧2 ∈ R12.
So 𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) satisfies the standard conditions for the
existence and uniqueness of solutions [34].

Also, let 𝑦∗ be an equilibrium point of system (33). To
determine the local stability of the system (33) we can use the
indirect method of Lyapunov which uses the linearization of
a system [35].

The linearization of the system (33) is

𝐶𝐷𝛼(𝑡)𝑦𝑖 (𝑡) = 𝐵0𝑢𝑖 + 𝐵1𝑤𝑖 + 𝐵2𝑧𝑖 (35)

where 𝐵0 = 𝜕𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)/𝜕𝑢𝑖, 𝐵1 = 𝜕𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)/𝜕𝑤𝑖, and𝐵2 = 𝜕𝑓(𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)/𝜕𝑧𝑖 are 12 × 12 matrices evaluated at
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the disease-free equilibrium (essentially a Jacobian matrix for
each time delay) [36].

It follows that, for each fixed t, the remainder is

𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) = 𝑓 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖) − 𝐵0𝑢𝑖 − 𝐵1𝑤𝑖
− 𝐵2𝑧𝑖 (36)

And the remainder tends to zero as 𝑢𝑖,𝑤𝑖, 𝑧𝑖 tend to zero.
But, the remainder may not tend to zero uniformly. So we
need a stronger condition which is

lim
‖𝑢𝑖‖→0

sup
𝑡≥0

𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)𝑢𝑖 = 0,

lim
‖𝑤𝑖‖→0

sup
𝑡≥0

𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)𝑤𝑖 = 0,

lim
‖𝑧𝑖‖→0

sup
𝑡≥0

𝑓1 (𝑡, 𝑢𝑖, 𝑤𝑖, 𝑧𝑖)𝑧𝑖 = 0

(37)

If (37) holds, then system (35) is the linearization of the
system (33). Once the linearization exits, its stability defines
the local stability of the original nonlinear system.

Let 𝐵0, 𝐵1, 𝐵2 be bounded. If 𝑦∗ is a uniformly asymp-
totically stable equilibrium point of system (35) then 𝑦∗ is a
locally uniformly asymptotically stable equilibrium point of
system (33).

5. The Basic Reproduction Number 𝑅0
In epidemiology, the basic reproduction number is defined
as the number of secondary infections due to a single
infection in a totally susceptible population. It is useful since
it decides if or not an infectious disease can spread through
a population. When 𝑅0 > 1, the infection will be able to
spread in a population. But if 𝑅0 < 1, the infection will
disappear. For 𝑅0 > 1, there was, at least, one stable endemic
equilibrium [32]. In some cases, the basic reproduction
number is not enough to predict the spread of epidemics
because bifurcation may occur.

The basic reproduction number of the model (14) is
shown in [32]

𝑅0 = max (𝑅𝑚, 𝑅ℎ𝑖V) (38)

where𝑅𝑚 is the basic reproduction number of malaria model
and 𝑅ℎ𝑖V is the basic reproduction of HIV model as follows:

𝑅𝑚 = (𝜇ℎ𝛽ℎ𝛽𝑚𝐴𝑚𝑒−𝜇ℎ𝜏ℎ𝑒−𝜇𝑚𝜏𝑚𝑐2 (1 − 𝑏𝑧)2
(𝑎𝑚 + 𝜇𝑚) 𝜇𝑚𝐴ℎ (𝜎 + 𝜇ℎ) )

⋅ (𝜎 + 𝜇ℎ (1 − 𝑝)
𝑟ℎ + 𝜇ℎ + 𝑎ℎ1 + (1 − 𝛾) (1 − 𝜀) 𝜇ℎ𝑝𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ)

(39)

𝑅ℎ𝑖V = 𝛽𝐻 (𝜇ℎ + 𝛿𝐻 + 𝜂𝐴𝑎ℎ2) (1 − 𝑝)
(𝑎ℎ2 + 𝜇ℎ) (𝜇ℎ + 𝛿𝐻) (40)

Theorem 5 (see [43]). If 𝑅0 < 1, then the disease-free
equilibrium 𝐸0 is globally asymptotically stable in Ω.Ω = (𝐴ℎ, 𝑝, 𝜎, 𝜂𝐻𝑀, 𝑐, 𝐴𝑚, 𝜙2, 𝜙3, 𝑏, 𝑧, 𝑟ℎ, 𝑎ℎ1, 𝑎ℎ2, 𝛽𝑚,𝛽ℎ, 𝜀2, 𝛿𝐻, 𝜇ℎ, 𝛾, 𝜀, 𝜇𝑚, 𝜏, 𝜓, 𝜃1, 𝜃2, 𝜐1, 𝜐2, 𝜂𝐴, 𝑎𝑚, 𝜏ℎ, 𝜏𝑚, 𝜁, 𝛽𝐻
such that the solution of the system (14) is positive.

Proof. From the previous section according to Routh-
Hurwitz conditions 𝑀5 defined by (31) must be greater than
zero so we will rewrite𝑀5 in terms of 𝑅ℎ𝑖V and 𝑅𝑚 after some
manipulation as follows:

𝑀5 = (𝑟ℎ + 𝑎ℎ1 + 𝜇ℎ) (𝜃1𝑟ℎ + (1 − 𝜃2) 𝑎ℎ1 + 𝜇ℎ)
⋅ (𝜇𝑚 + 𝑎𝑚) (𝑎ℎ2 + 𝜇ℎ) (𝜇ℎ + 𝛿𝐻) (1 − 𝑅ℎ𝑖V) (1 − 𝑅𝑚)
> 0.

