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Due to the different roles that nontoxic phytoplankton and toxin-producing phytoplankton play in the whole aquatic system, a
delayed reaction-diffusion planktonic model under homogeneous Neumann boundary condition is investigated theoretically and
numerically. This model describes the interactions between the zooplankton and two kinds of phytoplanktons. The long-time
behavior of the model and existence of positive constant equilibrium solution are first discussed. Then, the stability of constant
equilibrium solution and occurrence of Hopf bifurcation are detailed and analyzed by using the bifurcation theory. Moreover,
the formulas for determining the bifurcation direction and stability of spatially bifurcating solutions are derived. Finally, some
numerical simulations are performed to verify the appearance of the spatially homogeneous and nonhomogeneous periodic
solutions.

1. Introduction

Oceans have a major role in the global carbon cycling and
so directly impact the pace and extent of climate change [1].
Marine organism can bring great economic and social values.
It has the irreplaceable function in the global food processing,
tourism, nutrient cycling, gas regulation, and so on. As the
basis of the marine food chain system, plankton can supply
food and oxygen to a myriad of marine life and can also
absorb about half of the climate-warming carbon dioxide [2].
Besides, unlike fish or some intertidal creatures, plankton
has rarely been commercially exploited. Moreover, this free-
floating plankton can respond quickly to the temperature and
change of oceanic system. As a consequence, mathematical
modeling is a valuable tool for research fields of the marine
ecology.

In general, plankton can be broadly divided into auto-
trophic phytoplankton and herbivorous zooplankton. The
interactive process between phytoplankton and zooplankton
is very complicated. It depends not only on the foraging
style and feeding behavior, but also on other processes in
the system. To describe the interactive relationship between

phytoplankton and zooplankton, the following general model
can be utilized:

d𝑃
d𝑡 = 𝐺 (𝑃) − 𝐹 (𝑃, 𝑍) − 𝑀(𝑃) ,
d𝑍
d𝑡 = 𝐹 (𝑃, 𝑍) − 𝑀(𝑍) . (1)

Here, 𝑃(𝑡) and 𝑍(𝑡) denote the concentration of phytoplank-
ton and zooplankton respectively, 𝐺(𝑃) and𝑀(𝑃) represent
the growth rate and death rate of phytoplankton, respectively,𝑀(𝑍) is the death rate of zooplankton, and 𝐹(𝑃, 𝑍) is the
predation rate of zooplankton on phytoplankton. Recently,
various particular cases of model (1) have been well studied
[3–5]. Some interesting results about the stability and Hopf
bifurcation type periodic oscillations have been obtained.

It should be noted that some phytoplankton can release
toxic substances which will result in poisoning in both fish
and shellfish. By accumulating in marine food webs, the
toxins may have hazards on animal and human health. On
the other hand, due to the rapid growth of plankton, harmful
algal bloom may cause massive death of marine animals.
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However, most previous studies did not directly consider
the toxin-producing phytoplankton population and the role
of toxic phytoplankton can not be ignored. While in the
establishment of planktonic mathematical models, it is neces-
sary to include the nontoxic phytoplankton, toxin-producing
phytoplankton, and zooplankton. In 2004, Chattopadhyay
et al. [6] proposed the following kinetic model which has
three interacting components and is with an additional factor
that the release of toxic substance reduces the growth of
zooplankton:

d𝑃1
d𝑡 = 𝑟𝑃1 (1 − 𝑃1𝐾) − 𝛼𝑃1𝑍,
d𝑃2
d𝑡 = 𝑠𝑃2 (1 − 𝑃2𝐾) − 𝜃𝑃2𝑍𝛾 + 𝑃2 ,
d𝑍
d𝑡 = 𝛽𝑃1𝑍 − 𝜇𝑍 − 𝜃1𝑃1𝑍𝛾 + 𝑃2 ,

(2)

where 𝑃1(𝑡) denotes the concentration of the nontoxic phyto-
plankton at time 𝑡 and 𝑃2(𝑡) and 𝑍(𝑡) denote the concentra-
tion of toxic phytoplankton population and zooplankton at
time 𝑡, respectively. It is assumed that the two phytoplankton
populations share the same resource. In model (2), all the
coefficients are positive constants, 𝑟 and 𝑠 are the growth
rates of two phytoplankton populations, respectively, 𝐾 is the
carrying capacity, 𝛼 and 𝛽 are the maximum zooplankton
ingestion rate and maximum zooplankton conversion rate,
respectively, 𝜇 is the death rate of zooplankton, 𝜃 is the rate of
toxin liberation by toxic phytoplankton, and 𝜃1 is the specific
predation rate of zooplankton population on toxic phyto-
plankton. This model shows that toxic substances released by
phytoplankton have negative effects on the grazing pressure
of zooplankton. It is finally concluded that toxin-producing
phytoplankton may be used as a biocontrol agent for the
harmful algal bloom problems. It is also mentioned that
the role of time delay and environmental fluctuation in the
planktonic dynamics may arouse some interesting results and
needs further investigations.

Motivated by (2), some modified models have been
proposed recently. For instance, Sarkar et al. [7] established a
new model made of two harmful phytoplankton populations
and one zooplankton population. Roy et al. [8] investigated
themodelwhere the twophytoplanktonpopulations compete
with each other. Pal et al. [9] further considered the three-
component model with both nonlinear predation func-
tions by zooplankton. Further, the study was also extended
from the perspectives of stochastic dynamics and plankton-
nutrient interactions, respectively [10, 11].

In view of the ocean current and monsoon, the plank-
ton can freely drift and this spatial dispersal is subject to
Fickian diffusion. So the effect of spatial diffusion has been
investigated by many authors [12–17]. The results indicate
that spatial diffusion has a vital role in the spatiotemporal
dynamics of the planktonic model and spatial pattern may
occur. Besides, the impact of time delay can not be ignored
because it usually causes periodic oscillations, even chaotic
behaviors, and time delay is ubiquitous in the real ecosystem
[18–20].

According to the above factors, we consider the following
three-component planktonic model with spatial diffusion
and time delay:𝜕𝑃𝜕𝑡 = 𝑑1Δ𝑃 + 𝑟1𝑃(1 − 𝑃𝐾) − 𝛼𝑃𝑍,(𝑥, 𝑡) ∈ (0, 𝐿) × (0, +∞) ,𝜕𝑇𝜕𝑡 = 𝑑2Δ𝑇 + 𝑟2𝑇(1 − 𝑇𝐾) − 𝑎𝑇𝑍𝛾 + 𝑇,(𝑥, 𝑡) ∈ (0, 𝐿) × (0, +∞) ,𝜕𝑍𝜕𝑡 = 𝑑3Δ𝑍 + 𝛽𝑃𝑍 − 𝑑𝑍2 − 𝑏𝑇 (𝑥, 𝑡 − 𝜏) 𝑍𝛾 + 𝑇 (𝑥, 𝑡 − 𝜏) ,(𝑥, 𝑡) ∈ (0, 𝐿) × (0, +∞) ,𝜕𝑃𝜕𝑥 = 𝜕𝑇𝜕𝑥 = 𝜕𝑍𝜕𝑥 = 0, 𝑡 ≥ 0, 𝑥 = 0, 𝐿,𝑃 (𝑥, 𝑡) = 𝑃0 (𝑥, 𝑡) ≥ 0,𝑇 (𝑥, 𝑡) = 𝑇0 (𝑥, 𝑡) ≥ 0,𝑍 (𝑥, 𝑡) = 𝑍0 (𝑥, 𝑡) ≥ 0, (𝑥, 𝑡) ∈ (0, 𝐿) × [−𝜏, 0] ,

(3)

where 𝑃(𝑥, 𝑡), 𝑇(𝑥, 𝑡), and 𝑍(𝑥, 𝑡) denote the densities of
nontoxic phytoplankton, toxin-producing phytoplankton,
and zooplankton at location 𝑥 and time 𝑡, respectively, Δ
is the usual Laplace operator, 𝐿 denotes the depth of the
water column, and the homogeneous Neumann boundary
condition means that no plankton species is entering or
leaving the column at the top or the bottom.

