Hindawi

Complexity

Volume 2019, Article ID 4387650, 4 pages
https://doi.org/10.1155/2019/4387650

Research Article

WILEY

Hindawi

The Extremal Permanental Sum for a Quasi-Tree Graph

Tingzeng Wu ®' and Huazhong Lii’

!School of Mathematics and Statistics, Qinghai Nationalities University, Xining, Qinghai 810007, China
2School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China

Correspondence should be addressed to Tingzeng Wu; mathtzwu@163.com

Received 25 March 2019; Accepted 15 May 2019; Published 20 May 2019

Academic Editor: Dimitri Volchenkov

Copyright © 2019 Tingzeng Wu and Huazhong Lii. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Let G be a graph and A(G) the adjacency matrix of G. The permanent of matrix (xI — A(G)) is called the permanental polynomial
of G. The permanental sum of G is the sum of the absolute values of the coeflicients of permanental polynomial of G. Computing
the permanental sum is #p-complete. In this note, we prove the maximum value and the minimum value of permanental sum of
quasi-tree graphs. And the corresponding extremal graphs are also determined. Furthermore,we also determine the graphs with

the minimum permanental sum among quasi-tree graphs of order n and size m, wheren — 1 <m < 2n - 3.

1. Introduction

The permanent of n x n matrix M = (bij) (1,j=1,2,...,n)is
defined as
n
per (M) = ania(i)’ ¢))
o i=1
where the sum is taken over all permutations o of {1, 2, ..., n}.

Let G be a graph with n vertices and let A(G) be its
adjacency matrix. The permanental polynomial of G is defined
as

7 (G, x) = per (xI - A(G)) = Zbk Q) X", (2)
k=0

where I is the unit matrix of order n. Basic theory of
permanental polynomials is well studied recently in [1-3] and
the references therein. Kasum et al.[4] and Merris et al. [5]
gave the coeflicients of the permanental polynomial of G, i.e.,

b (G) = (-1) ;z“ﬂ, 0<ks<n, )

where the sum is taken over all Sachs subgraphs H of G on k
vertices and c(H) is the number of cycles in H. Recall that a

Sachs subgraph is a graph in which each component is a single
edge or a cycle.

The permanental sum of graph G, denoted by PS(G),
can be defined as the summation of all absolute values of
coeflicients of permanental polynomial of G, i.e.,

PS(G) =) [6:(@)] = ) 2. (4)
i=0

i=0 H

Thus, PS(G) = 1if G is an empty graph. Wu and So [6] have
shown that computing permanental sum of a graph is #P-
complete.

The permanental sum of a graph was first considered by
Tong [7]. In [8], Xie et al. captured a labile fullerene Csy(Dsy,).
Tong computed all 271 fullerenes in Cs,. In his study, Tong
found that the permanental sum of Csy(Ds;,) achieves the
minimum among all 271 fullerenes in Cy,. He pointed that
the permanental sum would be closely related to stability of
molecular graphs. Recently, the permanental sum of a graph
has received much attention. Li et al. [9] determined the
extremal hexagonal chains with respect to permanental sum.
Li and Wei [10] proved the lower and upper bounds for the
permanental sum of an octagonal chain. Wu and Lai [11]
systematically introduced the properties of permanental sum
of a graph.
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A connected graph G is called a quasi-tree graph, if there
exists a vertex u* in G such that G — u” is a tree. Let G be
a quasi-tree graph with n vertices and m edges. Thenn — 1 <
m < 2n-3, and the degree of u™ in G equals m—n+2. Denote
G, = {G : G is a quasi-tree graph of order n},and ¥, ,, =
{G : G is a quasi-tree graph of order n and size m}. As an
important class of graphs, quasi-tree graphs have been widely
studied. For the background and some known results about
quasi-tree graphs, we refer the reader to [12-15].

The purpose of this note is to investigate the properties of
permanental sum of quasi-tree graphs. The note is organized
as follows. In the next section, we review some previous
results that will be needed in the sequel. In Section 3, we
discuss the permanental sum of quasi-tree graphs.

