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�is paper considers the classical separable nonlinear least squares problem. Such problems can be expressed as a linear
combination of nonlinear functions, and both linear and nonlinear parameters are to be estimated. Among the existing results, ill-
conditioned problems are less often considered. Hence, this paper focuses on an algorithm for ill-conditioned problems. In the
proposed linear parameter estimation process, the sensitivity of the model to disturbance is reduced using Tikhonov regu-
larisation.�e Levenberg–Marquardt algorithm is used to estimate the nonlinear parameters.�e Jacobianmatrix required by LM
is calculated by the Golub and Pereyra, Kaufman, and Ruano methods. Combining the nonlinear and linear parameter estimation
methods, three estimation models are obtained and the feasibility and stability of the model estimation are demonstrated. �e
model is validated by simulation data and real data.�e experimental results also illustrate the feasibility and stability of themodel.

1. Introduction

�e separable nonlinear least squares problem is a special
type of nonlinear least squares problem. It was proposed by
Golub and Pereyra for estimating the parameters of the
formula for atomic physical ion half-life [1]. In the separable
nonlinear least squares model, the estimated model can be
expressed as a linear combination of nonlinear problems.

To utilise the special structure of the separable nonlinear
least squares problem, in 1973, Golub and Pereyra proposed
the variable projection (VP) algorithm [1], which eliminates
linear parameters and simpli�es the problem into a set of
nonlinear parameter estimation problems. �is method also
reduces the computational complexity. Compared with the
corresponding algorithm for a direct solution, the VP algo-
rithm has fewer iteration steps and less initial point guessing.
Moreover, when the original problem is ill posed, the degree
of ill-posedness can be reduced [2–5]. As research has pro-
gressed, the mathematical models of many problems in actual
engineering can be expressed as separable nonlinear least
squares, for instance, in inverse problems and problems in
signal processing, medical and biological imaging, neural

networks, communication, electrical and electronic engi-
neering, and di¢erential equation dynamic systems [6–15].

In 1980, Ruhe and Wedin analysed the separation and
nonseparation of parameters and concluded that the pa-
rameter separation approach was simpler and more e¢ective
[16]. In 1990, Shen and Ypma used the variable projection
method to transform a separable nonlinear least squares
problem into a case containing only nonlinear parameters,
which improved the computational e¦ciency of the function
[17]. In 2003, Golub and Pereyra summarised the devel-
opment and application of separable nonlinear least squares
over the past 30 years [18]. In recent years, many studies and
application of the separable nonlinear least squares problem
have obtained various results. Chen studied the nonlinear
four-parameter sine wave model and calculated it using the
variable projection method. Experiments show that the
convergence speed has a strong relationship with the fre-
quency parameter [19]. Chung and Nagy applied separable
nonlinear least squares to large-scale ill-posed problems and
improved the distortion problem in image processing [20].

�ere are a large number of research results for separable
nonlinear least squares, but there are relatively few studies
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on potentially ill-conditioned problems with parameters.
When a singular value becomes very small, the least squares
model may be ill-conditioned. Regularisation is a commonly
used method to solve ill-conditioned problems that causes
regression coefficients to have smaller variance values, thus
solving potentially ill-posed problems [21–28]. .e Tikho-
nov regularisation (TR) method [21–23], truncated singular
value method [24, 25], kernel function-based regularisation
method [26, 27], and l1 norm regularisation method [28] are
often used to solve ill-posed problems. When estimating
nonlinear parameters, iterative search methods such as the
Gauss–Newton method, steepest gradient method, and LM
method are commonly used [29–34]. In these methods, the
Jacobian matrix has a strong influence on the computational
efficiency of the algorithm.

.is paper proposes a hybrid VP-based algorithm that
combines the LM and TRmethods and evaluates the effect of
different Jacobian matrix algorithms on its accuracy and
efficiency. .e TR method is used to regularise the linear
parameter estimation, and the LM algorithm is used to
estimate the nonlinear parameters in a separable nonlinear
least squares problem. .e Jacobian matrix is calculated
using three methods: Golub and Pereyra (GP), Kaufman
(KAU), and Ruano (RJF). .e algorithm proposed in this
paper combines the advantages of the LM algorithm with
those of a regularisation method and can improve the es-
timation efficiency. .e model was validated using two
examples: exponential fitting and the determination of
waveform parameters for airborne radar sounding data.

