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In this paper, we consider a distribution system consisting of one distribution center (DC), a set of ports, and a set of retailers,
in which the product is distributed to the retailers from the DC through the ports by the water transport, and study inventory
management for the distribution system with considering the effect of the free storage periods provided by the ports. Inventory
management for the distribution system is to determine the order intervals of the DC and the retailers while minimizing the
inventory ordering and holding costs. Focusing on stationary and integer-ratio policies, we formulate this inventory management
problem as an optimization problem with a convex objective function and a set of integer-ratio constraints and present𝑂(𝑁 log𝑁)
time algorithm to solve the relaxed problem (relaxing the integer-ratio constraints) to optimality, where 𝑁 is the number of the
retailers.We prove that the relaxed problem provides a lower bound on average cost for all the feasible policies (containing dynamic
policies) for this inventory management problem. By using the optimal solution of the relaxed problem, we build a stationary
integer-ratio policy (a power-of-two policy) for this inventory management problem and prove that the power-of-two policy can
approximate the optimal inventory policy to 83% accuracy.

1. Introduction

With the growth of international trade and regional eco-
nomic, from January 2017 to June 2018, the word seaborne
trade increased by 4%, and total volumes reached 10.7 billion
tons [1]. In China, from January 2018 to August 2018, the
cargo volumes of the domestic water transport reached 4.48
billion tons and increased by 3.3% over the same period last
year (http://xxgk.mot.gov.cn/jigou/zhghs/201809/t20180914
3087694.html (in Chinese)). The above data shows that
more and more firms distribute their product by the water
transport. Thus, in this paper, we consider a distribution
system consisting of one distribution center (DC), a set
of retailers, and a set of ports, in which the product is
distributed to the retailers from the DC through the ports by
the water transport, and study inventory management for the
distribution system.

In practice, when the cargo arrives at the port, the port
normally allows the cargo (in-transit inventory) to stay in the
ports for free for a certain time period [2, 3]. For example,

the free storage times at the major container ports are from 3
to 9 days in Europe, from 3 to 5 days in Asia, and about 10
days in Egypt (http://www.cma-cgm.com/ebusiness/tariffs/
demurrage-detention). To take advantage of these free stor-
age periods, the distributors should take into account the free
storage periods to better coordinate their DC-retailer inven-
tory replenishment activities to minimize the two-echelon
inventory costs. Therefore, we study inventory management
for the distribution system with considering the free storage
periods and explore the impact of the free storage periods
provided by the ports on the inventory policies for the
distribution system.

Inventory management for the distribution system with
one DC multiretailer or the one warehouse multiretailer
(OWMR) system has been extensively studied, and we refer
the readers to Roundy [4], Muckstadt and Roundy [5], Levi
et al. [6], and Chu and Shen [7] for the related research.
The research associated with the free storage period in the
framework of supply chain is few. Dekker et al. [8] and
Pourakbar et al. [9] consider a floating stock distribution
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strategy in the intermodal transport for the fast moving cus-
tomer goods supply chain, in which the stocks are deployed
at the intermodal terminals in advance of customer demands
within the free storage period provided by the terminals.They
analyze four different distribution strategies on a conceptual
model and a container shipping scheduling problem and
show that the floating stock strategymay lead to lower storage
costs and a shorter ordering lead time. Furthermore, they
use a real case study to support their findings. van Asperen
and Dekker [10] discuss application of the floating stock
in the evaluation of port-of-entry choices. Additionally, the
research on the storage pricing for the container terminals
also considers the effect of the free storage period provided
by the terminals or ports, in which the pricing schedules
associated with the free storage period are always assumed
[2, 3, 11, 12].

In this paper, we study the inventory problem for the
one DC multiretailer distribution system with considering
the effect of the free storage periods provided by the ports.
The objective is to determine the order intervals of the DC
and the retailers while minimizing the inventory ordering
and holding costs. We focus on stationary and integer-
ratio policies and formulate this problem as a nonlinear
optimization problem.We first solve a relaxed problem of the
nonlinear optimization problem and prove that the optimal
solution of the relaxed problem provides a lower bound for
all the feasible policies (stationary and dynamic policies) for
this inventory problem. Then we build a stationary integer-
ratio policy (a power-of-two policy) based on the optimal
solution of the relaxed problem and also discuss the gap
between the power-of-two policy and the optimal policy for
this inventory problem. Note that some results of this paper
were presented in the 2017 2nd International Conference on
Mechanical Control and Automation [13].

The remainder of this paper is organized as follows. We
formulate the inventory management problem and give the
solution approach for the optimization problem in Section 2.
In Section 3, we prove that the optimal solution of the relaxed
problem provides a lower bound on average cost for all
feasible policies for the inventory problem, and, in Section 4,
we build a power-of-two policy for the inventory problem.
We give a numerical example in Section 5 and conclude this
paper in Section 6.

2. Model Formulation and Solution Approach

We consider a distribution system with one DC, a set of
ports, and a set of retailers, which is shown in Figure 1. The
factory/supplier supplies one kind of product, and the DC
orders from the single factory/supplier and replenishes the
retailers through the ports by the water transport. For the
distribution system based on ports, we make the following
assumptions:

(i) The distribution system is a centralized system. That
is to say, the decisions for inventory replenishment for
the DC and the retailers are made centrally.

(ii) The demand at each retailer is deterministic.

Table 1: The order intervals and quantities in the example.

Facility DC 1st retailer 2nd retailer
Order interval 1 1/2 2
Order quantity 3,1,3,1,⋅ ⋅ ⋅ 1/2 2

(iii) There are no limits on the capacities of the fac-
tory/supplier and the DC.

(iv) In the inventory replenishment, no shortages are
allowed.

(v) The leading times for replenishing inventories for the
DC and the retailers are deterministic.Without loss of
generality, we assume that the leading times are zero.
Note that the model we formulated in this paper can
be extended to the case that the leading times are not
zero easily [4, 5].

(vi) We only consider the free storage periods provided
by the ports associated with the retailers and ignore
the free storage period provided by the port associated
with the DC. That is to say, we only consider the free
storage periods for the inbound cargo [2, 3, 11, 12].

In the inventory management, the inventory policies con-
tain stationary policies and dynamic policies. The stationary
policiesmean that the order intervals and the order quantities
do not change over time, and the dynamic policies mean
that the order intervals and the order quantities change over
time. Inventory management for this distribution system is to
determine the optimal inventory policies (the optimal order
intervals) for the DC and the retailers while minimizing
the long-run average system-wide inventory ordering and
holding costs over an infinite time horizon, which we call
the primal problem. It is known that the optimal inventory
policy for the primal problem is unknown [4, 14]. The
optimal inventory policy for the primal problem might be
very complicated, and we even do not know the optimal
inventory policy is stationary or dynamic. Thus, we focus
on stationary and integer-ratio inventory policies for the
primal problem, and the reason is that stationary integer-ratio
inventory policies are more practical in production planning
and scheduling [5].

For this distribution system, the integer-ratio policies
mean that, for each retailer, the ratio of the order interval at
the DC to that at the retailer or the ratio of the order interval
at the retailer to that at the DC is an integer [4, 5, 15]. For
example, suppose that there is a distribution system with two
retailers, and the demand rate at each retailer is 1. Let the
order intervals at the DC, the 1st retailer, and the 2nd retailer
be 1, 1/2, and 2, respectively. We know that this policy satisfies
the integer-ratio constraint and is an integer-ratio policy.
Under this integer-ratio policy, the optimal order quantities
at the DC and the retailers are shown in Table 1.

From Table 1, we see that the order quantities at the 1st
retailer and 2nd retailer are stationary, but the order quantity
at the DC is not stationary. Thus this policy is not a stationary
integer-ratio policy for this simple distribution system. In
this paper, we study the stationary integer-ratio policies for
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Figure 1: A distribution system with one DC, a set of ports, and a set of retailers.

the one DC and multiple ports distribution system and use
the stationary integer-ratio policies (power-of-two policies)
to approximate the optimal policy for the distribution system
as well.

In order to formulate this inventory management prob-
lem, we first introduce the following notation:

(i) 𝑅: the set of retailers, where 𝑅 = {1, 2, ⋅ ⋅ ⋅ ,𝑁}
(ii) 𝐾0: the fixed ordering cost at the DC
(iii) ℎ0: the inventory holding cost rate at the DC
(iv) 𝐾𝑖: the fixed ordering cost at the retailer 𝑖, 𝑖 ∈ 𝑅
(v) ℎ𝑖: the inventory holding cost rate at the retailer 𝑖, 𝑖 ∈𝑅
(vi) 𝜆𝑖: the constant demand rate at the retailer 𝑖, 𝑖 ∈ 𝑅
(vii) 𝑡𝑖: the free storage period provided by the port

associated with retailer 𝑖, 𝑖 ∈ 𝑅
Note that, for ease of exposition, we assume ℎ0 ≤ ℎ𝑖, ∀𝑖 ∈ 𝑅;
i.e., the holding cost rate at warehouse is no more than those
at retailers, which is practically reasonable [5, 15].

