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�is paper is concerned with a stochastic three-species food web model with omnivory which is de�ned as feeding on more than
one trophic level. �e model involves a prey, an intermediate predator, and an omnivorous top predator. First, by the stochastic
comparison theorem, we show that there is a unique global positive solution to the model. Next, we investigate the asymptotic
pathwise behavior of the model. �en, we conclude that the model is persistent in mean and extinct and discuss the stochastic
persistence of themodel. Further, by constructing a suitable Lyapunov function, we establish su�cient conditions for the existence
of an ergodic stationary distribution to the model. �en, we present the application of the main results in some special models.
Finally, we introduce some numerical simulations to support the main results obtained. �e results in this paper generalize and
improve the previous related results.

1. Introduction

�e dynamic relationship between predators and their
preys has long been and will continue to be one of the
dominant themes in both ecology and mathematical
ecology due to its universal existence and importance [1].
During the past one hundred years, there have been many
investigations on predator-prey models. To the best of our
knowledge, in the predator-prey interaction, the functional
response plays an important role in the population dy-
namics, and most of the predator-prey models with the
functional responses only depend on the prey. However,
laboratory experiments show that the ratio-dependent
response function is more reasonable in characterizing the
relationship between predators and their preys [2]. Arditi
and Ginzburg [3] �rst proposed a ratio-dependent func-
tional response of form (αx)/ (x + βy). Kuang and Beretta
[4] investigated the following ratio-dependent type pred-
ator-prey model:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) + β12x2(t)
[ ]dt,

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) + β12x2(t)
[ ]dt,




(1)

where x1(t) and x2(t) represent population sizes of prey and
predator at time t, respectively. r, a1, and d2 stand for the
prey intrinsic growth rate, the intraspeci�c competition rate
of the prey, and the predator death rate, respectively; α12, β12,
and e12 represent the encounter rate, half capturing satu-
ration constant, and conversion rate, respectively, that
predator x2 preys on prey x1.

Long-term ecological research studies show that three-
species predator-prey models are fundamental building
blocks of large scale ecosystems. However, it was only in the
1970s that some scholars began to study the dynamics of
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three-species predator-prey systems [5]. In particular, Hsu
et al. [6] have classified all three-species predator-prey
models into five types: two predators competing for one
prey, one predator acting on two preys, food chain, food
chain with omnivory, and food chain with cycle. Food chain
architecture and strengths of species interactions are im-
portant determinants of trophic dynamics (see [7]). It is well
known that tritrophic food chain model consists of one prey,
one intermediate predator, and one top predator. Note that
omnivory is a widespread mechanism in interacting pop-
ulations. In [6], the authors investigated the following three-
species predator-prey food chain model with an omnivory
top predator:

dx1(t) � x1(t) r − a11x1(t) − a12x2(t) − a13x3(t) dt,

dx2(t) � x2(t) − d2 + a21x1(t) − a23x3(t) dt,

dx3(t) � x3(t) − d3 + a31x1(t) + a32x2(t) dt,

⎧⎪⎪⎨

⎪⎪⎩

(2)

where x1, x2, and x3 denote the number of prey, in-
termediate predator, and omnivorous top predator, re-
spectively, r1 is the growth rate of prey, ri is the death rate of
species xi (i � 2, 3), a11 is the intraspecific competition rate
of prey, a12, a13, and a23 are the capture rates, and a21, a31,
and a32 denote the efficiency of food conversion. Model (2)
describes that the intermediate predator preys on only the
prey and the omnivorous top predator preys on both the
prey and the intermediate predator. *is is a general part of
marine or terrestrial food web ecological systems. Based on
model (2), Namba et al. [8] considered the intraspecific
competition of the intermediate predator and the in-
traspecific competition of the top predator. Moreover, the
authors demonstrated the stabilizing role of intraspecific

competition among intermediate and top predators when
the growth rate of prey species is adequate to support both
the predator species. Furthermore, Sen et al. [9] investigated
the following three-species Lotka–Volterra model with
intraguild predation and mixed functional responses:

dx1(t) � x1(t) r − a11x1(t) − a12x2(t) − a13x3(t) dt,

dx2(t) � x2(t) − d2 + a21x1(t) − a22x2(t) −
a23x3(t)

1 + βx2(t)
 dt,

dx3(t) � x3(t) − d3 + a31x1(t) +
a32x2(t)

1 + βx2(t)
− a33x3(t) dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where x1, x2, and x3 denote the number of prey, in-
termediate predator, and omnivorous top predator, re-
spectively. Obviously, in [9], the authors considered Holling
type-II functional response between the intermediate
predator and top predator and other functional responses
were assumed to be linear. All meanings of the parameters
are exact to or similar as those for (2) except the following.
Here, aii is the intraspecific competition rate of species xi

(i � 2, 3) and β is the reciprocal of the half-saturation
constant.

Note that the three-species food web models (2) and (3)
with the functional responses only depend on prey density.
However, in fact, the predator has to search and compete for
food and the ratio-dependent function of the prey and the
predator is more suitable to substitute for the model with
complicated interaction between the prey and predator.
*en, the ratio-dependent type three-species food web
model with omnivory is expressed in the form:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) + β12x2(t)
−

α13x3(t)

x1(t) + β13x3(t)
 dt,

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
 dt,

dx3(t) � x3(t) − d3 − a3x3(t) +
e13α13x1(t)

x1(t) + β13x3(t)
+

e23α23x2(t)

x2(t) + β23x3(t)
 dt,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where x1(t) stands for the total number of prey at time t,
while x2(t) and x3(t) represent the total number of in-
termediate predators and omnivorous top predators at time
t, respectively. Here, r is the intrinsic growth rate of prey; di

represents the mortality rate of predator xi (i � 2, 3); ai

stands for the intraspecific competition rate of species xi

(i � 1, 2, 3); α12, β12, and e12 are the encounter rate, half-
saturation constant, and conversion rate, respectively, that
x2 preys on x1; α13, β13 and e13 stand for the same corre-
sponding denotations that x3 preys on x1; and α23, β23, and

e23 represent the same corresponding denotations that x3
preys on x2.

As mentioned above, we notice that population models
(1)–(4) are described by the deterministic model. *is is valid
only at the macroscopic scale, that is, the stochastic effects can
be neglected or averaged out, in view of the law of large
numbers. However, in the real world, populations are actually
subject to the environmental fluctuations. Generally speaking,
such fluctuations could be modeled by a colored noise. It has
been noted that if the colored noise is not strongly correlated,
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then we can approximate the colored noise by a white noise
_w(t), and the approximation works quite well (see [10]). It
turns out that the white noise _w(t) is formally regarded as the
derivative of a Brownian motion w(t), i.e., _w(t) � dw(t)/dt

(see [11]). As a result, the study of stochastic ecological dy-
namics model has already become one of the important
subjects in biological mathematics.

After taking the effect of randomly fluctuating envi-
ronment into account, many researchers introduced sto-
chastic environmental variation described by the Brownian
motion into parameters in the deterministic model to es-
tablish the stochastic population model (see [12–15]). Liu
and Bai [12] considered the optimal harvesting problem of a
stochastic logistic model with time delay. In [13–15], the
authors investigated the dynamics of stochastic predator-
prey models. Ji et al. [13] discussed a stochastic predator-
prey model with modified Leslie–Gowerand Holling-type II
schemes. Jovanović and Krstić [14] investigated the ex-
tinction of a stochastic predator-prey model with the Allee
effect on the prey. Liu and Jiang [15] considered the periodic
solution and stationary distribution of stochastic predator-
prey models with higher-order perturbation. In [16], con-
sidering that fluctuations in the environment would man-
ifest themselves mainly as fluctuations in the intrinsic
growth rate of the prey population and in the death rate of
the predator population (see [17]), Ji et al. supposed pa-
rameters r and d2 in model (1) were perturbed with

r⟶ r + σ1 _w1(t),

− d2⟶ − d2 + σ2 _w2(t),
(5)

where w1(t) and w2(t) are mutually independent Brownian
motions and σ2i represents the intensity of white noise _wi(t)

(i � 1, 2). Moreover, they investigated the long time be-
havior of the following stochastic ratio-dependent prey-
predator model:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) +β12x2(t)
 dt +σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) +β12x2(t)
 dt +σ2x2(t)dw2(t).