2. VP Model and Its Parameter
Estimation Method

2.1. VPModel. .e separable nonlinear least squares model
can be expressed in the following form:

y(t) � 􏽘
m

j�1
θLϕj θN; tt( 􏼁, (1)

where ϕj(θN; tt)(j � 1, 2, . . . , m, t � 1, 2, . . . , n) are non-
linear functions; y(t), (t � 1, 2, . . . , n) are observation data;
tt is the relevant variable of y(t); and
θL � (θL,1, θL,2, . . . , θL,m) and θN � (θN,1, θN,2, . . . , θN,k) are
the linear and nonlinear parameters, respectively, to be
estimated.

.e optimal parameters θL and θN can be obtained by the
following nonlinear function:

θL, θN( 􏼁 � argmin
θL ,θN

􏽘

n

t�1
y(t) − 􏽘

m

j

θLϕj θN; tt( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

2

. (2)

.e above formula can be expressed using matrices as
follows:

θL, θN( 􏼁 � argmin
θL ,θN

y − Φ θN( 􏼁θL
����

����
2
2, (3)

where the column vector of matrix Φ(θN) is a nonlinear
function ϕj(θN; tt), the element of vector y is y(t), and ‖·‖22
is the Euclidean norm. For given nonlinear parameters θN,

the linear parameters θL can be obtained by solving the
following nonlinear least squares problem:

θL � Φ θN( 􏼁
TΦ θN( 􏼁􏼐 􏼑

− 1
Φ θN( 􏼁

T
y � Φ θN( 􏼁

+
y, (4)

where Φ(θN)+ is the pseudoinverse of Φ(θN). If
(Φ(θN)TΦ(θN))− 1Φ(θN)T is computable, then (4) can be
solved. Hence, the premise of (4) is that matrix
(Φ(θN)TΦ(θN))− 1 is nonsingular, but this premise is not
true in some cases.

2.2. Determination of the Linear Parameters. Without loss of
generality, the power system can be expressed as

y � Φ θN( 􏼁θL � ΦθL, (5)

where Φ ∈ Ra×b, a≥ b, θL ∈ Rb, and y ∈ Ra.
We can then perform singular value decomposition

(SVD) on Φ, which can be expressed as

Φ � USV
T

� 􏽘
l

i�1
uiσiv

T
i , (6)

where U � [u1, u2, . . . , ua] ∈ Ra×a and V � [v1, v2,

. . . , vb] ∈ Rb×b are the unitary matrices composed of column

vectors. S � (sij) ∈ Ra×b, sij �
σi, i � j

0, i≠ j
􏼨 , σ1 ≥ σ2 ≥ · · ·

≥ σl > 0, σl+1 � σl+2 � · · · � σb � 0. In addition, σi􏼈 􏼉
l

i�1 is the
singular value of Φ. Using SVD to solve (5), we obtain

θL � 􏽘
l

i�1

uT
i y

σi

vi. (7)

To reduce the sensitivity of the SVD method to dis-
turbances, a filter factor fi can be added..e SVD formwith
the added filter factor is

θL � 􏽘
l

i�1
fi

uT
i y

σi

vi. (8)

Different filtering factors will result in different regu-
larisation methods, and the TR method is a widely applied
method [35, 36]. .e filtering factor obtained by the TR
method can be expressed as fi � σ2i /(σ

2
i + σ21), and (8) can be

expressed as

θL � 􏽘
l

i�1

σ2i
σ2i + σ21

uT
i y

σi

vi. (9)

2.3. Determination of the Nonlinear Parameters. For matrix
F(θk

N, θk
L) � y − Φ(θN)θL, the Jacobian matrix J(θk

N) is the
first derivative of F(θk

N, θk
L):

J θk
N􏼐 􏼑 �

zF θk
N, θk

L􏼐 􏼑

zθk
N

⎛⎝ ⎞⎠

T

. (10)

Assume
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P
⊥
Φ θk

N( ) � I − Φ θk
N􏼐 􏼑Φ θk

N􏼐 􏼑􏼐 􏼑
+
. (11)