All the parameters are positive constants,𝑑𝑖 , 𝑖 = 1, 2, 3, are
the three species’ diffusion rates, respectively, 𝑑 is the higher
mortality of zooplankton, and 𝜏 is the time needed for zoo-
plankton from ingesting toxic phytoplankton to dying. The
other coefficients have the same meanings as in model (2).
Note that the zooplankton may get eaten by higher predators,
whose population is not being explicitly modelled [21–23].
So, we adopt the quadratic closure term 𝑑𝑍2 to describe the
higher mortality of zooplankton.

In this paper, we mainly investigate the spatiotemporal
dynamics of delayed and diffusive system (3). The rest of the
paper is organized as follows. In Section 2, the permanence
and nonpersistence of system (3) are derived. In Section 3, the
sufficient conditions for existence of positive constant equi-
librium solution are obtained. In Section 4, the stability of
equilibrium solution and delay-induced Hopf bifurcation are
explored. In Section 5, the detailed formulae for determining
the bifurcation properties are given by calculating the normal
form on the center manifold. In Section 6, some numerical
simulations are conducted to illustrate the theoretical results.
Finally, some conclusions are given in Section 7.

2. Long-Time Behavior

In this section, we shall show that any nonnegative solution(𝑃(𝑥, 𝑡), 𝑇(𝑥, 𝑡), 𝑍(𝑥, 𝑡)) of system (3) lies in a bounded region
as 𝑡 󳨀→ ∞, for all 𝑥 ∈ Ω.
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Theorem 1. If 𝑑𝑟1 > 𝛼𝛽𝐾 and 𝑑𝑟1𝛽𝛾 − 𝛼𝛽2𝛾𝐾 − 𝑏𝑑𝑟1 > 0
hold, then system (3) is permanent; that is, there exist positive
constants 𝑚 and𝑀 independent of solution such that𝑚 ≤ lim inf

𝑡󳨀→+∞
𝑃 (𝑥, 𝑡) ≤ lim sup

𝑡󳨀→+∞
𝑃 (𝑥, 𝑡) ≤ 𝑀,𝑚 ≤ lim inf

𝑡󳨀→+∞
𝑇 (𝑥, 𝑡) ≤ lim sup

𝑡󳨀→+∞
𝑇 (𝑥, 𝑡) ≤ 𝑀,𝑚 ≤ lim inf

𝑡󳨀→+∞
𝑍 (𝑥, 𝑡) ≤ lim sup

𝑡󳨀→+∞
𝑍 (𝑥, 𝑡) ≤ 𝑀 (4)

for any nonnegative solution.

Proof. From the first equation of system (3), we have𝜕𝑃𝜕𝑡 − 𝑑1Δ𝑃 ≤ 𝑟1𝑃(1 − 𝑃𝐾) . (5)

The standard comparison principle implies

lim sup
𝑡󳨀→+∞

𝑃 (𝑥, 𝑡) ≤ 𝐾, (6)

and thus for every real number 𝜀1 > 0, there exists a 𝑇1 > 0
such that 𝑃(𝑥, 𝑡) ≤ 𝐾 + 𝜀1, for all 𝑡 > 𝑇1.

Similarly, from the second equation of (3), we have

lim sup
𝑡󳨀→+∞

𝑇 (𝑥, 𝑡) ≤ 𝐾, (7)

And thus for every real number 𝜀2 > 0, there exists a 𝑇2 > 0
such that 𝑇(𝑥, 𝑡) ≤ 𝐾 + 𝜀2, for all 𝑡 > 𝑇2.

The third equation of (3) can be reduced to𝜕𝑍𝜕𝑡 − 𝑑3Δ𝑍 ≤ 𝛽 (𝐾 + 𝜀1) 𝑍 − 𝑑𝑍2= 𝑍 [𝛽 (𝐾 + 𝜀1) − 𝑑𝑍] , (8)

for all 𝑡 > 𝑇1. Then, we have 𝑍(𝑥, 𝑡) ≤ 𝛽(𝐾 + 𝜀1)/𝑑, which
indicates

lim sup
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡) ≤ 𝛽𝐾𝑑 (9)

as 𝜀1 󳨀→ 0. Therefore, for every real number 𝜀3 > 0, there
exists a 𝑇3 > 0 such that 𝑍(𝑥, 𝑡) ≤ 𝛽𝐾/𝑑 + 𝜀3, for all 𝑡 > 𝑇3.

Again from the first equation of (3), we have𝜕𝑃𝜕𝑡 − 𝑑1Δ𝑃 ≥ 𝑟1𝑃 [1 − 𝛼𝑟1 (𝛽𝐾𝑑 + 𝜀3) − 𝑃𝐾] , (10)

for all 𝑡 > 𝑇3. This implies𝑃 (𝑥, 𝑡) ≥ 1 − (𝛼/𝑟1) (𝛽𝐾/𝑑 + 𝜀3)1/𝐾 ; (11)

thus,

lim inf
𝑡󳨀→+∞

𝑃 (𝑥, 𝑡) ≥ 𝐾 (𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 > 0. (12)

Then, for every real number 𝜀4 > 0, there exists a 𝑇4 > 0 such
that 𝑃(𝑥, 𝑡) ≥ 𝐾(𝑑𝑟1 − 𝛼𝛽𝐾)/𝑑𝑟1 − 𝜀4, for all 𝑡 > 𝑇4.

From the second equation of (3), we have𝑃 (𝑥, 𝑡) ≥ 𝐾 (𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 − 𝜀4= 𝑟2𝑇[1 − ( 1𝐾 + 𝑎𝑟2𝛾 (𝛽𝐾𝑑 + 𝜀3))𝑇] , (13)

which implies

lim inf
𝑡󳨀→+∞

𝑇 (𝑥, 𝑡) ≥ 𝑑𝑟2𝛾𝐾𝑑𝑟2𝛾 + 𝑎𝛽𝐾2 > 0. (14)

From the third equation of (3), we also have𝜕𝑍𝜕𝑡 − 𝑑3Δ𝑍 ≥ 𝑍[𝛽(𝐾(𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 − 𝜀4) − 𝑑𝑍
− 𝑏 (𝐾 + 𝜀2)𝛾 ] , (15)

for all 𝑡 > max{𝑇2 + 𝜏, 𝑇4}. Thus,

lim inf
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡) ≥ 𝑑𝑟1𝛽𝛾𝐾 − 𝛼𝛽2𝛾𝐾2 − 𝑏𝑑𝑟1𝐾𝑑2𝑟1𝛾 > 0. (16)

Finally, if we set𝑚 = min{𝐾(𝑑𝑟1 − 𝛼𝛽𝐾)𝑑𝑟1 , 𝑑𝑟2𝛾𝐾𝑑𝑟2𝛾 + 𝑎𝛽𝐾2 ,𝑑𝑟1𝛽𝛾𝐾 − 𝛼𝛽2𝛾𝐾2 − 𝑏𝑑𝑟1𝐾𝑑2𝑟1𝛾 } , (17)

and 𝑀 = max{𝐾, 𝛽𝐾𝑑 } , (18)

then the proof is complete.

Definition 2. System (3) is said to be not persistent if

min{lim inf
𝑡󳨀→+∞

𝑃 (𝑥, 𝑡) , lim inf
𝑡󳨀→+∞

𝑇 (𝑥, 𝑡) , lim inf
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡)}= 0 (19)

for some of its nonnegative solutions.

Next, we discuss the nonpersistence of system (3).

Theorem 3. If 𝑏𝑑𝑟2𝛾 ≥ 𝛽(𝛾 + 𝐾)(𝑑𝑟2𝛾 + 𝑎𝛽𝐾2) holds, then
system (3) is not persistent.

