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Let 𝐺 be a graph and 𝐴(𝐺) the adjacency matrix of 𝐺. The permanent of matrix (𝑥𝐼 − 𝐴(𝐺)) is called the permanental polynomial
of 𝐺. The permanental sum of 𝐺 is the sum of the absolute values of the coefficients of permanental polynomial of 𝐺. Computing
the permanental sum is #p-complete. In this note, we prove the maximum value and the minimum value of permanental sum of
quasi-tree graphs. And the corresponding extremal graphs are also determined. Furthermore,we also determine the graphs with
the minimum permanental sum among quasi-tree graphs of order 𝑛 and size𝑚, where 𝑛 − 1 ≤ 𝑚 ≤ 2𝑛 − 3.

1. Introduction

The permanent of 𝑛 × 𝑛matrix𝑀 = (𝑏𝑖𝑗) (𝑖, 𝑗 = 1, 2, . . . , 𝑛) is
defined as

per (𝑀) = ∑
𝜎

𝑛∏
𝑖=1

𝑏𝑖𝜎(𝑖), (1)

where the sum is taken over all permutations𝜎 of {1, 2, . . . , 𝑛}.
Let 𝐺 be a graph with 𝑛 vertices and let 𝐴(𝐺) be its

adjacencymatrix.The permanental polynomial of𝐺 is defined
as

𝜋 (𝐺, 𝑥) = per (𝑥𝐼 − 𝐴 (𝐺)) = 𝑛∑
𝑘=0

𝑏𝑘 (𝐺) 𝑥𝑛−𝑘, (2)

where 𝐼 is the unit matrix of order 𝑛. Basic theory of
permanental polynomials is well studied recently in [1–3] and
the references therein. Kasum et al.[4] and Merris et al. [5]
gave the coefficients of the permanental polynomial of𝐺, i.e.,

𝑏𝑘 (𝐺) = (−1)𝑘∑
𝐻

2𝑐(𝐻), 0 ≤ 𝑘 ≤ 𝑛, (3)

where the sum is taken over all Sachs subgraphs𝐻 of 𝐺 on 𝑘
vertices and 𝑐(𝐻) is the number of cycles in 𝐻. Recall that a

Sachs subgraph is a graph in which each component is a single
edge or a cycle.

The permanental sum of graph 𝐺, denoted by 𝑃𝑆(𝐺),
can be defined as the summation of all absolute values of
coefficients of permanental polynomial of 𝐺, i.e.,

𝑃𝑆 (𝐺) = 𝑛∑
𝑖=0

𝑏𝑖 (𝐺) = 𝑛∑
𝑖=0

∑
𝐻

2𝑐(𝐻). (4)

Thus, 𝑃𝑆(𝐺) = 1 if 𝐺 is an empty graph. Wu and So [6] have
shown that computing permanental sum of a graph is #P-
complete.

The permanental sum of a graph was first considered by
Tong [7]. In [8], Xie et al. captured a labile fullerene𝐶50(𝐷5ℎ).
Tong computed all 271 fullerenes in 𝐶50. In his study, Tong
found that the permanental sum of 𝐶50(𝐷5ℎ) achieves the
minimum among all 271 fullerenes in 𝐶50. He pointed that
the permanental sum would be closely related to stability of
molecular graphs. Recently, the permanental sum of a graph
has received much attention. Li et al. [9] determined the
extremal hexagonal chains with respect to permanental sum.
Li and Wei [10] proved the lower and upper bounds for the
permanental sum of an octagonal chain. Wu and Lai [11]
systematically introduced the properties of permanental sum
of a graph.
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A connected graph 𝐺 is called a quasi-tree graph, if there
exists a vertex 𝑢∗ in 𝐺 such that 𝐺 − 𝑢∗ is a tree. Let 𝐺 be
a quasi-tree graph with 𝑛 vertices and𝑚 edges. Then 𝑛 − 1 ≤𝑚 ≤ 2𝑛−3, and the degree of 𝑢∗ in𝐺 equals𝑚−𝑛+2. Denote
G𝑛 = {𝐺 : 𝐺 is a quasi-tree graph of order 𝑛}, and G𝑛,𝑚 ={𝐺 : 𝐺 is a quasi-tree graph of order 𝑛 and size 𝑚}. As an
important class of graphs, quasi-tree graphs have been widely
studied. For the background and some known results about
quasi-tree graphs, we refer the reader to [12–15].