.e matrix can be expressed as

F θk
N, θk

L􏼐 􏼑 � I − Φ θN( 􏼁θL( 􏼁y. (12)

.e Jacobian matrix can be calculated in the following
three ways:

(1) .e calculation method given by Golub and Pereyra
is as follows:

JGP � DP
⊥
Φy � − P

⊥
ΦDΦΦ

−
y − P

⊥
ΦDΦΦ

−
( 􏼁

T
y, (13)

where D is the Fréchet derivative of the map. In
addition, Φ− is the symmetric generalised inverse of
Φ that satisfies ΦΦ− Φ � Φ and (ΦΦ)T � ΦΦ−

(2) Kaufman proposed the following simplified calculation
method for the Jacobian matrix after studying (13):

JKAU � − P
⊥
ΦDΦΦ

−
y. (14)

(3) Ruano proposed an even simpler calculation method
for the Jacobian matrix based on Kaufman’s method:

JRJF � − DΦΦ−
y. (15)

Ruano et al. [37] proved that (15) is valid and can be
obtained from Kaufman’s Jacobian matrix (14). It can be
proved that the same gradient vector can be obtained by the
above three Jacobian matrices [38].

.e following equation can be used to iterate nonlinear
parameters:

θk+1
N � θk

N + βkdk, (16)

where βk is a scalar step size that ensures that the objective
function ‖y − Φ(θN)􏽥θL‖

2
2 is decreasing and dk is the search
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Figure 1: Observation data and fitting curves. (a) VPGP. (b) VPKAU. (c) VPRJF.
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direction. In the LM algorithm, βk can be determined by the
following equation [39]:

r θk
+ ρmk dk􏼐 􏼑≤ r θk

􏼐 􏼑 + ρmk g
T
k dk, (17)

where mk is the smallest nonnegative integer satisfying (17),
ρ � 0.5, gk � J(θk)r(θk), and βk � ρmk .

dk can be determined by the following equation:

J θk
N􏼐 􏼑

T
J θk

N􏼐 􏼑 + ckI􏼔 􏼕dk � − J θk
N􏼐 􏼑

T
F θk

N, θk
L􏼐 􏼑, (18)

where ck is the damping factor and affects both the gradient
and dk. If ck tends to infinity, dk tends to the fastest

direction. If ck tends to zero, dk tends to the Gauss–Newton
direction. .ere are many methods of selecting damping
factor ck [40]. After obtaining ck, the search direction dk can
be obtained by solving (17). Step parameter βk can be ob-
tained by a linear search algorithm with mixed quadratic
interpolation and cubic interpolation [41–43].

Combining the above methods for the linear and non-
linear parameters, three algorithms can be obtained..e LM
algorithm is used for the nonlinear parameters, and the three
methods of GP, KAU, and RJF are used to calculate the
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Figure 2: Change in parameters with respect to the number of iterations. (a) VPGP. (b) VPKAU. (c) VPRJF.

Table 1: Parameter results.

Method λ1 λ2 β1 β2
VPGP+TR 3.0067 2.8893 10.5868 1.4004
VPKAU+TR 3.0068 2.8891 10.5868 1.4004
VPRJF+TR 3.0067 2.8893 10.5868 1.4004

Table 2: Quantitative comparison of performance for each
method.

Method Runtime
(s)

Number of
iterations

Residual
sum RMSE

VPGP+TR 40.596687 10 0.1477 0.0859
VPKAU+TR 17.186718 10 0.1477 0.0859
VPRJF+TR 31.073001 100 0.1477 0.0859
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Jacobian matrix in this algorithm. For the linear parameters,
the TR method is used. .e formula is as follows:

θL, θN( 􏼁 � arg min
θN

y − Φ θN( 􏼁θL
����

����
2
2, θL � 􏽘

l

i�1

σ2i
σ2i + σ21

uT
i y

σi

vi

⎧⎨

⎩

⎫⎬

⎭.

