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This paper is concerned with the quasi-matrix and quasi-inverse-matrix projective synchronization between two nonidentical
delayed fractional order neural networks subjected to external disturbances. First, the definitions of quasi-matrix and quasi-
inverse-matrix projective synchronization are given, respectively.Then, in order to realize two types of synchronization for delayed
and disturbed fractional order neural networks, two sufficient conditions are established and proved by constructing appropriate
Lyapunov function in combination with some fractional order differential inequalities. And their estimated synchronization
error bound is obtained, which can be reduced to the required standard as small as what we need by selecting appropriate
control parameters. Because of the generality of the proposed synchronization, choosing different projective matrix and
controllers, the two synchronization types can be reduced to some common synchronization types for delayed fractional order
neural networks, like quasi-complete synchronization, quasi-antisynchronization, quasi-projective synchronization, quasi-inverse
projective synchronization, quasi-modified projective synchronization, quasi-inverse-modified projective synchronization, and so
on. Finally, as applications, two numerical examples with simulations are employed to illustrate the efficiency and feasibility of the
new synchronization analysis.

1. Introduction

Fractional calculus, which is applied to deal with differen-
tiation and integration of arbitrary noninteger orders, has
become an important and powerful tool to research the
practical problems in many subjects [1, 2]. Fractional order
phenomenon is ubiquitous in the real world and has strong
memory and hereditary characteristic, so fractional model
can better describe the dynamical properties and internal
structure of many classical problems than integer ones.
In recent years, many valuable results of fractional order
dynamical systems have been obtained and widely applied
in many areas, such as mathematical physics [1–11], optimum
theory [12], financial problems [13], anomalous diffusion [14],
secure communication [15, 16], biological systems [17, 18],

and heat transfer process [19].These research works illustrate
the practicality and importance of fractional calculus and
promote its development.

Neural network has attracted more and more atten-
tion since the introduction of fractional calculus and its
dynamical behaviors, such as chaos, hyperchaos, bifurca-
tions [20–22], existence, stability and consensus [23–30],
and control and synchronization [31–40], have been widely
studied. Recently, its synchronization problem has become
a research focus and attracted many researchers. In [32,
33], the authors considered the adaptive pinning synchro-
nization and finite time synchronization for delayed frac-
tional order neural network. In [34], He and his cooper-
ators explored quasi-synchronization problem of heteroge-
neous dynamic networks via distributed impulsive control.
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Moreover, some scholars have studied the synchroniza-
tion and quasi-synchronization problems for delayed frac-
tional order memristor-based neural network with uncer-
tain parameters [35–40]. These studies have promoted the
development of fractional order neural networks to some
extent, but most of them are aimed at the special complete
synchronization problem, so it is still an important problem
to propose amore general and practical synchronization type.

Projective synchronization, where the drive and response
systems could be synchronized up to a scaling factor, is an
important concept in practical applications. Nowadays, many
researchers have introduced the projective synchronization
into fractional order neural network. In [41], the authors
applied LMI-based method to realize the global projective
synchronization for fractional order neural network. In [42–
44], the scholars derived some new sufficient conditions and
designed the appropriate controllers to guarantee projective
synchronization for delayed fractional order memristor-
based neural network. In [45], by using comparison principle,
Zhang and her cooperators designed suitable controllers to
reach projective synchronization for delayed fractional order
neural network. In [46], Wu and his cooperators introduced
new sliding mode control laws to realize projective synchro-
nization for nonidentical fractional order neural network in
finite time. And, in [47, 48], researchers explored projective
synchronization and quasi-projective synchronization for
fractional order neural network in complex domain.

However, in the above research works, the proportion
factor of projective synchronization is a fixed constant, while
the simple scaling factor like this maybe does not guarantee
high security of the image encryption and text encryption
in communication. It is an important and meaningful work
to extend the scaling factor to an arbitrary constant matrix
and propose a more general synchronization type. So a new
synchronization type, i.e., matrix projective synchronization,
whose scaling factor is a constant matrix, appears and it
can realize faster and safer communication. Additionally,
another interesting problem is the inverse case of matrix
projective synchronization, that is, when each drive system
state synchronizes with a linear combination of response
system states. Obviously, complexity of the scaling factors
in matrix and inverse-matrix projective synchronization can
have important effect in applications. Besides, it is well
known that time delay is unavoidable due to finite switching
speeds of the amplifiers, and it may cause oscillations or
instability of dynamic systems. And external disturbances for
the fractional order neural network can result in complicated
topological structures because of the complexity and uncer-
tainty of fractional nonlinear systems. Therefore, researching
two more general synchronization types for delayed frac-
tional order neural network with external disturbances is a
meaningful problem.

According to the aforementioned discussions, this work
aims to address these problems and present twomore general
synchronization types, i.e., fractional quasi-matrix and quasi-
inverse-matrix projective synchronization, and establish the
synchronization criteria for delayed and disturbed fractional
order neural network. The remainder of this paper is orga-
nized as follows.

In Section 2, some lemmas of fractional calculus are
introduced and n-dimensional delayed and disturbed frac-
tional order neural network is constructed. In Section 3,
fractional quasi-matrix and quasi-inverse-matrix projective
synchronization are defined and the sufficient criteria for
realizing two synchronization types of the delayed and
disturbed fractional order neural networks are derived by
means of Lyapunov function and some fractional order
properties. In Section 4, as applications, quasi-matrix pro-
jective synchronization for two 2-dimensional and quasi-
inverse-matrix projective synchronization types for two 3-
dimensional delayed and disturbed fractional order neural
networks are realized, respectively. And numerical simula-
tions demonstrate the feasibility of synchronization analysis.
Conclusions are given in Section 5.

2. Preliminaries and System Description

The Caputo derivative of order 𝛼 > 0 for a function 𝑓(𝑡) is
defined as [1]

𝐶
𝑡0
𝐷𝛼𝑡 𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫𝑡𝑡0 𝑓𝑛 (𝜉)(𝑡 − 𝜉)𝛼−𝑛+1𝑑𝜉, (𝑡 ≥ 𝑡0) , (1)

where 𝑡0 and 𝑡 are the limits of Caputo derivative operation
𝐶
𝑡0
𝐷𝛼𝑡 , Γ(⋅) is Euler’s Gamma function, that is, Γ(𝑞) =∫+∞
0

𝑒−𝑡𝑡𝑞−1𝑑𝑡, 𝑓(𝑛) represents the 𝑛th-order derivative of𝑓(𝑥), and 𝑛 is the positive integer satisfying 𝑛 − 1 < 𝛼 ≤ 𝑛.
When 𝛼 = 1, the operation 𝐶𝑡0 𝐷𝛼𝑡 𝑓(𝑡) coincides with the
integer order derivative 𝑑𝑓(𝑡)/𝑑𝑡.
Lemma 1 (see [25]). If 𝑓(𝑡) ∈ 𝐶1([0, +∞), 𝑅) denotes a
continuously differentiable function, the following inequality
holds almost everywhere
𝐶
0𝐷𝛼𝑡 󵄨󵄨󵄨󵄨𝑓 (𝑡)󵄨󵄨󵄨󵄨 ≤ sgn (𝑓 (𝑡)) 𝐶0𝐷𝛼𝑡 𝑓 (𝑡) , (0 < 𝛼 ≤ 1) . (2)