Proof. According to the process ofTheorem 1, for an arbitrary
positive constant 𝜀5, there exists a 𝑇5 > 0 such that𝑇 (𝑥, 𝑡) ≥ 𝑑𝑟2𝛾𝐾𝑑𝑟2𝛾 + 𝑎𝛽𝐾2 − 𝜀5, (20)
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for all 𝑡 > 𝑇5. Further, we have𝜕𝑍𝜕𝑡 − 𝑑3Δ𝑍 ≤ 𝑍[𝛽 (𝐾 + 𝜀1)
− 𝑏𝑑𝑟2𝛾𝐾 − 𝑏𝜀5 (𝑑𝑟2𝛾 + 𝑎𝛽𝐾2)(𝛾 + 𝐾 + 𝜀2) (𝑑𝑟2𝛾 + 𝑎𝛽𝐾2) − 𝑑𝑍] , (21)

for all 𝑡 > max{𝑇1, 𝑇2 + 𝜏, 𝑇5 + 𝜏}. Then, by the arbitrariness
of 𝜀1, 𝜀2, and 𝜀5, we have

lim inf
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡) ≤ lim sup
𝑡󳨀→+∞

𝑍 (𝑥, 𝑡)
≤ 𝛽𝐾𝑑 − 𝑏𝑟2𝛾𝐾(𝛾 + 𝐾) (𝑑𝑟2𝛾 + 𝑎𝛽𝐾2) ≤ 0 (22)

as 𝑡 󳨀→ +∞. The proof is complete.

3. Steady State

In consideration of the biological significance of (3), we focus
on the positive constant equilibrium solution. To determine
the equilibrium solution of (3), we only need to solve the
following algebraic equations:𝑟1𝑃(1 − 𝑃𝐾) − 𝛼𝑃𝑍 = 0,𝑟2𝑇(1 − 𝑇𝐾) − 𝑎𝑇𝑍𝛾 + 𝑇 = 0,𝛽𝑃𝑍 − 𝑑𝑍2 − 𝑏𝑇𝑍𝛾 + 𝑇 = 0.

(23)

Simplifying the first equation of (23) and substituting it into
the third equation, we have𝑍 = 𝑟1 (𝐾 − 𝑃)𝛼𝐾 , (24)

and (𝛽 + 𝑑𝑟1𝛼𝐾)𝑃 − 𝑑𝑟1𝛼 − 𝑏𝑇𝛾 + 𝑇 = 0. (25)

From (24) and the second equation of (23), we have𝑎𝑍𝛾 + 𝑇 = 𝑎𝑟1𝛼 (𝛾 + 𝑇) − 𝑎𝑟1𝑃𝛼𝐾 (𝛾 + 𝑇) = 𝑟2 − 𝑟2𝐾𝑇, (26)

and 𝑎𝑟1𝑃𝛼𝐾 (𝛾 + 𝑇) = 𝑎𝑟1𝛼 (𝛾 + 𝑇) − 𝑟2 + 𝑟2𝐾𝑇; (27)

thus, 𝑃 = 𝐾 − 𝛼𝑟2𝐾 (𝑇 + 𝛾)𝑎𝑟1 + 𝛼𝑟2𝑇 (𝑇 + 𝛾)𝑎𝑟1 , (28)

which is equivalent to𝑃= 𝛼𝑟2𝑎𝑟1 [(𝑇 − 𝐾 − 𝛾2 )2 + 𝑎𝑟1𝐾𝛼𝑟2 − 𝛾𝐾 − (𝐾 − 𝛾)24 ] . (29)

From (25) and (28), we have

(𝛽 + 𝑑𝑟1𝛼𝐾)[𝐾 − 𝛼𝑟2𝐾 (𝑇 + 𝛾)𝑎𝑟1 + 𝛼𝑟2𝑇 (𝑇 + 𝛾)𝑎𝑟1 ]
− 𝑑𝑟1𝛼 − 𝑏𝑇𝛾 + 𝑇 = 0, (30)

and 𝑎3𝑇3 + 𝑎2𝑇2 + 𝑎1𝑇 + 𝑎0 = 0, (31)

where𝑎3 = 𝛼𝑟2𝑎𝑟1 (𝛽 + 𝑑𝑟1𝛼𝐾) > 0,𝑎2 = 𝛼𝑟2𝑎𝑟1 (2𝛾 − 𝐾)(𝛽 + 𝑑𝑟1𝛼𝐾) ,𝑎1 = (𝛽 + 𝑑𝑟1𝛼𝐾)[𝐾 + 𝛼𝛾𝑟2𝑎𝑟1 (𝛾 − 2𝐾)] − 𝑏 − 𝑑𝑟1𝛼 ,𝑎0 = 𝛾𝐾(𝛽 + 𝑑𝑟1𝛼𝐾)(1 − 𝛼𝛾𝑟2𝑎𝑟1 ) − 𝑑𝑟1𝛾𝛼 .
(32)

According to Descartes’ rule of signs, cubic equation (31) has
at least one positive real root when 𝑎0 < 0, that is,𝐾(𝛽 + 𝑑𝑟1𝛼𝐾)(1 − 𝛼𝛾𝑟2𝑎𝑟1 ) < 𝑑𝑟1𝛼 . (33)

For convenience, we denote any positive root of (31) by𝑇∗. Combining (24) and (29), we can obtain the positive
solution of (23) under the conditions 4𝑎𝑟1𝐾/𝛼𝑟2 > (𝐾 + 𝛾)2
and 𝐾 > 𝑃∗.

From above analyses, we can establish the existence of
positive constant equilibrium solution of (3).

Theorem 4. If the following assumption

(H1) 𝐾(𝛽 + 𝑑𝑟1/𝛼𝐾)(1 − 𝛼𝛾𝑟2/𝑎𝑟1) < 𝑑𝑟1/𝛼, 4𝑎𝑟1𝐾/𝛼𝑟2 >(𝐾 + 𝛾)2 and 𝐾 > 𝑃∗
holds, then system (3) has positive constant equilibrium solu-
tion 𝐸∗ = (𝑃∗, 𝑇∗, 𝑍∗).

Based on the aim of this study, we always assume that
condition (H1) is satisfied in the following sections.

4. Hopf Bifurcation Induced by Time Delay

Here, we will regard time delay 𝜏 as the bifurcation param-
eter to investigate its effect on the stability of coexistence
equilibrium solution 𝐸∗ = (𝑃∗, 𝑇∗, 𝑍∗).

Linearizing system (3) at 𝐸∗ leads to the corresponding
characteristic equation:
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆 + 𝑑1 (𝑘𝜋𝐿 ) + 𝑟1𝐾𝑃∗ 0 𝛼𝑃∗0 𝜆 + 𝑑2 (𝑘𝜋𝐿 ) + 𝑟2𝑇∗𝐾 − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 𝑎𝑇∗𝛾 + 𝑇∗−𝛽𝑍∗ 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 𝑒−𝜆𝜏 𝜆 + 𝑑3 (𝑘𝜋𝐿 ) + 𝑑𝑍∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0, (34)

which can be simplified as the following transcendental
equation:𝜆3 + 𝐴𝑘𝜆2 + 𝐵𝑘𝜆 + 𝐶𝑘 + (𝐷𝑘𝜆 + 𝐹𝑘) 𝑒−𝜆𝜏 = 0, (35)

where𝐴𝑘 = (𝑑1 + 𝑑2 + 𝑑3) (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗ + 𝑟2𝐾𝑇∗ + 𝑑𝑍∗− 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 ,𝐵𝑘 = 𝛼𝛽𝑃∗𝑍∗ + [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗][𝑑2 (𝑘𝜋𝐿 )2
+ 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2] + [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗]⋅ [𝑑3 (𝑘𝜋𝐿 )2 + 𝑑𝑍∗] + [𝑑2 (𝑘𝜋𝐿 )2 + 𝑟2𝐾𝑇∗
− 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2][𝑑3 (𝑘𝜋𝐿 )2 + 𝑑𝑍∗] ,𝐶𝑘 = [𝑑2 (𝑘𝜋𝐿 )2 + 𝑑3 (𝑘𝜋𝐿 )2 + 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2+ 𝑑𝑍∗] ⋅ [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗]
+ 𝛼𝛽𝑃∗𝑍∗ [𝑑2 (𝑘𝜋𝐿 )2 + 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2] ,𝐷𝑘 = −𝑎𝑏𝛾𝑇∗𝑍∗(𝛾 + 𝑇∗)3 < 0,𝐹𝑘 = −𝑎𝑏𝛾𝑇∗𝑍∗(𝛾 + 𝑇∗)3 [𝑑1 (𝑘𝜋𝐿 )2 + 𝑟1𝐾𝑃∗] < 0.