Let 𝑇 = {𝑇0, 𝑇1, ⋅ ⋅ ⋅ , 𝑇𝑁} be a feasible stationary integer-
ratio inventory policy for this distribution system, where 𝑇0
is the order interval at the DC and 𝑇𝑖 is that at retailer 𝑖, 𝑖 ∈ 𝑅.
Let 𝐶(𝑇) denote the average system-wide inventory holding
and ordering cost under policy 𝑇 and 𝑐𝑖(𝑇0, 𝑇𝑖) denote the
average inventory holding and ordering cost for retailer 𝑖
under 𝑇0 and 𝑇𝑖, 𝑖 ∈ 𝑅. Then we have

𝐶 (𝑇) = 𝐾0𝑇0 +∑𝑖∈𝑅𝑐𝑖 (𝑇0, 𝑇𝑖) , (1)

where𝐾0/𝑇0 is average ordering cost at the DC.
Next we show how to calculate 𝑐𝑖(𝑇0, 𝑇𝑖), 𝑖 ∈ 𝑅. For each𝑖 ∈ 𝑅, we consider two cases:
(i) 𝑇0 ≥ 𝑇𝑖. In this case, we know that the order frequency

at the DC is less than that at retailer 𝑖. That is to say,
retailer 𝑖 should order at least once from theDCbefore

theDCplaces an order next time from the factory, and
the DC needs to hold inventory to serve the demand
at retailer 𝑖 [4, 5, 16]. For example, the demand rate at
retailer 𝑖 is 1, the order interval at retailer 𝑖 is 1, and the
order interval at the DC is 2.Within the order interval
at the DC, retailer 𝑖 places order twice. Obviously, the
DC needs to hold 1 inventory to serve retailer 𝑖 before
he places an order next time. Then we have

𝑐𝑖 (𝑇0, 𝑇𝑖) = 𝐾𝑖𝑇𝑖 + 12𝜆𝑖ℎ𝑖 (𝑇𝑖 − 𝑡𝑖)
+ (𝑇𝑖 − 𝑡𝑖)+𝑇𝑖

+ 12𝜆𝑖ℎ0 (𝑇0 − 𝑇𝑖) ,
(2)

where 𝐾𝑖/𝑇𝑖 is the average ordering cost at retailer 𝑖,(1/2)𝜆𝑖ℎ𝑖((𝑇𝑖−𝑡𝑖)+(𝑇𝑖 −𝑡𝑖)+/𝑇𝑖) is the average holding
cost at retailer 𝑖, in which we consider the holding
cost is zero within the free storage period 𝑡𝑖, and(1/2)𝜆𝑖ℎ0(𝑇0 − 𝑇𝑖) is the average holding cost at the
DC for serving demand at retailer 𝑖.

(ii) 𝑇0 < 𝑇𝑖. In this case, we know that the order frequency
at the DC is higher than that at retailer 𝑖. That is to
say, retailer 𝑖 will not order again from the DC before
the DC places an order next time from the factory,
and the DC does not need to hold any inventory to
serve the demand at retailer 𝑖 [4, 5, 16]. For example,
the demand rate at retailer 𝑖 is 1, the order interval at
retailer 𝑖 is 2, and the order interval at the DC is 1.
When retailer 𝑖 places an order from the DC, the DC
also places an order from the factory. Obviously, there
is not any inventory to be carried at the DC to serve
retailer 𝑖. Then we have

𝑐𝑖 (𝑇0, 𝑇𝑖) = 𝐾𝑖𝑇𝑖 + 12𝜆𝑖ℎ𝑖 (𝑇𝑖 − 𝑡𝑖)
+ (𝑇𝑖 − 𝑡𝑖)+𝑇𝑖 . (3)
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Based on the above analysis, we formulate 𝑐𝑖(𝑇0, 𝑇𝑖), 𝑖 ∈ 𝑅, as
follows:

𝑐𝑖 (𝑇0, 𝑇𝑖) = 𝐾𝑖𝑇𝑖 + 12𝜆𝑖ℎ𝑖 (𝑇𝑖 − 𝑡𝑖)
+ (𝑇𝑖 − 𝑡𝑖)+𝑇𝑖

+ 12𝜆𝑖ℎ0 [max (𝑇0, 𝑇𝑖) − 𝑇𝑖)] .
(4)

Focusing on stationary integer-ratio policies, we formu-
late inventory management for the distribution system based
on ports as the following optimization problem:

Q: min (𝐾0𝑇0 + ∑
𝑖∈𝑅

𝐾𝑖𝑇𝑖 + 12∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖 (𝑇𝑖 − 𝑡𝑖)+ (𝑇𝑖 − 𝑡𝑖)+𝑇𝑖
+ 12∑
𝑖∈𝑅

𝜆𝑖ℎ0 [max (𝑇0, 𝑇𝑖) − 𝑇𝑖])
(5)

s.t. 𝑇0𝑇𝑖 , or 𝑇𝑖𝑇0 ∈ 𝑍+, 𝑖 = 1, . . . , 𝑁, (6)

𝑇𝑖 > 0, 𝑖 = 0, 1, . . . , 𝑁, (7)

where the first term of the objective function of the model
Q is the average ordering cost at the DC, the second term
is average ordering cost at the retailers, the third term is
the average holding cost at the retailers, and the last term
is average holding cost at the DC. Constraints (6) are the
integer-ratio restrictions, and constraints (7) describe that the
order intervals for the DC and the retailers are positive. Note
that, for each retailer 𝑖 ∈ 𝑅, the holding cost within the free
storage period 𝑡𝑖 is zero, and we conclude that the optimal
order interval for retailer 𝑖 is greater than 𝑡𝑖. Thus, we have
the following lemma.

Lemma 1. Let 𝑇∗𝑖 , 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁, denote the optimal order
intervals for the retailers. �en 𝑇∗𝑖 ≥ 𝑡𝑖, ∀𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁.

Proof. We prove it by contradiction. Let 𝑇0 denote the order
interval for the DC, and suppose that there exists 𝑖 ∈ 𝑅 such
that 𝑇∗𝑖 = 𝑡󸀠𝑖 < 𝑡𝑖. Then we have the following:

(i) If 𝑡󸀠𝑖 < 𝑡𝑖 ≤ 𝑇0, max(𝑇0, 𝑡󸀠𝑖 ) − 𝑡󸀠𝑖 = 𝑇0 − 𝑡󸀠𝑖 ≥ 𝑇0 − 𝑡𝑖 =
max(𝑇0, 𝑡𝑖) − 𝑡𝑖.

(ii) If 𝑡󸀠𝑖 ≤ 𝑇0 < 𝑡𝑖, max(𝑇0, 𝑡󸀠𝑖 )−𝑡󸀠𝑖 = 𝑇0−𝑡󸀠𝑖 ≥ max(𝑇0, 𝑡𝑖)−𝑡𝑖 = 0.
(iii) If 𝑇0 < 𝑡󸀠𝑖 < 𝑡𝑖, max(𝑇0, 𝑡󸀠𝑖 ) − 𝑡󸀠𝑖 = max(𝑇0, 𝑡𝑖) − 𝑡𝑖 = 0.
It follows directly that

𝐾𝑖𝑡󸀠𝑖 + 12∑
𝑖∈𝑅

𝜆𝑖ℎ0 [max (𝑇0, 𝑡󸀠𝑖) − 𝑡󸀠𝑖]
> 𝐾𝑖𝑡𝑖 + 12∑

𝑖∈𝑅

𝜆𝑖ℎ0 [max (𝑇0, 𝑡𝑖) − 𝑡𝑖] .
(8)

Since the cost associated with all the other retailers is
unchanged, 𝑇∗𝑖 = 𝑡𝑖 gives another solution which is better
than the one with 𝑇∗𝑖 = 𝑡󸀠𝑖 < 𝑡𝑖.

By Lemma 1, Q can be rewritten as

Q: min (𝐾0𝑇0 +∑𝑖∈𝑅
𝐾𝑖𝑇𝑖 + 12∑

𝑖∈𝑅

𝜆𝑖ℎ𝑖 (𝑇𝑖 − 𝑡𝑖)2𝑇𝑖 + 12
⋅ ∑
𝑖∈𝑅

𝜆𝑖ℎ0 [max (𝑇0, 𝑇𝑖) − 𝑇𝑖])
s.t. (6) , (7) .

(9)

Obviously, it is very hard for us to directly solve themodel
Q for the integer-ratio constraints (6). Thus, we first relax
the integer-ratio constraints (6) and solve the corresponding
relaxed problem. Then we build stationary integer-ratio
policies for the primal problem using the optimal solution of
the relaxed problem. By relaxing the integer-ratio constraints
(6), we obtain the following relaxed problem:

min
𝑇𝑖>0,𝑖∈𝑅∪{0}

(𝐾0𝑇0 + ∑
𝑖∈𝑅

𝐾𝑖𝑇𝑖 + 12∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖 (𝑇𝑖 − 𝑡𝑖)2𝑇𝑖
+ 12∑
𝑖∈𝑅

𝜆𝑖ℎ0 [max (𝑇0, 𝑇𝑖) − 𝑇𝑖]) .
(10)

Note that the relaxed problem (10) is a convex optimiza-
tion problem.Next we show how to solve the relaxed problem
(10). We first give the following theorem.

