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A new neural network sliding mode control (NNSMC) is proposed for backlash-like hysteresis nonlinear system in this paper.
Firstly, only one neural network is designed to estimate the unknown system states and hysteresis section instead of multiscale
neural network at former researches since that can save computation and simplify the controller design. Secondly, a new NNSMC
is proposed for the hysteresis nonlinearity where it does not need tracking error transformation. Finally, the Lyapunov functions are
adopted to guarantee the stabilities of the identification and control strategies semiglobally uniformly ultimately bounded (UUB).
Two cases simulations are proved the effectiveness of the presented identification approach and the performance of the NNSMC.

1. Introduction

Many systems make hysteresis nonlinearities such as power
systems, motor systems, and intelligent material systems. In
some systems, the hysteresis can be applied to solve some
problem. For example, some waveform generator systems
utilized hysteresis to produce the designed waveform. But in
most systems, the existence of the hysteresis nonlinearities
will degrade the performance of the system and even lead to
unstabilized in severe case. Therefore, the hysteresis investi-
gations attract attention and also have many results for either
system.

Due to the conflict of the fast development of economic
and fossil energy lacking and pollution, it is inevitable to
develop clean reproducible energy. Then, the new energy
systems become more important and attract more attention
than before. For example, the new energy vehicles will
become the mainstream of the vehicle investigation and will
occupy large scale market. But in most new energy systems,
the existence of the hysteresis hinders the research progress
and affects the improvement of the new energy applica-
tion. Therefore, to investigate the hysteresis nonlinearity has
important significance for new energy systems.

The hysteresis models have been investigated for many
years. There are four familiar hysteresis models which are

Preisach model, Prandtl-Ishlinskii (P-I) model, Bouc-Wen
model, and backlash-like model. These hysteresis models are
all mathematicalmodels that havemore extensive application
compared with the physical models such as Jiles-Atherton’s
(J-A)model.The Preisachmodel is the premiermathematical
hysteresis model to deal with themagnetic systems firstly, but
now it has a broader application for most hysteresis systems.
We [1] proposed a novel identification to estimate the discrete
Preisach model, where the new approach utilized the lower
triangular matrix calculating the Preisach density function.
The proposed identification could save computation and
deduce complexity contrasting with the classic identification.
We also investigated the Bouc-Wen hysteresismodel ofmotor
systems in [2]. The hysteresis motor servo system with Bouc-
Wen model firstly was transformed into a canonical state
space form, then, a high-order neural network observer
(HONN) was proposed and a filter for the tracking errors
was adopted to simplify the controller design. Different from
[2], we researched a backlash-like hysteresis system in [3].
A new Multiscale Chebyshev Neural Network (MCNN) was
proposed to estimate the unknown system parameters and
hysteresis section.Then the vector error was transformed into
scalar error simplifying the controller and the stability of the
closed system was guaranteed by Lyapunov function. In [3],
two Chebyshev NN were applied to estimate the unknown
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states and hysteresis sections, respectively, and the tracking
error was transformed to simplify the adaptive controller
design. Nevertheless, we continue to investigate the backlash-
like hysteresis model in this paper since it is fewer parameters
and has analytical solution, but we will propose new NN and
no longer use adaptive controller designing the controller for
hysteresis systems.

Neural network is an important intelligent approach
for identification and control systems [4–8]. Different NN
structure was proposed and applied for different systems. A
high-order neural network (HONN) was utilized to identifi-
cation and control nonlinear system in [9, 10]. A multitime-
scale recurrent high-order neural networks (MSRHONN)
was proposed in [10] for singularly perturbed systems by
the optimal bounded ellipsoid algorithm. The new approach
could achieve faster convergence and the controller structure
was simplified. In [3], the Multiscale Chebyshev Neural Net-
work (MCNN) was presented to identification the hysteresis
nonlinear systems. As an important intelligent method, The
NN will be attended broader.

Different from adaptive control [11, 12], sliding mode
control (SMC) [13] draws more attention in recent years. In
some circuit, the hysteresis was utilized by the overshoot of
the output voltage response. Literature [13] took advantage
of the inherently variable-structure of the DC-DC system to
design a modified sliding mode control regulating the DC
hysteresis circuit system. The fuzzy adaptive Proportional-
Integral-Derivative (PID) SMC was proposed for hysteresis
piezoactuated nanopositioning stage in [14]. Meanwhile, we
also proposed SMC to control the hysteresis motor servo
system with discrete Preisach model in [1]. A composite
control consisting of discrete inverse model-based controller
(DIMBC) and discrete adaptive sliding mode controller
(DASMC) was presented for discrete hysteresis systems
which could accelerate the reaching time and enhance the
robustness of the controller. In this paper, we further utilize
the SMC to deal with a continuous hysteresis system with
Baclash-Like system. Since the existing of the chattering
in SMC, the control performance will be degraded. If not
handling it, when the chattering is serious, that will damage
the equipment in real system. Several approaches can restrain
the chattering. We have investigated the influence and the
restrainedmethod of the chattering in [1].Then, in this paper,
we adopt tanh(⋅) function replacing the sign(⋅) function; for
the tanh(⋅) function is a continuous function, and it can well
restrain the chattering of the SMC.