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(6)

Based on (6), Wu et al. [18] considered the corresponding
nonautonomous stochastic ratio-dependent model. Lv et al.
[19] introduced the intraspecific competition of the predator

population, denoted by a2, into model (6). Nguyen and Ta
[20] considered a corresponding nonautonomous stochastic
ratio-dependent prey-predator model, in which the white
noise makes the effect on both the growth rates of species and
the intraspecific competition coefficient of the species.

For the study of stochastic three-species models, consult
[21–26] and the references therein. Geng et al. [21] in-
vestigated the stability of a stochastic one-predator-two-prey
population model with time delay, while Liu et al. [22]
studied the stability of a stochastic two-predator one-prey
population model with time delay. In [23, 24], the authors
discussed the dynamical behaviors of stochastic tri-trophic
food-chain models. Li et al. [23] investigated the persistence
and nonpersistence of a stochastic food-chain model, while
Liu and Bai [24] considered the optimal harvesting problem
of a stochastic three species food-chain model. Furthermore,
in [25, 26], the stochastic three-species food-chain models
with omnivory are discussed. Qiu and Deng [25] in-
vestigated the stationary distribution and global asymptotic
stability of a stochastic food-web model with omnivory and
linear functional response, while R. Liu and G. Liu [26]
discussed the persistence in mean and extinction of a sto-
chastic food-web model with intraguild predation and
mixed functional responses. In [26], the authors considered
Holling type-II functional response between the in-
termediate predator and the top predator and other func-
tional responses were assumed to be linear.

To the best of our knowledge, so far there is no in-
vestigation on the dynamics of the stochastic three-species
food web model with omnivory and ratio-dependent
functional response. *e purpose of this paper is to make
some contribution in this direction. Recall that parameters r,
d2, and d3 in model (4) represent the intrinsic growth rate of
the prey population, the death rate of the intermediate
predator, and the death rate of the omnivorous top predator,
respectively. As done in [16], in this paper, we may replace r,
d2, and d3 in model (4), respectively, by

r⟶ r + σ1 _w1(t),

− d2⟶ − d2 + σ2 _w2(t),

− d3⟶ − d3 + σ3 _w3(t),

(7)

where _wi(t) is the white noise and σ2i is the intensity of white
noise _wi(t) (i � 1, 2, 3). *en, the stochastic three-species
food web model with omnivory and ratio-dependent
functional response took the following form:

dx1(t) � x1(t) r − a1x1(t) +
α12x2(t)

x1(t) + β12x2(t)
−

α13x3(t)

x1(t) + β13x3(t)
 dt + σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
 dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 − a3x3(t) +
e13α13x1(t)

x1(t) + β13x3(t)
+

e23α23x2(t)

x2(t) + β23x3(t)
 dt + σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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with (x1(0), x2(0), x3(0)) � (x10, x20, x30) ∈ R3
+ � (x1, x2,

x3) ∈ R3 : xi > 0 i � 1, 2, 3}. All meanings of the parameters
are exact to or similar as those for (4) except the following.
Here, w � w1(t), w2(t), w3(t) : t≥ 0  represents the three-
dimensional standard Brownian motion defined on a
complete filtered probability space (Ω,F, Ft t≥ 0,P) sat-
isfying the usual conditions. σ2i represents the intensity of
noise wi(t) (i � 1, 2, 3). *roughout this paper, unless
otherwise specified, we would rather assume that a1 > 0,
a2 ≥ 0, a3 ≥ 0, α13 ≥ 0, α23 ≥ 0, β13 > 0, β23 > 0, e13 > 0, and
e23 > 0.

2. Existence and Uniqueness of
Positive Solution

In this section, we consider the existence of the positive
solution for all times. Typically, conditions assuring the
nonexplosion of the solution involve local Lipschitz conti-
nuity and a linear growth condition. In our case, we miss this
last condition, so it is necessary to prove that the solution

does not explode at a finite time. To prove the solution is
positive and does not explode at a finite time, we use the
stochastic comparison theorem. For simplicity, we introduce
the following notations:

κ1 � r −
α12
β12

−
α13
β13

;

κ2 � e12α12 − d2 −
α23
β23

;

κ3 � e13α13 + e23α23 − d3.

(9)

Theorem 1. For any given initial value (x10, x20, x30) ∈ R3
+,

model (8) has unique global positive solution (x1(t),

x2(t), x3(t)) for t≥ 0, that is, (x1(t), x2(t), x3(t)) ∈ R3
+ with

probability one for t ∈ [0,∞).

Proof. Consider the following system:

dX1(t) � r − a1e
X1(t) +

α12eX2(t)

eX1(t) + β12eX2(t)
+

α13eX3(t)

eX1(t) + β13eX3(t)
−
σ21
2

 dt + σ1dw1(t),

dX2(t) � − d2 − a2e
X2(t) +

e12α12eX1(t)

eX1(t) + β12eX2(t)
−

α23eX3(t)

eX2(t) + β23eX3(t)
−
σ22
2

 dt + σ2dw2(t),

dX3(t) � − d3 − a3e
X3(t) +

e13α13eX1(t)

eX1(t) + β13eX3(t)
+

e23α23eX2(t)

eX2(t) + β23eX3(t)
−
σ23
2

 dt + σ3dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

with initial value (X1(0), X2(0), X3(0)) � (lnx10, lnx20,

lnx30). Obviously, the coefficients of (10) are locally Lip-
schitz continuous. *us, there is a unique maximal local
solution (X1(t), X2(t), X3(t)) of (10) for t ∈ [0, τe), where
τe denotes the explosion time. Let xi(t) � eXi(t) (i � 1, 2, 3).
Using Itô formula, it follows that (x1(t), x2(t), x3(t)) �

(eX1(t), eX2(t), eX3(t)) is the unique positive local solution of
(8) with initial value (x10, x20, x30) for t ∈ [0, τe).

Next, we show that (X1(t), X2(t), X3(t)) is a global
solution of (10), that is, τe �∞. Consider the following two

stochastic differential systems:
dΦ1(t) � Φ1(t) r − a1Φ1(t) dt + σ1Φ1(t)dw1(t),

dΦ2(t) � Φ2(t) e12α12 − a2Φ2(t) dt + σ2Φ2(t)dw2(t),

dΦ3(t) � Φ3(t) e13α13 + e23α23 − a3Φ3(t) dt + σ3Φ3(t)dw3(t),

⎧⎪⎪⎨

⎪⎪⎩

(11)

with initial value (Φ1(0),Φ2(0),Φ3(0)) � (x10, x20, x30) and

dϕ1(t) � ϕ1(t) κ1 − a1ϕ1(t) dt + σ1ϕ1(t)dw1(t),

dϕ2(t) � ϕ2(t) κ2 − a2 +
e12α12β12
ϕ1(t)

 ϕ2(t) dt + σ2ϕ23(t)dw2(t),

dϕ3(t) � ϕ3(t) κ3 − a3 +
e13α13β13
ϕ1(t)

+
e23α23β23
ϕ2(t)

 ϕ3(t) dt + σ3ϕ3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

with initial value (ϕ1(0), ϕ2(0), ϕ3(0)) � (x10, x20, x30).
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*anks to Lemma 4.2 in [27], systems (11) and (12) can
be explicitly solved as follows:

Φ1(t) �
exp r − σ21/2( ( t + σ1w1(t) 

1/x10(  + a1 
t

0 exp r − σ21/2( ( s + σ1w1(s) ds
,

Φ2(t) �
exp e12α12 − σ22/2( ( t + σ2w2(t) 

1/x20(  + a2 
t

0 exp e12α12 − σ22/2( ( s + σ2w2(s) ds
,

Φ3(t) �
exp e13α13 + e23α23 − σ23/2( ( t + σ3w3(t) 

1/x30(  + a3 
t

0 exp e13α13 + e23α23 − σ23/2( ( s + σ3w3(s) ds
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ1(t) �
exp κ1 − σ21/2( ( t + σ1w1(t) 

1/x10(  + a1 
t

0 exp κ1 − σ21/2( ( s + σ1w1(s) ds
,

ϕ2(t) �
exp κ2 − σ22/2( ( t + σ2w2(t) 

1/x20(  + 
t

0 a2 + e12α12β12( / ϕ1(s)( ( ( exp κ2 − σ22/2( ( s + σ2w2(s) ds
,

ϕ3(t) �
exp κ3 − σ23/2( ( t + σ3w3(t) 