Theorem2. Let 𝑇∗0 and𝑇∗𝑖 denote the optimal solution to (10),𝑖 ∈ 𝑅, and we have
(1) 𝑇∗𝑖 > 𝑇∗0 if and only if 𝑇∗𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖, and

this set of retailers is denoted by 𝐺.
(2) 𝑇∗𝑖 < 𝑇∗0 if and only if 𝑇∗𝑖 =√(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0), and this set of retailers is

denoted by 𝐿.
(3) 𝑇∗𝑖 = 𝑇∗0 if and only if √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖 < 𝑇∗𝑖 =

𝑇∗0 < √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0), and this set of
retailers is denoted by 𝐸.

Proof. Let𝑔𝑖(𝑇𝑖) = 𝐾𝑖/𝑇𝑖+(1/2)𝜆𝑖ℎ𝑖((𝑇𝑖−𝑡𝑖)2/𝑇𝑖), and 𝑙𝑖(𝑇𝑖) =𝐾𝑖/𝑇𝑖 +(1/2)𝜆𝑖ℎ𝑖((𝑇𝑖−𝑡𝑖)2/𝑇𝑖)+ (1/2)𝜆𝑖ℎ0(𝑇0−𝑇𝑖), 𝑖 ∈ 𝑅, and
we have 𝑔󸀠󸀠(𝑇𝑖) > 0 for𝑇𝑖 > 0, and 𝑙󸀠󸀠𝑖 (𝑇𝑖) > 0 for𝑇𝑖 > 0, 𝑖 ∈ 𝑅.
Thus, 𝑔𝑖(𝑇𝑖) and 𝑙𝑖(𝑇𝑖) are both strictly convex function, 𝑖 ∈ 𝑅.

(1) 󳨐⇒: Suppose that 𝑇∗0 < 𝑇∗𝑖 , and we have 𝑇∗𝑖 ∈
argmin𝑇𝑖>0𝑔𝑖(𝑇𝑖). Since𝑔𝑖(𝑇𝑖) is a strictly convex function, we
know that 𝑇∗𝑖 is the unique minimizer of 𝑔𝑖(𝑇𝑖) over 𝑇𝑖 > 0
[17], and then

𝑔󸀠𝑖 (𝑇∗𝑖 ) = − 𝐾𝑖(𝑇∗𝑖 )2 +
12𝜆𝑖ℎ𝑖(1 − 𝑡2𝑖(𝑇∗𝑖 )2) = 0



Complexity 5

󳨐⇒ 𝑇∗𝑖 = √𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖ℎ𝑖 ≥ 𝑡𝑖.
(11)

Therefore, if 𝑇∗0 < 𝑇∗𝑖 , we always have 𝑇∗𝑖 =√(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖 > 𝑇∗0 .⇐󳨐: Suppose that 𝑇∗𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖. We
next show that 𝑇∗𝑖 > 𝑇∗0 . If 𝑇∗𝑖 ≤ 𝑇∗0 , then we
have 𝑙𝑖(𝑇𝑖) ≤ 𝑙𝑖(𝑇∗𝑖 ) for 𝑇∗𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖 <
𝑇𝑖 ≤ √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0). This implies that any

value of 𝑇𝑖 satisfying √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖 < 𝑇𝑖 ≤
√(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0) can give a better objective func-
tion value and contradicts the optimality of 𝑇∗𝑖 .

Therefore, if 𝑇∗𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖, we always have𝑇∗𝑖 > 𝑇∗0 .
(2) 󳨐⇒: Suppose that 𝑇∗0 > 𝑇∗𝑖 , and we have 𝑇∗𝑖 ∈

argmin𝑇𝑖>0𝑙𝑖(𝑇𝑖). Since 𝑙𝑖(𝑇𝑖) is a strictly convex function, we
know that 𝑇∗𝑖 is the unique minimizer of 𝑙𝑖(𝑇𝑖) over 𝑇𝑖 > 0
[17], and then

𝑓󸀠𝑖 (𝑇∗𝑖 ) = − 𝐾𝑖(𝑇∗𝑖 )2 +
12𝜆𝑖ℎ𝑖(1 − 𝑡2𝑖(𝑇∗𝑖 )2) − 12𝜆𝑖ℎ0

= 0
󳨐⇒ 𝑇∗𝑖 = √ 𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖 (ℎ𝑖 − ℎ0) ≥ 𝑡𝑖.

(12)

Therefore, if 𝑇∗𝑖 < 𝑇∗0 , we always have 𝑇∗𝑖 =√(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0) < 𝑇∗0 .⇐󳨐: Suppose that 𝑇∗𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0).
We next show that 𝑇∗𝑖 < 𝑇∗0 . If 𝑇∗𝑖 ≥ 𝑇∗0 , then we have𝑔𝑖(𝑇𝑖) ≤ 𝑔𝑖(𝑇∗𝑖 ) for 𝑇∗𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖 < 𝑇𝑖 ≤√(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0). This implies that any

value of 𝑇𝑖 satisfying √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖 < 𝑇𝑖 ≤
√(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0) can give a better objective
function value and hence contradicts the optimality of 𝑇∗𝑖 .

Therefore, if 𝑇∗𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0), we always
have 𝑇∗𝑖 < 𝑇∗0 .

(3) According to (1) and (2), we can easily establish that𝑇∗0 = 𝑇∗𝑖 if and only if √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖 < 𝑇∗0 = 𝑇∗𝑖 <
√(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/(𝜆𝑖(ℎ𝑖 − ℎ0)).

From Theorem 2, we know that no matter how much𝑡𝑖 is, ∀𝑖, the optimal distribution strategy, will always force
the inventories to stay at each port associated with retailer𝑖 for some time longer than 𝑡𝑖. Based on Theorem 2 and by
using of the ideal of Roundy [4], we introduce the following

algorithm to solve the relaxed problem (10) to optimality. For
any retailer 𝑖 ∈ 𝑅, let us define

𝑇𝐺𝑖 = √𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖ℎ𝑖
and 𝑇𝐿𝑖 = √𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖 (ℎ𝑖 − ℎ0) .

(13)

We depict the details of the algorithm as follows.

Step 1. Let 𝑍∗ = +∞. Partition the real line by 𝑇𝐺𝑖 , 𝑇𝐿𝑖 for all𝑖 ∈ 𝑅. Note that 𝑇𝐺𝑖 ≤ 𝑇𝐿𝑖 for any 𝑖.
Step 2. Suppose 𝑇∗0 falls in a particular interval, say [𝑎, 𝑏]
(choosing the intervals from left to right). We can use
Theorem 2 to determine the sets 𝐺, 𝐸, and 𝐿, depending on
whether 𝑇𝐺𝑖 , 𝑇𝐿𝑖 fall to the left or right of the interval [𝑎, 𝑏].

More specifically, 𝑖 ∈ 𝐺 and 𝑇𝑖 = 𝑇𝐺𝑖 if 𝑎 ≤ 𝑏 ≤ 𝑇𝐺𝑖 , 𝑖 ∈ 𝐸
if 𝑇𝐺𝑖 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇𝐿𝑖 , 𝑖 ∈ 𝐿, and 𝑇𝑖 = 𝑇𝐿𝑖 if 𝑇𝐿𝑖 ≤ 𝑎 ≤ 𝑏.

After determining the retailers in the sets 𝐺 and 𝐿, we
need to solve the following problem to find optimal value of𝑇0

𝐾0𝑇0 +∑𝑖∈𝐸
𝐾𝑖𝑇0 + 12∑

𝑖∈𝐸

𝜆𝑖ℎ𝑖 (𝑇0 − 𝑡𝑖)2𝑇0 + 12∑
𝑖∈𝐿

𝜆𝑖ℎ0𝑇0. (14)

According to the first-order condition, we have

−𝐾0𝑇20 −∑𝑖∈𝐸
𝐾𝑖𝑇20 + 12∑

𝑖∈𝐸

𝜆𝑖ℎ𝑖 (1 − 𝑡2𝑖𝑇∗0 2) + 12∑
𝑖∈𝐿

𝜆𝑖ℎ0 = 0, (15)

and hence

− 2𝐾0 − 2∑
𝑖∈𝐸

𝐾𝑖 +∑
𝑖∈𝐸

𝜆𝑖ℎ𝑖𝑇20 −∑
𝑖∈𝐸

𝜆𝑖ℎ𝑖𝑡2𝑖 +∑
𝑖∈𝐿

𝜆𝑖ℎ0𝑇20
= 0

𝑇0 = √2𝐾0 + 2∑𝑖∈𝐸𝐾𝑖 + ∑𝑖∈𝐸 𝜆𝑖ℎ𝑖𝑡2𝑖∑𝑖∈𝐸 𝜆𝑖ℎ𝑖 + ∑𝑖∈𝐿 𝜆𝑖ℎ0 .
(16)

If 𝑇0 ∈ [𝑎, 𝑏], then set𝑇0 = 𝑇𝑖 = 𝑇0 for any 𝑖 ∈ 𝐸, calculate
the value of the cost 𝑍 using (6), and let 𝑍∗ := 𝑍 if 𝑍∗ > 𝑍.
Note that, for any 𝑖 ∈ 𝐸, we have 𝑇0 = 𝑇𝑖 ≥ 𝑡𝑖 as 𝑡𝑖 ≤ 𝑇𝐺𝑖 ≤ 𝑎.
Otherwise, move to the next interval (i.e., our guess that 𝑇∗0
is in [𝑎, 𝑏] is wrong).
Step 3. Go to Step 2 till it reaches the last interval. The value
of 𝑇0, 𝑇𝑖 corresponding to 𝑍∗ is the optimal reorder interval
of the warehouse and retailer 𝑖, respectively.