The purpose of this note is to investigate the properties of
permanental sum of quasi-tree graphs. The note is organized
as follows. In the next section, we review some previous
results that will be needed in the sequel. In Section 3, we
discuss the permanental sum of quasi-tree graphs.

2. Some Preliminary

In this note, we only consider finite, undirected, and simple
graph. Let 𝐺 be a graph with vertex set 𝑉(𝐺) and edge set𝐸(𝐺). The neighborhood of vertex V ∈ 𝑉(𝐺), denoted by𝑁𝐺(V), is the set of vertices adjacent to V.The graph that arises
from 𝐺 by deleting a vertex 𝑢 ∈ 𝑉(𝐺) or an edge 𝑢V ∈ 𝐸(𝐺)
will be denoted by𝐺−𝑢 or𝐺−𝑢V. Let𝐺+𝐻 denote the union
of two vertex disjoint graphs𝐺 and𝐻. For any positive integer𝑙, 𝑙𝐺 denotes the union of 𝑙 disjoint copies of 𝐺. The path,
cycle, and star of order 𝑛 are denoted by 𝑃𝑛, 𝐶𝑛 and 𝐾1,𝑛−1,
respectively.

Two edges of 𝐺 are said to be independent if they are
not adjacent in 𝐺. A 𝑘-matching of 𝐺 is a set of 𝑘 mutually
independent edges. For an integer 𝑘 ≥ 0, let 𝑚(𝐺, 𝑘) denote
the number of 𝑘-matchings of a graph 𝐺. The Hosoya index𝑍(𝐺) of a graph 𝐺 is defined to be the total number of
matchings of 𝐺, that is,

𝑍 (𝐺) = ⌊𝑛/2⌋∑
𝑘=0

𝑚(𝐺, 𝑘) , (5)

where 𝑛 is the number of the vertices of the graph 𝐺. Some
results on Hosoya indices were studied in [3, 16–18].

For 𝑛 ≥ 2, let 𝐹(𝑛) = 𝐹(𝑛 − 1) + 𝐹(𝑛 − 2) denote the
sequence of Fibonacci numbers, in particular, 𝐹(0) = 0 and𝐹(1) = 1.
Lemma 1 (see [10]). Let 𝐺 = 𝑇1 ∪ 𝑇2 ∪ . . . ∪ 𝑇𝑡 be a forest
with order 𝑛 ≥ 2 and 𝑡 ≥ 2, where 𝑇𝑖 is a tree with 𝑛𝑖 vertices,𝑖 = 1, 2, . . . , 𝑡. 
en 𝑍(𝐺) ≤ ∏𝑡𝑖=1𝐹(𝑛𝑖 + 1) with equality if and
only if 𝑇𝑖 ≅ 𝑃𝑛𝑖 . Moreover 𝑍(𝐺) ≤ 𝐹(𝑚1 + 1)𝐹(𝑚2 + 1), where𝑚1 + 𝑚2 = 𝑛 with equality if and only if 𝐺 ≅ 𝑃𝑚1 ∪ 𝑃𝑚2 .

Let 𝐸𝑘 be the empty graph of order 𝑘. Denote ∨ the graph
joint of two graphs, and ∪ the disjoint union of two graphs.
e
graphs 𝐹𝑚𝑛 = (𝐾1,𝑚−𝑛+1 ∪ 𝐸2𝑛−𝑚+3) ∨ 𝐸1 and 𝐻𝑛+2𝑛 = (𝐶3 ∪𝐸𝑛−4) ∨ 𝐸1 are shown in Figure 1[19].