(36)

The special case of (35) with 𝜏 = 0 is𝜆3 + 𝐴𝑘𝜆2 + (𝐵𝑘 + 𝐷𝑘) 𝜆 + (𝐶𝑘 + 𝐹𝑘) = 0. (37)

If all the roots of (37) have negative real parts for every
nonnegative integer 𝑘, then the positive equilibrium solution

𝐸∗ without time delay is asymptotically stable. With the help
of Routh-Hurwitz criterion, 𝐸∗ is stable if and only if𝐴𝑘 > 0,𝐵𝑘 + 𝐷𝑘 > 0, 𝐶𝑘 + 𝐹𝑘 > 0, and 𝐴𝑘(𝐵𝑘 + 𝐷𝑘) − (𝐶𝑘 + 𝐹𝑘) > 0.

Assume that

(H2) 𝑟2/𝐾 > 𝑎𝑍∗/(𝛾 + 𝑃∗2 )2, and 𝑎𝑏𝛾𝑇∗/(𝛾 + 𝑇∗)3 <
min{𝑑, 𝛼𝛽𝑃∗};

then, we have the following stability conclusion.

Theorem 5. If assumption (H2) is satisfied, then the equilib-
rium solution 𝐸∗ of (3) is asymptotically stable for 𝜏 = 0.

Next, we shall discuss the distribution of characteristic
roots when 𝜏 > 0. Suppose 𝑖𝜔 (𝜔 > 0) is a root of (35). Then,
for any nonnegative integer 𝑘, we have− 𝑖𝜔3 − 𝐴𝑘𝜔2 + 𝑖𝐵𝑘𝜔 + 𝐶𝑘+ (𝑖𝐷𝑘𝜔 + 𝐹𝑘) (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0, (38)

and − 𝑖𝜔3 − 𝐴𝑘𝜔2 + 𝑖𝐵𝑘𝜔 + 𝐶𝑘 + 𝑖𝐷𝑘𝜔 cos𝜔𝜏+ 𝐷𝑘𝜔 sin𝜔𝜏 + 𝐹𝑘 cos𝜔𝜏 − 𝑖𝐹𝑘 sin𝜔𝜏 = 0. (39)

Separating the real and imaginary parts results in𝜔3 − 𝐵𝑘𝜔 = 𝐷𝑘𝜔 cos𝜔𝜏 − 𝐹𝑘 sin𝜔𝜏,𝐴𝑘𝜔2 − 𝐶𝑘 = 𝐹𝑘 cos𝜔𝜏 + 𝐷𝑘𝜔 sin𝜔𝜏; (40)

thus,𝜔6 + (𝐴2𝑘 − 2𝐵𝑘)𝜔4 + (𝐵2𝑘 − 2𝐴𝑘𝐶𝑘 − 𝐷2𝑘) 𝜔2 + 𝐶2𝑘− 𝐹2𝑘 = 0. (41)

For simplicity, we set 𝜎 = 𝜔2; then, (41) can be rewritten in
the form of 𝑅 (𝜎) = 𝜎3 +𝑀𝑘𝜎2 + 𝑁𝑘𝜎 + 𝑃𝑘 = 0, (42)

where 𝑀𝑘 = 𝐴2𝑘 − 2𝐵𝑘,𝑁𝑘 = 𝐵2𝑘 − 2𝐴𝑘𝐶𝑘 − 𝐷2𝑘,𝑃𝑘 = 𝐶2𝑘 − 𝐹2𝑘 . (43)

If the assumption
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(H3)𝑀𝑘 > 0 and𝑀𝑘 > 0 for any 𝑘 > 0
holds, then we have 𝑃𝑘 > 0 by combining with (H2).
And the cubic equation (42) of 𝜎 has no positive root,
so (35) has no purely imaginary root. It can be concluded
that the equilibrium solution 𝐸∗ is always asymptotically
stable for any 𝜏 > 0 and that system (3) has no spatially
nonhomogeneous periodic solution.

On the other hand, when 𝑘 = 0, based on Lemma 2.2 in
[24], the following condition is needed to ensure the existence
of positive root of (42):

(H4) 𝜎1 > 0 and 𝑅(𝜎1)|𝑘=0 ≤ 0, where 𝜎1 = (−𝑀0 +√𝑀20 − 3𝑁0)/3.
Denote any positive root of (42) by𝜎∗; then, ±𝑖𝜔∗ is a pair

of purely imaginary roots of (35), where 𝜔∗ = √𝜎∗.
When 𝑘 = 0, rewrite (35) as
𝜆3 + 𝐴0𝜆2 + 𝐵0𝜆 + 𝐶0 + (𝐷0𝜆 + 𝐹0) 𝑒−𝜆𝜏 = 0, (44)

and we have

sin𝜔∗𝜏 = (𝐴0𝐷0 − 𝐹0) 𝜔∗3 + (𝐵0𝐹0 − 𝐶0𝐷0) 𝜔∗𝐷20𝜔∗2 + 𝐹20≜ 𝐹𝑠, (45)

cos𝜔∗𝜏 = 𝐷0𝜔∗4 + (𝐴0𝐹0 − 𝐵0𝐷0) 𝜔∗2 − 𝐶0𝐹0𝐷20𝜔∗2 + 𝐹20≜ 𝐹𝑐. (46)

Define

𝜏𝑗0 = {{{{{{{
1𝜔∗ {2𝜋 − arccos𝐹𝑐 + 2𝑗𝜋} , 𝐹𝑠 ≥ 0,1𝜔∗ {arccos 𝐹𝑐 + 2𝑗𝜋} , 𝐹𝑐 < 0, (47)

where 𝑗 = 0, 1, 2, . . . and 𝜏0 = 𝜏00 = min𝑗=0,1,2,...{𝜏𝑗0}. Then,
(44) has a pair of purely imaginary roots ±𝑖𝜔∗ when 𝜏 = 𝜏𝑗0 .

We claim that if

(H5) 𝑅󸀠(𝜎∗) ̸= 0,
then

d Re𝜆 (𝜏)
d𝜏 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏𝑗0 ,𝜔=𝜔∗ ̸= 0. (48)

In fact, differentiating both sides of (35) with respect to 𝜏,
it follows that(d𝜆

d𝜏)−1 = (3𝜆2 + 2𝐴0𝜆 + 𝐵0) 𝑒𝜆𝜏 + 𝐷0𝜆 (𝐷0𝜆 + 𝐹0) − 𝜏𝜆 . (49)

Thus, we have

Re(d𝜆
d𝜏)−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜏=𝜏𝑗0 ,𝜔=𝜔∗ = 𝜔∗2𝑅󸀠 (𝜎∗)(𝐷0𝜔∗2)2 + (𝐹0𝜔∗)2 ̸= 0. (50)

From what has been discussed above and the Hopf
bifurcation Theorem by Hassard et al. [25], we can draw the
conclusion on the existence of spatially homogeneous Hopf
bifurcation.

Theorem 6. Suppose that conditions (H1)-(H5) are satisfied.
(i) 	e equilibrium solution 𝐸∗ is locally asymptotically

stable for 𝜏 ∈ [0, 𝜏0).
(ii) 	e equilibrium solution 𝐸∗ is unstable for 𝜏 > 𝜏0 and𝜏0 is the Hopf bifurcation value.
(ii) System (3) undergoes spatially homogeneous periodic

solutions at 𝐸∗ when 𝜏 = 𝜏0.
5. Stability and Direction of the Bifurcation

In this section, we investigate the properties of spa-
tially homogeneous periodic solutions, including bifurcation
direction, stability of periodic solutions, monotonicity of
periodic solutions. Here, we mainly apply the normal form
theory and center manifold theorem for partial functional
differential equations [25, 26].