We get at most 2𝑁 + 1 intervals along the line in Step 1.
Note that as long as 𝑇∗0 falls within any interval, we have
enough information to determine for all 𝑖 ∈ 𝑅, whether𝑖 ∈ 𝐺, 𝐸, 𝐿. We also note that, by construction of the intervals,
none of the values in 𝑇𝐺𝑖 , 𝑇𝐿𝑖 , ∀𝑖 ∈ 𝑅, will fall in the interval(𝑎, 𝑏). Hence𝐺∪𝐸∪𝐿 = 𝑅. Step 1 requires a sorting operation
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for 𝑂(𝑁) values, which requires 𝑂(𝑁 log𝑁) comparisons.
The number of operations in Steps 2 and 3 can be performed
in 𝑂(𝑁) operations, which is dominated by the number of
operations in Step 1. Thus we have the following.

Theorem 3. �e computational complexity of the algorithm to
solve the relaxed problem (10) is 𝑂(𝑁 log𝑁), where 𝑁 is the
number of the retailers.

3. Lower Bound Theorem

Obviously the optimal solution of the relaxed problem (10)
provides a lower bound for Q (a lower bound for the
stationary integer policies), but not for the primal problem
(the optimal inventory policy for the primal problem may
be dynamic). Thus we want to know whether the optimal
solution of the relaxed problem of Q also provides a lower
bound for the primal problem.

In this section, we give a Theorem 4, which is primarily
designed to demonstrate that the optimal solution of the
relaxed problem of Q also provides a lower bound for the
primal problem.That is to say, the stationary policy obtained
by the optimal solution of the relaxed problem of Q provides
a lower bound for all the feasible stationary and dynamic
policies for the primal problem.

Theorem 4 (lower bound theorem). Let 𝑍∗ be the optimal
objective function value of the relaxed problem (10). �en 𝑍∗
is a lower bound on the average cost for any feasible inventory
policy (possibly dynamic) for the primal problem.

Proof. We prove Theorem 4 using the similar spirits of
Roundy [4]. Let𝑇∗ = (𝑇∗0 , 𝑇∗1 , 𝑇∗2 ⋅ ⋅ ⋅ , 𝑇∗𝑁) denote the optimal
solution to (10) and 𝑍∗ be the corresponding optimal objec-
tive value for (10), where𝑇∗ can be obtained by the algorithm
proposed in Section 2. Note that 𝑇∗ is the optimal relaxed
order intervals for the DC and retailers. FromTheorem 2, we
see that the retailers naturally fall into three groups 𝐺 = {𝑖 :𝑇∗0 < 𝑇𝐺𝑖 = 𝑇∗𝑖 }, 𝐸 = {𝑖 : 𝑇𝐺𝑖 ≤ 𝑇∗0 = 𝑇∗𝑖 ≤ 𝑇𝐿𝑖 }, and𝐿 = {𝑖 : 𝑇∗𝑖 = 𝑇𝐿𝑖 < 𝑇∗0 }, where 𝑇𝐺𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖ℎ𝑖
and 𝑇𝐿𝑖 = √(𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖)/𝜆𝑖(ℎ𝑖 − ℎ0), ∀𝑖 ∈ R.

For each policy 𝑇 = {𝑇0, 𝑇1, 𝑇2, ⋅ ⋅ ⋅ , 𝑇𝑛}, we say that the
policy 𝑇 preserves the order of 𝑇∗ if 𝑇𝑖 ≥ 𝑇 whenever 𝑖 ∈ 𝐺,𝑇𝑖 = 𝑇 whenever 𝑖 ∈ 𝐸, and 𝑇𝑖 ≤ 𝑇 whenever 𝑖 ∈ 𝐿. For each
order-preserving policy 𝑇, (10) can be rewritten as

min
𝑇0≥𝑡𝑖,∀𝑖∈𝐸,𝑇𝑖≥𝑡𝑖,∀𝑖∈𝐸

𝑐
((𝐾0𝑇0 + 12𝜆0𝐻0𝑇0)

+ ∑
𝑖∈𝐸𝑐

(𝐾𝑖𝑇𝑖 + 12𝜆𝑖𝐻𝑖𝑇𝑖) −𝑀)
(17)

where 𝐸𝑐 ≡ 𝐺 ∪ 𝐿, 𝐾0 ≡ 𝐾0 + ∑𝑖∈𝐸(𝐾𝑖 + (1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 ), 𝜆0 ≡∑𝑖∈𝐸∪𝐿 𝜆𝑖, 𝐻0 ≡ (1/𝜆0)(∑𝑖∈𝐸 𝜆𝑖ℎ𝑖 + ∑𝑖∈𝐿 𝜆𝑖ℎ0), 𝐾𝑖 ≡ 𝐾𝑖 +(1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 , 𝐻𝑖 ≡ ℎ𝑖 for all 𝑖 ∈ 𝐺,𝐻𝑖 ≡ (ℎ𝑖 − ℎ0) for all 𝑖 ∈ 𝐿,
and𝑀 ≡ ∑𝑖∈R 𝜆𝑖ℎ𝑖𝑡𝑖. From the definitions of 𝑇∗ and 𝑍∗ and

the formulation of (17), we observe that theminimum relaxed
average cost 𝑍∗ is

𝑍∗ = 𝑀0 + ∑
𝑖∈𝐸𝑐

𝑀𝑖 −𝑀, (18)

where 𝑀0 ≡ (2𝐾0𝜆0𝐻0)1/2, and 𝑀𝑖 ≡ (2𝐾𝑖𝜆𝑖𝐻𝑖)1/2 for all𝑖 ∈ 𝐸𝑐.
For each retailer 𝑖 ∈ 𝐸, we define 𝐻𝑖 = 2(𝐾𝑖 +(1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 )/𝜆0𝑇∗20 , and, for the warehouse, we define 𝐻0 =2𝐾0/𝜆0𝑇∗20 . We also define 𝜆𝑖, 𝑖 ∈ R, as follows:

𝜆𝑖 = {{{
𝜆𝑖, 𝑖 ∈ 𝐸,
𝜆0, 𝑖 ∈ 𝐸𝑐. (19)

Then we have

(1) 𝐻0 = ∑𝑖∈𝐸∪0𝐻𝑖;
(2) 𝜆0𝐻0 = ∑𝑖∈R(𝜆𝑖ℎ𝑖 − 𝜆𝑖𝐻𝑖);
(3) 𝜆𝑖(ℎ𝑖 − ℎ0) ≤ 𝜆𝑖𝐻𝑖 ≤ 𝜆𝑖ℎ𝑖, ∀𝑖 ∈ R.

We prove (1), (2), and (3) as follows. From the definitions
of𝐻𝑖, ∀𝑖 ∈ R, we have

𝐻0 = 2𝐾0𝜆0𝑇∗2 =
2𝐾0 + 2∑𝑖∈𝐸 (𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖 )𝜆0𝑇∗2

= 2𝐾0𝜆0𝑇∗2 + ∑
𝑖∈𝐸

2 (𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖 )𝜆0𝑇∗2 = ∑
𝑖∈𝐸∪0

𝐻𝑖,
(20)

and

𝜆0𝐻0 = 𝜆0𝐻0 −∑
𝑖∈𝐸

𝜆0𝐻𝑖
= (∑
𝑖∈𝐸

𝜆𝑖ℎ𝑖 +∑
𝑖∈𝐿

𝜆𝑖ℎ0) −∑
𝑖∈𝐸

𝜆0𝐻𝑖
= ∑
𝑖∈𝐸

(𝜆𝑖ℎ𝑖 − 𝜆0𝐻𝑖) +∑
𝑖∈𝐿

𝜆𝑖ℎ0
= ∑
𝑖∈𝐸

(𝜆𝑖ℎ𝑖 − 𝜆0𝐻𝑖) + ∑
𝑖∈𝐸𝑐

(𝜆𝑖ℎ𝑖 − 𝜆𝑖𝐻𝑖)
= ∑
𝑖∈R

(𝜆𝑖ℎ𝑖 − 𝜆𝑖𝐻𝑖) .