Lemma 2 (see [29]). Consider the following fractional order
differential inequality with time delay

𝐶
0𝐷𝛼𝑡 𝑥 (𝑡) ≤ −𝑎𝑥 (𝑡) + 𝑏𝑥 (𝑡 − 𝜏) , 0 < 𝛼 ≤ 1,𝑥 (𝑡) = ℎ (𝑡) , 𝑡 ∈ [−𝜏, 0] , ℎ (𝑡) ≥ 0, (3)

and linear fractional order differential system with time delay
𝐶
0𝐷𝛼𝑡 𝑦 (𝑡) = −𝑎𝑦 (𝑡) + 𝑏𝑦 (𝑡 − 𝜏) , 0 < 𝛼 ≤ 1,𝑦 (𝑡) = ℎ (𝑡) , 𝑡 ∈ [−𝜏, 0] , ℎ (𝑡) ≥ 0, (4)

where 𝑥(𝑡) and 𝑦(𝑡) are continuous and nonnegative in(0, +∞); if 𝑎 > 0 and 𝑏 > 0, then𝑥 (𝑡) ≤ 𝑦 (𝑡) , ∀𝑡 ∈ [0, +∞) . (5)

Lemma 3 (see [32]). Let 𝑉(𝑡) ∈ 𝑅1 be a continuously differen-
tiable and nonnegative function and satisfy

𝐶
0𝐷𝛼𝑡𝑉 (𝑡) ≤ −𝑎𝑉 (𝑡) + 𝑏𝑉 (𝑡 − 𝜏) , 0 < 𝛼 ≤ 1,𝑉 (𝑡) = 𝜑 (𝑡) ≥ 0, 𝑡 ∈ [−𝜏, 0] , (6)

where 𝑡 ∈ [0, +∞). If 𝑎 > 𝑏 > 0 for all 𝜑(𝑡) ≥ 0, 𝜏 > 0, then
lim𝑡󳨀→+∞𝑉(𝑡) = 0.
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Consider two nonidentical n-dimensional delayed frac-
tional order neural networks, which are subjected to external
disturbances, as the drive system and response system,
respectively:

𝐶
0𝐷𝛼𝑡 𝑥𝑖 (𝑡) = −𝑎𝑖𝑥𝑖 (𝑡) + 𝑛∑

𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡))
+ 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏)) + 𝑑𝑖𝜉𝑖 (𝑡) , (7)

and

𝐶
0𝐷𝛼𝑡 𝑦𝑖 (𝑡) = −𝑎𝑖𝑦𝑖 (𝑡) + 𝑛∑

𝑗=1

𝑏̂𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡))
+ 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏)) + 𝑑𝑖𝜂𝑖 (𝑡) + 𝑢𝑖 (𝑡) ,
(0 < 𝛼 < 1) ,

(8)

where 𝑖 = 1, 2, . . . , 𝑛 and 𝑛 is the number of units
in a neural network. (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))𝑇 ∈ 𝑅𝑛 and(𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡))𝑇 ∈ 𝑅𝑛 denote the state variables.𝑎𝑖, 𝑎𝑖 > 0 are self-regulating parameters of neurons.𝑓𝑗(𝑥𝑗(𝑡)),𝑓𝑗(𝑦𝑗(𝑡)), 𝑔𝑗(𝑥𝑗(𝑡 − 𝜏)), and 𝑔𝑗(𝑦𝑗(𝑡 − 𝜏)) express
neuron activation functions at time 𝑡 and 𝑡 − 𝜏. 𝑏𝑖𝑗, 𝑏̂𝑖𝑗 and𝑐𝑖𝑗, 𝑐𝑖𝑗 denote synaptic connection weight of unit 𝑗 to unit 𝑖.𝑑𝑖𝜉𝑖(𝑡), 𝑑𝑖𝜂𝑖(𝑡) are different bounded external disturbances
and |𝑑𝑖𝜉𝑖(𝑡)| ≤ 𝑃𝑖, |𝑑𝑖𝜂𝑖(𝑡)| ≤ 𝑄𝑖. 𝑢𝑖(𝑡) is the controller to be
designed later.

Assumption 4. Neuron activation functions 𝑓𝑗, 𝑔𝑗 are con-
tinuous and satisfy Lipschitz condition on 𝑅 with Lipschitz
constants 𝐹𝑗, 𝐺𝑗 > 0 as󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑢) − 𝑓𝑗 (V)󵄨󵄨󵄨󵄨󵄨 < 𝐹𝑗 |𝑢 − V| ,󵄨󵄨󵄨󵄨󵄨𝑔𝑗 (𝑢) − 𝑔𝑗 (V)󵄨󵄨󵄨󵄨󵄨 < 𝐺𝑗 |𝑢 − V| , (𝑢, V ∈ 𝑅) . (9)

3. Main Results

In this section, by using the active control method, we will
focus on designing the suitable controllers to realize the
quasi-matrix and quasi-inverse-matrix projective synchro-
nization types between systems (7) and (8).

3.1. Fractional Quasi-Matrix Projective Synchronization. Let’s
first define the quasi-matrix projective synchronization as
follows.

Definition 5. Systems (7) and (8) are said to be quasi-matrix
projective synchronization with error bound 𝛿 ≥ 0, if there
exists 𝑇 ≥ 𝑡0 such that, for all 𝑡 ≥ 𝑇 and initial values𝑒𝑖(0) = 𝑦𝑖(0) − ∑𝑛𝑗=1 Λ 𝑖𝑗𝑥𝑗(0), the synchronization error

satisfies ‖𝑒(𝑡)‖1 = ‖𝑦(𝑡) − Λ𝑥(𝑡)‖1 ≤ 𝛿. Here Λ = (Λ 𝑖𝑗)𝑛×𝑛
means an arbitrary constant projective matrix, ‖⋅‖1 = ∑𝑛𝑖=1 |⋅|,𝑒 = (𝑒1, 𝑒2, . . . , 𝑒𝑛)𝑇, and 𝑥𝑖(0) and 𝑦𝑖(0) are the initial values
of systems (7) and (8).

Next, let us research the quasi-matrix projective syn-
chronization between systems (7) and (8). Taking Caputo
derivative of both sides of error function 𝑒𝑖 = 𝑦𝑖 −∑𝑛𝑗=1 Λ 𝑖𝑗𝑥𝑗
and substituting into (7) and (8), the error system can be
obtained as

𝐶
0𝐷𝛼𝑡 𝑒𝑖 (𝑡) = 𝐶0𝐷𝛼𝑡 𝑦𝑖 (𝑡) − 𝑛∑

𝑗=1

Λ 𝑖𝑗 𝐶0𝐷𝛼𝑡 𝑥𝑗 (𝑡) = −𝑎𝑖𝑦𝑖 (𝑡)
+ 𝑛∑
𝑗=1

𝑏̂𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏)) + 𝑑𝑖𝜂𝑖 (𝑡)
− 𝑛∑
𝑗=1

Λ 𝑖𝑗(−𝑎𝑗𝑥𝑗 (𝑡) + 𝑛∑
𝑖=1

𝑏𝑗𝑖𝑓𝑖 (𝑥𝑖 (𝑡))
+ 𝑛∑
𝑖=1

𝑐𝑗𝑖𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜏)) + 𝑑𝑗𝜉𝑗 (𝑡)) + 𝑢𝑖 (𝑡) .