1/x30(  + 
t

0 a3 + e13α13β13( / ϕ1(s)( (  + e23α23β23( / ϕ2(s)( ( ( exp κ3 − σ23/2( ( s + σ3w3(s) ds
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Note that the local solution (x1(t), x2(t), x3(t)) is
positive on [0, τe). *en, from the comparison theorem of
stochastic differential equations (see *eorem 3.1 in [28]), it
follows that for t ∈ [0, τe)

0<ϕi(t)≤xi(t)≤Φi(t), a.s., i � 1, 2, 3. (14)

*us, for t ∈ [0, τe)

lnϕi(t)≤ lnxi(t)≤ lnΦi(t), a.s., i � 1, 2, 3. (15)

Since lnϕi(t) and lnΦi(t) (i � 1, 2, 3) exist for every
t≥ 0, it follows that τe �∞. *us, for any initial value
(X1(0), X2(0), X3(0)) � (lnx10, lnx20, lnx30) ∈ R3, and
(10) has a unique global solution (X1(t), X2(t), X3(t)) on
[0,∞) a.s. Note that the coefficients of (8) are local Lipschitz
continuous. *erefore, for any initial value (x10, x20,

x30) ∈ R3
+, model (8) has a unique global positive solution

(x1(t), x2(t), x3(t)) � (eX1(t), eX2(t), eX3(t)) on [0,∞) a.s.
*e proof is therefore complete. □

3. Asymptotic Behaviors

Lemma 1 (see [13]). Consider one-dimensional stochastic
differential equation:

dx(t) � x(t)[a − bx(t)]dt + σx(t)dw(t), (16)

where a, b, and σ are positive constants and w(t) is standard
Brownian motion. For any x0 > 0, let x(t) be the solution of
equation (16) with initial value x0. If a> (σ2/2), then

lim
t⟶∞

lnx(t)

t
� 0,

lim
t⟶∞

1
t


t

0
x(s)ds �

a − σ2/2( 

b
, a.s.

(17)

Theorem 2. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (8) with initial value
(x10, x20, x30). If a2 > 0, a3 > 0, and κi − (σ2i /2)> 0 (i �

1, 2, 3), then

lim
t⟶∞

lnxi(t)

t
� 0, a.s., i � 1, 2, 3. (18)

Proof. From *eorem 1, it follows that

ϕi(t)≤xi(t)≤Φi(t), a.s., i � 1, 2, 3. (19)

Note that ϕ1(t) and Φ1(t) are the solutions of the fol-
lowing stochastic equations, respectively,

dϕ1(t) � ϕ1(t) κ1 − a1ϕ1(t) dt + σ1ϕ1(t)dw1(t),

dΦ1(t) � Φ1(t) r − a1Φ1(t) dt + σ1Φ1(t)dw1(t).
(20)

with initial value x10 > 0. Obviously, from Lemma 1, it
follows that if κ1 − (σ21/2)> 0:

lim
t⟶∞

lnϕ1(t)

t
� 0,

lim
t⟶∞

lnΦ1(t)

t
� 0 a.s.

(21)
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*is, together with (19), yields

lim
t⟶∞

lnx1(t)

t
� 0 a.s. (22)

Now, we show limt⟶∞((lnx2(t))/t) � 0 a.s. Note that,
x2(t)≤Φ2(t) a.s. and Φ2(t) is the solution of equation

dΦ2(t) � Φ2(t) e12α12 − a2Φ2(t) dt + σ2Φ2(t)dw2(t),

(23)

with initial x20 > 0. *us, from Lemma 1 and κ2 − (σ22/2)> 0,
it follows that

lim
t⟶∞

lnΦ2(t)

t
� 0 a.s. (24)

Note that limt⟶∞((ln ϕ1(t))/t) � 0, a.s. *us, for any
ε> 0, there exists T1 > 0 such that

e
− εt ≤ϕ1(t)≤ e

εt
, for t≥T1. (25)

By the strong law of large numbers of local martingales
(see *eorem 1.3.4 in [11]), it follows that
limt⟶∞((σ2w2(t))/t) � 0 a.s. *us, for any ε> 0, there
exists T2 > 0 such that

− εt≤ σ2w2(t)≤ εt, for t≥T2. (26)

From the expression of ϕ2(t) that for any t≥T � T1 ∨T2,
we have

1
ϕ2(t)

�
1

x2(T)
e

− κ2− σ22/2( )( )(t− T)− σ2 w2(t)− w2(T)( )[ ] + a2 
t

T
e

− κ2− σ22/2( )( )(t− s)− σ2 w2(t)− w2(s)( )[ ]ds

+ 
t

T

e12α12β12
ϕ1(s)

e
− κ2− σ22/2( )( )(t− s)− σ2 w2(t)− w2(s)( )[ ]ds

≤
1

x2(T)
e

− κ2− σ22/2( )( )(t− T)+ε(t+T)[ ] + a2 
t

T
e

− κ2− σ22/2( )( )(t− s)+ε(t+s)[ ]ds

+ e12α12β12 
t

T
e
εs

e
− κ2− σ22/2( )( )(t− s)+ε(t+s)[ ]ds.

(27)

Hence, from κ2 − (σ22/2)> 0, ε> 0 and t≥T, it follows
that

e− 3ε(t+T)

ϕ2(t)
≤

1
x2(T)

e
− κ2− σ22/2( )( )(t− T)− 2ε(t+T)[ ] + a2 

t

T
e

− ε(t− s)
e

− εt
e

− 3εT
e

− κ2− σ22/2( )( )(t− s)ds

+ e12α12β12e
− 3εT


t

T
e

− κ2− σ22/2( )( )(t− s)− 2ε(t− s)[ ]ds

�
1

x2(T)
e

− κ2− σ22/2( )( )(t− T)− 2ε(t+T)[ ] +
a2

κ2 + ε − σ22/2( 
e

− εt
e

− 3εT
e

− κ2+ε− σ22/2( )( )T

+
e12α12β12

κ2 + 2ε − σ22/2( 
e

− 3εT
e

− κ2+2ε− σ22/2( )( )T ≤
1

x2(T)
+

a2

κ2 − σ22/2( 
+

e12α12β12
κ2 − σ22/2( 

_� K1.

(28)

*at is (1/(ϕ2(t)))≤K1e
3ε(t+T) a.s., for t≥T. *en,

− lnϕ2(t)≤ lnK1 + 3ε(t + T). *us, for any ε> 0,

lim inf
t⟶∞

lnϕ2(t)

t
≥ 0 a.s. (29)

Consequently,

0≤ lim inf
t⟶∞

lnϕ2(t)

t
≤ lim inf

t⟶∞

lnx2(t)

t
≤ lim sup

t⟶∞

lnx2(t)

t

≤ lim
t⟶∞

lnΦ2(t)

t
� 0 a.s.

(30)

In addition,
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lim sup
t⟶∞

lnϕ2(t)

t
≤ lim sup

t⟶∞

lnx2(t)

t
≤ 0 a.s. (31)

*us,

lim
t⟶∞

lnϕ2(t)

t
� 0,

lim
t⟶∞

lnx2(t)

t
� 0, a.s.

(32)

Similarly, if κ1 − (σ21/2)> 0, κ2 − (σ22/2)> 0, and
κ3 − (σ23/2)> 0, then

lim
t⟶∞

lnx3(t)

t
� 0 a.s. (33)

*e proof is therefore complete. □

4. Persistence in Mean and Extinction

In this section, we show that under some conditions, model
(8) is persistent in mean and extinct.

Theorem 3. Suppose that a2 > 0, a3 > 0, and κi − (σ2i /2)> 0
(i � 1, 2, 3). 9en, for any (x10, x20, x30) ∈ R3

+, the solution
(x1(t), x2(t), x3(t)) of model (8) with initial value
(x10, x20, x30) obeys

lim inf
t⟶∞

1
t


t

0
x1(s)ds≥

κ1 − σ21/2( 

a1
a.s.,

lim inf
t⟶∞

1
t


t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
 ds≥ κ2 −

σ22
2

a.s.,

lim inf
t⟶∞

1
t


t

0
a3x3(s) +

e13α13β13x3(s)

x1(s)
+

e23α23β23x3(s)

x2(s)
 ds

≥ κ3 −
σ23
2

a.s.