(21)

For each 𝑖 ∈ R, if 𝑖 ∈ 𝐺, then 𝐻𝑖 = ℎ𝑖 and 𝜆𝑖 = 𝜆𝑖, and
we have 𝜆𝑖(ℎ𝑖 − ℎ0) < 𝜆𝑖𝐻𝑖 = 𝜆𝑖ℎ𝑖; if 𝑖 ∈ 𝐿, then𝐻𝑖 = ℎ𝑖 − ℎ0
and 𝜆𝑖 = 𝜆𝑖, and we have 𝜆𝑖(ℎ𝑖 − ℎ0) = 𝜆𝑖𝐻𝑖 < 𝜆𝑖ℎ𝑖; if 𝑖 ∈ 𝐸,
then 𝜆𝑖 = 𝜆0 and 𝐻𝑖 = 2(𝐾𝑖 + (1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 )/𝜆0𝑇∗20 , and since𝑇𝐺𝑖 ≤ 𝑇∗0 = 𝑇∗𝑖 ≤ 𝑇𝐿𝑖 , we have 𝜆𝑖(ℎ𝑖 − ℎ0) ≤ 𝜆𝑖𝐻𝑖 ≤ 𝜆𝑖ℎ𝑖.
Therefore, we complete the proof for (1), (2), and (3).
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Since 𝑇∗20 = 2𝐾0/𝜆0𝐻0 = 2𝐾0/𝜆0𝐻0 = 2(𝐾𝑖 + (1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 )/𝜆0𝐻𝑖, ∀𝑖 ∈ 𝐸, we also have
𝑀0 = (2𝐾0𝜆0𝐻0)1/2 = 2𝐾0𝑇∗0

= 2𝐾0𝑇∗0 +∑
𝑖∈𝐸

2 (𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖 )𝑇∗0
= (2𝐾0𝜆0𝐻0)1/2 + ∑

𝑖∈𝐸

√2(𝐾𝑖 + 12𝜆𝑖ℎ𝑖𝑡2𝑖 )𝜆0𝐻𝑖
= ∑
𝑖∈𝐸∪0

𝑀𝑖,

(22)

where𝑀0 is the minimum value of 𝐾0/𝑥 + (1/2)𝜆0𝐻0𝑥 and𝑀𝑖 is theminimum value of (𝐾𝑖+(1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 )/𝑥+(1/2)𝜆0𝐻𝑖𝑥
for all 𝑥 ≥ 𝑡𝑖, 𝑖 ∈ 𝐸. Then we can rewrite (18) as

𝑍∗ = ∑
𝑖∈R∪0

𝑀𝑖 −𝑀, (23)

where 𝑀0 is the minimum value of 𝐾0/𝑥 + (1/2)𝜆0𝐻0𝑥 for
all 𝑥 ≥ 𝑡𝑖 ∀𝑖 ∈ 𝐸 and 𝑀𝑖 is the minimum value of (𝐾𝑖 +(1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 )/𝑥 + (1/2)𝜆𝑖𝐻𝑖𝑥 for all 𝑥 ≥ 𝑡𝑖, 𝑖 ∈ R.

We are ready to prove𝑍∗ is a lower bound on average cost
of all the feasible inventory policies for the primal problem.
Let 𝑇󸀠 = {𝑇󸀠0, 𝑇󸀠1, 𝑇󸀠2, ⋅ ⋅ ⋅ , 𝑇󸀠𝑁} be an arbitrary inventory policy
over the infinite horizon for the primal problem and 𝑍(𝑡󸀠) be
the average cost incurred in the interval [0, 𝑡󸀠) by the policy.
For the feasible policy 𝑇󸀠, if there are some order intervals𝑇󸀠𝑖 < 𝑡𝑖, 𝑖 ∈ R, we can find a better feasible policy by letting𝑇󸀠𝑖 = 𝑡𝑖. From Lemma 1, we note that the cost for the new
feasible policy is less than 𝑇󸀠. Thus, for the policy 𝑇󸀠, without
loss of generality, we assume that 𝑇󸀠𝑖 ≥ 𝑡𝑖, ∀𝑖 ∈ R. It suffices
to show that 𝑍∗ ≤ 𝑍(𝑡󸀠), for every 𝑡󸀠 > 0, and we also assume𝑡󸀠 is large enough for the problem.

Let 𝑚𝑖 be the number of orders placed by the retailer 𝑖 in[0, 𝑡󸀠], 𝐼𝑡𝑖 be the inventory at retailer 𝑖 at time 𝑡, and 𝐼𝑡𝑖0 be the
inventory at the DC destined for retailer 𝑖, 𝑖 ∈ R. We note
that 𝐼𝑡𝑖 is zero if 𝑡 is in the initial time interval [0, 𝑡𝑖] in each
order interval for each retailer 𝑖 ∈ R. Thus, the total holding
cost for the policy 𝑇󸀠 in the interval [0, 𝑡󸀠] is

∑
𝑖∈R

∫𝑡󸀠
0

(ℎ𝑖𝐼𝑡𝑖 + ℎ0𝐼𝑡𝑖0) 𝑑𝑡. (24)

We next show that

∑
𝑖∈R

∫𝑡󸀠
0

(ℎ𝑖𝐼𝑡𝑖 + ℎ0𝐼𝑡𝑖0) 𝑑𝑡
≥ ∑
𝑖∈R

∫𝑡󸀠
0

(𝐻𝑖𝐼𝑡𝑖 + (𝜆𝑖ℎ𝑖𝜆𝑖 − 𝐻𝑖) 𝐼𝑡𝑖0)𝑑𝑡.
(25)

In order to prove (25), for each 𝑖 ∈ R, we should proveℎ𝑖𝐼𝑡𝑖 + ℎ0𝐼𝑡𝑖0 ≥ 𝐻𝑖𝐼𝑡𝑖 + (𝜆𝑖ℎ𝑖/𝜆𝑖 −𝐻𝑖)𝐼𝑡𝑖0. There are three cases to
consider.

Case 1 (𝑖 ∈ 𝐺). We have𝐻𝑖 = ℎ𝑖 and 𝜆𝑖 = 𝜆𝑖, and thus ℎ𝑖𝐼𝑡𝑖 +ℎ0𝐼𝑡𝑖0 ≥ 𝐻𝑖𝐼𝑡𝑖 + (𝜆𝑖ℎ𝑖/𝜆𝑖 − 𝐻𝑖)𝐼𝑡𝑖0.
Case 2 (𝑖 ∈ 𝐿). We have 𝐻𝑖 = ℎ𝑖 − ℎ0 and 𝜆𝑖 = 𝜆𝑖, and thusℎ𝑖𝐼𝑡𝑖 + ℎ0𝐼𝑡𝑖0 ≥ 𝐻𝑖𝐼𝑡𝑖 + (𝜆𝑖ℎ𝑖/𝜆𝑖 − 𝐻𝑖)𝐼𝑡𝑖0.
Case 3 (𝑖 ∈ 𝐸). We have 𝜆𝑖(ℎ𝑖−ℎ0) ≤ 𝜆𝑖𝐻𝑖 ≤ 𝜆𝑖ℎ𝑖 and 𝜆𝑖 = 𝜆0,
and then 𝐻𝑖/ℎ𝑖 ≤ 𝜆𝑖/𝜆𝑖 ≤ 1 and 𝐻𝑖 − 𝜆𝑖ℎ𝑖/𝜆0 + ℎ0 ≥ 𝐻𝑖 −𝜆𝑖ℎ𝑖/𝜆0 + 𝜆𝑖ℎ0/𝜆0 ≥ 0. Since ℎ𝑖𝐼𝑡𝑖 + ℎ0𝐼𝑡𝑖0 − 𝐻𝑖𝐼𝑡𝑖 − (𝜆𝑖ℎ𝑖/𝜆𝑖 −𝐻𝑖)𝐼𝑡𝑖0 = (ℎ𝑖 − 𝐻𝑖)𝐼𝑡𝑖 + (𝐻𝑖 − 𝜆𝑖ℎ𝑖/𝜆0 + ℎ0)𝐼𝑡𝑖0 ≥ 0, then ℎ𝑖𝐼𝑡𝑖 +ℎ0𝐼𝑡𝑖0 ≥ 𝐻𝑖𝐼𝑡𝑖 + (𝜆𝑖ℎ𝑖/𝜆𝑖 − 𝐻𝑖)𝐼𝑡𝑖0.

Let 𝐼𝑡0 = (1/𝐻0) ∑𝑖∈R(𝜆𝑖ℎ𝑖/𝜆𝑖 − 𝐻𝑖)𝐼𝑡𝑖0 be the average
inventory at the DC at time 𝑡, and then we have

∑
𝑖∈R

∫𝑡󸀠
0

(ℎ𝑖𝐼𝑡𝑖 + ℎ0𝐼𝑡𝑖0) 𝑑𝑡
≥ ∑
𝑖∈R

∫𝑡󸀠
0

(𝐻𝑖𝐼𝑡𝑖 + (𝜆𝑖ℎ𝑖𝜆𝑖 − 𝐻𝑖) 𝐼𝑡𝑖0)𝑑𝑡
= ∑
𝑖∈R

∫𝑡󸀠
0

𝐻𝑖𝐼𝑡𝑖𝑑𝑡 + ∫𝑡󸀠
0

𝐻0𝐼𝑡0𝑑𝑡.
(26)

Note that the 𝑖th term in the sum of the first term on the
right hand of (26) can be thought of the total holding cost
incurred in the interval [0, 𝑡󸀠] in a single-item lot-size problem
in which 𝑚𝑖 orders are placed in [0, 𝑡󸀠], the demand rate per
unit time is 𝜆𝑖, the per unit inventory holding cost per unit
time is𝐻𝑖, the setup cost is𝐾𝑖, and the free inventory storage
time is 𝑡𝑖 in each order interval, and the second term on the
right hand of (26) can be thought of the total holding cost
incurred in [0, 𝑡󸀠] in a single-item lot-size problem in which𝑚0 orders are placed in [0, 𝑡󸀠], the demand rate per unit time
is 𝜆0, the per unit inventory holding cost per unit time is𝐻0,
and the setup cost is 𝐾0. For the 𝑖th term in the sum of the
first term on the right hand of (26), the inventory policy with
minimum cost for this problem is every 𝑡󸀠/𝑚𝑖(𝑡󸀠/𝑚𝑖 ≥ 𝑡𝑖)
unit time orders 𝜆𝑖𝑡󸀠/𝑚𝑖 units, and the resulting total holding
cost is𝑚𝑖𝜆𝑖𝐻𝑖(𝑡󸀠/𝑚𝑖−𝑡𝑖)2/2. For the second term on the right
hand of (26), the inventory policy withminimum cost for this
problem is every 𝑡󸀠/𝑚0 unit time orders 𝜆0𝑡󸀠/𝑚0 units, and
the resulting total holding cost is𝑚0𝜆0𝐻0(𝑡󸀠/𝑚0)2/2.Thus we
have