For fixed 𝑗 = 0, 1, 2, . . ., denote bifurcation value 𝜏𝑗0 by 𝜏∗
and introduce the new parameter 𝜇 = 𝜏 − 𝜏∗; then, 𝜇 = 0 is
the new Hopf bifurcation value. Let 𝜗 = 𝑡/𝜏 and rewrite 𝜗 as𝑡; system (3) can be transformed into

d𝑈 (𝑡)
d𝑡 = 𝜏∗𝐷Δ𝑈 (𝑡) + 𝐿 (𝜏∗) (𝑈𝑡) + 𝐹 (𝑈𝑡, 𝜇) , (51)

where 𝐿(𝜇)(𝜑) : 𝐶 󳨀→ 𝑋 and 𝐹(⋅, 𝜇) : 𝐶 󳨀→ 𝑋 are given by𝜑 = (𝜑1, 𝜑2, 𝜑3)𝑇 ∈ 𝐶,𝐷 = diag {𝑑1, 𝑑2, 𝑑3} ,Δ = diag{ 𝜕2𝜕𝑥2 , 𝜕2𝜕𝑥2 , 𝜕2𝜕𝑥2} ,𝑈𝑡 (𝜃) = 𝑈 (𝑡 + 𝜃) , − 𝜏 ≤ 𝜃 ≤ 0,𝐿 (𝜇) (𝜑)
= 𝜇((
(

−𝑟1𝐾𝑃∗𝜑1 (0) − 𝛼𝑃∗𝜑3 (0)( 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 − 𝑟2𝐾𝑇∗)𝜑2 (0) − 𝑎𝑇∗𝛾 + 𝑇∗𝜑3 (0)𝛽𝑍∗𝜑1 (0) − 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 𝜑2 (−1) − 𝑑𝑍∗𝜑3 (0)
))
)
,

𝐹 (𝜑, 𝜇) = 𝜇𝐷Δ𝜑 (0) + 𝐿 (𝜇) (𝜑) + 𝑓 (𝜑, 𝜇) ,

(52)

and
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𝑓 (𝜑, 𝜇) = (𝜏∗ + 𝜇)((
(

−2𝑟1𝐾 𝜑21 (0) − 𝛼𝜑1 (0) 𝜑3 (0)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜑22 (0) − 2𝑟2𝐾 𝜑22 (0) − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜑2 (0) 𝜑3 (0)𝛽𝜑1 (0) 𝜑3 (0) − 2𝑑𝜑23 (0) − 𝑏𝛾𝜑2 (−1) 𝜑3 (0)(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3𝜑22 (−1)
))
)
+ h.o.t. (53)

Then, the linearized system of (51) at origin is

d𝑈 (𝑡)
d𝑡 = 𝜏∗𝐷Δ𝑈 (𝑡) + 𝐿 (𝜏∗) (𝑈𝑡) . (54)

From the discussion in Section 4, we can find that charac-
teristic equation (35) has a pair of purely imaginary rootsΛ 0 = {𝑖𝜔∗𝜏∗, −𝑖𝜔∗𝜏∗} when 𝜏 = 𝜏∗.

LetC := 𝐶([−1, 0],R3). Then, we consider the functional
differential equation onC:𝑧̇ = 𝐿 (𝜏∗) (𝑧𝑡) . (55)

It is obvious that 𝐿(𝜏∗) is a continuous linear function
mapping 𝐶([−1, 0],R3) into R3. By the Riesz representation
theorem, there exists a 3 × 3 matrix function 𝜂(𝜃, 𝜏) (−1 ≤𝜃 ≤ 0) such that

𝐿 (𝜏∗) (𝜑) = ∫0
−1
[d𝜂 (𝜃, 𝜏∗)] 𝜑 (𝜃) , for 𝜑 ∈ C; (56)

here we choose𝜂 (𝜃, 𝜏∗)
= 𝜏∗(−𝑟1𝐾𝑃∗ 0 −𝛼𝑃∗0 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 − 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝛾 + 𝑇∗𝛽𝑍∗ 0 −𝑑𝑍∗ )𝛿(𝜃)

− 𝜏∗(0 0 00 0 00 − 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 0)𝛿 (𝜃 + 1) .
(57)

Let𝐴(𝜏∗) be the infinitesimal generator of the semigroup
induced by the solutions of (55) and 𝐴∗ be the adjoint matrix
of 𝐴(𝜏∗) under the bilinear pairing:(𝜓, 𝜙) = (𝜓 (0) , 𝜙 (0))− ∫0

−1
∫𝜃
𝜉=0
𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉 = (𝜓 (0) , 𝜙 (0))

+ 𝜏∗ ∫0
−1
𝜓 (𝜃 + 1)

⋅(0 0 00 0 00 − 𝑏𝛾𝑍∗(𝛾 + 𝑃∗2 )2 0)𝜙 (𝜃) d𝜃,
(58)

where 𝜑 ∈ 𝐶, 𝜓 ∈ 𝐶∗ = 𝐶([0, 1],R3).Then,𝐴(𝜏∗) and𝐴∗ are
a pair of adjoint operators and they both have characteristic
roots ±𝑖𝜔∗𝜏∗. Let 𝑃 and 𝑃∗ be the generalized eigenspaces of𝐴(𝜏∗) and 𝐴∗, respectively; then, 𝑃∗ is the adjoint space of 𝑃
and dim𝑃 = dim𝑃∗ = 2.

By direct calculation, we have the following lemma.

Lemma 7. Let

𝜉 = 𝑎𝑇∗𝜁 (𝛾 + 𝑇∗)𝑎𝐾𝑇∗𝑍∗ − 𝑟2𝑇∗ (𝛾 + 𝑇∗)2 − 𝑖𝜔∗𝐾 (𝛾 + 𝑇∗)2 ,𝜁 = − 𝑖𝜔∗𝐾 + 𝑟1𝑃∗𝛼𝐾𝑃∗ ,
𝜉∗ = −𝑎𝐾𝑇∗𝑍∗ + 𝑏𝐾𝛾𝜁∗𝑍∗𝑒−𝑖𝜔∗𝜏∗𝑟2𝑇∗ (𝛾 + 𝑇∗)2 ,

𝜁∗ = 𝑖𝜔∗𝐾 + 𝑟1𝑃∗𝛽𝐾𝑍∗ ;
(59)

then a basis of 𝑃 with Λ 0 is𝑝1 (𝜃) = 𝑒𝑖𝜔∗𝜏∗𝜃 (1, 𝜉, 𝜁)𝑇 ,𝑝2 (𝜃) = 𝑝1 (𝜃), − 1 ≤ 𝜃 ≤ 0, (60)

and a basis a of 𝑃∗ with Λ 0 is𝑞1 (𝑠) = 𝑒−𝑖𝜔∗𝜏∗𝑠 (1, 𝜉∗, 𝜁∗)𝑇 ,𝑞2 (𝑠) = 𝑞1 (𝑠), 0 ≤ 𝑠 ≤ 1. (61)
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LetΦ = (Φ1, Φ2), Ψ∗ = (Ψ∗1 , Ψ∗2 )𝑇, whereΦ1 (𝜃) = 𝑝1 (𝜃) + 𝑝2 (𝜃)2 ,Φ2 (𝜃) = 𝑝1 (𝜃) − 𝑝2 (𝜃)2𝑖 ,𝜃 ∈ [−1, 0] , (62)

and Ψ∗1 (𝑠) = 𝑞1 (𝑠) + 𝑞2 (𝑠)2 ,Ψ∗2 (𝑠) = 𝑞1 (𝑠) − 𝑞2 (𝑠)2𝑖 ,𝑠 ∈ [0, 1] . (63)

From (58), we can obtain (Ψ∗1 , Φ2), (Ψ∗1 , Φ1), and further(𝑞1, 𝑝1) = (Ψ∗1 , Φ1) − (Ψ∗2 , Φ2)+ 𝑖 [(Ψ∗1 , Φ2) − (Ψ∗2 , Φ1)] ; (64)

that is,(𝑞1, 𝑝1) = 1 + 𝜉𝜉∗ + 𝜁𝜁∗ − 𝜏∗ 𝑏𝑍∗𝛾 + 𝑃∗2 𝜉∗𝑒−𝑖𝜔∗𝜏∗ ≜ 𝐷∗. (65)

Therefore, we have(Ψ∗1 , Φ1) − (Ψ∗2 , Φ2) = Re {𝐷∗} ,(Ψ∗1 , Φ2) − (Ψ∗2 , Φ1) = Im {𝐷∗} . (66)

Now, we define (Ψ∗, Φ) = (Ψ∗𝑙 , Φ𝑚) (𝑙, 𝑚 = 1, 2) and
construct a newbasis for𝑃∗ byΨ = (Ψ1, Ψ2)𝑇 = (Ψ∗, Φ)−1Ψ∗.
Moreover, we define 𝑓0 = (𝜉10, 𝜉20 , 𝜉30), where

𝜉10 = (100) ,
𝜉20 = (010) ,
𝜉30 = (001) .