(34)

Proof. For prey x1, from *eorem 1, it follows that

ϕ1(t)≤x1(t) a.s., (35)

and ϕ1(t) is the solution of the following stochastic equation:

dϕ1(t) � ϕ1(t) κ1 − a1ϕ1(t) dt + σ1ϕ1(t)dw1(t), (36)

with initial value x10 > 0. Obviously, from Lemma 1, it
follows that if κ1 − (σ21/2)> 0,

lim
t⟶∞

1
t


t

0
ϕ1(s)ds �

κ1 − σ21/2( 

a1
a.s. (37)

*is, together with (35), yields

lim inf
t⟶∞

1
t


t

0
x1(s)ds≥ lim

t⟶∞

1
t


t

0
ϕ1(s)ds

�
κ1 − σ21/2( 

a1
> 0 a.s.

(38)

For intermediate predator x2, using Itô formula, it
follows that

lnx2(t) � 
t

0
− d2 − a2x2(s) +

e12α12x1(s)

x1(s) + β12x2(s)


−
α23x3(s)

x2(s) + β23x3(s)
−
σ22
2

ds + σ2w2(t) + lnx20

≥ κ2 −
σ22
2

 t − a2 
t

0
x2(s)ds

− 
t

0

e12α12β12x2(s)

x1(s) + β12x2(s)
ds + σ2w2(t) + lnx20.

(39)

Hence,
1
t


t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
 ds≥ κ2 −

σ22
2

 

+
σ2w2(t)

t
+
lnx20

t
−
lnx2(t)

t
.

(40)

By the strong law of numbers of local martingales and
*eorem 2, we get

lim inf
t⟶∞

1
t


t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
 ds≥ κ2 −

σ22
2

a.s.

(41)

For the omnivorous top predator x3, it follows from Itô
formula that

lnx3(t) � 
t

0
− d3 − a3x3(s) +

e13α13x1(s)

x1(s) + β13x3(s)


+
e23α23x2(s)

x2(s) + β23x3(s)
−
σ23
2

ds + σ3w3(t) + lnx30

≥ κ3 −
σ23
2

 t − 
t

0
a3x3(s) +

e13α13β13x3(s)

x1(s) + β13x3(s)


+
e23α23β23x3(s)

x2(s) + β23x3(s)
ds + σ3w3(t) + lnx30.

(42)

Hence,
1
t


t

0
a3x3(s) +

e13α13β13x3(s)

x1(s)
+

e23α23β23x3(s)

x2(s)
 ds

≥ κ3 −
σ23
2

  +
σ3w3(t)

t
+
lnx30

t
−
lnx3(t)

t
.

(43)
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By the strong law of numbers of local martingales and
*eorem 2, we get

lim inf
t⟶∞

1
t


t

0
a3x3(s) +

e13α13β13x3(s)

x1(s)
+

e23α23β23x3(s)

x2(s)
 ds

≥ κ3 −
σ23
2

a.s.

(44)

*e proof is therefore complete. □

Theorem 4. Suppose that r − (σ21/2)< 0, e12α12 − d2−

(σ22/2)< 0 and e13α13 + e23α23 − d3 − (σ23/2)< 0. 9en, for
any initial value (x10, x20, x30) ∈ R3

+, model (8) is extinct
exponentially with probability one.

Proof. From Itô formula, it follows that

lnx1(t)≤ r −
σ21
2

 t + σ1w1(t) + lnx10,

lnx2(t)≤ e12α12 − d2 −
σ22
2

 t + σ2w2(t) + lnx20,

lnx3(t)≤ e13α13 + e23α23 − d3 −
σ23
2

 t + σ3w3(t) + lnx30.

(45)

Note that limt⟶∞[((σiwi(t))/t) + ((lnxi0)/t)] � 0 (i �

1, 2, 3) and r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e13α13 + e23α23 − d3 − (σ23/2)< 0. *en,

lim sup
t⟶∞

lnx1(t)

t
≤ r −

σ21
2
< 0 a.s.,

lim sup
t⟶∞

lnx2(t)

t
≤ e12α12 − d2 −

σ22
2
< 0 a.s.,

lim sup
t⟶∞

lnx3(t)

t
≤ e13α13 + e23α23 − d3 −

σ23
2
< 0 a.s.

(46)

*erefore, model (8) is extinct exponentially. *e proof
is complete. □

5. Stochastic Permanence

In this section, we discuss the stochastic permanence of
model (8). *e definition of stochastic permanence and
stochastically ultimately boundness of model (8) were in-
troduced in the literature [29, 30] as follows.

Definition 1 (see [29, 30]). Model (8) is called stochastically
ultimate bounded, if for any ε ∈ (0, 1), there exist three
positive constants H1 � H1(ε), H2 � H2(ε), and
H3 � H3(ε) such that the solution (x1(t), x2(t), x3(t)) of
model (8) with any initial value (x10, x20, x30) ∈ R3

+ has the
property that

lim sup
t⟶∞

P xi(t)>Hi < ε, i � 1, 2, 3. (47)

Definition 2 (see [29, 30]). Model (8) is said to be sto-
chastically permanent, if for any ε ∈ (0, 1), there exist
positive constants δi � δi(ε), Hi � Hi(ε), and δi <Hi

(i � 1, 2, 3), such that the solution (x1(t), x2(t), x3(t)) of
model (8) with any initial value (x10, x20, x30) ∈ R3

+ has the
property that

lim inf
t⟶∞

P xi(t)≤Hi ≥ 1 − ε,

lim inf
t⟶∞

P xi(t)≥ δi 

≥ 1 − ε, i � 1, 2, 3.

(48)

It is obvious that if stochastic model (8) is stochastically
permanent, its solutions must be stochastically ultimately
bounded.

5.1. Boundness. In this subsection, we investigate the sto-
chastically ultimate boundness of model (8) in two different
ways.

Lemma 2 (see [31]). For any positive constants p, m, and n,
the Bernoulli equation

dx(t)

dt
� pmx(t) − pnx

1+(1/p)
(t), (49)

with the initial value x(0) � x0 > 0, has the solution

x(t) �
m

n 1 − e− mt +(m/n)x
− (1/p)
0 e− mt 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

p

. (50)

Theorem 5. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (8) with initial value
(x10, x20, x30). If a2 > 0 and a3 > 0, then for any p≥ 0,

lim sup
t⟶∞

E x
p
1(t) ≤

r +(p/2)σ21
a1

 

p

,

lim sup
t⟶∞

E x
p
2(t) ≤

e12α12 +(p/2)σ22
a2

 

p

,

lim sup
t⟶∞

E x
p
3(t) ≤

e13α13 + e23α23 +(p/2)σ23
a3

 

p

.

(51)

*at is, the solution of model (8) is uniformly bounded
in the pth moment.

Proof. For Φ1 in system (11), applying Itô formula to Φp
1

leads to

Φp
1(t) � x

p
10 + 

t

0
pΦp

1(s) r +
p − 1
2

σ21 − a1Φ1(s) ds

+ 
t

0
pσ1Φ

p
1(s)dw1(s).

(52)

8 Complexity



Taking the expectation on both sides of the above
equation, we have

E Φp
1(t)  � x

p
10 + E

t

0
pΦp

1(s) r +
p − 1
2

σ21 − a1Φ1(s) ds.

(53)

*en, using the Höder inequality, it follows that

dE Φp
1(t) 

dt
� p r +

p − 1
2

σ21 E Φp
1(t)  − pa1E Φ

p+1
1 (t) 

≤p r +
p

2
σ21 E Φp

1(t)  − pa1 E Φp
1(t)  

1+(1/p)

_� pb1E Φ
p
1(t)  − pa1 E Φp

1(t)  
1+(1/p)

.

(54)
From Lemma 2 and the comparison theorem, it follows

that

E Φp
1(t) ≤

b1

a1 1 − e− b1t + b1/a1( x− 1
10e− b1t( 

 

p

. (55)

Note that b1 � r + (p/2)σ21 > 0. *us,

lim sup
t⟶∞

E Φp
1(t) ≤

r +(p/2)σ21
a1

 

p

. (56)

By a similar the discussion as inΦ1(t), we also know that

lim sup
t⟶∞

E Φp
2(t) ≤

e12α12 +((p − 1)/2)σ22
a2

 

p

,

lim sup
t⟶∞

E Φp
3(t) ≤

e13α13 + e23α23 +((p − 1)/2)σ23
a3

 

p

.