Lemma2 (see [19]). LetB𝑛,𝑚 be the set consisting of all graphs
of order 𝑛 and size𝑚. For 𝐺 ∈ B𝑛,𝑚 with 𝑛 − 1 ≤ 𝑚 ≤ 2𝑛 − 3,

𝑍 (𝐹𝑚𝑛 ) ≤ 𝑍 (𝐺) . (6)

Equality holds if and only if 𝐺 = 𝐹𝑚𝑛 , or𝐻𝑛+2𝑛 when𝑚 = 𝑛 + 2,
where Graphs 𝐹𝑚𝑛 and𝐻𝑛+2𝑛 see Figure 1.
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Figure 1: Graphs 𝐹𝑚𝑛 and𝐻𝑛+2𝑛 in Lemma 2.

By the definitions of B𝑛,𝑚 and G𝑛,𝑚, we obtain that
G𝑛,𝑚 ⊂ B𝑛,𝑚. By Lemma 2, we have the following.

Corollary 3. Let 𝐺 ∈ G𝑛,𝑚 be a quasi-tree graph with 𝑛 − 1 ≤𝑚 ≤ 2𝑛 − 3. 
en

𝑍 (𝐹𝑚𝑛 ) ≤ 𝑍 (𝐺) , (7)

where the equality holds if and only if 𝐺 = 𝐹𝑚𝑛 .
Lemma 4 (see [11]). Letting 𝑇 be a tree with order 𝑛 ≥ 1, then𝑛 ≤ 𝑃𝑆(𝑇) ≤ 𝐹(𝑛 + 1), the first equality holds if and only if𝑇 ≅ 𝐾1,𝑛−1, and the second equality holds if and only if 𝑇 ≅ 𝑃𝑛.
Lemma 5 (see [11]). Let 𝑃𝑛 be a path with 𝑛 vertices. 
en

𝑃𝑆 (𝑃𝑛) =
{{{{{{{{{

1 𝑖𝑓 𝑛 = 0,
1 𝑖𝑓 𝑛 = 1,
𝐹 (𝑛 + 1) 𝑖𝑓 𝑛 ≥ 2.

(8)

Lemma 6 (see [11]). 
e permanental sum of a graph satisfies
the following identities:

(i) Let 𝐺 and𝐻 be two connected graphs. 
en

𝑃𝑆 (𝐺 ∪ 𝐻) = 𝑃𝑆 (𝐺) 𝑃𝑆 (𝐻) . (9)

(ii) Let 𝑒 = 𝑢V be an edge of a graph 𝐺 and C(𝑒) the set of
cycles containing 𝑒. 
en

𝑃𝑆 (𝐺) = 𝑃𝑆 (𝐺 − 𝑒) + 𝑃𝑆 (𝐺 − V − 𝑢)
+ 2 ∑
𝐶𝑘∈C(𝑒)

𝑃𝑆 (𝐺 − 𝑉 (𝐶𝑘)) . (10)

(iii) Let V be a vertex of a graph 𝐺 andC(V) the set of cycles
containing V. 
en

𝑃𝑆 (𝐺) = 𝑃𝑆 (𝐺 − V) + ∑
𝑢∈𝑁𝐺(V)

𝑃𝑆 (𝐺 − V − 𝑢)
+ 2 ∑
𝐶𝑘∈C(V)

𝑃𝑆 (𝐺 − 𝑉 (𝐶𝑘)) . (11)

By Lemma 6, we have the following.

Corollary 7. Let𝐺 be a graph and 𝑒 an edge of𝐺.
en𝑃𝑆(𝐺−𝑒) < 𝑃𝑆(𝐺).
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3. Main Results

In this section, we will investigate the properties of perma-
nental sum of a quasi-tree graph.