(67)

Let 𝑐 ⋅ 𝑓0 be defined by𝑐 ⋅ 𝑓0 = 𝑐1𝜉10 + 𝑐2𝜉20 + 𝑐3𝜉30 (68)

for 𝑐 = (𝑐1, 𝑐2, 𝑐3)𝑇, 𝑐𝑗 ∈ R(𝑗 = 1, 2, 3). Then, the center space
of linear equation (54) is given by 𝑃𝐶𝑁C, where𝑃𝐶𝑁𝜑 = Φ (Ψ, ⟨𝜑, 𝑓0⟩) ⋅ 𝑓0, 𝜑 ∈ C, (69)

and 𝐶 = 𝑃𝐶𝑁C ⊕ 𝑃𝑆C, 𝑃𝑆C denotes the complementary
subspace of 𝑃𝐶𝑁C.

If𝐴𝜏∗𝜑 (𝜃)= 𝜑̇ (𝜃)+ 𝑋0 (𝜃) [𝜏∗𝐷Δ𝜑 (0) + 𝐿 (𝜏∗) (𝜑 (𝜃) − 𝜑̇ (0))] ,𝜑 ∈ 𝐵C, (70)

where𝑋0 : [−1, 0] 󳨀→ 𝐵(𝑋,𝑋) and 𝑋0(𝜃) = { 0, −1≤𝜃≤0,𝐼, 𝜃=0. then𝐴𝜏∗ is the infinitesimal generator induced by the solutions of
(51) and (54), which can be written as the following operator
differential equation:𝑈̇𝑡 = 𝐴𝜏∗𝑈𝑡 + 𝑋0𝐹 (𝑈𝑡, 𝜇) , (71)

Therefore, the solution of (51) can be written in the form of𝑈𝑡 = Φ(𝑥1 (𝑡)𝑥2 (𝑡)) ⋅ 𝑓0 + ℎ (𝑥1, 𝑥2, 𝜇) ,(𝑥1 (𝑡)𝑥2 (𝑡)) = (Ψ, ⟨𝑈𝑡, 𝑓0⟩) , (72)

where ℎ(𝑥1, 𝑥2, 𝜇) ∈ 𝑃𝑆C, ℎ(0, 0, 0) = 𝐷ℎ(0, 0, 0) = 0.
Specifically, the solution of (51) on the center manifold is𝑈∗𝑡 = Φ(𝑥1 (𝑡)𝑥2 (𝑡)) ⋅ 𝑓0 + ℎ (𝑥1, 𝑥2, 0) . (73)

Let 𝑧 = 𝑥1 − 𝑖𝑥2, and notice that 𝑝1 = Φ1 + 𝑖Φ2; then, we can
rewrite (73) as𝑈∗𝑡 = 12Φ( 𝑧 + 𝑧𝑖 (𝑧 − 𝑧)) ⋅ 𝑓0 +𝑊 (𝑧, 𝑧)= 12 (𝑝1𝑧 + 𝑝1𝑧) ⋅ 𝑓0 +𝑊 (𝑧, 𝑧) , (74)

where 𝑊(𝑧, 𝑧) = ℎ((𝑧 + 𝑧)/2, −(𝑧 − 𝑧)/2𝑖, 0). Furthermore,
from [26], 𝑧 also satisfies𝑧̇ = 𝑖𝜔∗𝜏∗𝑧 + 𝑔 (𝑧, 𝑧) , (75)

where 𝑔 (𝑧, 𝑧) = (Ψ1 (0) − 𝑖Ψ2 (0)) ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ . (76)

Let 𝑊(𝑧, 𝑧) = 𝑊20 𝑧22 +𝑊11𝑧𝑧 +𝑊02 𝑧22 + ⋅ ⋅ ⋅ (77)

and 𝑔 (𝑧, 𝑧) = 𝑔20 𝑧22 + 𝑔11𝑧𝑧 + 𝑔02 𝑧22 + ⋅ ⋅ ⋅ . (78)

By (74), it is not difficult to compute that
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⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ = 𝜏∗𝑧24 ((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁2𝑒−2𝑖𝜔∗𝜏∗
))
)

+ 𝜏∗𝑧𝑧4 (((
(

−2𝑟1𝐾 − 𝛼 (𝜁 + 𝜁)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉 − 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁)𝛽 (𝜁 + 𝜁) − 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗) + 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁
)))
)

+ 𝜏∗𝑧24 ((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝑒𝑖𝜔∗𝜏∗ + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁2
))
)

+ 𝜏∗𝑧2𝑧4
(((((((((((((((((((((
(

⟨−𝑟1𝐾 (4𝑊(1)11 (0) + 2𝑊(1)20 (0))−𝛼 (𝑊(3)20 (0) + 2𝑊(1)11 (0) + 2𝜁𝑊(1)11 (0) + 𝜁𝑊(1)20 (0)) , 1⟩⟨( 𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 − 𝑟2𝐾)(2𝜉𝑊(2)20 (0) + 4𝜉𝑊(2)11 (0))− 𝑎𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑊(3)11 (0) + 𝜉𝑊(3)20 (0) + 2𝜁𝑊(2)11 (0) + 𝜁𝑊(2)20 (0)) , 1⟩⟨ −𝑏𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(3)11 (0) + 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(3)20 (0) + 2𝜁𝑊(2)11 (−1) + 𝜁𝑊(2)20 (−1))−2𝑑 (2𝜁𝑊(3)20 (0) +4𝜁𝑊(3)11 (0)) + 𝛽 (𝑊(3)20 (0) + 2𝑊(1)11 (0) + 2𝜁𝑊(1)11 (0)+𝜁𝑊(1)20 (0)) + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(2)11 (−1) + 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(2)20 (−1)) , 1⟩

)))))))))))))))))))))
)+ ⋅ ⋅ ⋅ ,

(79)

where ⟨𝑊(𝑛)𝑖𝑗 (𝜃), 1⟩ = (1/𝜋) ∫𝜋0 𝑊(𝑛)𝑖𝑗 (𝜃)(𝑥)𝑑𝑥, 𝑖 + 𝑗 = 2,𝑛 = 1, 2, 3. Let (𝜓1, 𝜓2, 𝜓3) = Ψ1(0) − 𝑖Ψ2(0). We can get the
following expressions:𝑔20 = 𝜏∗2 [−(𝑟1𝐾 − 𝛼𝜁)𝜓1 + ( 𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2− 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁)𝜓2 + (𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾(𝛾 + 𝑇∗)2⋅ 𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁2𝑒−2𝑖𝜔∗𝜏∗)𝜓3] ,

𝑔11 = 𝜏∗4 [− (2𝑟1𝐾 + 𝛼 (𝜁 + 𝜁))𝜓1 + ( 2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉
− 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁))𝜓2 + (𝛽 (𝜁 + 𝜁)− 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗)
+ 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁)𝜓3] ,



10 Complexity𝑔02 = 𝑔20,𝑔21 = 𝜏∗2 [⟨−𝑟1𝐾 (4𝑊(1)11 (0) + 2𝑊(1)20 (0))− 𝛼 (𝑊(3)20 (0) + 2 (1 + 𝜁)𝑊(1)11 (0) + 𝜁𝑊(1)20 (0)) , 1⟩⋅ 𝜓1 +⟨( 𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 − 𝑟2𝐾)(2𝜉𝑊(2)20 (0)+ 4𝜉𝑊(2)11 (0)) − 𝑎𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑊(3)11 (0)+ 𝜉𝑊(3)20 (0) + 2𝜁𝑊(2)11 (0) + 𝜁𝑊(2)20 (0) , 1)⟩𝜓2
+⟨ −𝑏𝛾(𝛾 + 𝑇∗)2 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(3)11 (0)+ 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(3)20 (0) + 2𝜁𝑊(2)11 (−1) + 𝜁𝑊(2)20 (−1))− 2𝑑 (2𝜁𝑊(3)20 (0) +4𝜁𝑊(3)11 (0)) + 𝛽 (𝑊(3)20 (0)+ 2𝑊(1)11 (0) + 2𝜁𝑊(1)11 (0) + 𝜁𝑊(1)20 (0))+ 2𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 (2𝜉𝑒−𝑖𝜔∗𝜏∗𝑊(2)11 (−1)+ 𝜉𝑒𝑖𝜔∗𝜏∗𝑊(2)20 (−1)) , 1⟩𝜓3] .