(10)

Constructing the control function 𝑢𝑖(𝑡) as
𝑢𝑖 (𝑡) = 𝑎𝑖 𝑛∑

𝑗=1

Λ 𝑖𝑗𝑥𝑗 (𝑡) − 𝑛∑
𝑗=1

𝑏̂𝑖𝑗𝑓𝑗( 𝑛∑
𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡))
− 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗( 𝑛∑
𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡 − 𝜏)) + 𝑛∑
𝑗=1

Λ 𝑖𝑗(−𝑎𝑗𝑥𝑗 (𝑡)
+ 𝑛∑
𝑖=1

𝑏𝑗𝑖𝑓𝑖 (𝑥𝑖 (𝑡)) + 𝑛∑
𝑖=1

𝑐𝑗𝑖𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜏))) − 𝑘𝑖𝑒𝑖 (𝑡) ,
(𝑘𝑖 > 0) ,

(11)

and substituting it into (10), the error system is changed to

𝐶
0𝐷𝛼𝑡 𝑒𝑖 (𝑡)= (−𝑎𝑖 − 𝑘𝑖) 𝑒𝑖 (𝑡)

+ 𝑛∑
𝑗=1

𝑏̂𝑖𝑗(𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗( 𝑛∑
𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡)))
+ 𝑛∑
𝑗=1

𝑐𝑖𝑗(𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏)) − 𝑔𝑗( 𝑛∑
𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡 − 𝜏)))
+ 𝑑𝑖𝜂𝑖 (𝑡) − 𝑛∑

𝑗=1

Λ 𝑖𝑗𝑑𝑗𝜉𝑗 (𝑡) .

(12)

Because of different external disturbances for two sys-
tems, 𝑒 = 0 is not the equilibrium point of system (12).
So the complete synchronization between systems (7) and
(8) cannot be realized. However, the quasi-matrix projective
synchronization can be investigated.



4 Complexity

Theorem 6. Suppose Assumption 4 holds and the following
inequality is satisfied:

min
1≤𝑖≤𝑛

(𝑎𝑖 + 𝑘𝑖 − 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐹𝑖) > max
1≤𝑖≤𝑛

( 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐺𝑖) , (13)

then the drive system (7) and response system (8) with control
law (11) will achieve the quasi-matrix projective synchroniza-
tion with the error bound 𝐷1/(𝜆1 − 𝛽1) + 𝜀, where 𝜆1 =
min1≤𝑖≤𝑛(𝑎𝑖 + 𝑘𝑖 − ∑𝑛𝑗=1 |𝑏̂𝑗𝑖|𝐹𝑖), 𝛽1 = max1≤𝑖≤𝑛(∑𝑛𝑗=1 |𝑐𝑗𝑖|𝐺𝑖),𝐷1 = ∑𝑛𝑖=1(𝑄𝑖 + |∑𝑛𝑗=1 Λ 𝑖𝑗𝑃𝑗|), and 0 < 𝜀 << 1 is an arbitrary
small constant.

Proof. Construct the Lyapunov function as 𝑉(𝑡) =∑𝑛𝑖=1 |𝑒𝑖(𝑡)|; then 𝑉(𝑡 − 𝜏) = ∑𝑛𝑖=1 |𝑒𝑖(𝑡 − 𝜏)|. According
to Lemma 1 and Assumption 4, taking Caputo derivative of𝑉(𝑡) along trajectory of error equation (12), one can get

𝐶
0𝐷𝛼𝑡𝑉 (𝑡) = 𝐶0𝐷𝛼𝑡 ( 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨) = 𝑛∑
𝑖=1

𝐶
0𝐷𝛼𝑡 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨

≤ 𝑛∑
𝑖=1

sgn (𝑒𝑖 (𝑡)) 𝐶0𝐷𝛼𝑡 𝑒𝑖 (𝑡)
= 𝑛∑
𝑖=1

sgn (𝑒𝑖 (𝑡))((−𝑎𝑖 − 𝑘𝑖) 𝑒𝑖 (𝑡)
+ 𝑛∑
𝑗=1

𝑏̂𝑖𝑗(𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗( 𝑛∑
𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡)))
+ 𝑛∑
𝑗=1

𝑐𝑖𝑗(𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏)) − 𝑔𝑗( 𝑛∑
𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡 − 𝜏)))
+ 𝑑𝑖𝜂𝑖 (𝑡) − 𝑛∑

𝑗=1

Λ 𝑖𝑗𝑑𝑗𝜉𝑗 (𝑡))
≤ 𝑛∑
𝑖=1

((−𝑎𝑖 − 𝑘𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̂𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐺𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨󵄨) + 𝑛∑
𝑖=1

(𝑄𝑖 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

Λ 𝑖𝑗𝑃𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
= 𝑛∑
𝑖=1

((−𝑎𝑖 − 𝑘𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐹𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨)
+ 𝑛∑
𝑖=1

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐺𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑖=1

(𝑄𝑖 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

Λ 𝑖𝑗𝑃𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
≤ − 𝑛∑
𝑖=1

(min
1≤𝑖≤𝑛

(𝑎𝑖 + 𝑘𝑖 − 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏̂𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐹𝑖)) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨

+ 𝑛∑
𝑖=1

(max
1≤𝑖≤𝑛

( 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐺𝑖)) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑖=1

(𝑄𝑖
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

Λ 𝑖𝑗𝑃𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ≤ −𝜆1𝑉 (𝑡) + 𝛽1𝑉 (𝑡 − 𝜏) + 𝐷1.
(14)

Next, if system

𝐶
0𝐷𝛼𝑡 𝑆 (𝑡) = −𝜆1𝑆 (𝑡) + 𝛽1𝑆 (𝑡 − 𝜏) + 𝐷1,(𝑆 (𝑡) ≥ 0, 𝑆 (𝑡) ∈ 𝑅) , (15)

has the same initial values with 𝑉(𝑡), then 𝐶0𝐷𝛼𝑡 𝑉(𝑡) ≤
𝐶
0𝐷𝛼𝑡 𝑆(𝑡). Using Lemma 2, we have

0 < 𝑉 (𝑡) ≤ 𝑆 (𝑡) , (∀𝑡 ∈ [0, +∞)) . (16)

By using properties of Caputo derivative, (15) is equiva-
lent to

𝐶
0𝐷𝛼𝑡 (𝑆 (𝑡) − 𝐷1) = −𝜆1 (𝑆 (𝑡) − 𝐷1)+ 𝛽1 (𝑆 (𝑡 − 𝜏) − 𝐷1) , (17)

where 𝐷1 = 𝐷1/(𝜆1 − 𝛽1). Letting 𝑆(𝑡) = 𝑆(𝑡) − 𝐷1, system
(17) becomes

𝐶
0𝐷𝛼𝑡 𝑆 (𝑡) = −𝜆1𝑆 (𝑡) + 𝛽1𝑆 (𝑡 − 𝜏) . (18)