Theorem 8. Let 𝐺 ∈ G𝑛,𝑚 be a quasi-tree graph with 𝑛 − 1 ≤𝑚 ≤ 2𝑛 − 3. 
en

𝑚2 − 𝑚𝑛 + 𝑚 + 𝑛 ≤ 𝑃𝑆 (𝐺) , (12)

where the equality holds if and only if 𝐺 ≅ 𝐹𝑚𝑛 .
Proof. By the definition of permanental sum of a graph, it
can be known that 𝑃𝑆(𝐺) = 𝑍(𝐺) + 2𝑤(𝐺), where 𝑤(𝐺)
denotes the number of all Sachs graphs containing cycles of𝐺. Checking 𝐺, we know that 𝐺 has exactly ( 𝑑𝐺(𝑢∗)

2
) cycles

and 𝑑𝐺(𝑢∗) = 𝑚 − 𝑛 + 2. Thus ( 𝑑𝐺(𝑢∗)
2

) = 𝑤(𝐹𝑚𝑛 ) ≤ 𝑤(𝐺).
By Corollary 3, we have 𝑃𝑆(𝐹𝑚𝑛 ) ≤ 𝑃𝑆(𝐺) with equality if and
only if 𝐺 ≅ 𝐹𝑚𝑛 . By Lemma 6, we obtain that

𝑃𝑆 (𝐹𝑚𝑛 ) = 𝑃𝑆 (𝐾1,𝑚−𝑛+1)
+ (2𝑛 − 3 − 𝑚)𝑃𝑆 (𝐾1,𝑚−𝑛+1)
+ (𝑚 − 𝑛 + 1) 𝑃𝑆 (𝐾1,𝑚−𝑛) + 1
+ 2(𝑚 − 𝑛 + 2

2 ) = 𝑚2 − 𝑚𝑛 + 𝑚 + 𝑛.
(13)

This completes the proof.

Theorem 9. Let 𝐺 ∈ G𝑛. 
en

𝑃𝑆 (𝐺) ≤ 𝐹 (𝑛) + 𝑛−1∑
𝑖=1

𝐹 (𝑖) 𝐹 (𝑛 − 𝑖)
+ 2𝑛−2∑
𝑟=1

𝑛−𝑟−1∑
𝑗𝑟=1

𝐹 (𝑗𝑟) 𝐹 (𝑛 − 𝑟 − 𝑗𝑟) ,
(14)

where the equality holds if and only if 𝐺 ≅ 𝐺∗.
Proof. Let 𝐺 ∈ G𝑛, and let 𝑢 ∈ 𝑁𝐺(𝑢∗) and C𝐺(𝑢∗) = {𝐶 :𝐶 is a cycle containing 𝑢∗ in 𝐺 ∈ G𝑛}. Suppose that𝐺 ∈ G𝑛
has themaximumpermanental sum.Wewill characterize the
structure of 𝐺. By (iii) of Lemma 6, it can be known that if𝐺 ∈ G𝑛 has themaximumpermanental sum, then𝑃𝑆(𝐺−𝑢∗),∑𝑢∗∈𝑁𝐺(V) 𝑃𝑆(𝐺 − 𝑢∗ − 𝑢), and∑𝐶𝑘∈C(𝑢∗) 𝑃𝑆(𝐺 −𝑉(𝐶𝑘))must
attain maximum value. From the definition of a quasi-tree
graph, we know that 𝐺−𝑢∗ is a tree. By Lemma 4, 𝐺−𝑢∗ has
the maximum permanental sum when 𝐺 − 𝑢∗ is isomorphic
to path 𝑃𝑛−1. Since a path has exactly two vertices of degree 1.
Thus there exist exactly two vertices, say 𝑢 and 𝑢, such that𝐺−𝑢∗−𝑢 and𝐺−𝑢∗−𝑢 are paths. Set 𝑢 ∈ 𝑁𝐺(𝑢∗)−{𝑢, 𝑢}.
By Lemma 1, only when𝐺−𝑢∗ −𝑢 has two components, each
of which is a path, does∑𝑢∈𝑁𝐺(𝑢∗)−{𝑢 ,𝑢} 𝑃𝑆(𝐺−𝑢∗ −𝑢) attain
the maximum value. Similarly, by Lemma 1 and Lemma 6,∑𝐶𝑘∈C(𝑢∗) 𝑃𝑆(𝐺 − 𝑉(𝐶𝑘)) attains the maximum value if and
only if𝐺−𝑉(𝐶𝑘) has two components, each of which is a path,
and 𝐺 has the largest number of cycles in G𝑛. Combining