(80)

Since 𝑊20(𝜃) and 𝑊11(𝜃) appear in 𝑔21, we should also
establish them. According to (77), we have𝑊̇ (𝑧, 𝑧) = 𝑊20𝑧𝑧̇ + 𝑊11 (𝑧̇𝑧 + 𝑧𝑧̇) +𝑊02𝑧𝑧̇ + ⋅ ⋅ ⋅ , (81)

and𝐴𝜏∗𝑊 = 𝐴𝜏∗𝑊20 𝑧22 + 𝐴𝜏∗𝑊11𝑧𝑧 + 𝐴𝜏∗𝑊02 𝑧22 + ⋅ ⋅ ⋅ . (82)

In addition, by [26],𝑊(𝑧(𝑡), 𝑧(𝑡)) also satisfies𝑊̇ = 𝐴𝜏∗𝑊+𝐻(𝑧, 𝑧) , (83)

where𝐻(𝑧, 𝑧) = 𝐻20 𝑧22 + 𝐻11𝑧𝑧 + 𝐻02 𝑧22 + ⋅ ⋅ ⋅= 𝑋0𝐹 (𝑈∗𝑡 , 0) − Φ (Ψ, ⟨𝑋0𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩)⋅ 𝑓0 (84)

with𝐻𝑖𝑗 ∈ 𝑃𝑆C and 𝑖 + 𝑗 = 2.

Consequently, (74) and (81)-(83) lead to(2𝑖𝜔∗𝜏∗ − 𝐴𝜏∗)𝑊20 = 𝐻20,−𝐴𝜏∗𝑊11 = 𝐻11. (85)

Since 𝐴𝜏∗ has a pair of purely imaginary characteristic roots,
(83) has the unique solution such that

𝑊20 = (2𝑖𝜔∗𝜏∗ − 𝐴𝜏∗)−1𝐻20,𝑊11 = −𝐴−1𝜏∗𝐻11. (86)

For 𝜃 ∈ [−1, 0], it follows from (84) that𝐻(𝑧, 𝑧) = −Φ (𝜃) Ψ (𝜃) ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ ⋅ 𝑓0= −(𝑝1 (𝜃) + 𝑝2 (𝜃)2 , 𝑝1 (𝜃) − 𝑝2 (𝜃)2𝑖 )
⋅ (Ψ1 (0) , Ψ2 (0))𝑇 × ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ ⋅ 𝑓0= −12 [𝑝1 (𝜃) (Ψ1 (0) − 𝑖Ψ2 (0))+ 𝑝2 (𝜃) (Ψ1 (0) + 𝑖Ψ2 (0))] × ⟨𝐹 (𝑈∗𝑡 , 0) , 𝑓0⟩ ⋅ 𝑓0= −14 [𝑔20𝑝1 (𝜃) + 𝑔02𝑝2 (𝜃)] 𝑧2 ⋅ 𝑓0 − 12 [𝑔11𝑝1 (𝜃)+ 𝑔11𝑝2 (𝜃)] 𝑧𝑧 ⋅ 𝑓0 + ⋅ ⋅ ⋅ .

(87)

Thus, for 𝜃 ∈ [−1, 0], we have
𝐻20 (𝜃) = −12 [𝑔20𝑝1 (𝜃) + 𝑔02𝑝2 (𝜃)] ⋅ 𝑓0,𝐻11 (𝜃) = −12 [𝑔11𝑝1 (𝜃) + 𝑔11𝑝2 (𝜃)] ⋅ 𝑓0,𝐻 (𝑧, 𝑧) (0) = 𝐹 (𝑈∗𝑡 , 0) − Φ (Ψ, ⟨𝐹 (𝑈∗𝑡 , 0)⟩ , 𝑓0) ⋅ 𝑓0,𝐻20 (0) = 𝜏∗2
⋅((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
))
)− 𝑔20𝑝1 (0) + 𝑔02𝑝2 (0)2 ⋅ 𝑓0,

(88)

and
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𝐻11 (0) = 𝜏∗4 (((
(

−2𝑟1𝐾 − 𝛼 (𝜁 + 𝜁)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉 − 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁)𝛽 (𝜁 + 𝜁) − 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗) + 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁
)))
)
− 𝑔11𝑝1 (0) + 𝑔11𝑝2 (0)2 ⋅ 𝑓0. (89)

Combining with the definition of 𝐴𝜏∗ and (86), we have

𝑊̇20 (𝜃) = 2𝑖𝜔∗𝜏∗𝑊20 (𝜃) + 𝑔20𝑝1 (0) + 𝑔02𝑝2 (0)2⋅ 𝑓0, − 1 ≤ 𝜃 ≤ 0. (90)

Since 𝑝1(𝜃) = 𝑝1(0)𝑒𝑖𝜔∗𝜏∗ , we have
𝑊20 (𝜃) = 𝑖2 [ 𝑔20𝜔∗𝜏∗𝑝1 (𝜃) + 𝑔023𝜔∗𝜏∗𝑝2 (𝜃)] ⋅ 𝑓0+ 𝐸𝑒2𝑖𝜔∗𝜏∗𝜃, (91)

where

𝐸 = 𝑊20 (0) − 𝑖2 [ 𝑔20𝜔∗𝜏∗𝑝1 (0) + 𝑔023𝜔∗𝜏∗𝑝2 (0)] ⋅ 𝑓0. (92)

From the definition of 𝐴𝜏∗ and (86) and (92), we have

2𝑖𝜔∗𝜏∗ [ 𝑖𝑔202𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0 + 𝑖𝑔206𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0 + 𝐸]− 𝜏∗𝐷Δ[ 𝑖𝑔202𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0 + 𝑖𝑔206𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0 + 𝐸]− 𝐿 (𝜏∗)⋅ [ 𝑖𝑔202𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0 + 𝑖𝑔206𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0 + 𝐸𝑒2𝑖𝜔∗𝜏∗𝜃]

= 𝜏∗2
⋅((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
))
)− 𝑔20𝑝1 (0) + 𝑔02𝑝2 (0)2 ⋅ 𝑓0.

(93)

Noticing that𝜏∗𝐷Δ[𝑝1 (0) ⋅ 𝑓0] + 𝐿 (𝜏∗) [𝑝1 (𝜃) ⋅ 𝑓0]= 𝑖𝜔∗𝜏∗𝑝1 (0) ⋅ 𝑓0,𝜏∗𝐷Δ[𝑝2 (0) ⋅ 𝑓0] + 𝐿 (𝜏∗) [𝑝2 (𝜃) ⋅ 𝑓0]= −𝑖𝜔∗𝜏∗𝑝2 (0) ⋅ 𝑓0,
(94)

we have2𝑖𝜔∗𝜏∗𝐸 − 𝜏∗𝐷Δ𝐸 − 𝐿 (𝜏∗) (𝐸𝑒2𝑖𝜔∗𝜏∗𝜃) = 𝜏∗2
⋅((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
))
)
. (95)

From previous formulas, we can obtain

𝐸 = 12(((
2𝑖𝜔∗𝜏∗ + 𝑟1𝐾𝑃∗ 0 𝛼𝑃∗0 2𝑖𝜔∗𝜏∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 + 𝑟2𝐾𝑃∗2 𝑎𝑇∗𝛾 + 𝑇∗−𝛽𝑍∗ 𝑏𝑍∗𝛾 + 𝑇∗ 𝑒−2𝑖𝜔∗𝜏∗ − 𝑏𝑇∗𝑍∗(𝛾 + 𝑇∗)2 2𝑖𝜔∗𝜏∗ + 𝑑𝑍∗