Because 𝜆1 > 𝛽1 > 0, based on Lemma 3, we know
lim𝑡󳨀→+∞𝑆(𝑡) = 0. So

𝑆 (𝑡) = 𝑆 (𝑡) − 𝐷1 󳨀→ 0, (𝑡 󳨀→ +∞) . (19)

According to (16) and (19), we get ∀𝜀 > 0, ∃𝑡0, when 𝑡 > 𝑡0,
0 < 𝑉 (𝑡) ≤ 𝑆 (𝑡) ≤ 𝐷1 + 𝜀; (20)

i.e.,

𝑉 (𝑡) = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡) −
𝑛∑
𝑗=1

Λ 𝑖𝑗𝑥𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 𝐷1 + 𝜀 = 𝐷1𝜆1 − 𝛽1 + 𝜀 ⇐⇒‖𝑒 (𝑡)‖1 = 󵄨󵄨󵄨󵄨𝑦 (𝑡) − Λ𝑥 (𝑡)󵄨󵄨󵄨󵄨1 ≤ 𝐷1𝜆1 − 𝛽1 + 𝜀.
(21)

So, quasi-matrix projective synchronizationwith error bound𝐷1/(𝜆1−𝛽1)+𝜀 between drive system (7) and response system
(8) can be realized. This completes the proof.
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Remark 7. Substitute (11) into (8) and activate controller (11);
response system (8) becomes

𝐶
0𝐷𝛼𝑡 𝑦𝑖 (𝑡) = −𝑎𝑖(𝑦𝑖 (𝑡) − 𝑛∑

𝑗=1

Λ 𝑖𝑗𝑥𝑗 (𝑡))
+ 𝑛∑
𝑗=1

𝑏̂𝑖𝑗(𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗( 𝑛∑
𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡))) + 𝑛∑
𝑗=1

𝑐𝑖𝑗
⋅ (𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏)) − 𝑔𝑗( 𝑛∑

𝑖=1

Λ 𝑗𝑖𝑥𝑖 (𝑡 − 𝜏)))
+ 𝑛∑
𝑗=1

Λ 𝑖𝑗(−𝑎𝑗𝑥𝑗 (𝑡) + 𝑛∑
𝑖=1

𝑏𝑗𝑖𝑓𝑖 (𝑥𝑖 (𝑡))
+ 𝑛∑
𝑖=1

𝑐𝑗𝑖𝑔𝑖 (𝑥𝑖 (𝑡 − 𝜏))) + 𝑑𝑖𝜂𝑖 (𝑡) − 𝑘𝑖𝑒𝑖 (𝑡) .

(22)

According to error system (12), drive system (7), and con-
trolled response system (22), we can explore the quasi-
matrix projective synchronization behaviors between frac-
tional order neural networks (7) and (8).

3.2. Fractional Quasi-Inverse-Matrix Projective Synchroniza-
tion. Next, let us define the quasi-inverse-matrix projective
synchronization.

Definition 8. Systems (7) and (8) are said to be quasi-inverse-
matrix projective synchronization with error bound 𝛿 ≥ 0, if
there exists 𝑇 ≥ 𝑡0 such that, for all 𝑡 ≥ 𝑇 and initial values𝑒𝑖(0) = 𝑥𝑖(0) − ∑𝑛𝑗=1𝑀𝑖𝑗𝑦𝑗(0), the synchronization error
satisfies ‖𝑒(𝑡)‖1 = ‖𝑥(𝑡) − 𝑀𝑦(𝑡)‖1 ≤ 𝛿, where𝑀 = (𝑀𝑖𝑗)𝑛×𝑛
means an arbitrary invertible projective matrix.

Taking Caputo derivative of both sides of error function𝑒𝑖 = 𝑥𝑖−∑𝑛𝑗=1𝑀𝑖𝑗𝑦𝑗 and substituting into (7) and (8), the error
system is

𝐶
0𝐷𝛼𝑡 𝑒𝑖 (𝑡) = 𝐶0𝐷𝛼𝑡 𝑥𝑖 (𝑡) − 𝑛∑

𝑗=1

𝑀𝑖𝑗 𝐶0𝐷𝛼𝑡 𝑦𝑗 (𝑡) = −𝑎𝑖𝑥𝑖 (𝑡)
+ 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡)) + 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏)) + 𝑑𝑖𝜉𝑖 (𝑡)
− 𝑛∑
𝑗=1

𝑀𝑖𝑗(−𝑎𝑗𝑦𝑗 (𝑡) + 𝑛∑
𝑖=1

𝑏̂𝑗𝑖𝑓𝑖 (𝑦𝑖 (𝑡))
+ 𝑛∑
𝑖=1

𝑐𝑗𝑖𝑔𝑖 (𝑦𝑖 (𝑡 − 𝜏)) + 𝑑𝑗𝜂𝑗 (𝑡) + 𝑢𝑗 (𝑡)) .

(23)

Constructing the control function 𝑢𝑖(𝑡),
𝑢𝑗 (𝑡) = 𝑛∑

𝑖=1

𝑀̂𝑗𝑖(𝑎𝑖 𝑛∑
𝑗=1

𝑀𝑖𝑗𝑦𝑗 (𝑡)
− 𝑛∑
𝑗=1

𝑏𝑖𝑗𝑓𝑗( 𝑛∑
𝑖=1

𝑀𝑗𝑖𝑦𝑖 (𝑡))

− 𝑛∑
𝑗=1

𝑐𝑖𝑗𝑔𝑗( 𝑛∑
𝑖=1

𝑀𝑗𝑖𝑦𝑖 (𝑡 − 𝜏)) + 𝑘𝑖𝑒𝑖 (𝑡)) + 𝑎𝑗𝑦𝑗 (𝑡)
− 𝑛∑
𝑖=1

𝑏̂𝑗𝑖𝑓𝑖 (𝑦𝑖 (𝑡)) − 𝑛∑
𝑖=1

𝑐𝑗𝑖𝑔𝑖 (𝑦𝑖 (𝑡 − 𝜏)) ,
(𝑀̂ = 𝑀−1, 𝑘𝑖 > 0) ,

(24)

and substituting it into (23), error system changes to

𝐶
0𝐷𝛼𝑡 𝑒𝑖 (𝑡)= (−𝑎𝑖 − 𝑘𝑖) 𝑒𝑖 (𝑡)

+ 𝑛∑
𝑗=1

𝑏𝑖𝑗(𝑓𝑗 (𝑥𝑗 (𝑡)) − 𝑓𝑗( 𝑛∑
𝑖=1

𝑀𝑗𝑖𝑦𝑖 (𝑡)))
+ 𝑛∑
𝑗=1

𝑐𝑖𝑗(𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏)) − 𝑔𝑗( 𝑛∑
𝑖=1

𝑀𝑗𝑖𝑦𝑖 (𝑡 − 𝜏)))
+ 𝑑𝑖𝜉𝑖 (𝑡) − 𝑛∑

𝑗=1

𝑀𝑖𝑗𝑑𝑗𝜂𝑗 (𝑡) .