𝑍(𝑇󸀠, 𝑡󸀠) 𝑡󸀠 ≥ ∑
𝑖∈R

(𝐾𝑖𝑚𝑖 + ∫𝑡󸀠
0

𝐻𝑖𝐼𝑡𝑖𝑑𝑡)
+ (𝐾0𝑚0 + ∫𝑡󸀠

0

𝐻0𝐼𝑡0𝑑𝑡)
≥ ∑
𝑖∈R

(𝐾𝑖𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖 (𝑡󸀠/𝑚𝑖 − 𝑡𝑖)22 )

+(𝐾0𝑚0 + 𝑚0𝜆0𝐻0 (𝑡󸀠/𝑚0)22 ) .

(27)
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In what follows, we prove

1𝑡󸀠∑
𝑖∈R

(𝐾𝑖𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖 (𝑡󸀠/𝑚𝑖 − 𝑡𝑖)22 )

+ 1𝑡󸀠 (𝐾0𝑚0 + 𝑚0𝜆0𝐻0 (𝑡󸀠/𝑚0)22 ) ≥ 𝑍∗.
(28)

There are three cases to consider.

Case 1 (𝑖 ∈ 𝐺). Then𝐻𝑖 = ℎ𝑖 and 𝜆𝑖 = 𝜆𝑖, and we have

1𝑡󸀠 (𝐾𝑖𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖 (𝑡󸀠/𝑚𝑖 − 𝑡𝑖)22 )
= 𝐾𝑖𝑚𝑖𝑡󸀠 + 𝜆𝑖𝐻𝑖𝑡󸀠2𝑚𝑖 + 𝑚𝑖𝜆𝑖ℎ𝑖𝑡2𝑖2𝑡󸀠 − 𝜆𝑖ℎ𝑖𝑡𝑖.

(29)

Case 2 (𝑖 ∈ 𝐿). Then𝐻𝑖 = ℎ𝑖 − ℎ0 and 𝜆𝑖 = 𝜆𝑖, and we have

1𝑡󸀠 (𝐾𝑖𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖 (𝑡󸀠/𝑚𝑖 − 𝑡𝑖)22 )
= 𝐾𝑖𝑚𝑖𝑡󸀠 + 𝜆𝑖𝐻𝑖𝑡󸀠2𝑚𝑖 + 𝑚𝑖𝜆𝑖ℎ𝑖𝑡2𝑖2𝑡󸀠 − 𝜆𝑖ℎ𝑖𝑡𝑖
+ 𝜆𝑖ℎ0𝑡𝑖 (1 − 𝑚𝑖𝑡𝑖2𝑡󸀠 )

≥ 𝐾𝑖𝑚𝑖𝑡󸀠 + 𝜆𝑖𝐻𝑖𝑡󸀠2𝑚𝑖 + 𝑚𝑖𝜆𝑖ℎ𝑖𝑡2𝑖2𝑡󸀠 − 𝜆𝑖ℎ𝑖𝑡𝑖.

(30)

Case 3 (𝑖 ∈ 𝐸). Then 𝜆𝑖(ℎ𝑖 − ℎ0) ≤ 𝜆𝑖𝐻𝑖 ≤ 𝜆𝑖ℎ𝑖 and 𝜆𝑖 = 𝜆0,
and we have

1𝑡󸀠 (𝐾𝑖𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖 (𝑡󸀠/𝑚𝑖 − 𝑡𝑖)22 )
= 𝐾𝑖𝑚𝑖𝑡󸀠 + 𝜆𝑖𝐻𝑖𝑡󸀠2𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖𝑡2𝑖2𝑡󸀠 − 𝜆𝑖𝐻𝑖𝑡𝑖𝑡󸀠
= 𝐾𝑖𝑚𝑖𝑡󸀠 + 𝜆𝑖𝐻𝑖𝑡󸀠2𝑚𝑖 + 𝑚𝑖𝜆𝑖ℎ𝑖𝑡2𝑖2𝑡󸀠 − 𝜆𝑖ℎ𝑖𝑡𝑖
+ 𝑡󸀠𝑡𝑖 (𝜆𝑖ℎ𝑖 − 𝜆𝑖𝐻𝑖) + 12𝑚𝑖𝑡2𝑖 (𝜆𝑖𝐻𝑖 − 𝜆𝑖ℎ𝑖)

= 𝐾𝑖𝑚𝑖𝑡󸀠 + 𝜆𝑖𝐻𝑖𝑡󸀠2𝑚𝑖 + 𝑚𝑖𝜆𝑖ℎ𝑖𝑡2𝑖2𝑡󸀠 − 𝜆𝑖ℎ𝑖𝑡𝑖
+ (𝜆𝑖ℎ𝑖𝑡𝑖 − 𝜆𝑖𝐻𝑖𝑡𝑖) (𝑡󸀠 − 12𝑚𝑖𝑡𝑖)

≥ 𝐾𝑖𝑚𝑖𝑡󸀠 + 𝜆𝑖𝐻𝑖𝑡󸀠2𝑚𝑖 + 𝑚𝑖𝜆𝑖ℎ𝑖𝑡2𝑖2𝑡󸀠 − 𝜆𝑖ℎ𝑖𝑡𝑖.

(31)

Thus we have

1𝑡󸀠∑
𝑖∈R

(𝐾𝑖𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖 (𝑡󸀠/𝑚𝑖 − 𝑡𝑖)22 )
≥ ∑
𝑖∈R

(𝑚𝑖 (𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖 )𝑡󸀠 + 12𝜆𝑖𝐻𝑖 𝑡
󸀠

𝑚𝑖
− 𝜆𝑖ℎ𝑖𝑡𝑖) ,

(32)

and then

𝑍(𝑇󸀠, 𝑡󸀠)
≥ 1𝑡󸀠∑
𝑖∈R

(𝐾𝑖𝑚𝑖 + 𝑚𝑖𝜆𝑖𝐻𝑖 (𝑡󸀠/𝑚𝑖 − 𝑡𝑖)22 )
+ (𝐾0𝑚0𝑡󸀠 + 12𝜆0𝐻0 𝑡

󸀠

𝑚0)
≥ ∑
𝑖∈R

(𝑚𝑖 (𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖 )𝑡󸀠 + 12𝜆𝑖𝐻𝑖 𝑡
󸀠

𝑚𝑖)
+ (𝐾0𝑚0𝑡󸀠 + 12𝜆0𝐻0 𝑡

󸀠

𝑚0) − ∑
𝑖∈R

𝜆𝑖ℎ𝑖𝑡𝑖 ≥ 𝑍∗.

(33)

4. Power-of-Two Policies

In this section, we make use of the optimal solution of
the relaxed problem (10) to build a stationary integer-ratio,
i.e., a power-of-two policy, for the model Q. The power-of-
two policy is a power-of-two multiple of the base planning
period, which is an easy-to-use policy in practice. Muckstadt
and Roundy [5] and Muckstadt and Sapra [15] discuss the
advantages of the power-of-two policy in detail, especially
on the inventory management and production planning and
scheduling.

Let 𝑇∗ = {𝑇∗0 , 𝑇∗1 , ⋅ ⋅ ⋅ , 𝑇∗𝑁} be the optimal solution for the
relaxed problem (10) and𝑇𝐿 be the base planning period, such
as a day or a week. We use 𝑇∗ to build a power-of-two policy,
denoted by 𝑇 = {𝑇0, 𝑇1, ⋅ ⋅ ⋅ , 𝑇𝑁}, in the following: For each𝑖 ∈ 𝑅,

(i) if 𝑖 ∈ 𝐸𝑐, let 𝑇𝑖 = 2𝑙𝑖𝑇𝐿, where 𝑙𝑖 is a positive integer,
such that (1/√2)𝑇∗𝑖 ≤ 2𝑙𝑖𝑇𝐿 ≤ √2𝑇∗𝑖 ;

(ii) if 𝑖 ∈ 𝐸 ∪ {0}, let 𝑇𝑖 = 2𝑙𝑖𝑇𝐿, where 𝑙𝑖 is a positive
integer, such that (1/√2)𝑇∗0 ≤ 2𝑙𝑖𝑇𝐿 ≤ √2𝑇∗0 .