))
)
−1
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×(((
(

−𝑟1𝐾 − 𝛼𝜁𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉2 − 𝑟2𝐾𝜉2 − 𝑎𝛾(𝛾 + 𝑇∗)2 𝜉𝜁𝛽𝜁 − 2𝑑𝜁2 − 2𝑏𝛾𝜉𝜁𝑒−𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)2 + 2𝑏𝛾𝑍∗𝜁2𝑒−2𝑖𝜔∗𝜏∗(𝛾 + 𝑇∗)3
)))
)
. (96)

With the same method, we also have

𝑊̇11 (𝜃) = 𝑔11𝑝1 (0) + 𝑔11𝑝2 (0)2 ⋅ 𝑓0, − 1 ≤ 𝜃 ≤ 0, (97)

and𝑊11 (𝜃) = 𝑖2𝜔∗𝜏∗ [−𝑔11𝑝1 (𝜃) + 𝑔11𝑝2 (𝜃)] ⋅ 𝑓0 + 𝐹, (98)

where

𝐹 = 14(((
(

𝑟1𝐾𝑃∗ 0 𝛼𝑃∗0 𝑟2𝐾𝑇∗ − 𝑎𝑇∗𝑍∗(𝛾 + 𝑇∗)2 𝑎𝑇∗𝛾 + 𝑇∗−𝛽𝑍∗ 𝑏𝛾𝑍∗(𝛾 + 𝑇∗)2 𝑑𝑍∗
)))
)

−1

×((((
(

−2𝑟1𝐾 − 𝛼 (𝜁 + 𝜁)2𝑎𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜉𝜉 − 2𝑟2𝐾 𝜉𝜉 − 𝑎𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁 + 𝜉𝜁)𝛽 (𝜁 + 𝜁) − 2𝑑𝜁𝜁 − 𝑏𝛾(𝛾 + 𝑇∗)2 (𝜉𝜁𝑒−𝑖𝜔∗𝜏∗ + 𝜉𝜁𝑒𝑖𝜔∗𝜏∗) + 4𝑏𝛾𝑍∗(𝛾 + 𝑇∗)3 𝜁𝜁
))))
)
.

(99)

At this point, we are able to completely establish the value
of 𝑔21 and thereby can determine the properties of Hopf
bifurcation.

System (3) has the following Poincaré normal form:𝜛̇ = 𝑖𝜔∗𝜏∗𝜛 + 𝐶1 (0) 𝜛 |𝜛|2 + 𝑜 (|𝜛|5) , (100)

where

𝐶1 (0) = 𝑖2𝜔∗𝜏∗ (𝑔20𝑔11 − 2 󵄨󵄨󵄨󵄨𝑔11󵄨󵄨󵄨󵄨2 − 󵄨󵄨󵄨󵄨𝑔02󵄨󵄨󵄨󵄨23 ) + 𝑔213 . (101)

Hence,

𝜎2 = − Re (𝐶1 (0))Re (𝜆󸀠 (𝜏∗)) ,𝛽2 = 2Re (𝐶1 (0)) ,𝑇2 = − Im (𝐶1 (0)) + 𝜎2Im (𝜆󸀠 (𝜏∗))𝜔∗𝜏∗ .
(102)

By the Hopf bifurcation theory [25], we know that 𝜎2
determines the bifurcation direction: if 𝜎2 > 0 (𝜎2 < 0),
then the Hopf bifurcation is supercritical (subcritical) and
the bifurcating periodic solutions exist for 𝜏 > 𝜏0 (𝜏 < 𝜏0);𝛽2 determines the stability of bifurcating periodic solutions:
if 𝛽2 > 0 (𝛽2 < 0), then the periodic solutions are stable
(unstable); 𝑇2 determines the monotonicity of the period of
periodic solutions: if 𝑇2 > 0 (𝑇2 < 0), then the period
increases (decreases).

6. Numerical Simulation

In this section, we conduct the numerical simulations with
the help ofMATLAB.Wefirst choose the following parameter
value: 𝑑1 = 𝑑2 = 0.5,𝑑3 = 2,Ω = (0, 𝜋) ,𝑟1 = 5,
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Figure 1: The equilibrium solution 𝐸∗ of (3) is asymptotically stable when 𝜏 = 0.
𝑟2 = 0.2,𝐾 = 10,𝛼 = 0.068,𝛽 = 0.08,𝑎 = 0.02,𝑏 = 0.005,𝛾 = 0.5,𝑑 = 0.7.

(103)

By direct calculation, we have that system (3) has the
unique positive equilibrium solution 𝐸∗ = (9.84786,9.78241, 1.11867) and the corresponding Hopf bifurcation
value is 𝜏0 ≈ 22.3146.

Figures 1–3 show that the constant equilibrium solution
of (3) is asymptotically stable when the time delay is zero or
appropriately small. On the other hand, once the time delay

is larger than the critical value 𝜏0, the equilibrium solution
would no longer be stable and spatially homogeneous peri-
odic solution will bifurcate at the equilibrium solution (see
Figure 4).

We reselect 𝑑1 = 𝑑2 = 0.0005, 𝑑3 = 0.005, 𝑑 = 0.1,
and keep other coefficients the same. From Figures 5-6, it
is shown that the equilibrium solution 𝐸∗ is asymptotically
stable when 𝜏 = 2.5 and spatially inhomogeneous periodic
solution exists when 𝜏 = 5.42. It confirms that both spatial
diffusion and toxin delay have significant effects on the
spatiotemporal dynamics of system (3). Besides, if we setΩ =(0, 2𝜋), then the spatially inhomogeneous periodic solution
vanishes and the equilibrium solution becomes asymptoti-
cally stable (see Figure 7). It can be concluded that spatially
inhomogeneous pattern is more prone to occurring in small
space.

7. Conclusions

In this paper, we have proposed a delayed reaction-diffusion
model incorporating three plankton populations. Mathemat-
ical analysis indicates that the three populations can coexist
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Figure 2:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 0.65 < 𝜏0.
when the natural growth rate of nontoxic phytoplankton is
large and the death rate of zooplankton by toxin is small.
In this case, the balance is finally achieved by interdepen-
dence and mutual restraint. Otherwise, the zooplankton
will become extinct if the natural growth rate of nontoxic
phytoplankton is small and the death rate of zooplankton by
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Figure 3:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 15 < 𝜏0.
toxin is large. In the latter case, the biomasses of nontoxic
phytoplankton and toxin-producing phytoplankton reach
saturation and algae bloom occurs.

Andwhen considering the toxin delay, the spatiotemporal
dynamics of system is almost unaffected when the time
delay is sufficiently small. However, when the time delay
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Figure 4:The spatially homogeneous periodic solution exists when𝜏 = 25 > 𝜏0.
passes through some critical value, spatially homogeneous
or inhomogeneous periodic solution may arise. This means
that algal bloom erupts periodically under certain conditions.
Therefore, some measures can be adopted to control or
defer the occurrence of Hopf bifurcation, such as reduc-
ing the toxin delay or adding feedback control. Numerical
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Figure 5:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 2.5 with new coefficient values.

simulations complementally illustrate that when there is no
or only tiny time delay, the population distribution pattern is
eventually spatially homogeneous even if the initial distribu-
tion is inhomogeneous. When the time delay is sufficiently
large, the distribution pattern is time periodic. Moreover,
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Figure 6: The spatially inhomogeneous periodic solution exists
when 𝜏 = 5.42 with new coefficient values.

nontoxic phytoplankton has the largest oscillation amplitude,
toxin-producing phytoplankton has the smallest oscillation
amplitude, and the zooplankton hasmodest amplitude.These
phenomena show that toxin delay has the greatest effects on
nontoxic phytoplankton.
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Figure 7:The equilibrium solution 𝐸∗ of (3) is asymptotically stable
when 𝜏 = 5.42 andΩ = (0, 2𝜋).
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