2. Some Preliminary

In this note, we only consider finite, undirected, and simple
graph. Let G be a graph with vertex set V(G) and edge set
E(G). The neighborhood of vertex v € V(G), denoted by
Ng(v), is the set of vertices adjacent to v. The graph that arises
from G by deleting a vertex u € V(G) or an edge uv € E(G)
will be denoted by G—u or G—uv. Let G+ H denote the union
of two vertex disjoint graphs G and H. For any positive integer
I, IG denotes the union of I disjoint copies of G. The path,
cycle, and star of order n are denoted by P,, C, and K, ,,
respectively.

Two edges of G are said to be independent if they are
not adjacent in G. A k-matching of G is a set of k mutually
independent edges. For an integer k > 0, let m(G, k) denote
the number of k-matchings of a graph G. The Hosoya index
Z(G) of a graph G is defined to be the total number of
matchings of G, that is,

[n/2]
Z(G) = ) m(Gk), 5)
k=0

where 7 is the number of the vertices of the graph G. Some
results on Hosoya indices were studied in [3, 16-18].

Forn > 2,let F(n) = F(n — 1) + F(n — 2) denote the
sequence of Fibonacci numbers, in particular, F(0) = 0 and
F(1)=1.

Lemma 1 (see [10]). Let G = T, UT, U... U T, be a forest
with order n > 2 and t > 2, where T; is a tree with n; vertices,
i=1,2,...,t. Then Z(G) < [;_, F(n; + 1) with equality if and
only if T; = P, . Moreover Z(G) < F(m, + 1)F(m, + 1), where
my + m, = nwith equality if and only if G= P, UP,, .

Let E,. be the empty graph of order k. Denote \ the graph
joint of two graphs, and U the disjoint union of two graphs. The
graphs ' = (K piy U Egyomes) V Ey and HY™ = (C3 U
E,_,)V E, are shown in Figure 1[19].

Lemma 2 (see [19]). Let B, ,, be the set consisting of all graphs
of order n and size m. For G € B, withn—1 <m < 2n -3,
Z(E") <Z(G). (6)

Equality holds if and only if G = F", or H'** whenm = n+2,
where Graphs FI" and H!'** see Figure 1.
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FIGURE 1: Graphs F/" and H"** in Lemma 2.

By the definitions of %, ,, and ¥, ,, we obtain that
Gm C B, - By Lemma 2, we have the following.

Corollary 3. Let G € &, be a quasi-tree graph withn — 1 <
m < 2n — 3. Then

Z(E") <Z(G), (7)
where the equality holds if and only if G = F".
Lemma 4 (see [11]). Letting T be a tree with order n > 1, then
n < PS(T) < F(n + 1), the first equality holds if and only if
T = K,,,_,, and the second equality holds if and only if T = P,.

Lemma 5 (see [11]). Let P, be a path with n vertices. Then

1 if n=0,
PS(P,) =11 if n=1, (8)
Fn+1) ifnx>2.

Lemma 6 (see [11]). The permanental sum of a graph satisfies
the following identities:

(i) Let G and H be two connected graphs. Then

PS(GUH) = PS(G) PS (H). )

(ii) Let e = uv be an edge of a graph G and € (e) the set of
cycles containing e. Then

PS(G)=PS(G—-e)+PS(G-v—-u)

+2 Y PS(G-V(CY). (10)

CreBle)

(iii) Let v be a vertex of a graph G and € (v) the set of cycles
containing v. Then

PS(G)=PS(G-v)+ Y PS(G-v-u)
ueNg(v) (11)
+2 Y PS(G-V(Cy).
CeB(v)

By Lemma 6, we have the following.

Corollary 7. LetG be a graph and e an edge of G. Then PS(G—
e) < PS(G).
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3. Main Results

In this section, we will investigate the properties of perma-
nental sum of a quasi-tree graph.