This research is a further investigation based on [3].
But it has three points different from [3]. First is one new
NN designed to estimate the unknown states and hysteresis
sections in this research which is different from two Mul-
tiscale Chebyshev Neural Networks (MSCNN) in [3] since
the new design will simplify the controller and reduce the
computation. We adopt one NN in this research because
almost new energy systems only have one time scale, it
does not need multiscale NN structure. But beyond that,
the investigations of new energy system with NN controller
are not common yet, one scale NN controller is researching,
and multiscale NN will be investigate as well as other
systems. Second is no tracking error transformation in this

paper since the tracking error transformation in [3] could
lead to the decline control performance. In this research,
we transform the system into canonical form to avoid the
complicated computation of controller design such as back-
stepping. Since the system is converted, the tracking error
transformation is not necessary to simplify the computation.
After all, the tracking error transformation is exactly save the
calculation but can degrade the control precision. Finally, in
this paper, we design a sliding mode control (SMC) instead
of the adaptive control in [3]. The SMC controller has more
strong robustness which can preferably compensate the error
and disturbance result from the NN and other external
causes.

The rest of the paper is organised as follows: Section 2
states the problem formulation.TheNN identification design
is proposed in Section 3 and Section 4 shows SMC controller
design. The simulations are given in Section 5. Section 6
concludes the papers. Data availability statement, conflicts of
interest and acknowledgments are at the end of the paper.

2. Preliminaries

Considering a hysteresis nonlinear system is described as

𝑥̇ = 𝑓1 (𝑥) + 𝑓2 (𝑥) V
V̇ = 𝑔 (𝑥, 𝑢) 𝑢 (1)

with 𝑓𝑖(0) = 0, 𝑖 = 1, 2 and 𝑔(0, 0) = 0, where 𝑥 ∈ R𝑛, V ∈
R𝑚 are the states and intermediate input, respectively, 𝑢 ∈ R𝑙

is the control input, 𝑓𝑖, 𝑔, 𝑖 = 1, 2 denote unknown general
nonlinear smooth functions, respectively, and V represents
hysteresis nonlinearity. In this paper, we discuss the hysteresis
nonlinearity V that is described by backlash-like model. The
backlash-like hysteresis V can be expressed as follows [15]:

V̇ = 𝑔 (𝑥, 𝑢) 𝑢 = 𝛾 |𝑢̇| (𝛼𝑢 − V) + 𝛽𝑢̇, (2)

where 𝛾 > 0, 𝛼 > 0 are positive constants and 𝛼 > 𝛽.
The figure of backlash-like hysteresis is illustrated in

Figure 1, where 𝛼 = 2.3, 𝛽 = 0.15, 𝛾 = 1.1, and the input𝑢 = 𝐾 sin(6𝑡), 𝐾1 = 4, 𝐾2 = 3, and𝐾3 = 2.
To address the unknown system state function 𝑓1(𝑥),𝑓2(𝑥), system (1) are rewritten as follows:

𝑥̇ = 𝐴𝑥 + 𝑓1 (𝑥) + 𝐵V + 𝑓2 (𝑥)
V̇ = 𝑔 (𝑥, 𝑢) 𝑢, (3)

where 𝐴 ∈ R𝑛×𝑛 is Hurwitz matrix, 𝐵 ∈ R𝑛×1, 𝐴, 𝐵 are
controllable, and 𝑓1(𝑥) = 𝑓1(𝑥) − 𝐴𝑥, 𝑓2(𝑥) = 𝑓2(𝑥) − 𝐵.

Considering the Hurwitz state matrix 𝐴, given a positive
definite matrix 𝑃 = 𝑃𝑇 > 0, there exists positive definite
matrix 𝑄 = 𝑄𝑇 > 0 such that the inequality

𝐴𝑇𝑃 + 𝑃𝐴 ≤ −𝑄 (4)

holds.
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Figure 1: The curves of the backlash-like hysteresis models.