Obviously, 𝑇 = {𝑇0, 𝑇1, ⋅ ⋅ ⋅ , 𝑇𝑁} is a feasible stationary
integer-ratio policy for the model Q. Next we explore the gap
between the power-of-two policy 𝑇 and the optimal solution
of the model Q.
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In practice, the fixed cost in the water transport is
relatively high [18, 19], and then for each retailer 𝑖 ∈ 𝑅, we
assume that 𝑡𝑖 ≤ √2𝐾𝑖/𝜆𝑖ℎ𝑖, which means the free storage
period 𝑡𝑖 is less than the optimal ordering interval for the
EOQ model with the fixed ordering cost 𝐾𝑖, the holding cost
rate ℎ𝑖, and the demand rate 𝜆𝑖.With this assumption, we give
the following lemma.

Lemma 5. Let 𝑇∗ = (𝑇∗0 , 𝑇∗1 , 𝑇∗2 ⋅ ⋅ ⋅ , 𝑇∗𝑁) be the optimal solu-
tion of the relaxed problem (10) and 𝑍∗ be the corresponding
optimal objective function value. For each retailer 𝑖 ∈ 𝑅, if𝑡𝑖 ≤ √2𝐾𝑖/𝜆𝑖ℎ𝑖, then we have

(1) 𝑇∗𝑖 ≥ √2𝑡𝑖;
(2) 𝑍∗ ≥ (√2 − 1)𝑀, where𝑀 ≡ ∑𝑖∈𝑅 𝜆𝑖ℎ𝑖𝑡𝑖.

Proof. (1) For each 𝑖 ∈ 𝑅, if 𝑡𝑖 ≤ √2𝐾𝑖/𝜆𝑖ℎ𝑖, we consider the
following three cases.

Case 1. If 𝑖 ∈ 𝐺, then
𝑇∗𝑖 = √𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖ℎ𝑖 = √𝑡2𝑖 + 2𝐾𝑖𝜆𝑖ℎ𝑖 ≥ √2𝑡𝑖. (34)

Case 2. If 𝑖 ∈ 𝐿, then
𝑇∗𝑖 = √𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖 (ℎ𝑖 − ℎ0) > √𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖ℎ𝑖 ≥ √2𝑡𝑖. (35)

Case 3. If 𝑖 ∈ 𝐸, then
𝑇∗𝑖 ≥ √𝜆𝑖ℎ𝑖𝑡2𝑖 + 2𝐾𝑖𝜆𝑖ℎ𝑖 ≥ √2𝑡𝑖. (36)

Thus, for each 𝑖 ∈ 𝑅, if 𝑡𝑖 ≤ √2𝐾𝑖/𝜆𝑖ℎ𝑖, we have 𝑇∗𝑖 ≥ √2𝑡𝑖.
(2) Since 𝑇∗ = (𝑇∗0 , 𝑇∗1 , 𝑇∗2 ⋅ ⋅ ⋅ , 𝑇∗𝑛 ) is optimal for the

relaxed problem (10), then

𝑍∗ = 𝐾0𝑇∗0 +∑𝑖∈𝑅
𝐾𝑖𝑇∗𝑖 + 12∑

𝑖∈𝑅

𝜆𝑖ℎ𝑖 (𝑇∗𝑖 − 𝑡𝑖)𝑇∗𝑖
+ 12∑
𝑖∈𝐺

𝜆𝑖ℎ0 (𝑇∗0 − 𝑇∗𝑖 )
= 𝐾0𝑇∗0 + 12∑

𝑖∈𝐺

𝜆𝑖ℎ0 (𝑇∗0 − 𝑇∗𝑖 )
+ ∑
𝑖∈𝑅

𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖𝑇∗𝑖 + 12∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑇∗𝑖 + ∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑡𝑖
> ∑
𝑖∈𝑅

𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖𝑇∗𝑖 + 12∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑇∗𝑖 +∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑡𝑖.

(37)

Since (𝐾𝑖 + (1/2)𝜆𝑖ℎ𝑖𝑡2𝑖 )/𝑇∗𝑖 = (1/2)∑𝑖∈𝑅 𝜆𝑖ℎ𝑖𝑇∗𝑖 , 𝑖 ∈ 𝑅,
and 𝑇∗𝑖 ≥ √2𝑡𝑖, then

𝑍∗ > ∑
𝑖∈𝑅

𝐾𝑖 + (1/2) 𝜆𝑖ℎ𝑖𝑡2𝑖𝑇∗𝑖 + 12∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑇∗𝑖 + ∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑡𝑖

= ∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑇∗𝑖 − ∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑡𝑖 ≥ (√2 − 1)∑
𝑖∈𝑅

𝜆𝑖ℎ𝑖𝑡𝑖
= (√2 − 1)𝑀.

(38)

Based onLemma 5,we show that the power-of-twopolicy𝑇 = {𝑇0, 𝑇1, ⋅ ⋅ ⋅ , 𝑇𝑁} we build above can approximate
the optimal inventory policy of the primal problem to 83%
accuracy. We give the following theorem.

Theorem 6. Let 𝐶∗ denote the optimal objective value of the
primal problem, 𝑍∗ denote the optimal objective value of the
relaxed problem (10), and 𝑍(𝑇) denote the objective value of
the modelQ under the power-of-two policy 𝑇. For each retailer𝑖 ∈ 𝑅, if 𝑡𝑖 ≤ √2𝐾𝑖/𝜆𝑖ℎ𝑖, we have𝑍∗ ≤ 𝐶∗ ≤ 𝑍(𝑇) ≤ 1.20𝑍∗ ≤1.20𝐶∗; i.e., 𝑍(𝑇) approximates 𝐶∗ to 83% accuracy.

Proof. Obviously, we have 𝑍∗ ≤ 𝐶∗ ≤ 𝑍(𝑇). In order to
prove Theorem 6, we only need to prove 𝑍(𝑇) ≤ 1.20𝑍∗.
Let 𝑇∗ = (𝑇∗0 , 𝑇∗1 , 𝑇∗2 ⋅ ⋅ ⋅ , 𝑇∗𝑁) be the optimal solution of the
relaxed problem (10). By (17), we have

𝑍(𝑇) = (𝐾0𝑇0 +
12𝜆0𝐻0𝑇0) + ∑

𝑖∈𝐸𝑐

(𝐾𝑖𝑇𝑖 +
12𝜆𝑖𝐻𝑖𝑇𝑖)

−𝑀.
(39)

Since 𝐾0/𝑇∗0 = (1/2)𝜆0𝐻0𝑇∗0 = 𝑀0/2 and 𝐾𝑖/𝑇∗𝑖 = (1/2)𝜆𝑖𝐻𝑖𝑇∗𝑖 = 𝑀𝑖/2, 𝑖 ∈ 𝐸𝑐, we can rewrite 𝑍(𝑇) as
𝑍(𝑇) = 𝑀02 (𝑇∗0𝑇0 +

𝑇0𝑇∗0 ) + ∑
𝑖∈𝐸𝑐

𝑀𝑖2 (𝑇∗𝑖𝑇𝑖 +
𝑇𝑖𝑇∗𝑖 )

−𝑀.
(40)

Note that (1/√2)𝑇∗𝑖 ≤ 𝑇𝑖 ≤ √2𝑇∗𝑖 , 𝑖 ∈ 𝐸𝑐, and(1/√2)𝑇∗0 ≤ 𝑇𝑖 ≤ √2𝑇∗0 , 𝑖 ∈ 𝐸 ∪ 0, and then we have

𝑍(𝑇) = 𝑀02 (𝑇∗0𝑇0 +
𝑇0𝑇∗0 ) + ∑

𝑖∈𝐸𝑐

𝑀𝑖2 (𝑇∗𝑖𝑇𝑖 +
𝑇𝑖𝑇∗𝑖 )

−𝑀
≤ 𝑀02 (√2 + 1√2) + ∑

𝑖∈𝐸𝑐

𝑀𝑖2 (√2 + 1√2)
−𝑀

= 12 (√2 + 1√2)(𝑀0 + ∑
𝑖∈𝐸𝑐

𝑀𝑖 −𝑀)
+ 12 (√2 + 1√2)𝑀 −𝑀

= 12 (√2 + 1√2)𝑍∗ + 3 − 2√22√2 𝑀.

(41)
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Table 2: The values for 𝑡𝑖.
Parameters 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6 𝑡7 𝑡8 𝑡9 𝑡10
Day 3 11 4 18 6 6 12 15 13 10
Year 3/365 11/365 4/365 18/365 6/365 6/365 12/365 15/365 13/365 10/365

Table 3: The values for 𝐾𝑖, ℎ𝑖, and 𝜆𝑖.
Parameters 𝐾1 𝐾2 𝐾3 𝐾4 𝐾5 𝐾6 𝐾7 𝐾8 𝐾9 𝐾10
Values 254 859 595 371 363 301 415 871 160 550
Parameters ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9 ℎ10
Values 30 22 30 26 13 23 14 16 24 19
Parameters 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5 𝜆6 𝜆7 𝜆8 𝜆9 𝜆10
Values 603 592 284 310 925 1264 423 1032 1186 525

From Lemma 5, we know that, for each 𝑖 ∈ 𝑅, if 𝑡𝑖 ≤√2𝐾𝑖/𝜆𝑖ℎ𝑖, then we have 𝑍∗ ≥ (√2 − 1)𝑀. Since 𝑍∗ ≥(√2 − 1)𝑀, we have

𝑍(𝑇) ≤ 12 (√2 + 1√2)𝑍∗ + 3 − 2√22√2 𝑀
≤ 12 (√2 + 1√2)𝑍∗
+ 3 − 2√22√2 ( 1√2 − 1)𝑍∗ ≈ 1.20𝑍∗.