(19)

Moreover, the specific algorithm is as follows:

Step 1: give the initial value θ0N of the nonlinear pa-
rameter, and predefine the maximum number of it-
eration steps kmax and error ε
Step 2: calculate the initial value θ0L of the linear pa-
rameter using the TR method of (5) and (9)
Step 3: alternately update the nonlinear parameters and
linear parameters
Step 4: repeat the third step until either the maximum
number of iteration steps kmax is reached or
|θk+1

N − θk
N|< ε

3. Numerical Experiments

.e experimental environment used in this study was
MATLAB 2016b, running on a PC equipped with a 2.30GHz
CPU, 4GB of memory, and aWindows 10 operating system.

3.1. Index-Fitting Model. Two experiments were used to
evaluate the three algorithms proposed in this paper. .e
first of these experiments was derived from the observation
of the decay of radioactive materials. .e model describes
the sum of the exponential terms of two unknown atten-
uation factors and is written as follows:

y(β, λ; t) ≈ β1e
− λ1t

+ β2e
− λ2t

, (20)

where β � (β1, β2)
T and λ � (λ1, λ2)

T are the linear and
nonlinear unknown parameters to be estimated, re-
spectively. Moreover, there are 21 ti and corresponding
observations yi, i � (1, 2, . . . , 21). We minimise the fol-
lowing functions according to the principle of least squares:

1
2

􏽘

21

i�1
yi − y(β, λ; t)􏼂 􏼃

2
�
1
2

􏽘

21

i�1
yi − β1e

− λ1t
+ β2e

− λ2t
􏽨 􏽩

2

�
1
2

􏽘

21

i�1
yi − 􏽘

2

j�1
βjϕj λ, ti( 􏼁⎡⎢⎢⎣ ⎤⎥⎥⎦

2

.

(21)

According to the composition of the function matrix in the
second part, the nonlinear function part can be expressed as a
matrix form asΦ(λ) � 􏽐

2
j�1φj(λ, ti). After SVD, forΦ(λ), the

estimated values of the linear parameters θk
L are obtained from

(9). For the nonlinear parameters, the objective function
F(θk

N, θk
L) is first constructed by (12), the Jacobian matrix is

then obtained by the three different methods, and the LM
algorithm is substituted into (16) to determine the parameters.
When iterating, we set the initial value to λ0 � [7, 3]T, the
maximum number of iteration steps to 100, and ε � 10− 6.

Performing SVD on Φ yields singular values of 1.8480 and
0.3586.

Figure 1 shows the observations and their fitting curves.
.e curves of the observation value fit the results of the

three methods very well. .e curves obtained by the three
methods are basically the same, demonstrating that all three
methods are feasible and the results are reliable.

Figure 2 shows the change in parameters λ1 and λ2 with
respect to the number of iterations.

As Figure 2 shows, for λ1, the change in parameter curves
for the two methods VPGP+TR and VPRJF+TR are basically the
same, and the specified accuracy can be achieved after nine
iterations. Visually, it is clear that after five iterations, the
solution is very close to the final result. In contrast, the
VPKAU+TR method reached the maximum number of iter-
ations (100). However, after 30 iterations, even though the
result changes a little, it is close to the final result.

For λ2, the change in parameter curves for the two
methods VPGP+TR and VPRJF+TR are also basically the same,
and the specified accuracy is also achieved after nine iter-
ations. .e graph shows that, after four iterations, the so-
lution is very close to the final calculation result. .e
VPKAU+TR method again reached the maximum number of
calculations, but the solution is close to the final result after
20 iterations.

Table 1 lists the results of the parameters obtained by the
three methods.

.e table shows that, as for the curves in Figure 1, the
results obtained by the three methods are basically the same.

Table 2 gives the runtime (in seconds), number of it-
erations, residual sum, and root mean square error (RMSE)
for the three methods.

.e quantitative indicators (residual sums and RMSE)
are equal and very small, indicating that the three algorithms
achieve the same calculation accuracy, which is relatively
high. .e difference between them is only the number of
iterations and runtime. .e VPGP+TR method takes the
longest to calculate because this method uses the most
complicated way to calculate the Jacobian matrix. In con-
trast, VPRJF+TR is a simple method for calculating the Ja-
cobian matrix. However, to meet the accuracy requirements,
the number of iterations is also large, so the calculation time
is also long. .e VPKAU+TR method somewhat simplifies the
calculation of the Jacobian matrix, and to some extent, the
accuracy of the calculation is guaranteed, so the runtime is
the shortest. For this simulation experiment, the VPKAU+TR
method performs the best of all methods.