(57)

From *eorem 1, it follows that 0< xi(t)≤Φi(t) a.s.
i � 1, 2, 3. *en, for any p≥ 0, we have

0<E x
p
i (t) ≤E Φp

i (t) , i � 1, 2, 3. (58)

Now *eorem 5 follows immediately from the above
analysis. *e proof is complete. □

Theorem 6. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (8) with initial value
(x10, x20, x30). 9en,

lim sup
t⟶∞

E x1(t) ≤
K2

dL e12e23 + e13( 
,

lim sup
t⟶∞

E x2(t) ≤
K2

dLe23
,

lim sup
t⟶∞

E x3(t) ≤
K2

dL
,

(59)

where dL � d2 ∧ d3 andK2 � ((e12e23 + e13)(r + dL)2)/(4a1).

Proof. Define H(t) � (e12e23 + e13)x1(t) + e23x2(t) + x3(t).
By Itô formula, we have

dH(t) � e12e23 + e13(  rx1 − a1x
2
1 −

α12x1x2

x1 + β12x2
−

α13x1x3

x1 + β13x3
 dt

+ σ1x1dw1(t) + e23 − d2x2 − a2x
2
2 +

e12α12x1x2

x1 + β12x2


−
α23x2x3

x2 + β23x3
dt + σ2x2dw2(t) +  − d3x3 − a3x

2
3

+
e13α13x1x3

x1 + β13x3
+

e23α23x2x3

x2 + β23x3
dt + σ3x3dw3(t)

�  − e23d2x2 − d3x3 + e12e23 + e13( rx1

− e12e23 + e13( a1x
2
1 − e23a2x

2
2 − a3x

2
3

−
e12e23α13x1x3

x1 + β13x3
−

e13α12x1x2

x1 + β12x2
dt

+ e12e23 + e13( σ1x1dw1(t) + e23σ2x2dw2(t)

+ σ3x3dw3(t).

(60)

Integrating it from 0 to t and taking expectation yields

E[H(t)] � H(0) + E
t

0
 − e23d2x2 − d3x3 + e12e23 + e13( rx1

− e12e23 + e13( a1x
2
1 − e23a2x

2
2 − a3x

2
3

−
e12e23α13x1x3

x1 + β13x3
−

e13α12x1x2

x1 + β12x2
ds.

(61)

*us, using the Hölder inequality yields
dE[H(t)]

dt
� − e23d2E x2(t)  − d3E x3(t) 

+ e12e23 + e13( rE x1(t) 

− e12e23 + e13( a1E x
2
1(t)  − e23a2E x

2
2(t) 

− a3E x
2
3(t) 

− e12e23α13E
x1(t)x3(t)

x1(t) + β13x3(t)
 

− e13α12E
x1(t)x2(t)

x1(t) + β12x2(t)
 

≤ − d
L

e12e23 + e13( E x1(t)  − d
L
e23E x2(t) 

− d
L
E x3(t) 

+ e12e23 + e13(  r + d
L

 E x1(t) 

− e12e23 + e13( a1 E x1(t) ( 
2

� e12e23 + e13(  r + d
L

 E x1(t)  − a1 E x1(t) ( 
2

 

− d
L
E[H(t)].

(62)
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It is clear that quadratic function
g(x) � (e12e23 + e13)[(r + dL)x − a1x

2] reaches its maxi-
mum value at x � ((r + dL)/(2a1))> 0. *us,
gmax � (((e12e23 + e13)(r + dL)2)/(4a1)) _� K2.*erefore, we
have

dE[H(t)]

dt
≤K2 − d

L
E[H(t)]. (63)

*en, by the comparison theorem, we have

0≤ lim sup
t⟶∞

E[H(t)] ≤
K2

dL
. (64)

Note that the solution of model (8) is positive. *us,

lim sup
t⟶∞

E x1(t) ≤
K2

dL e12e23 + e13( 
,

lim sup
t⟶∞

E x2(t) ≤
K2

dLe23
,

lim sup
t⟶∞

E x3(t) ≤
K2

dL
.

(65)

*e proof is therefore complete. □

Theorem 7. Model (8) is stochastically ultimate bounded.

Proof. Let (x1(t), x2(t), x3(t)) be solution of (8) with any
initial value (x10, x20, x30) ∈ R3

+. For any ε ∈ (0, 1), let
H1 � (K2/(dL(e12e23 + e13)ε)) + 1, H2 � (K2/dLe23ε) + 1,
and H3 � (K2/dLε) + 1. *en, by Chebyshev’s inequality

P xi(t)>Hi ≤
E xi(t) 

Hi

, i � 1, 2, 3. (66)

Hence, from *eorem 6

lim sup
t⟶∞

P xi(t)>Hi ≤ lim sup
t⟶∞

E xi(t) 

Hi

< ε, i � 1, 2, 3.

(67)

*e proof is therefore complete. □

5.2. Stochastic Permanence. In this section, we give some
sufficient conditions to guarantee that model (8) is sto-
chastically permanent. Denote ci _� κi − σ2i (i � 1, 2, 3).
Define

u1(t) �
1

ϕ1(t)
,

u2(t) �
1

ϕ2(t)
,

u3(t) �
1

ϕ3(t)
.

(68)

By the Itô formula, we have

du1(t) � a1 − c1u1(t) dt − σ1u1(t)dw1(t),

du2(t) � a2 − c2u2(t) + e12α12β12u1(t) dt

− σ2u2(t)dw2(t),

du3(t) � a3 − c3u3(t) + e13α13β13u1(t)

+ e23α23β23u2(t)dt − σ3u3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(69)

with initial value (u1(0), u2(0), u3(0)) � (1/x10,

1/x20, 1/x30) ∈ R3
+.

Lemma 3. Let (x1(t), x2(t), x3(t)) be the solution of model
(8) with any initial value (x10, x20, x30) ∈ R3

+. If ci > 0
(i � 1, 2, 3), then

lim sup
t⟶∞

E
1

xi(t)
 ≤Mi, i � 1, 2, 3, (70)

where M1 � (a1/c1), M2 � (a2/c2) + ((a1e12α12β12)/
(c1c2)), and M3 � (a3/c3) + ((a1e13α13β13)/c1c3) +

+((e23α23β23)/c3)[(a2/c2) + ((a1e12α12β12)/c1c2)].

Proof. First, integrating both sides of the first equation of
(69) from 0 to t yields

u1(t) �
1

x10
+ 

t

0
a1 − c1u1(s) ds − 

t

0
σ1u1(s)dw1(s).

(71)

Taking the expectation on both sides of the above
equation, we have

E u1(t)  �
1

x10
+ E

t

0
a1 − c1u1(s) ds. (72)

*us,
dE u1(t) 

dt
� a1 − c1E u1(t) , (73)

with initial value E[u1(0)] � 1/x10. By a simple computa-
tion, we can get

E u1(t)  �
1

x10
e

− c1t
+

a1

c1
1 − e

− κ1t
 . (74)

*is, together with c1 > 0, yields

lim
t⟶∞

E u1(t)  �
a1

c1
� M1. (75)

Next, integrating both sides of the second equation of
system (69) from 0 to t yields

u2(t) �
1

x20
+ 

t

0
a2 − c2u2(s) + e12α12β12u1(s) ds

− 
t

0
σ2u2(s)dw2(s).

(76)

Taking the expectation on both sides of the above
equation, we have
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E u2(t)  �
1

x20
+ E

t

0
a2 − c2u2(s) + e12α12β12u1(s) ds.

(77)

*us,

dE u2(t) 

dt
� a2 − c2E u2(t)  + e12α12β12E u1(t) , (78)

with initial value E[u2(0)] � (1/x20). By a simple compu-
tation, we can get

E u2(t)  �
1

x20
e

− c2t
+

a2

c2
1 − e

− c2t
 

+ e12α12β12 
t

0
e

− c2(t− s)
E u1(s) ds.

(79)

From (75), it follows that

lim
t⟶∞


t

0
e

− c2(t− s)
E u1(s) ds � lim

t⟶∞


t

0 ec2sE u1(s) ds

ec2t

� lim
t⟶∞

E u1(t) 

c2
�

a1

c1c2
.

(80)

*is, together with (79) yields

lim
t⟶∞

E u2(t) ≤
a2

c2
+

a1e12α12β12
c1c2

. (81)

At last, integrating both sides of the third equation of
system (69) from 0 to t and taking the expectation, we have

E u3(t)  �
1

x30
+ E

t

0
a3 − c3u3(s) + e13α13β13u1(s)

+ e23α23β23u2(s)ds.