According to [3, 16], the equation V̇ = 𝑔(𝑥, 𝑢)𝑢 can be
solved as

V = 𝛼𝑢 + (V0 − 𝛼𝑢0) 𝑒−𝛾(𝑢−𝑢0) sign(𝑢̇)
+ 𝑒−𝛾𝑢 sign(𝑢̇) ∫𝑢

𝑢0

(𝛽 − 𝛼) 𝑒𝛾𝜉 sign(𝑢̇)𝑑𝜉, (5)

where V0, 𝑢0 are the initial values of V, 𝑢.
Then, substituting the backlash-like model (2) into sys-

tem (3), we have

𝑥̇ = 𝐴𝑥 + 𝑓1 (𝑥) + 𝐵𝛼𝑢 + 𝐵 (V0 − 𝛼𝑢0) 𝑒−𝛾(𝑢−𝑢0) sign(𝑢̇)
+ 𝐵𝑒−𝛾𝑢 sign(𝑢̇) ∫𝑢

𝑢0

(𝛽 − 𝛼) 𝑒𝛾𝜉 sign(𝑢̇)𝑑𝜉) + 𝑓2 (𝑥) (6)

Define a smooth function as follows:

𝐹 (𝑥) = 𝑓1 (𝑥) + 𝑓2 (𝑥) , (7)

then system (6) can be deduced as

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐹 (𝑥) + 𝐵 (V0 − 𝛼𝑢0) 𝑒−𝛾(𝑢−𝑢0) sign(𝑢̇)
+ 𝐵𝑒−𝛾𝑢 sign(𝑢̇) ∫𝑢

𝑢0

(𝛽 − 𝛼) 𝑒𝛾𝜉 sign(𝑢̇)𝑑𝜉). (8)

3. NN Identification Design

Neural network (NN) can commendably approximate the
nonlinearity systems. But different NN structure has different
characteristics. In this paper, we adopt high-order neural net-
work (HONN) to estimate the unknown general nonlinear
smooth functions and hysteresis nonlinearity. The HONN
is an excellent NN for nonlinear systems, where the big
advantage is that only needs less neurons and computational

costs. Thus the HONN developed high-order basis function
connections so that it can easily approximate the high-order
nonlinearities.

Considering system (8), the unknown function 𝐹(𝑥)
and the hysteresis nonlinearity 𝐵(V0 − 𝛼𝑢0)𝑒−𝛾(𝑢−𝑢0) sign(𝑢̇) +𝐵𝑒−𝛾𝑢 sign(𝑢̇) ∫𝑢

𝑢0
(𝛽 − 𝛼)𝑒𝛾𝜉 sign(𝑢̇)𝑑𝜉) will be approximated by

NN.Hence there exists unknown boundedNNweightmatrix𝑊 ∈ R𝑛×𝑝 and Ψ(𝑥) = [Ψ1, Ψ2, . . . , Ψ𝑝]𝑇 ∈ R𝑝 which can be
identified by the following model:

̇̂𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑊Ψ, (9)

where the activation function Ψ(𝑥) is defined as

Ψ (𝑥) = [Ψ1, Ψ2, . . . , Ψ𝑝]𝑇 ∈ R
𝑝

Ψ𝑘 = ∏
𝑖∈𝐿

[𝜓 (𝑥)]𝑑𝑖(𝑘) , 𝑘 = 1, 2, . . . , 𝑝
𝜓 (𝑥) = 𝑐1 + 𝑒−𝑑𝑥 + ℎ,

(10)

where 𝐿 represent the collections of 𝑝 node ordered subsets,𝑐, 𝑑, ℎ are designed parameters, and𝑑𝑖(𝑘) is designed nonneg-
ative integer.

Assuming an ideal NN can be approximated system (1) as

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝑊∗Ψ + 𝜀, (11)

where 𝑊∗ means the ideal NN weight matrix, the NN 𝑊∗Ψ
completely substitutes the unknown function 𝐹(𝑥) and the
hysteresis nonlinearity, 𝜀 is a bounded approximation error,𝑖.𝑒., ‖𝜀‖ ≤ 𝜀𝑀, and 𝜀𝑀 is a known positive constant vector.

Define the identification error 𝑒 as
𝑒 = 𝑥 − 𝑥. (12)

Then, the derivative of the error 𝑒 can be deduced by (9) and
(11):

̇𝑒 = 𝑥̇ − ̇̂𝑥 = 𝐴𝑒 + 𝑊̃Ψ + 𝜀, (13)

where 𝑊̃ = 𝑊∗ − 𝑊.
The identification structure of HONN can be illustrated

in Figure 2.
Considering references [9, 17], the following assumption

is proposed.