(41)

Thus 𝑀5 > 0 if 𝑅ℎ𝑖V < 1 and 𝑅𝑚 < 1 so the disease-free
equilibrium 𝐸0 is globally asymptotically stable in Ω.

6. Numerical Results and Discussions

Applying the predictor-corrector method to solve model (14)
with initial conditions,

𝑁ℎ (0) = 430,
𝑆ℎ (0) = 300,
𝑉ℎ (0) = 100,
𝐼ℎ (0) = 5,

𝐼𝑚ℎ𝑖V (0) = 5,
𝐼ℎ𝑖V (0) = 5,
𝑌ℎ (0) = 5,

𝐴𝑚ℎ𝑖V (0) = 5,
𝐴ℎ𝑖V (0) = 5,
𝑁𝑚 (0) = 450,
𝑆𝑚 (0) = 430,
𝐼𝑚 (0) = 20

(42)

And the values of parameters are shown in Table 1
We investigate the model behavior in two cases. Firstly,

the variable fractional-order is 𝛼(𝑡) = 0.8 − (0.01/100)𝑡.
Secondly, the variable fractional-order is a periodic function𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

In Figure 1, we show the effect of the parameter ]2
which is the susceptibility to malaria of individuals showing
symptoms of AIDS. It is shown that when ]2 increases; the
number of HIV infected individuals showing symptoms of
AIDS decreases. Besides, whenwe use the variable fractional-
order 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡) means the memory of the
model is described as a periodic function; hence the behavior
of the model is also periodic. Also, when we use the variable
fractional-order 𝛼(𝑡) = 0.8 − (0.01/100)𝑡means the memory
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Figure 6: Individuals infected with malaria with 𝜓 = 3. Parameters values are in Table 1 with 𝛽ℎ = 0.05. (a) 𝛼(𝑡) = 0.8 comparing with𝛼(𝑡) = 0.8 − (0.01/100)𝑡; (b) 𝛼(𝑡) = 0.8 comparing with 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡).

in the model is described by a decreasing function so the
model behavior is slower with time as in Figures 2 and 3.

In Figure 4, we show the effect of the parameter 𝜓 which
is HIV mortality due to the coinfection with malaria. It
is shown that when 𝜓 increases; it leads to decreasing of
new cases of malaria. Besides, when we use the variable
fractional-order 𝛼(𝑡) = 0.8 − 0.01 sin(𝜋𝑡)means the memory
of the model is described as a periodic function; hence
the behavior of the model is also periodic. Also, when we
use the variable fractional-order 𝛼(𝑡) = 0.8 − (0.01/100)𝑡
means the memory in the model is described by a decreasing
function so the model behavior is slower with time as in
Figures 5 and 6.

The presented numerical results indicate that the pro-
posed delay variable fractional-order model is a generaliza-
tion of the constant fractional-order model with a time delay
which has been presented in [32].

7. Conclusion

A delay variable fractional-order model for the coinfection of
HIV/AIDS and malaria which includes malaria vaccination
and personal protection strategies is proposed in this paper.
Also, the basic reproduction number and stability of the
disease-free equilibrium have been studied. The numerical
results showed the impact of changing the parameters values
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Table 1: The values of parameters used in the numerical results.

Parameter Value Reference
𝐴ℎ 0.05 [32]
𝑝 0.4 [37]
𝜎 0.009 [37]
𝜂𝐻𝑀 1.5030 [32]
𝑐 0.5 [38]
𝐴𝑚 6 [37]
𝜙2 0.002 [39]
𝜙3 0.0005 [39]
𝑏 0.3 [32]
𝑧 0.9 [32]
𝑟ℎ 0.005 [37]
𝑎ℎ1 0.0004 [32]
𝑎ℎ2 0.004 [32]
𝛽𝑚 0.83 [40]
𝜀2 0.8 [32]
𝛿𝐻 0.000913 [39]
𝜇ℎ 0.000039 [41]
𝛾 0.64 [37]
𝜀 0.86 [37]
𝜏ℎ 14 [37]
𝜏𝑚 12 [42]
𝜇𝑚 0.04 [37]
𝜏 1.001 [39]
𝜓 1.002 [39]
𝜃1 4.1 [37]
𝜃2 0.06 [37]
𝜐1 1.002 [39]
𝜐2 1.5 [39]
𝜂𝐴 1.4 [39]
𝑎𝑚 0.01 [37]
𝜁 1.002 [39]
𝛽𝐻 0.001 [39]

such as ]2 and 𝜓 on the number of the infected individuals
with malaria/HIV, coinfected individuals, and infectious
mosquitoes as well. The variable fractional-order derivative
in the proposed model is used to distinguish the effect of the
memory that changes over time on the disease progression of
distinct patients. In Our future work, comparisons between
the numerical results and real data will be held in order to
examine the numerical simulation results at different variable
fractional-order 𝛼(𝑡).
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