(82)

*us,

dE u3(t) 

dt
� a3 − c3E u3(t)  + e13α13β13E u1(t) 

+ e23α23β23E u2(t) ,

(83)

with initial value E[u3(0)] � (1/x30). By a simple compu-
tation, we can get

E u3(t)  �
1

x30
e

− c3t
+

a3

c3
1 − e

− c3t
 

+ e13α13β13 
t

0
e

− c3(t− s)
E u1(s) ds + e23α23β23

· 
t

0
e

− c3(t− s)
E u2(t) ds.

(84)

It follows from (75), (81), and (84) that

lim
t⟶∞

E u3(t)  �
a3

c3
+ e13α13β13 lim

t⟶∞


t

0
e

− c3(t− s)
E u1(s) ds

+ e23α23β23 lim
t⟶∞


t

0
e

− c3(t− s)
E u2(t) ds

�
a3

c3
+

a1e13α13β13
c1c3

+
e23α23β23

c3

·
a2

c2
+

a1e12α12β12
c1c2

 .

(85)

From the comparison theorem of stochastic differential
equations, it follows that

1
xi(t)
≤

1
ϕi(t)

� ui(t), i � 1, 2, 3. (86)

Now, Lemma 3 follows immediately from the above
analysis. *e proof is complete. □

Theorem 8. If ci > 0 (i � 1, 2, 3), then model (8) is sto-
chastically permanent.

Proof. Let (x1(t), x2(t), x3(t)) be solution of (8) with initial
value (x10, x20, x30) ∈ R3

+. For any ε ∈ (0, 1), let δi � (ε/Mi)

(i � 1, 2, 3), then

P xi(t)< δi  � P
1

xi(t)
>
1
δi

 ≤
E 1/xi(t) 

1/δi

� δiE
1

xi(t)
 , i � 1, 2, 3.

(87)

*us, from Lemma 3, it follows that

lim sup
t⟶∞

P xi(t)< δi ≤ lim sup
t⟶∞

δiE
1

xi(t)
 ≤ ε, i � 1, 2, 3.

(88)

*is implies

lim inf
t⟶∞

P xi(t)≥ δi ≥ 1 − ε, i � 1, 2, 3. (89)

Let ε ∈ (0, 1) be sufficiently small such that δi <Hi. From
(67) and Definition 2, model (8) is stochastically permanent.
*e proof is therefore complete. □

6. Stationary Distribution and Ergodicity

In this section, we will show that there is an ergodic sta-
tionary distribution for the solution of (8). For the com-
pleteness of the paper, in this section, we list some theories
about stationary distribution (see [32]). Let X(t) be a ho-
mogeneous Markov process in Ed (denotes d-dimensional
Euclidean space), described by the following stochastic
differential equation:

dX(t) � b(X(t))dt + g(X(t))dW(t), X(0) � X0. (90)
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*e diffusion matrix of the process X(t) is defined as
J(X) � g(X)gT(X) � (aij(X)).

Definition 3 (see [32]). Let P(t, X, ·) be the probability
measure induced by X(t) with initial value X(0) � X0. *at
is, P(t, X0, A) � P(X(t) ∈ A ∣ X(0) � X0), for any Borel set
A ∈B(Rd

+). If there exists a probability measure μ(·) such
that limt⟶∞P(t, X0, A) � μ(A) for all X0 ∈ Rd

+ and
A ∈B(Rd

+), then we say that stochastic differential equation
(90) has a stationary distribution μ(·).

Lemma 4 (see [33, 34]). Assume that there exists a bounded
domain D ⊂ Ed with regular boundary Γ and

(i) (A1) *ere is a positive number M such that


d
i,j�1aij(X)ξiξj ≥M|ξ|2, X ∈ D, and ξ ∈ Rd;

(ii) (A2) *ere exists a nonnegative C2-function V such
that there exists a positive constant C, such that

LV≤ − C for anyX ∈
Ed

D
. (91)

*en, the Markov process X(t) has a unique ergodic
stationary distribution μ(·). Moreover, if f(·) is a function
integrable with respect to the measure μ, then

P lim
T⟶∞

1
T


T

0
f(X(t))dt � 

Ed

f(x)μ(dx)  � 1. (92)

Let X(t) � (x1(t), x2(t), x3(t))T , g(X) � diag(σ1x1,

σ2x2, σ3x3), W(t) � (w1(t), w2(t), w3(t))T , and

b(X) �

x1 r − a1x1 −
α12x2

x1 + β12x2
−

α13x3

x1 + β13x3
 

x2 − d2 − a2x2 +
e12α12x1

x1 + β12x2
−

α23x3

x2 + β23x3
 

x3 − d3 − a3x3 +
e13α13x1

x1 + β13x3
+

e23α23x2

x2 + β23x3
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(93)

*en, system (90) reduces to model (8) with diffusion
matrix J(X) � diag(σ21x

2
1, σ

2
2x

2
2, σ

2
3x

2
3).

Theorem 9. If a2 > 0, a3 > 0, κ1 − e12α12β12 − e13α13β13−
σ21 > 0, κ2 − e23α23β23 − σ22 > 0, and κ3 − σ23 > 0, then for any
(x10, x20, x30) ∈ R3

+, model (8) has a stationary distribution
and the solutions have ergodic property.

Proof. Define C2-function V1: R3
+⟶ R+ by

V1(X) � x1 + x2 + x3, (94)

for X � (x1, x2, x3) ∈ R3
+. By Itô formula, we have

LV1(X) � x1 r − a1x1 −
α12x2

x1 + β12x2
−

α13x3

x1 + β13x3
 

+ x2 − d2 − a2x2 +
e12α12x1

x1 + β12x2
−

α23x3

x2 + β23x3
 

+ x3 − d3 − a3x3 +
e13α13x1

x1 + β13x3
+

e23α23x2

x2 + β23x3
 

≤ − a1x
2
1 + rx1 − a2x

2
2 + e12α12 − d2( x2 − a3x

2
3

+ e13α13 + e23α23 − d3( x3.

(95)

Define C2-function V2: R3
+⟶ R+ by

V2(X) � x
− 1
1 + x

− 1
2 + x

− 1
3 , (96)

for X � (x1, x2, x3) ∈ R3
+. By Itô formula, we have

LV2(X) � − x
− 1
1 r − a1x1 −

α12x2

x1 + β12x2
−

α13x3

x1 + β13x3
  + σ21x

− 1
1

− x
− 1
2 − d2 − a2x2 +

e12α12x1

x1 + β12x2
−

α23x3

x2 + β23x3
 

+ σ22x
− 1
2

− x
− 1
3 − d3 − a3x3 +

e13α13x1

x1 + β13x3
+

e23α23x2

x2 + β23x3
 

+ σ23x
− 1
3

≤ − x
− 1
1 κ1 − a1x1(  + σ21x

− 1
1

− x
− 1
2 κ2 − a2x2 −

e12α12β12x2

x1 + β12x2
  + σ22x

− 1
2

− x
− 1
3 κ3 − a3x3 −

e13α13β13x3

x1 + β13x3
−

e23α23β23x3

x2 + β23x3
 

+ σ23x
− 1
3

≤ − x
− 1
1 κ1 − a1x1(  + σ21x

− 1
1

− x
− 1
2 κ2 − a2x2 −

e12α12β12x2

x1
  + σ22x

− 1
2

− x
− 1
3 κ3 − a3x3 −

e13α13β13x3

x1
−

e23α23β23x3

x2
  + σ23x

− 1
3

� − κ1 − e12α12β12 − e13α13β13 − σ21 x
− 1
1 + a1

− κ2 − e23α23β23 − σ22 x
− 1
2 + a2 − κ3 − σ23 x

− 1
3 + a3.

(97)

Let V(X) � V1(X) + V2(X). *en,
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LV(X)≤ − a1x
2
1 + rx1 − κ1 − e12α12β12 − e13α13β13 − σ21 x

− 1
1

+ a1 − a2x
2
2 + e12α12 − d2( x2

− κ2 − e23α23β23 − σ22 x
− 1
2 + a2 − a3x

2
3

+ e13α13 + e23α23 − d3( x3 − κ3 − σ23 x
− 1
3 + a3

� f x1(  + g x2(  + h x3( ,

(98)

where

f x1(  � − a1x
2
1 + rx1 − κ1 − e12α12β12 − e13α13β13 − σ21 x

− 1
1

+ a1,

g x2(  � − a2x
2
2 + e12α12 − d2( x2 − κ2 − e23α23β23 − σ22 x

− 1
2

+ a2,

h x3(  � − a3x
2
3 + e13α13 + e23α23 − d3( x3 − κ3 − σ23 x

− 1
3

+ a3.