(25)

Theorem 9. Suppose Assumption 4 holds and the following
inequality is satisfied:

min
1≤𝑖≤𝑛

(𝑎𝑖 + 𝑘𝑖 − 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐹𝑖) > max
1≤𝑖≤𝑛

( 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐺𝑖) , (26)

and then drive system (7) and response system (8) with control
law (24) will achieve the quasi-inverse-matrix projective syn-
chronization with the error bound𝐷2/(𝜆2−𝛽2)+𝜀, where 𝜆2 =
min1≤𝑖≤𝑛(𝑎𝑖+𝑘𝑖−∑𝑛𝑗=1 |𝑏𝑗𝑖|𝐹𝑖), 𝛽2 = max1≤𝑖≤𝑛(∑𝑛𝑗=1 |𝑐𝑗𝑖|𝐺𝑖) and𝐷2 = ∑𝑛𝑖=1(𝑃𝑖 + |∑𝑛𝑗=1𝑀𝑖𝑗𝑄𝑗|).
Proof. Choose the Lyapunov function 𝑉(𝑡) = ∑𝑛𝑖=1 |𝑒𝑖(𝑡)|;
then 𝑉(𝑡 − 𝜏) = ∑𝑛𝑖=1 |𝑒𝑖(𝑡 − 𝜏)|. By using Lemma 1
and Assumption 4, taking Caputo derivative of 𝑉(𝑡) along
trajectory of error system (25), one can get

𝐶
0𝐷𝛼𝑡𝑉 (𝑡) = 𝐶0𝐷𝛼𝑡 ( 𝑛∑

𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨) = 𝑛∑
𝑖=1

𝐶
0𝐷𝛼𝑡 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨

≤ 𝑛∑
𝑖=1

sgn (𝑒𝑖 (𝑡)) 𝐶0𝐷𝛼𝑡 𝑒𝑖 (𝑡)
= 𝑛∑
𝑖=1

sgn (𝑒𝑖 (𝑡))((−𝑎𝑖 − 𝑘𝑖) 𝑒𝑖 (𝑡)
+ 𝑛∑
𝑗=1

𝑏𝑖𝑗(𝑓𝑗 (𝑥𝑗 (𝑡)) − 𝑓𝑗( 𝑛∑
𝑖=1

𝑀𝑗𝑖𝑦𝑖 (𝑡)))
+ 𝑛∑
𝑗=1

𝑐𝑖𝑗(𝑔𝑗 (𝑥𝑗 (𝑡 − 𝜏)) − 𝑔𝑗( 𝑛∑
𝑖=1

𝑀𝑗𝑖𝑦𝑖 (𝑡 − 𝜏)))
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+ 𝑑𝑖𝜉𝑖 (𝑡) − 𝑛∑
𝑗=1

𝑀𝑖𝑗𝑑𝑗𝜂𝑗 (𝑡))
≤ 𝑛∑
𝑖=1

((−𝑎𝑖 − 𝑘𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐹𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐺𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨󵄨) + 𝑛∑
𝑖=1

(𝑃𝑖 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

𝑀𝑖𝑗𝑄𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
= 𝑛∑
𝑖=1

((−𝑎𝑖 − 𝑘𝑖) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐹𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨)
+ 𝑛∑
𝑖=1

𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐺𝑖 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑖=1

(𝑃𝑖 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

𝑀𝑖𝑗𝑄𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨)
≤ − 𝑛∑
𝑖=1

(min
1≤𝑖≤𝑛

(𝑎𝑖 + 𝑘𝑖 − 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐹𝑖)) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 𝑛∑
𝑖=1

(max
1≤𝑖≤𝑛

( 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐺𝑖)) 󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡 − 𝜏)󵄨󵄨󵄨󵄨 + 𝑛∑
𝑖=1

(𝑃𝑖
+ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑛∑
𝑗=1

𝑀𝑖𝑗𝑄𝑗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ≤ −𝜆2𝑉(𝑡) + 𝛽2𝑉 (𝑡 − 𝜏) + 𝐷2.
(27)

Then, by referring to (15)–(20) of the proof forTheorem 6,
similarly we can know

𝑉 (𝑡) = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑒𝑖 (𝑡)󵄨󵄨󵄨󵄨 = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡) −
𝑛∑
𝑗=1

𝑀𝑖𝑗𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ 𝐷2 + 𝜀 = 𝐷2𝜆2 − 𝛽2 + 𝜀 ⇐⇒‖𝑒 (𝑡)‖1 = 󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑀𝑦 (𝑡)󵄨󵄨󵄨󵄨1 ≤ 𝐷2𝜆2 − 𝛽2 + 𝜀.
(28)

So, quasi-inverse-matrix projective synchronization with
error bound 𝐷2/(𝜆2 − 𝛽2) + 𝜀 between drive system (7)
and response system (8) can be realized. This completes the
proof.

Remark 10. Substitute (24) into (8) and activate controller
(24); response system (8) becomes

𝐶
0𝐷𝛼𝑡 𝑦𝑖 (𝑡) = 𝑛∑

𝑗=1

𝑀̂𝑖𝑗(𝑎𝑗 𝑛∑
𝑖=1

𝑀𝑗𝑖𝑦𝑖 (𝑡)
− 𝑛∑
𝑖=1

𝑏𝑗𝑖𝑓𝑖( 𝑛∑
𝑗=1

𝑀𝑖𝑗𝑦𝑗 (𝑡))
− 𝑛∑
𝑖=1

𝑐𝑗𝑖𝑔𝑖( 𝑛∑
𝑗=1

𝑀𝑖𝑗𝑦𝑗 (𝑡 − 𝜏)) + 𝑘𝑗𝑒𝑗 (𝑡)) + 𝑑𝑖𝜂𝑖 (𝑡) .
(29)

Then, according to error system (25), drive system (7),
and controlled response system (29), we can explore quasi-
inverse-matrix projective synchronization behaviors between
fractional order neural networks (7) and (8).

Remark 11. According to Theorems 6 and 9, choosing larger
control parameter 𝑘, the error bound 𝐷𝑖/(𝜆𝑖 − 𝛽𝑖) + 𝜀, (𝑖 =1, 2) will become smaller. Therefore, by selecting appropriate
control parameters, the synchronization error bound can be
reduced to the required standard as small as what we need,
which is of important and practical significance in nonlinear
control and chaos synchronization for fractional order neural
network.

Remark 12. When derivate order 𝛼 = 1, systems (7) and (8)
are reduced to the integer order neural networks, from The-
orems 6 and 9 and their proof; then we can obtain the quasi-
matrix and quasi-inverse-matrix projective synchronization
criteria for the disturbed and delayed integer order neural
networks.