3.2. Waveform Parameter Calculation for Airborne Laser
Radar Sounding Data. .e second experiment used laser
radar sounding waveform data. .e experimental data were
flight experimental data obtained from a flight over the sea
near Sanya City, Hainan Province, China.

.e waveform sample data are stored as an array, and the
amplitude of each sample point is recorded separately. .e
sample information is presented as a ‘waveform’ form on a
two-dimensional plane. .e onboard laser system records
discrete echoes that simulate the “waveform” of the raw
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sampled data using the most appropriate functional model.
To improve the sounding accuracy, it is highly desirable to
choose a high-precision theoretical model.

.is experiment has a total of 320 waveform data, and
the function model is as follows:

y � a + be
− (x− μ)2/2σ2

. (22)

Selecting reasonable data can effectively reduce the in-
fluence of noise. In this study, we selected some of the data
that have no gross errors. We extracted 42 data from the
waveform data to determine the parameters. When iterating,
we set the initial value to λ0 � [15, 3]T, the maximumnumber

of iteration steps to 100, and the error to ε � 10− 3. SVD forΦ
yielded singular values of 6.5941 and 1.9585.

Table 3 lists the calculation results of the model
parameters.

.e results given in the table show that the results ob-
tained by the three methods are basically the same, indicating
that all three methods are feasible approaches. .e result
obtained by VPRJF+TR is slightly different from those of the
other two methods because this method simplifies the cal-
culation of the Jacobian matrix the most, resulting in a gap.

Figure 3 shows the fitting curves of the model.
In Figure 3, all three methods fit the curve well, which also

intuitively illustrates the feasibility of these three methods.

Table 3: Parameter results.

Method a b μ σ
VPGP+TR 207.1076 498.6737 14.0070 3.4534
VPKAU+TR 207.0941 498.6461 14.0068 3.4540
VPRJF+TR 207.0518 498.5602 14.0085 3.4560
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Figure 3: Waveform data and fitting curves. (a) VPGP+TR. (b) VPKAU+TR. (c) VPRJF+TR.
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Figure 4 shows the change in parameters μ and σ with
respect to the number of iterations.

.e results in Figure 4 show that for parameters μ and σ,
when error ε � 10− 3, the parameter change is basically stable
after five iterations. .is shows that the convergence of these
three methods is fast and accurate.

Table 4 lists the runtime (in seconds), number of iter-
ations, and root mean square error (RMSE).

For ε � 10− 3, number of iterations and RMSE (i.e., the
convergence speed and accuracy) of these three methods are
basically the same. With respect to runtime, the VPGP+TR
method again takes the longest because of its calculation of

the Jacobian matrix. Hence, the same number of iterations
takes longer. Similarly, the Jacobian matrix of the VPRJF+TR
method is the simplest and requires the shortest time to
calculate. For the VPKAU+TR method, the computational
complexity is between those of the other two methods, and it
takes moderate amount of time to calculate.

4. Conclusion

For the separable nonlinear least squares problem, this paper
establishes a solution model consisting of an LM algorithm
combined with TR. For linear parameter estimation, the
sensitivity of the model to disturbance is reduced by the TR
method. For the nonlinear parameter estimation, the LM
algorithm is adopted and the Jacobianmatrix is calculated by
the Golub and Pereyra, Kaufman, and Ruano methods.
Combining nonlinear and linear parameter estimation
methods, three estimation models are obtained and the
stability and accuracy of model estimation are demon-
strated. .e model was verified by simulation data in the
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Figure 4: Change in parameters with respect to the number of iterations. (a) VPGP+TR. (b) VPKAU+TR. (c) VPRJF+TR.

Table 4: Quantitative comparison of performance for each
method.

Method Runtime (s) Number of iterations RMSE
VPGP+TR 263.797378 10 38.0979
VPKAU+TR 91.929637 10 38.0980
VPRJF+TR 9.817583 10 38.0983
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experiment in Section 3.1 and real data in the experiment in
Section 3.2. .e experimental results also illustrate the
feasibility of the model.

In future research, we will apply the Jacobian matrix
decomposition to the VP algorithm..is decomposition can
simplify the model and improve the efficiency of the
algorithm.
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