Assumption 1. The error norm of NN weight matrix 𝑊̃ is
bounded by ‖𝑊̃‖ ≤ 𝑊𝑀, and the basis function of NN is
bounded, 𝑖.𝑒., ‖Ψ‖ ≤ 𝜓𝑀.
Theorem 2. Considering system (1) which is approximated by
the NN of (11), if the identification error is defined as (12),
based on the Assumption 1, the identification 𝑒 is semiglobally
uniformly ultimately bounded (UUB) and it converges to a
small compact set around zero as ‖𝑒‖ ≤ √2(𝜂2/𝜂1)/‖𝑃‖, where𝜂1, 𝜂2 are defined in (17).
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Figure 2: The structure of the NN identification.

Proof. Define the Lyapunov function as

𝑉 = 12𝑒𝑇𝑃𝑒. (14)

From (13), the derivative of 𝑉 can be deduced as

𝑉̇ = 12 ̇𝑒𝑇𝑃𝑒 + 12𝑒𝑇𝑃 ̇𝑒
= 12 (𝐴𝑒 + 𝑊̃Ψ + 𝜀)𝑇 𝑃𝑒 + 12𝑒𝑇𝑃 (𝐴𝑒 + 𝑊̃Ψ + 𝜀)
= 12𝑒𝑇𝐴𝑇𝑃𝑒 + 12Ψ𝑇𝑊̃𝑇𝑃𝑒 + 12𝜀𝑇𝑃𝑒 + 12𝑒𝑇𝑃𝐴𝑒

+ 12𝑒𝑇𝑃𝑊̃Ψ + 12𝑒𝑇𝑃𝜀
≤ −12𝑒𝑇𝑄𝑒 + 𝑒𝑇𝑃 (𝑊̃Ψ + 𝜀)
≤ −12𝑒𝑇𝑄𝑒 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑇󵄩󵄩󵄩󵄩󵄩 ‖𝑃‖ (󵄩󵄩󵄩󵄩󵄩𝑊̃Ψ󵄩󵄩󵄩󵄩󵄩 + ‖𝜀‖) .

(15)

Invoking Young's inequality 𝑎𝑏 ≤ (𝑎2 + 𝑏2)/2 on the term‖𝑒𝑇‖‖𝑃‖(‖𝑊̃Ψ‖ + ‖𝜀‖), we have
󵄩󵄩󵄩󵄩󵄩𝑒𝑇󵄩󵄩󵄩󵄩󵄩 ‖𝑃‖ (󵄩󵄩󵄩󵄩󵄩𝑊̃Ψ󵄩󵄩󵄩󵄩󵄩 + ‖𝜀‖)

≤
󵄩󵄩󵄩󵄩󵄩𝑒𝑇󵄩󵄩󵄩󵄩󵄩2 ‖𝑃‖2 + (󵄩󵄩󵄩󵄩󵄩𝑊̃Ψ󵄩󵄩󵄩󵄩󵄩 + ‖𝜀‖)2

2 ,
(16)

then considering Assumption 1 and (16), the derivative of 𝑉
in (15) yields

𝑉̇ ≤ −12𝑒𝑇𝑄𝑒 +
󵄩󵄩󵄩󵄩󵄩𝑒𝑇󵄩󵄩󵄩󵄩󵄩2 ‖𝑃‖2 + (𝑊𝑀𝜓𝑀 + 𝜀𝑀)22

≤ −𝜂1𝑉 + 𝜂2,
(17)

where 𝜂1 = ((1/2)𝑒𝑇𝑄𝑒 + ‖𝑒𝑇‖2‖𝑃‖2/2)/𝑒𝑇𝑃𝑒; 𝜂2 = (𝑊𝑀𝜓𝑀 +𝜀𝑀)2/2.
According to the Lyapunov theorem, 𝑉 is UUB and the

identification error 𝑒 is bounded. Moreover, integrating both
sides of (17) over the time [0.𝑡], the inequality can be solved
as

𝑉 ≤ 𝑉0𝑒−𝜂1𝑡 + 𝜂2𝜂1 (1 − 𝑒−𝜂1𝑡) ≤ 𝜂2𝜂1 + 𝑉0𝑒−𝜂1𝑡. (18)

Then, by applying (14), the bound of the identification
error 𝑒 can be solved as

‖𝑒‖ ≤ √ 2 (𝜂2/𝜂1 + 𝑉0𝑒−𝜂1𝑡)‖𝑃‖ (19)

such that it has

lim
𝑡󳨀→∞

‖𝑒‖ ≤ lim
𝑡󳨀→∞

√2 (𝜂2/𝜂1 + 𝑉0𝑒−𝜂1𝑡)‖𝑃‖ = √2 (𝜂2/𝜂1)‖𝑃‖ . (20)

That means the identification error 𝑒 can be converged to a
small compact set around zero.