From the above, Theorems 6 and 9 and their proof
process constitute the quasi-matrix and quasi-inverse-matrix
projective synchronization method for synchronizing two
disturbed and delayed fractional order neural networks.
Additionally, it is particular to point out that the above two
synchronization types are of general significance. Choos-
ing different projective matrix and controller, they can
be reduced to some special synchronization cases as in
Remark 13.

Remark 13.

(1) Choosing projective matrix Λ = 𝑀 = 𝐼, systems (7)
and (8) can achieve the quasi-complete synchroniza-
tion.

(2) Choosing projective matrix Λ = 𝑀 = −𝐼, they can
achieve the quasi-antisynchronization.

(3) Choosing projective matrix Λ = 𝑐𝐼 (𝑜𝑟 𝑀 =𝑐𝐼), (𝑐 = 𝑐𝑜𝑛𝑠𝑡 𝑎𝑛𝑑 𝑐 ̸= ±1), they can achieve the
quasi-projective synchronization (or quasi-inverse
projective synchronization).

(4) Choosing projective matrix Λ = diag(𝑐1, 𝑐2, . . .,𝑐𝑛)(𝑜𝑟 𝑀 = diag(𝑐1, 𝑐2, . . . , 𝑐𝑛)), (𝑐𝑖 = 𝑐𝑜𝑛𝑠𝑡, 𝑖 =1, 2, . . . , 𝑛), they can achieve the quasi-modified pro-
jective synchronization (or quasi-inverse-modified
projective synchronization).

(5) If external disturbances 𝑑𝑖𝜉𝑖(𝑡), 𝑑𝑖𝜂𝑖(𝑡) = 0, they
can achieve the complete matrix and inverse-matrix
projective synchronization.

4. Some Applications

In this part, two numerical examples are presented to
demonstrate the effectiveness and feasibility of the proposed
theoretical results.
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Figure 1: Chaotic attractors of systems (30) and (31) at 𝛼 = 0.92. (a) 𝑥1-𝑥2 phase diagram. (b) 𝑦1-𝑦2 phase diagram.

4.1. Application to Fractional Quasi-Matrix Projective Syn-
chronization. Two nonidentical drive and response systems
are considered as

𝐶
0𝐷𝛼𝑡 𝑥𝑖 (𝑡) = −𝑎𝑖𝑥𝑖 (𝑡) + 2∑

𝑗=1

𝑏𝑖𝑗 tanh (𝑥𝑗 (𝑡))
+ 2∑
𝑗=1

𝑐𝑖𝑗 tanh (𝑥𝑗 (𝑡 − 𝜏)) + 𝑑𝑖 sin (𝑡) , (30)

𝐶
0𝐷𝛼𝑡 𝑦𝑖 (𝑡) = −𝑎𝑖𝑦𝑖 (𝑡) + 2∑

𝑗=1

𝑏̂𝑖𝑗 tanh (𝑦𝑗 (𝑡))
+ 2∑
𝑗=1

𝑐𝑖𝑗 tanh (𝑦𝑗 (𝑡 − 𝜏)) + 𝑑𝑖 cos (𝑡)
+ 𝑢𝑖 (𝑡) , (𝑖 = 1, 2) ,

(31)

where

𝑎1 = 3.7𝑎2 = 1.7,
(𝑏11 𝑏12𝑏21 𝑏22) = ( 2 −2−0.4 2.7) ,
(𝑐11 𝑐12𝑐21 𝑐22) = (−3.7 −2.6−1.7 −3.4) ,𝑑1 = 0.1𝑑2 = −0.2,𝑎1 = 3.7𝑎2 = 1.7,

(𝑏̂11 𝑏̂12𝑏̂21 𝑏̂22) = ( 2.1 −2.3−0.35 2.75) ,
(𝑐11 𝑐12𝑐21 𝑐22) = (−3.8 −2.65−1.8 −3.6 ) ,𝑑1 = 0.3𝑑2 = −0.4,𝜏 = 1

(32)

and 𝑢𝑖(𝑡) is the controller. In the following numerical analysis,
in order to research the chaotic synchronization between
systems (30) and (31), we will select derivative order as𝛼 = 0.92, which can make the two systems generate chaotic
attractors as shown in Figures 1(a) and 1(b) with initial
conditions [𝑥1(0), 𝑥2(0)] = [𝑦1(0), 𝑦2(0)] = [0.7, −0.2].

According to Definition 5, choosing projective matrix Λ
as

Λ = (Λ 𝑖𝑗)2×2 = (−2 10.5 −1) (33)

then error function of quasi-matrix projective synchroniza-
tion is computed as

𝑒1 = 𝑦1 − 2∑
𝑗=1

Λ 1𝑗𝑥𝑗 = 𝑦1 − (−2𝑥1 + 𝑥2) ,
𝑒2 = 𝑦2 − 2∑

𝑗=1

Λ 2𝑗𝑥𝑗 = 𝑦2 − (0.5𝑥1 − 𝑥2) . (34)

Choosing 𝑘1 = 0, 𝑘2 = 0, one can easily obtain 𝜆 =−3.35 < 0 < 𝛽 = 6.25 which obviously does not satisfy
condition (13) of Theorem 6, so the time history of errors𝑒1, 𝑒2, ‖𝑒(𝑡)‖1 cannot be limited to a bounded area as shown
in Figures 2(a) and 2(b).
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Figure 2: Quasi-matrix projective synchronization errors 𝑒1, 𝑒2 and ‖𝑒(𝑡)‖1 without controller at 𝛼 = 0.92. (a) Trajectory of errors 𝑒1, 𝑒2. (b)
Trajectory of error ‖𝑒(𝑡)‖1.

Choosing 𝑘1 = 6.35, 𝑘2 = 11.35, one can compute𝜆1 = min1≤𝑖≤2(𝑎𝑖 + 𝑘𝑖 − ∑2𝑗=1 |𝑏̂𝑗𝑖|𝐹𝑖) = min{7.6, 8} = 7.6,𝛽1 = max1≤𝑖≤2(∑2𝑗=1 |𝑐𝑗𝑖|𝐺𝑖) = max{5.6, 6.25} = 6.25, 𝐷1 =∑𝑛𝑖=1(𝑄𝑖 + |∑𝑛𝑗=1 Λ 𝑖𝑗𝑃𝑗|) = 1.35. By Theorem 6, quasi-matrix
projective synchronization with the estimated error bound𝛿 = 1.001 between systems (30) and (31) can be realized
where 𝐷1/(𝜆1 − 𝛽1) = 1.35/(7.6 − 6.25) = 1 and 𝜀 = 0.001.
And there exists 𝑇 ≥ 𝑡0 such that |𝑒𝑖(𝑡)| ≤ ‖𝑒(𝑡)‖1 < 1.001 for
all 𝑡 ≥ 𝑇.