(99)

Clearly, f(x1), g(x2), and h(x3) have upper bound on
R+. Denote

f
u

� sup
x1∈R+

f x1(  ,

g
u

� sup
x2∈R+

g x2(  ,

h
u

� sup
x3∈R+

h x3(  .

(100)

From κ1 − e12α12β12 − e13α13β13 − σ21 > 0, it follows that
LV(X)≤f x1(  + g x2(  + h x3( ≤f x1(  + g

u

+ h
u⟶ − ∞, a.s. x1⟶ 0+ or x1⟶ +∞.

(101)

Similarly, from κ2 − e23α23β23 − σ22 > 0 and κ3 − σ23 > 0,
we have

LV(X)≤f x1(  + g x2(  + h x3( ≤f
u

+ g x2( 

+ h
u⟶ − ∞, a.s. x2⟶ 0+ or x2⟶ +∞,

LV(X)≤f x1(  + g x2(  + h x3( ≤f
u

+ g
u

+ h x3( ⟶ − ∞, a.s. x3⟶ 0+ orx3⟶ +∞.

(102)

Consequently, there exists ρ> 0 (sufficiently small) such
that

LV(X)≤ − 1, for all x1, x2, x3(  ∈
R3

+

D
, (103)

where

D � x1, x2, x3(  ∈ R3
+ ∣ ρ<x1 <

1
ρ
, ρ<x2 <

1
ρ
, ρ<x3 <

1
ρ

  ⊂ R3
+.

(104)

Hence, (A2) in Lemma 4 is satisfied.

Denote σ2 � σ21 ∧ σ22 ∧ σ23. *en, for any X � (x1, x2,

x3) ∈ D and ξ � (ξ1, ξ2, ξ2) ∈ R3, we have



3

i,j�1
aij(X)ξiξj � σ21x

2
1ξ

2
1 + σ22x

2
2ξ

2
2 + σ23x

2
3ξ

2
3 ≥M|ξ|

2
,

(105)

where M � ρ2σ2. *us, condition (A1) of Lemma 4 holds.
According to Lemma 4, model (8) is ergodic and admits a
unique stationary distribution. *e proof is therefore
complete. □

7. Application of Main Results

In this section, we present the application of the main results
in some special models.

7.1. Two Species Predator-Prey Model. Let α13 � α23 � 0.
*en, the first two equations of (8) form the following closed
two-population system:

dx1(t) � x1(t) r − a1x1(t) +
α12x2(t)

x1(t) + β12x1(t)
 dt

+ σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)
 dt

+ σ2x2(t)dw2(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(106)

with initial value (x10, x20) ∈ R2
+. *is is also the stochastic

predator-prey model discussed in [19]. From *eorems 3
and 4, we have the following result.

Corollary 1. Let (x1(t), x2(t)) be solution of model (106)
with initial value (x10, x20) ∈ R2

+.

(i) If a2 > 0, r − (α12/β12) − (σ21/2)> 0, and e12α12 −

d2 − (σ22/2)> 0, then

lim inf
t⟶∞

1
t


t

0
x1(s)ds≥

r − α12/β12(  − σ21/2( 

a1
> 0 a.s.,

lim inf
t⟶∞

1
t


t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
 ds

≥ e12α12 − d2 −
σ22
2
> 0 a.s.

(107)

(ii) If r − (σ21/2)< 0 and e12α12 − d2 − (σ22/2)< 0, then
(106) is extinct exponentially with probability one.
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Remark 1. It is clear that Corollary 1 is consistent with
*eorems 7 and 8 in [19]. Moreover, from*eorems 3 and 4,
the persistence in mean and extinction conditions of the
three-species model (8) are more complicated. *us, our
work can be seen as the extension of [19].

For model (106), similar to the proof of *eorem 6
(denote H � e12x1 + x2), we have

lim sup
t⟶∞

E x1(t) ≤
K2′

e12d2
,

lim sup
t⟶∞

E x2(t) ≤
K2′

d2
,

(108)

where K2′ � e12(r + d2)
2/4a1. Furthermore, from *eorems

7–9, for model (106), we have the following result.

Corollary 2

(i) Model (106) is stochastically ultimate bounded
(ii) If r − (α12/β12) − σ21 > 0 and e12α12 − d2 − σ22 > 0,

then model (106) is stochastically permanent
(iii) If a2 > 0, r − (α12/β12) − e12α12β12 − σ21 > 0, and

e12α12 − d2 − σ22 > 0, then for any (x10, x20) ∈ R2
+,

model (106) has a stationary distribution and the
solutions have ergodic property

If we do not consider the intraspecific competition of the
predator, i.e., a2 � 0 in model (106), then model (6) is
available. From*eorems 4, 7, and 8, for model (6), we have
the following result.

Corollary 3

(i) If r − (σ21/2)< 0 and e12α12 − d2 − (σ22/2)< 0, then
model (6) is extinct exponentially with probability
one

(ii) Model (6) is stochastically ultimate bounded
(iii) If r − (α12/β12) − σ21 > 0 and e12α12 − d2 − σ22 > 0,

then model (6) is stochastically permanent

Remark 2. From *eorem 4.11 in [18], it follows that if r −

(α12/β12) − (3/2)σ21 > 0 and e12α12 − d2 − (3/2)σ23 > 0, then
model (6) is stochastically permanent. Obviously, if con-
ditions of *eorem 4.11 in [18] hold, then conditions in
Corollary 3 hold. On the contrary, it is not set up.
*erefore, Corollary 3 generalizes and improves *eorem
4.11 in [18].

Remark 3. If r − (α12/β12) − σ21 > 0 and e12α12 − d2 − σ23 > 0,
then by *eorem 3.3 in [16], model (6) is persistent in
mean, but by Corollary 3, model (6) is stochastically
permanent.

7.2. 9ree-Species Food-Chain Model. Let α13 � 0. *en, we
can get the following stochastic three-species food chain
model:

dx1(t) � x1(t) r − a1x1(t) +
α12x2(t)

x1(t) + β12x2(t)
 dt

+ σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 − a2x2(t) +
e12α12x1(t)

x1(t) + β12x2(t)


−
α23x3(t)

x2(t) + β23x3(t)
dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 − a3x3(t) +
e23α23x2(t)

x2(t) + β23x3(t)
 dt

+ σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(109)

with initial value (x1(0), x2(0), x3(0)) � (x10, x20, x30) ∈
R3

+. Denote

κ1′ � r −
α12
β12

;

κ2′ � e12α12 − d2 −
α23
β23

;

κ3′ � e23α23 − d3;

ci
′ � κi
′ − σ2i ,

i � 1, 2, 3.

(110)

For model (109), we have the following results.

Corollary 4. For any (x10, x20, x30) ∈ R3
+, let (x1(t), x2(t),

x3(t)) be the solution of model (109) with initial value
(x10, x20, x30).

(i) If a2 > 0, a3 > 0, and κI
′ − (σ2i /2)> 0 (i � 1, 2, 3), then

lim
t⟶∞

lnx1(t)

t
� 0,

lim
t⟶∞

lnx2(t)

t
� 0,

lim
t⟶∞

lnx3(t)

t
� 0 a.s.

(111)

(ii) If a2 > 0, a3 > 0, and κi
′ − (σ2i /2)> 0 (i � 1, 2, 3), then
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lim inf
t⟶∞

1
t


t

0
x1(s)ds≥

κ1′ − σ21/2( 

a1
a.s.,

lim inf
t⟶∞

1
t


t

0
a2x2(s) +

e12α12β12x2(s)

x1(s)
 ds≥ κ2′ −

σ22
2

a.s.,

lim inf
t⟶∞

1
t


t

0
a3x3(s) +

e23α23β23x3(s)

x2(s)
 ds≥ κ3′ −

σ23
2

a.s.

(112)

(iii) If r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e23α23 − d3 − (σ23/2)< 0, then model (109) is extinct
exponentially with probability one.

Corollary 5. Model (109) is stochastically ultimate bounded.
Furthermore, if ci

′ > 0 (i � 1, 2, 3), then model (109) is sto-
chastically permanent.