The proof is completed.

4. Controller Design

Considering system (1), if the system is a pure feedback
system, in order to avoid the complicated computation of the
back-stepping controller, new state variables are defined to
transform the state variables into canonical form based on
reference [9]. Therefore, the new alternative states can be
defined as

𝑧1 = 𝑥1
𝑧2 = 𝑧̇1
𝑧𝑖 = 𝑧̇𝑖−1, 𝑖 = 2, 3, . . . , 𝑛,

(21)

and the transformed canonical system is

𝑧̇1 = 𝑧2
𝑧̇𝑖 = 𝑧𝑖+1, 𝑖 = 1, 2, . . . , 𝑛 − 1
𝑧̇𝑛 = ́𝑎𝑛 (𝑥𝑛) + 𝑏́𝑛𝑢,

(22)

where the definition of ́𝑎𝑛, 𝑏́𝑛 can be obtained by the method
of the reference [9].

For the existing of the hysteresis nonlinearity, we also can
adopt the approach of reference [9] to avoid the complicated
controller design. Considering 𝐴 is Hurwitz matrix and 𝐴, 𝐵
are controllable, without loss of generality, we can transform
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the system (8) into a normalized form. Then, assume the
matrixes 𝐴, 𝐵 are

𝐴 =
[[[[[[
[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑛𝑎21 𝑎22 ⋅ ⋅ ⋅ 𝑎2𝑛... ... d
...

𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑛

]]]]]]
]

,

𝐵 =
[[[[[[
[

𝑏1𝑏2...
𝑏𝑛

]]]]]]
]

,

(23)

According to the fact that 𝑧2 = 𝑟1(𝑥) = 𝑧̇1 = 𝑎11𝑥1 +𝑎12𝑥2 + ⋅ ⋅ ⋅ + 𝑎1𝑛𝑥𝑛 + 𝑏1𝑢 + 𝑓1(𝑥(1)) + 𝑓2(𝑥(1)) + 𝑏1(V0 −𝛼𝑢0)𝑒−𝛾(𝑢−𝑢0) sign(𝑢̇) + 𝑏1𝑒−𝛾𝑢 sign(𝑢̇) ∫𝑢𝑢0(𝛽−𝛼)𝑒𝛾𝜉 sign(𝑢̇)𝑑𝜉), it has
the following:

𝑧̇2 = 𝑧̈1 = 𝜕𝑟1 (𝑥)𝜕𝑥1 𝑥̇1 + 𝜕𝑟1 (𝑥)𝜕𝑥2 𝑥̇2
= 𝑎11𝑥̇1 + 𝑎12𝑥̇2 + 𝜕𝑓1 (𝑥1)𝜕𝑥1 𝑥̇1 + 𝜕𝑓2 (𝑥1)𝜕𝑥1 𝑥̇1

+ 𝜕𝑓1 (𝑥1)𝜕𝑥2 𝑥̇2 + 𝜕𝑓2 (𝑥1)𝜕𝑥2 𝑥̇2.
(24)

Then, we also can obtain

𝑧̇3 = 𝑧̈2
= 𝑎12𝑥̈2 + 𝜕 (𝜕𝑓1 (𝑥1) /𝜕𝑥1) 𝑥̇1𝜕𝑥2 𝑥̇2

+ 𝜕 (𝜕𝑓2 (𝑥1) /𝜕𝑥1) 𝑥̇1𝜕𝑥2 𝑥̇2
+ 𝜕 (𝜕𝑓1 (𝑥1) /𝜕𝑥2) 𝑥̇2𝜕𝑥2 𝑥̇2
+ 𝜕 (𝜕𝑓2 (𝑥1) /𝜕𝑥2) 𝑥̇2𝜕𝑥2 𝑥̇2
+ 𝜕 (𝜕𝑓1 (𝑥1) /𝜕𝑥1) 𝑥̇1𝜕𝑥3 𝑥̇3
+ 𝜕 (𝜕𝑓2 (𝑥1) /𝜕𝑥1) 𝑥̇1𝜕𝑥3 𝑥̇3

+ 𝜕 (𝜕𝑓1 (𝑥1) /𝜕𝑥2) 𝑥̇2𝜕𝑥3 𝑥̇3
+ 𝜕 (𝜕𝑓2 (𝑥1) /𝜕𝑥2) 𝑥̇2𝜕𝑥3 𝑥̇3.

(25)

By parity of reasoning, we apply the method of reference
[9], the canonical form of system (8) can be obtained as (22).