If a smaller error bound needs to be controlled to 𝛿 =0.301, then the larger control parameters should be designed
as 𝑘1 = 9.5, 𝑘2 = 14.35. Next, one can calculate 𝜆1 =
min1≤𝑖≤2(𝑎𝑖 + 𝑘𝑖 − ∑2𝑗=1 |𝑏̂𝑗𝑖|𝐹𝑖) = min{10.75, 11} = 10.75. By
Theorem 6, the quasi-matrix projective synchronization with
the smaller error bound 𝛿 = 0.301 between systems (30) and
(31) can be realizedwhere𝐷1/(𝜆1−𝛽1) = 1.35/(10.75−6.25) =0.3 and 𝜀 = 0.001. And there exists 𝑇 ≥ 𝑡0 such that |𝑒𝑖(𝑡)| ≤‖𝑒(𝑡)‖1 < 0.301 for all 𝑡 ≥ 𝑇.

Next, numerical simulation is given to verify the analysis
of fractional quasi-matrix projective synchronization. The
initial conditions for drive system, response system, and
errors system are [𝑥1(0), 𝑥2(0)] = [𝑦1(0), 𝑦2(0)] = [0.7, −0.2]
and [𝑒1(0), 𝑒2(0), ‖𝑒(𝑡)‖1(0)] = [2.3, −0.75, 3.05]. Figures
3(a)–3(d) show the time trajectories of quasi-matrix projec-
tive synchronization with projective matrix Λ = ( −2 10.5 −1 ).
Figures 4(a)-4(b) depict the time history of synchronization
error with error bound 𝛿 = 1.001 under control parameters𝑘1 = 6.35, 𝑘2 = 11.35 and |𝑒𝑖(𝑡)| ≤ ‖𝑒(𝑡)‖1 < 1.001 can be
acquired as 𝑡 > 5𝑠. Figures 5(a)-5(b) show the time evolution
of synchronization error with a smaller error bound 𝛿 =0.301 under larger control parameters 𝑘1 = 9.5, 𝑘2 = 14.35
and |𝑒𝑖(𝑡)| ≤ ‖𝑒(𝑡)‖1 < 0.301 can be acquired as 𝑡 > 5𝑠, which
verifies Remark 11 that the larger the control parameter 𝑘, the
smaller the error bound 𝐷1/(𝜆1 − 𝛽1) + 𝜀.

4.2. Application to Fractional Quasi-Inverse-Matrix Projective
Synchronization. Two nonidentical 3-dimensional drive and
response systems are constructed as

𝐶
0𝐷𝛼𝑡 𝑥𝑖 (𝑡) = −𝑎𝑖𝑥𝑖 (𝑡) + 3∑

𝑗=1

𝑏𝑖𝑗 tanh (𝑥𝑗 (𝑡))
+ 3∑
𝑗=1

𝑐𝑖𝑗 tanh (𝑥𝑗 (𝑡 − 𝜏)) + 𝑑𝑖 sin (10𝑡) , (35)

and

𝐶
0𝐷𝛼𝑡 𝑦𝑖 (𝑡) = −𝑎𝑖𝑦𝑖 (𝑡) + 3∑

𝑗=1

𝑏̂𝑖𝑗 tanh (𝑦𝑗 (𝑡))
+ 3∑
𝑗=1

𝑐𝑖𝑗 tanh (𝑦𝑗 (𝑡 − 𝜏)) + 𝑑𝑖 cos (10𝑡)
+ 𝑢𝑖 (𝑡) , (𝑖 = 1, 2, 3) ,

(36)

where 𝑎1 = 2.3𝑎2 = 1.3𝑎2 = 1.9,
(𝑏11 𝑏12 𝑏13𝑏21 𝑏22 𝑏23𝑏31 𝑏32 𝑏33) = ( 2.2 −2.1 1.9−0.7 5.75 1.1−4.7 −1 1.3) ,
(𝑐11 𝑐12 𝑐13𝑐21 𝑐22 𝑐23𝑐31 𝑐32 𝑐33) = (−4.1 2.6 −3.1−1.6 −3.5 −2.50.3 1.9 1.1 ) ,
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Figure 3:Quasi-matrix projective synchronization trajectories of state variables𝑥,𝑦with control parameters 𝑘1 = 6.35, 𝑘2 = 11.35 at𝛼 = 0.92.
(a) Time history of 𝑥1, 𝑦1. (b) Time history of 𝑥2, 𝑦2. (c) Time history of −2𝑥1 + 𝑥2, 𝑦1. (d) Time history of 0.5𝑥1 − 𝑥2, 𝑦1.

𝑑1 = 0.2𝑑2 = −0.1𝑑3 = 0.1,𝑎1 = 2.3𝑎2 = 1.3𝑎3 = 1.9,
(𝑏̂11 𝑏̂12 𝑏̂13𝑏̂21 𝑏̂22 𝑏̂23𝑏̂31 𝑏̂32 𝑏̂33) = ( 2.1 −2.1 1.8−0.6 5.7 1−4.5 −0.9 1.2) ,

(𝑐11 𝑐12 𝑐13𝑐21 𝑐22 𝑐23𝑐31 𝑐32 𝑐33) = (−3.8 2.5 −2.8−1.5 −3.5 −2.50.5 1.8 1.3 ) ,
𝑑1 = 0.1𝑑2 = −0.1𝑑3 = 0.2,𝜏 = 0.8

(37)
and 𝑢𝑖(𝑡) is the controller. In the following numerical analysis,
in order to research the chaotic synchronization between
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Figure 6: Chaotic attractors of systems (35) and (36) at 𝛼 = 0.98. (a) 𝑥2-𝑥3-𝑥1 phase diagram. (b) 𝑦2-𝑦3-𝑦1 phase diagram.
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Figure 7: Quasi-inverse-matrix projective synchronization errors 𝑒1, 𝑒2, 𝑒3 and ‖𝑒(𝑡)‖1 without controller at 𝛼 = 0.98. (a) Trajectory of errors𝑒1, 𝑒2, 𝑒3. (b) Trajectory of error ‖𝑒(𝑡)‖1.
systems (35) and (36), we will select derivative order as 𝛼 =0.98, which can make the two systems exhibit the chaotic
attractors as depicted in Figures 6(a) and 6(b) with initial
conditions [𝑥1(0), 𝑥2(0), 𝑥3(0)] = [𝑦1(0), 𝑦2(0), 𝑦3(0)] =[2.2, −0.3, 0.4].

According to Definition 8, selecting the projective matrix𝑀 and its inverse-matrix𝑀−1 as
𝑀 = (𝑀𝑖𝑗)3×3 = (−0.5 1 21 0.5 11 −1 2) ,

𝑀−1 = (−0.4 0.8 00.2 0.6 −0.50.3 −0.1 0.25) ,
(38)

then error function of quasi-inverse-matrix projective syn-
chronization is computed as

𝑒1 = 𝑥1 − 3∑
𝑗=1

𝑀1𝑗𝑦𝑗 = 𝑥1 − (−0.5𝑦1 + 𝑦2 + 2𝑦3) ,
𝑒2 = 𝑥2 − 3∑

𝑗=1

𝑀2𝑗𝑦𝑗 = 𝑥2 − (𝑦1 + 0.5𝑦2 + 𝑦3) ,
𝑒3 = 𝑥3 − 3∑

𝑗=1

𝑀3𝑗𝑦𝑗 = 𝑥3 − (𝑦1 − 𝑦2 + 2𝑦3) .
(39)

Choosing 𝑘1 = 0, 𝑘2 = 0, 𝑘3 = 0, one can easily obtain𝜆 = −7.55 < 0 < 𝛽 = 8 which does not satisfy condition (26)
of Theorem 9, so the time history of error ‖𝑒(𝑡)‖1 cannot be
limited to a bounded area as shown in Figures 7(a) and 7(b).