Corollary 6. If a2 > 0, a3 > 0, κ1′ − e12α12β12 − σ21 > 0,
κ2′ − e23α23β23 − σ22 > 0, and κ3′ − σ23 > 0, then for any
(x10, x20, x30) ∈ R3

+, model (109) has a stationary distribution
and the solutions have ergodic property.

If we do not consider the intraspecific competition of the
predator, i.e., a2 � a3 � 0 in model (109), then we obtain the
following stochastic three-species food chain model:

dx1(t) � x1(t) r − a2x1(t) −
α12x2(t)

x1(t) + β12x2(t)
 dt + σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
 dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 +
e23α23x2(t)

x2(t) + β23x3(t)
 dt + σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(113)

with initial value (x1(0), x2(0), x3(0)) � (x10, x20,

x30) ∈ R3
+. From *eorems 4, 7, and 8, for model (113), we

have the following result.

Corollary 7

(i) If r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e23α23 − d3 − (σ23/2)< 0, then model (113) is extinct
exponentially with probability one

(ii) Model (113) is stochastically ultimate bounded

(iii) If ci
′ > 0 (i � 1, 2, 3), then model (113) is stochasti-

cally permanent

7.3. Food-Web Model without Intraspecific Competition of
Predators. If we do not consider the intraspecific compe-
tition of the predator, i.e., a2 � a3 � 0 in model (8), then we
obtain the following stochastic three-species model:

dx1(t) � x1(t) r − a1x1(t) −
α12x2(t)

x1(t) + β12x2(t)
−

α13x3(t)

x1(t) + β13x3(t)
 dt + σ1x1(t)dw1(t),

dx2(t) � x2(t) − d2 +
e12α12x1(t)

x1(t) + β12x2(t)
−

α23x3(t)

x2(t) + β23x3(t)
 dt + σ2x2(t)dw2(t),

dx3(t) � x3(t) − d3 +
e13α13x1(t)

x1(t) + β13x3(t)
−

e23α23x2(t)

x2(t) + β23x3(t)
 dt + σ3x3(t)dw3(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(114)
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with initial value (x10, x20, x30) ∈ R3
+. For model (114), we

have the following result.

Corollary 8

(i) If r − (σ21/2)< 0, e12α12 − d2 − (σ22/2)< 0, and
e13α13 + e23α23 − d3 − (σ23/2)< 0, then model (114) is
extinct exponentially with probability one

(ii) Model (114) is stochastically ultimate bounded
(iii) If ci > 0 (i � 1, 2, 3), then model (114) is stochasti-

cally permanent

8. Numerical Simulations

In this section, we use the Milstein method (see [35]) to
substantiate our main results. *e numerical simulations of
population dynamics are carried out for the academic tests
with the arbitrary values of the vital rates and other pa-
rameters which do not correspond to some specific bi-
ological populations and exhibit only the theoretical
properties of numerical solutions of the considered model.
To illustrate the theoretical results, we take the parameter
values as following with different noise intensities:

r � 0.62,

d2 � 0.0005,

d3 � 0.0006,

a1 � 0.0005,

a2 � 0.0002,

a3 � 0.0003,

α12 � 0.2,

α13 � 0.15,

α23 � 0.08,

e12 � 0.8,

e13 � 0.5,

e23 � 0.6,

β12 � β13 � β23 � 1,

x10 � 800,

x20 � 300,

x30 � 200.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(115)

In Figure 1, we choose σi � 0 (i � 1, 2, 3) and get the
solutions of the corresponding deterministic model.

(i) Assume that σ21 � 1.4, σ22 � 0.4, and σ23 � 0.3. By a
simple computation, r − (σ21/2) � − 0.08< 0, e12α12 −

d2 − (σ22/2) � − 0.0405< 0, and e13α13 + e23α23 −

d3 − (σ23/2) � − 0.0276< 0. *us, the condition of
*eorem 4 holds. From *eorem 4, model (8) will
become extinct with probability one. As can be seen
from Figure 2, all the population becomes extinct.

(ii) Assume that σ21 � 0.44, σ22 � 0.08, and σ23 � 0.08.
*en, κ1 � r − (α12/β12) − (α13/β13) � 0.27, κ2 � e12
α12 − d2 − (α23/β23) � 0.0795, and κ3 � e13α13 + e23
α23 − d3 � 0.1224. *us, κ1 − (σ21/2) � 0.05> 0, κ2 −

(σ22/2) � 0.0395> 0, and κ3 − (σ23/2) � 0.0824> 0.
*at is, the conditions of *eorem 3 hold. In view of
*eorem 3, model (8) is persistent in mean. As can be
seen from Figure 3, all the populations are permanent
in mean. *is is consistent to *eorem 3.

(iii) Assume that σ21 � 0.02, σ22 � 0.01, σ23 � 0.01. From
(ii), it follows that κ1 � 0.27, κ2 � 0.0795 and κ3 �

0.1224.*us, κ1 − σ21 � 0.25> 0, κ2 − σ22 � 0.0695> 0
and κ3 − σ23 � 0.1124> 0. Hence, the conditions of
*eorem 8 hold. In view of *eorem 8, model (8) is
stochastically permanent. From Figure 4 that all the
populations are stochastically permanent. *is is
consistent to *eorem 8.

(iv) Assume that σ21 � 0.02, σ22 � 0.01, and σ23 � 0.01.
From (ii), it follows that κ1 � 0.27, κ2 � 0.0795, and
κ3 � 0.1224. Furthermore, κ1 − e12α12β12− e13α13β13
− σ21 � 0.015> 0, κ2 − e23α23β23 − σ22 � 0.0215> 0,
and κ3 − σ23 � 0.1244> 0. *us, the conditions of
*eorem 9 hold. *erefore, model (8) has a sta-
tionary distribution according to *eorem 9 (see
Figures 5 and 6).

9. Conclusions and Discussions

*is paper is concerned with a stochastic three-species
predator-prey food web model with omnivory and ratio-
dependent functional response. First, by the comparison
theorem of stochastic differential equations, we prove the
existence and uniqueness of global positive solution of the
model. Next, we investigate an important asymptotic
property of the solution, which is crucial to the study of the
dynamic behavior of the model. *en, under some condi-
tions, we conclude that the model is persistent in mean and
extinct. Moreover, we discuss the stochastic persistence of
the model. Furthermore, by constructing a suitable Lya-
punov function, we establish sufficient conditions for the
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Figure 1: *e trajectories of model (8) with σ1 � σ2 � σ3 � 0.
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existence of an ergodic stationary distribution to the model.
*en, we present the application of the main results in some
special models. Finally, some numerical simulations are
introduced to support the main results.

In Section 4, we prove that there are two typical
phenomena arising in accordance with the relative values
of the parameters of the model. In *eorem 3, we give the
conditions on the parameters that informally can be
stated by saying that the noise intensities σ2i (i � 1, 2, 3) are
small compared to the other parameters, such that the

species in model (8) are persistent in mean. From *e-
orem 4, it follows that in the case that the noise intensities
σ2i (i � 1, 2, 3) are large with respect to the other pa-
rameters, then the solution of model (8) tends to ex-
tinction almost surely.

Later, in Section 5, we discuss on the stochastic per-
manence of the solution. *is concept, which can be
paraphrased by saying that the species in model (8) will
survive forever, is one of the most important and interesting
topics in the analysis of the model. From *eorem 8, if the
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Figure 2: *e trajectories of stochastic model (8) with σ21 � 1.4, σ22 � 0.4, and σ23 � 0.3.
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Figure 3: *e trajectories of stochastic model (8) with σ1 � 0.44, σ2 � 0.08, and σ3 � 0.08.
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Figure 4: *e trajectories of stochastic model (8) with σ1 � 0.02, σ2 � 0.01, and σ3 � 0.01.
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noise intensities σ2i (i� 1, 2, 3) are small compared to the
other parameters, such that κi − σ2i > 0 (i � 1, 2, 3), then
model (8) is stochastically permanent.

Moreover, in Section 6, by constructing a suitable
Lyapunov function, we show that there is an ergodic sta-
tionary distribution for the solution of model (8). In *e-
orem 9, we give the conditions on the parameters that can be
stated by saying that the intensity σ2i of white noise _wi(t) is
sufficiently small, such that the solution model (8) has an
ergodic stationary distribution.

*e results in this paper generalize and improve the
previous related results. From Remark 1, we know that our
work can be seen as the extension of [19]. From Remark 2,
we know that *eorem 8 generalizes and improves *eorem
4.11 in [18].
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