According to the preceding discuss, without loss of
generality, the coefficient matrixes 𝐴, 𝐵 can be adopted as

𝐴 =
[[[[[[[[[
[

0 1 0 ⋅ ⋅ ⋅ 0
0 0 1 ⋅ ⋅ ⋅ 0
0 0 0 ⋅ ⋅ ⋅ 0
... ... ... d

...
−𝑎1 −𝑎2 −𝑎3 ⋅ ⋅ ⋅ −𝑎𝑛

]]]]]]]]]
]

,

𝐵 =
[[[[[[[[[
[

0
0
0
...
𝑏

]]]]]]]]]
]

.

(26)

Then, the system is described by NN in (11) which can be
rewritten as

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑥3

...
𝑥̇𝑛 = −𝑎1𝑥1 − 𝑎2𝑥2 − ⋅ ⋅ ⋅ − 𝑎𝑛𝑥𝑛 + 𝑏𝑢 + 𝐶𝑊∗Ψ + 𝐶𝜀,

(27)

where 𝐶 ∈ R1×𝑛 is a transformed vector parameters for the
NN in (11).

Remark 3. For the existing of the hysteresis nonlinearity
and the nonlinear smooth functions 𝑓(𝑥), 𝑓2(𝑥), we cannot
use the linear system method to transform the coefficient
matrixes (23) into normalized form (26). But under some
conditions, we also use the linear systemmethod to transform
the coefficient matrixes, that can be simplify the computation
and is convenient for the controller design.

5. Define the Sliding Mode Manifold 𝑠
as Follows

𝑠 = 𝑐1𝑒1 + 𝑐2 ̇𝑒1 + ⋅ ⋅ ⋅ + 𝑒(𝑛)1 , (28)

where the error 𝑒1 is defined as
𝑒1 = 𝑥1 − 𝑥𝑑, (29)

where 𝑥𝑑 is the reference input signals.
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Design the sliding mode controller input as follows:

𝑢 = 1𝑏 (−𝜍𝑠 − 𝐶𝑊̂Ψ − 𝑚̂ + 𝑧̂ + 𝑥(𝑛+1)𝑑 − sign (𝑠)) , (30)

where 𝜍 > 0, 𝑧̂ = 𝑎1𝑥1 + 𝑎2𝑥2 + ⋅ ⋅ ⋅ , 𝑎𝑛𝑥𝑛, 𝑚̂ = 𝑐1 ̇̂𝑒1 − 𝑐2 ̈̂𝑒1 −⋅ ⋅ ⋅ − 𝑐𝑛−1𝑒(𝑛−1)1 , and 𝑠 = 𝑐1𝑒1 + 𝑐2 ̇̂𝑒1 + ⋅ ⋅ ⋅ + 𝑒(𝑛)1 .
The NN update law is selected as

̇̂𝑊 = −𝜌𝑠Ψ, (31)

where 𝜌 is designed parameter.
Define the errors as

𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑛. (32)
Then, the following theorem holds.

Theorem 4. Considering system (27), the sliding mode mani-
fold is defined in (28), the controller is chosen as in (30), the NN
update law is chosen as in (31), and then, the control system is
semiglobally uniformly ultimately bounded (UUB).

Proof. Define the Lyapunov function as

𝑉𝑡 = 12𝑠2. (33)

According to (28), (29), and (30), we have

𝑉̇𝑡 = 𝑠 ̇𝑠 = 𝑠 (𝑐1 ̇𝑒1 + 𝑐2 ̈𝑒1 + ⋅ ⋅ ⋅ + 𝑒(𝑛+1)1 ) = 𝑠 (𝑐1 ̇𝑒1 + 𝑐2 ̈𝑒1
+ ⋅ ⋅ ⋅ − 𝑎1𝑥1 − 𝑎2𝑥2 − ⋅ ⋅ ⋅ − 𝑎𝑛𝑥𝑛 + 𝑏𝑢 + 𝐶𝑊∗Ψ
+ 𝐶𝜀 − 𝑥(𝑛+1)𝑑 ) = 𝑠 (𝑐1 ̇𝑒1 + 𝑐2 ̈𝑒1 + ⋅ ⋅ ⋅ − 𝑎1𝑥1 − 𝑎2𝑥2
− ⋅ ⋅ ⋅ − 𝑎𝑛𝑥𝑛 + 𝐶𝑊∗Ψ + 𝐶𝜀 − 𝜍𝑠 − 𝑚̂ + 𝑧̂
− sign (𝑠)) = 𝑠 (−𝜍𝑠 − 𝑎1𝑥1 + (𝑐1 − 𝑎2) 𝑥2 + ⋅ ⋅ ⋅
+ (𝑐𝑛−1 − 𝑎𝑛) 𝑥𝑛 + 𝐶𝑊̃Ψ + 𝐶𝜀 − sign (𝑠)) = −𝜍𝑠2
+ 𝑠 (−𝑎1𝑥1 + (𝑐1 − 𝑎2) 𝑥2 + ⋅ ⋅ ⋅ + (𝑐𝑛−1 − 𝑎𝑛) 𝑥𝑛
+ 𝐶𝑊̃Ψ + 𝐶𝜀 + 𝜍𝑠 − sign (𝑠)) = −𝜍𝑠2
+ 𝑠 ((𝑐1 − 𝑎1) 𝑥1 + (𝑐1 + 𝑐2 − 𝑎2) 𝑥2 + ⋅ ⋅ ⋅
+ (𝑐𝑛−1 − 𝑎𝑛 + 1) 𝑥𝑛 + 𝐶𝑊̃Ψ + 𝐶𝜀 − sign (𝑠)) ,