Theorem 8. Let G € &, ,, be a quasi-tree graph withn — 1 <
m < 2n — 3. Then

m* —mn+m+n<PS(G), (12)
where the equality holds if and only if G = F)".

Proof. By the definition of permanental sum of a graph, it
can be known that PS(G) = Z(G) + 2w(G), where w(G)
denotes the number of all Sachs graphs containing cycles of

G. Checking G, we know that G has exactly (dG(Z“*)) cycles
and d;(u*) = m — n + 2. Thus (dG(zu*)) = w(F") < w(G).
By Corollary 3, we have PS(F,") < PS(G) with equality if and
only if G = F,". By Lemma 6, we obtain that

PS (F;n) =PS (Kl,m—n+1)

+(2n—3-m) PS(Ky _pi1)

+(m-n+1)PS(K,,,_,) +1 (13)
m-—n+2 )
+2 5 =m —-mn+m+n.
This completes the proof. O

Theorem 9. Let G € &,,. Then

n-1
PS(G) < F(n)+ Y F(i)F (n-1)
- (14)

n-2n-r—1

+2‘Z Z F(jr)F(n_r_jr)’

r=1 j.=1
where the equality holds if and only if G = G”.

Proof. Let G € €,,and let u € N5(u") and €5(u*) = {C :
C is a cycle containing u” in G € &,}. Suppose thatG € &,
has the maximum permanental sum. We will characterize the
structure of G. By (iii) of Lemma 6, it can be known that if
G € %, has the maximum permanental sum, then PS(G-u"),
Zu*eNG(V) PS(G-u" —u),and chég(u*) PS(G-V(Cy)) must
attain maximum value. From the definition of a quasi-tree
graph, we know that G — u™ is a tree. By Lemma 4, G — " has
the maximum permanental sum when G — u”* is isomorphic
to path P,_,. Since a path has exactly two vertices of degree 1.
Thus there exist exactly two vertices, say «’ and 1", such that
G-u*-u'and G-u* —u" are paths. Set u € Ng(u*)—{u',u"}.
By Lemma 1, only when G —u" — 1 has two components, each
of which is a path, does ¥ e, u*)—(u' iy PS(G— 1" —u) attain
the maximum value. Similarly, by Lemma 1 and Lemma 6,
Ycezw) PS(G — V(Cy)) attains the maximum value if and
only if G-V(C,) has two components, each of which is a path,
and G has the largest number of cycles in &,. Combining

FIGURE 2: Graph G".

arguments above and Corollary 7, G must be isomorphic
to G*(see Figure 2). Let the number of 3-cycles, 4-cycles,...,
n-cycles in G* be ji, jas s jp» oo Jpoz» Jnoz» I€SPectively. By
Lemma 6, we obtain that

n-1

PS(G") = PS(P,y) + ) PS(P1) PS (P, 1)

i=1

n-2
2 Ersto os(en)
ji=1
n-3
+ ) PS(P;, 1) PS(P, 5 ;)
ja=1
n—4
+ Y PS(P, 1) PS(P,y )+ .-
j3=1

2
+ Z PS (Pjn—a—l) PS (Pﬂ—(n—Z)—jn—3) (15)

Jn-3=1

+PS(P; 1) PS (Pn—(n—l)—j“)> =PS(P,;)

n—1
+ ) PS(P,) PS(P,y)
i=1

n-2n-r-1

+2Y > PS(P; ,)PS(P,,, ;)=F®

r=1 j.=1

n-1 2 n-r-1
+YF@)F(n-i)+2) Y F(j)F(n-r-j,).
i=1

r=1 j.=1

O
By Theorems 8 and 9, we obtain the following result.
Theorem 10. Let G € &, Then
n < PS(G)
n-1
<F(n)+ Y F(i)F(n-i)
i=1 (16)

n-2n-r—1

+2‘Z Z F(jr)F(n_r_jr)’

r=1 j.=1



The first equality holds if and only if G = K ,,_,, and the second
equality holds if and only if G = G*.
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