Choosing 𝑘1 = 16.3, 𝑘2 = 19.55, 𝑘3 = 15.4, one
can compute 𝜆2 = min1≤𝑖≤3(𝑎𝑖 + 𝑘𝑖 − ∑3𝑗=1 |𝑏̂𝑗𝑖|𝐹𝑖) =
min(11, 12, 13) = 11, 𝛽2 = max1≤𝑖≤3(∑3𝑗=1 |𝑐𝑗𝑖|𝐺𝑖) =
max(6, 8, 6.7) = 8, 𝐷2 = ∑𝑛𝑖=1(𝑃𝑖 + |∑𝑛𝑗=1𝑀𝑖𝑗𝑄𝑗|) = 1.5.
By Theorem 9, the quasi-inverse-matrix projective synchro-
nization with the estimated error bound 𝛿 = 0.501 between
systems (35) and (36) can be realized where 𝐷2/(𝜆2 − 𝛽2) =1.5/(11−8) = 0.5 and 𝜀 = 0.001. And there exists 𝑇 ≥ 𝑡0 such
that |𝑒𝑖(𝑡)| ≤ ‖𝑒(𝑡)‖1 < 0.501 for all 𝑡 ≥ 𝑇.

If a smaller error bound needs to be controlled to 𝛿 =0.301, then larger control parameters should be designed as𝑘1 = 18.3, 𝑘2 = 32.55, 𝑘3 = 25.4. Next, one can calculate𝜆2 = min1≤𝑖≤3(𝑎𝑖 + 𝑘𝑖 − ∑3𝑗=1 |𝑏̂𝑗𝑖|𝐹𝑖) = min{13, 25, 23} = 13.
By Theorem 9, the quasi-inverse-matrix projective synchro-
nization with the smaller estimated error bound 𝛿 = 0.301
between systems (35) and (36) is realized where 𝐷2/(𝜆2 −𝛽2) = 1.5/(13 − 8) = 0.3 and 𝜀 = 0.001. And there exists𝑇 ≥ 𝑡0 such that |𝑒𝑖(𝑡)| ≤ ‖𝑒(𝑡)‖1 < 0.301 for all 𝑡 ≥ 𝑇.

Next, numerical simulation is given to verify the analysis
of fractional quasi-inverse-matrix projective synchroniza-
tion. The initial conditions for drive-response system and
error system are [𝑥1(0), 𝑥2(0), 𝑥3(0)] = [𝑦1(0), 𝑦2(0), 𝑦3(0)] =[2.2, −0.3, 0.4] and [𝑒1(0), 𝑒2(0), 𝑒3(0), ‖𝑒(𝑡)‖1(0)] = [2.8,−2.75, −2.9, 8.45]. Figures 8(a)–8(f) show the time trajec-
tories of synchronization for systems (35) and (36) with
projective matrix 𝑀 = ( −0.5 1 21 0.5 1

1 −1 2
). Figures 9(a)-9(b) depict

the time history of synchronization error with error bound𝛿 = 0.501 under control parameters 𝑘1 = 16.3, 𝑘2 =19.55, 𝑘3 = 15.4 and |𝑒𝑖(𝑡)| ≤ ‖𝑒(𝑡)‖1 < 0.501 can be acquired
as 𝑡 > 5𝑠. Figures 10(a)-10(b) show the time evolution of
synchronization error with a smaller error bound 𝛿 = 0.301
under larger control parameters 𝑘1 = 18.3, 𝑘2 = 32.55, and𝑘3 = 25.4 and |𝑒𝑖(𝑡)| ≤ ‖𝑒(𝑡)‖1 < 0.301 can be acquired as𝑡 > 5𝑠, which also verifies Remark 11.
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Figure 8: Quasi-inverse-matrix projective synchronization trajectories of state variables 𝑥, 𝑦 with control parameters 𝑘1 = 16.3, 𝑘2 = 19.55,
and 𝑘3 = 15.4 at 𝛼 = 0.98. (a) Time history of 𝑥1, 𝑦1. (b) Time history of 𝑥2, 𝑦2. (c) Time history of 𝑥3, 𝑦3. (d) Time history of 𝑥1, −0.5𝑦1 +𝑦2 + 2𝑦3. (e) Time history of 𝑥2, 𝑦1 + 0.5𝑦2 + 𝑦3. (f) Time history of 𝑥3, 𝑦1 − 𝑦2 + 2𝑦3.
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Figure 9: Quasi-inverse-matrix projective synchronization errors 𝑒1, 𝑒2, 𝑒3 and ‖𝑒(𝑡)‖1 with control parameters 𝑘1 = 16.3, 𝑘2 = 19.55, and𝑘3 = 15.4 at 𝛼 = 0.98. (a) Trajectory of errors 𝑒1, 𝑒2, 𝑒3. (b) Trajectory of error ‖𝑒(𝑡)‖1.
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Figure 10: Quasi-inverse-matrix projective synchronization errors 𝑒1, 𝑒2, 𝑒3 and ‖𝑒(𝑡)‖1 with control parameters 𝑘1 = 18.3, 𝑘2 = 32.55, and𝑘3 = 25.4 at 𝛼 = 0.98. (a) Trajectory of errors 𝑒1, 𝑒2, 𝑒3. (b) Trajectory of error ‖𝑒(𝑡)‖1.
5. Conclusions

For synchronizing two nonidentical delayed and disturbed
fractional order neural networks, the paper proposes the
quasi-matrix and quasi-inverse-matrix projective synchro-
nization and establishes their synchronization criteria. By
selecting appropriate control parameters, the synchroniza-
tion error bound is obtained and can be reduced to the
required standard as small as what we need, which is of
important significance to practical problem. Two numerical
examples verify the feasibility of synchronization analysis.
Simply put, Definitions 5 and 8, Theorems 6 and 9 and
their proofs, and synchronization analysis of two numerical
examples are all new work.

This research extends the projective scaling factor to an
arbitrary constant matrix and offers a general approach for
synchronizing the delayed and disturbed fractional order
neural network. Evidently, fractional quasi-matrix and quasi-
inverse-matrix projective synchronization can guarantee
faster and safer image encryption and text encryption in
communication and provide new insights for researching the
fractional order neural network, which is a meaningful work.
The complex-valued neural network with time delay, which
is a more general neural network system, is becoming more
and more popular, and its finite time stability, boundedness,
global robust stability, and global exponential stability have
been well researched in [22, 28, 40, 47–51]. So, in future
works, by using adaptive control method and sliding mode
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control method, we will generalize our main results to quasi-
matrix and quasi-inverse-matrix projective synchronization
for delayed fractional order complex-variable neural net-
works, fractional ordermemristor-based neural network, and
fractional order neural network with unknown parameters.
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