(34)

where 𝑠 = 𝑠 − 𝑠 = 𝑐1𝑥1 + 𝑐2𝑥2 + ⋅ ⋅ ⋅ + 𝑥𝑛.
DefineΔ𝑚𝑎𝑥 ≥ |(𝑐1−𝑎1)𝑥1+(𝑐1+𝑐2−𝑎2)𝑥2+⋅ ⋅ ⋅+(𝑐𝑛−1−𝑎𝑛+1)𝑥𝑛 +𝐶𝑊̃Ψ+𝐶𝜀| − sign(𝑠), according to Young's inequality,

(34) can be deduced as

𝑉̇𝑡 ≤ −𝜍𝑠2 + 12 (𝑠2 + Δ2𝑚𝑎𝑥) = − (2𝜍 − 1)𝑉𝑡 + 12Δ2𝑚𝑎𝑥. (35)

To solve inequality (35), we have

𝑉𝑡 ≤ 𝑒−󰜚(𝑡−𝑡0)𝑉 (𝑡0) + 12Δ2𝑚𝑎𝑥 ∫
𝑡

𝑡0

𝑒−󰜚(𝑡−𝜉)𝑑𝜉
= 𝑒−󰜚(𝑡−𝑡0)𝑉 (𝑡0) − 12󰜚Δ2𝑚𝑎𝑥 (1 − 𝑒−󰜚(𝑡−𝑡0)) ,

(36)

where 󰜚 = 2𝜍 − 1.

Let the parameter 𝜍 > 1/2, and one can obtain

lim
𝑡󳨀→∞

𝑉𝑡 ≤ 12󰜚Δ2𝑚𝑎𝑥. (37)

Therefore, based on the Lyapunov theory, the controlled
system is semiglobally uniformly ultimately bounded (UUB).

The proof is completed.

Remark 5. Based onTheorem4, all the closed loop signals are
bounded. But on the structure of the NNSMC, we obviously
known that the NN identification is a part of the closed
loop and the update law of NN is deduced by the closed
loop.Therefore, the identification connected with the control
design, it is online estimating the nonlinear functions and
online adjusting by the tracking errors.

6. Simulations

Considering a hysteresis system as follows:

𝑥̇1 = 𝑥2
𝑥̇2 = 1.30.186𝑥1 + cos𝑥20.186

+ 21 + sin (−0.5 (𝑥1 − 𝑥2)) + 0.12 cos𝑥2 V
V̇ = 0.08 |𝑢̇| (2𝑢 − V) + 0.03𝑢̇.

(38)

6.1. Controller Design. In order to verify the effectiveness
of the proposed NNSMC, A PID controller is designed to
compare with the proposed NNSMC. The PID controller
gains are chosen as 𝐾𝑃 = 50,𝐾𝐼 = 3,𝐾𝐷 = 1.26. Otherwise,
for NNSMC, the sliding mode manifold is defined as in (28),
the NNSMC controller is defined as in (30). The parameters
are selected as 𝑐 = 6.28, 𝑑 = 2, ℎ = 1, 𝑐1 = 5.95, 𝑎1 = 6.99,𝑎2 = 5.38, 𝑏 = 5.38, 𝜌 = 0.05, and 𝜍 = 2.

We design two different control input signal to test the
proposed approaches. Firstly, a square wave signal is selected
for the hysteresis system, and then two amplitude sine signals
are adopted with NNSMC which will compare with the PID
controller.

The two different controllers will test the system (38)
with reference input. The proposed NNSMC firstly estimates
the unknown states and hysteresis part with NN and uses
the sliding mode controller to control the hysteresis system
online.