u
∗

G
∗

Figure 2: Graph 𝐺∗.

arguments above and Corollary 7, 𝐺 must be isomorphic
to 𝐺∗(see Figure 2). Let the number of 3-cycles, 4-cycles,...,𝑛-cycles in 𝐺∗ be 𝑗1, 𝑗2, ..., 𝑗𝑟, ..., 𝑗𝑛−3, 𝑗𝑛−2, respectively. By
Lemma 6, we obtain that

𝑃𝑆 (𝐺∗) = 𝑃𝑆 (𝑃𝑛−1) + 𝑛−1∑
𝑖=1

𝑃𝑆 (𝑃𝑖−1) 𝑃𝑆 (𝑃𝑛−1−𝑖)

+ 2( 𝑛−2∑
𝑗1=1

𝑃𝑆 (𝑃𝑗1−1) 𝑃𝑆 (𝑃𝑛−2−𝑗1)

+ 𝑛−3∑
𝑗2=1

𝑃𝑆 (𝑃𝑗2−1) 𝑃𝑆 (𝑃𝑛−3−𝑗2)

+ 𝑛−4∑
𝑗3=1

𝑃𝑆 (𝑃𝑗3−1) 𝑃𝑆 (𝑃𝑛−4−𝑗3) + ...

+ 2∑
𝑗𝑛−3=1

𝑃𝑆 (𝑃𝑗𝑛−3−1) 𝑃𝑆 (𝑃𝑛−(𝑛−2)−𝑗𝑛−3)

+ 𝑃𝑆 (𝑃𝑗𝑛−2−1) 𝑃𝑆 (𝑃𝑛−(𝑛−1)−𝑗𝑛−2)) = 𝑃𝑆 (𝑃𝑛−1)

+ 𝑛−1∑
𝑖=1

𝑃𝑆 (𝑃𝑖−1) 𝑃𝑆 (𝑃𝑛−1−𝑖)
+ 2𝑛−2∑
𝑟=1

𝑛−𝑟−1∑
𝑗𝑟=1

𝑃𝑆 (𝑃𝑗𝑟−1) 𝑃𝑆 (𝑃𝑛−𝑟−1−𝑗𝑟) = 𝐹 (𝑛)

+ 𝑛−1∑
𝑖=1

𝐹 (𝑖) 𝐹 (𝑛 − 𝑖) + 2𝑛−2∑
𝑟=1

𝑛−𝑟−1∑
𝑗𝑟=1

𝐹 (𝑗𝑟) 𝐹 (𝑛 − 𝑟 − 𝑗𝑟) .

(15)

ByTheorems 8 and 9, we obtain the following result.

Theorem 10. Let 𝐺 ∈ G𝑛. 
en

𝑛 ≤ 𝑃𝑆 (𝐺)
≤ 𝐹 (𝑛) + 𝑛−1∑

𝑖=1

𝐹 (𝑖) 𝐹 (𝑛 − 𝑖)
+ 2𝑛−2∑
𝑟=1

𝑛−𝑟−1∑
𝑗𝑟=1

𝐹 (𝑗𝑟) 𝐹 (𝑛 − 𝑟 − 𝑗𝑟) ,
(16)
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efirst equality holds if and only if𝐺 ≅ 𝐾1,𝑛−1, and the second
equality holds if and only if 𝐺 ≅ 𝐺∗.
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