(42)

Finally, we have

𝑍∗ ≤ 𝐶∗ ≤ 𝑍 (𝑇) ≤ 1.20𝑍∗ ≤ 1.20𝐶∗. (43)

5. Numerical Example

In this section, we give a numerical example to show how
to calculate 𝑐𝑖(𝑇0, 𝑇𝑖), 𝑖 ∈ 𝑅, how to solve the relaxed
problem (10), and how to build the power-of-two policy via
the optimal solution of the relaxed problem (10). We suppose
that there is a distribution system consisting of one DC, ten
ports, and ten retailers. For the DC, we set the fixed ordering
cost, 𝐾0, as 500 and set the holding cost rate per unit per
year, ℎ0, as 10. For the ports, we randomly generate the free
time period, 𝑡𝑖, in [1, 20], and the values for 𝑡𝑖 are shown in
Table 2.

For the retailers, we randomly generate the fixed ordering
cost, 𝐾𝑖, in [100, 1000], the inventory holding cost rate per
unit per year, ℎ𝑖, in (10, 30], and the demand rate per year, 𝜆𝑖,
in [100, 1500], and those values are shown in Table 3.

Let 𝑇0 be the order interval at the DC and 𝑇𝑖 be the
order at the retailer 𝑖, 𝑖 ∈ 𝑅. We first calculate 𝑐𝑖(𝑇0, 𝑇𝑖) as
follows:

𝑐1 (𝑇0, 𝑇1) = 254𝑇1 + 12 × 603 × 30 × (𝑇1 − 3)2𝑇1 + 12
× 603 × 10 × [max (𝑇0, 𝑇1) − 𝑇1] ,

𝑐2 (𝑇0, 𝑇2) = 859𝑇2 + 12 × 592 × 22 × (𝑇2 − 11)2𝑇2 + 12
× 592 × 10 × [max (𝑇0, 𝑇2) − 𝑇2] ,

𝑐3 (𝑇0, 𝑇3) = 595𝑇3 + 12 × 284 × 30 × (𝑇3 − 4)2𝑇3 + 12
× 284 × 10 × [max (𝑇0, 𝑇3) − 𝑇3] ,

𝑐4 (𝑇0, 𝑇4) = 371𝑇4 + 12 × 310 × 26 × (𝑇4 − 18)2𝑇4 + 12
× 310 × 10 × [max (𝑇0, 𝑇4) − 𝑇4] ,

𝑐5 (𝑇0, 𝑇5) = 363𝑇5 + 12 × 925 × 13 × (𝑇5 − 6)2𝑇5 + 12
× 925 × 10 × [max (𝑇0, 𝑇5) − 𝑇5] ,

𝑐6 (𝑇0, 𝑇6) = 301𝑇6 + 12 × 1264 × 23 × (𝑇6 − 6)2𝑇6 + 12
× 1264 × 10
× [max (𝑇0, 𝑇6) − 𝑇6] ,

𝑐7 (𝑇0, 𝑇7) = 415𝑇7 + 12 × 423 × 14 × (𝑇7 − 12)2𝑇7 + 12
× 423 × 10 × [max (𝑇0, 𝑇7) − 𝑇7] ,

𝑐8 (𝑇0, 𝑇8) = 871𝑇8 + 12 × 1032 × 16 × (𝑇8 − 15)2𝑇8
+ 12 × 1032 × 10
× [max (𝑇0, 𝑇8) − 𝑇8] ,

𝑐9 (𝑇0, 𝑇9) = 160𝑇9 + 12 × 1186 × 24 × (𝑇9 − 13)2𝑇9
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Table 4: The optimal solution for the relaxed problem.

Order interval 𝑇∗0 𝑇∗1 𝑇∗2 𝑇∗3 𝑇∗4 𝑇∗5 𝑇∗6 𝑇∗7 𝑇∗8 𝑇∗9 𝑇∗10
Year 0.189 0.189 0.364 0.374 0.307 0.246 0.189 0.376 0.327 0.146 0.333
Day 69.16 69.16 133.02 136.47 112.20 89.89 69.16 137.17 119.50 53.45 121.62

Table 5: A power-of-two policy for the primal problem.

Order interval 𝑇0 𝑇1 𝑇2 𝑇3 𝑇4 𝑇5 𝑇6 𝑇7 𝑇8 𝑇9 𝑇10
Year 0.25 0.25 0.5 0.5 0.25 0.25 0.25 0.5 0.25 0.125 0.25
Day 91.25 91.25 182.5 182.5 91.25 91.25 91.25 182.5 91.25 45.625 91.25

+ 12 × 1186 × 10× [max (𝑇0, 𝑇9) − 𝑇9] ,
𝑐10 (𝑇0, 𝑇10) = 550𝑇10 + 12 × 525 × 19 × (𝑇10 − 10)2𝑇10

+ 12 × 525 × 10× [max (𝑇0, 𝑇10) − 𝑇10] .
(44)

By the above 𝑐𝑖(𝑇0, 𝑇𝑖), 𝑖 ∈ 𝑅, we get the following relaxed
problem (10):

min
𝑇𝑖>0,𝑖∈𝑅∪{0}

500𝑇0 + (254𝑇1 + 859𝑇2 + 595𝑇3 + 371𝑇4 + 363𝑇5
+ 301𝑇6 + 415𝑇7 + 871𝑇8 + 160𝑇9 + 550𝑇10 )
+ [9045 (𝑇1 − 3)2𝑇1 + 6512 (𝑇2 − 11)2𝑇2
+ 4260 (𝑇3 − 4)2𝑇3 + 4030 (𝑇4 − 18)2𝑇4
+ 12025 (𝑇5 − 6)22𝑇5 + 14536 (𝑇6 − 6)2𝑇6
+ 2961 (𝑇7 − 12)2𝑇7 + 8256 (𝑇8 − 15)2𝑇8
+ 14232 (𝑇9 − 13)2𝑇9 + 9975 (𝑇10 − 10)22𝑇10 ]
+ [3015max (𝑇0, 𝑇1) + 2960max (𝑇0, 𝑇2)
+ 1420max (𝑇0, 𝑇3) + 1550max (𝑇0, 𝑇4)
+ 4625max (𝑇0, 𝑇5) + 6320max (𝑇0, 𝑇6)
+ 2115max (𝑇0, 𝑇7) + 5160max (𝑇0, 𝑇8)
+ 5930max (𝑇0, 𝑇9) + 2625max (𝑇0, 𝑇10)]

− [3015𝑇1 + 2960𝑇2 + 1420𝑇3 + 1550𝑇4 + 4625𝑇5+ 6320𝑇6 + 2115𝑇7 + 5160𝑇8 + 5930𝑇9
+ 2625𝑇10] .

(45)

We solve the above relaxed problem (10) by the algorithm
proposed in Section 2 and obtain the optimal 𝑇𝑖, 𝑖 ∈ 𝑅 ∪ {0},
in Table 4.

Note that the optimal order quantity at each facility
(the DC and the retailers) equals the optimal order interval
multiplied by the demand rate. By the method proposed in
Section 4, we build a power-of-two policy for the primal
problem via the optimal solution for the relaxed problem (10)
as shown in Table 5.

In this example, the optimal objective function value
for the relaxed problem is 34073.143, and the objective
function value for the primal problem under the power-of-
two policy is 35391.838. Then we know that the gap between
the power-of-two policy built in above and the optimal
policy for the primal problem is 3.87% (100 × (35391.838 −34073.143)/34073.143).Thus we conclude that the power-of-
two policies may perform much better in practice.

Additionally, in this example, we also solve the inventory
management problem without considering the effect of the
free time periods provided by the ports and comparing
the objective function values for the primal problem with
and without considering the effect of the free time periods;
we obtain that the system-wide cost for this distribution
system reduces 9.16% by making use of the free time periods
provided by the ports. That is to say, making use of the
free time periods provided by the ports can significantly
reduce the system-wide cost for the distribution systems that
distribute their product by the water transport.

6. Conclusions

In this paper, we study inventory management for the
distribution system consisting with one DC, a set of ports,
and a set of retailers. The DC orders the product from a
single factory/supplier and replenishes the retailers through
the ports by the water transport. Since the ports always
allow the cargo arriving in the ports to stay for free for a
period of time, which we call the free storage period, we
study inventory management for this distribution system
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with integrating the impact of the free storage periods
provided by the ports. Focusing on stationary and integer-
ratio policies, we formulate this inventory management
problem as a nonlinear optimization model with a convex
objective function and a set of integer-ratio constraints. We
first solve the relaxed problem by relaxing the integer-ratio
constraints in 𝑂(𝑁 log𝑁) time and then build a stationary
integer-ratio policy (a power-of-twopolicy) for this inventory
management problem by using the optimal solution of the
relaxed problem.More importantly, we prove that the optimal
solution of the relaxed problem provides a lower bound on
the average cost of any feasible policies (possibly dynamic
policies) for this inventory management problem and that the
power-of-two policy we build can approximate the optimal
inventory policy for this inventory management problem to
83% accuracy. Finally, we give an example to show how to
apply the models and algorithms proposed in this paper in
practice, and we also obtain somemanagement insights from
the example.
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