6.2. Control Results. Two different reference input signals are
selected to test the proposed NNSMC.The NN identification
is adopted estimating the unknown nonlinear functions and
then the SMC is applied to control the closed loop. In order
to verify the effectiveness of the NN identification and SMC,
A square wave signal firstly utilizes tracking the system. Two
amplitude sine signals are adopted with NNSMC and PID
controller. The details are listed as follows.
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Figure 3: The control results of NNSMC versus PID control.
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Figure 4: The control results of NNSMC versus PID control.

6.2.1. Case 1. We chose the reference square wave with
amplitude which is 𝑎 = 2, and the duty ratio is 50%. Then
the tracking results are illustrated in Figure 3, the errors are
shown in Figure 4, and the sliding mode reaching phase
process is illustrated in Figure 5. From Figures 3 and 4, it is
clear that the proposed NN identification and the NNSMC
have a good tracking performance. The dynamic procedures
are less than 10𝑠 and the errors are shown in the same
phenomenon.

In order to restrain chattering of the SMC, we adopt
tanh(⋅) function instead of the sign(⋅) function in the sim-
ulations. From Figure 5, we can see that the chattering is
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Figure 5: The control results of NNSMC versus PID control.
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Figure 6: The control results of NNSMC versus PID control.

suppressed and the sliding mode quickly reaches the sliding
mode manifold.

6.2.2. Case 2. The reference input is chosen as a sinusoidal
signal 𝑥𝑑 = 0.2 sin(𝑥). The controller results and errors
are illustrated in Figures 6 and 7. It is shown that the
proposed NNSMC can more precisely track the states than
the PID controller with shorter dynamic adjustment time
from Figure 6. The adjustment time of NNSMC for 𝑥2 is
less than 1𝑠𝑒𝑐, but the PID controller adjustment time is
more than 3𝑠𝑒𝑐. The tracking errors also demonstrate the
same conclusion from Figure 7. The mean absolute error
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Figure 8: The control input of NNSMC.

(MAE) of NNSMC and PID controllers are listed in Table 1.
According to the Table 1, the two approaches’ MAE of𝑀𝐴𝐸1
are 0.0021, 0.0121 and the MAE of𝑀𝐴𝐸2 are 0.0066, 0.0078,
respectively. It is obviously shown that the proposed NNSMC
has better performance for the hysteresis nonlinear system.
The NNSMC controller signal is illustrated in Figure 8.
From the controller signal, one also finds that the dynamic
adjustment time is less than 1𝑠𝑒𝑐 in this simulation.

6.2.3. Case 3. In order to demonstrate the performance of the
proposed NNSMC, the reference input is selected as 𝑥𝑑 =0.1 sin(𝑥) that has a smaller amplitude than Case 1 and the
results are illustrated in Figures 9 and 10.The controller input
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Figure 9: The control results of NNSMC with 𝑥𝑑 = 0.1 sin(𝑥).
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Figure 10: The tracking errors of NNSMC with 𝑥𝑑 = 0.1 sin(𝑥).
Table 1: The mean absolute errors of NNSMC and PID controller.

Controller 𝑀𝐴𝐸1 𝑀𝐴𝐸2
NNSMC 0.0021 0.0066
PID 0.0121 0.0078

is shown in Figure 11. It is clearly illustrated that the proposed
NNSMC has excellent performance to track the hysteresis
nonlinear system. The dynamic adjustment time only has
about 0.5𝑠𝑒𝑐, then it keeps stable stage and the tracking error
holds a neighbourhood of zero. From Figure 10, one can
obviously find the same conclusion and the MAE of𝑀𝐴𝐸1 =0.0018, 𝑀𝐴𝐸2 = 0.0056, respectively. Compared with the
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Figure 11: The control input of NNSMC with 𝑥𝑑 = 0.1 sin(𝑥).

results of Case 1, the control precisions are higher on the small
signals, that suit the real conditions. With the increase of
the reference input signal, the control performance becomes
degradation.

7. Conclusions

A new neural network identification approach and neural
network sliding mode control were proposed for hysteresis
nonlinear system with backlash-like model. Since classical
adaptive control needs to deal with the tracking error (error
transformation or back-stepping, 𝑒𝑡𝑐.) on the controller
design, in this paper a neural network sliding mode con-
troller was designed where it did not need tracking error
transformation. Moreover, the unknown system states and
the unknown hysteresis section were estimated only by one
neural network for saving the computation and simplifying
the control design. The stability of the closed loop was
guaranteed by Lyapunov theory and the simulation results
verified the effectiveness of the presented approaches.
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