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Foggy weather seriously deteriorates the performance of freeway systems, particularly regarding tra�c safety and e�ciency.
General macroscopic tra�c models have di�culty re�ecting the characteristics of a freeway under foggy weather conditions. In
the present study, a macroscopic tra�c model using a correction factor under foggy weather conditions is therefore proposed,
which is regulated according to the di�erent levels of visibility and curve radius of the freeway using the Takagi–Sugeno (T-S)
model. Based on the proposed tra�c model, a local ramp metering strategy with density correction under foggy weather
conditions is proposed to improve tra�c safety. �e proposed local ramp metering strategy regulates the on-ramp �ow using the
T-S model according to the mainstream density, speed, and visibility. �e correction factors are determined based on the
parameters of the consequent part in the T-S model, which are optimized using the particle swarm optimization algorithm. �e
sum of the mean absolute percentage error of the mainstream tra�c density and speed is used to evaluate the proposed tra�c
model. �e real-time crash-risk prediction model, which re�ects the degree of tra�c safety, is used to evaluate the proposed local
ramp metering strategy. Simulations using VISSIM and MATLAB show that the proposed tra�c model is suitable under foggy
weather conditions and that the proposed local ramp metering strategy achieves a better performance in reducing fog-
related crashes.

1. Introduction

Foggy weather not only deepens the uncertainty, complexity,
and randomness of freeway systems but also brings about a
decrease in tra�c e�ciency and an increase in the number of
crashes [1]. Fog-related crashes are mainly related to poor
visibility and a large curve radius, which is the radius of a
circularly curved section of a freeway [2].

Tra�c management strategies for improving tra�c
safety and e�ciency under foggy weather conditions can be
divided into two types: advisory strategies and control
strategies [3]. Advisory strategies using atmospheric and
pavement data combined with the tra�c �ow and incident
data can provide more timely and accurate freeway tra�c
information for travelers and thereby reduce fog-related
crashes [4]. Dynamic tra�c information can be automati-
cally conveyed to travelers through dynamic message signs

and freeway advisory announcements provided through a
radio station. Control strategies can be divided into two
types as well: speed management strategies and tra�c �ow
management strategies. Regarding speed management, au-
tomatic visibility warning systems estimate a safe tra�c
speed for motorists based on the real-time visibility of the
freeway as derived from visibility sensors to reduce fog-
related crashes [5]. Real-time speed recommendations de-
rived from visibility warning systems can be conveyed using
an intelligent transportation system [6, 7]. A visibility
warning system is widely used to ensure tra�c safety under
foggy weather conditions. Using six types of visibility sen-
sors with forward-scatter technology and 25 closed circuit
TV cameras, the Alabama Department of Transportation
implemented a visibility warning system to reduce fog-re-
lated crashes [3]. �e Utah Department of Transportation
used an Adverse Visibility Information System Evaluation,
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which provides real-time speed recommendations for mo-
torists, to reduce fog-related crashes [8, 9]. However, visi-
bility warning systems have significant challenges in terms of
cost and the application of appropriate sensor technologies.

In terms of traffic flow management, control strategies
are applied to permit or restrict the traffic flow and regulate
the freeway capacity. Ramp metering has been recognized as
an effective and economic way to regulate mainstream
freeway traffic flow at the cost of increasing or decreasing the
on-ramp queue length [10]. Existing ramp metering strat-
egies, including fixed-time and real-time ramp metering,
have been used well. Based on historical traffic data, fixed-
time ramp metering strategies may lead to freeway con-
gestion or underutilization. Real-time ramp metering
strategies including local responsive and coordinated ramp
metering strategies regulate the mainstream traffic flow
based on real-time traffic data. Local ramp metering strat-
egies such as demand capacity, occupancy control, and
Asservissement Linéaire d’Entrée Autoroutière (ALINEA)
determine the on-ramp flow based on the real-time main-
stream traffic conditions. Among them, ALINEA is the most
typical type of ramp metering strategy owing to its closed-
loop control [11]. Extended algorithms of ALINEA such as
downstream-measurement-based adaptive ALINEA (AD-
ALINEA), upstream-measurement-based adaptive ALINEA
(AU-ALINEA) [12], and proportional-integral extension of
ALINEA (PI-ALINEA) [13] have recently been proposed. In
addition, intelligent control algorithms such as iterative
learning control [14–16], fuzzy logic control (FLC), neural
network control [17], and a reinforcement learning control
algorithm [18] are used in local ramp metering. Coordinated
ramp metering strategies such as METALINE, FLOW, the
Zone algorithm, Helper, and SWARM aim at improving the
network-wide traffic efficiency of freeways by making full
use of all on-ramps. However, the complexity and cost of
coordinated ramp metering are much higher than those of
local ramp metering [19].

A freeway system is an interconnected nonlinear system
that can be represented using a set of linear state equations
by applying a fuzzy model. -erefore, FLC appears to be
more suitable for ramp metering than an analytic control
algorithm. A fuzzy logic controller based on six input
variables and three output variables was proposed for ramp
metering, which took into account the upstream and
downstream traffic states and the length of the on-ramp
queue [20]. Experimentally, the fuzzy controller proved its
superior performance in reducing congestion and dealing
with traffic incidents. In addition, a T-S-type fuzzy controller
based on the mainstream density, speed, and queue length
applied as inputs and the desired mainstream density ap-
plied as the output was proposed [21]. -e proposed T-S-
type fuzzy controller implements an optimal ramp metering
according to the different traffic states using the PSO al-
gorithm. -e self-adjusted fuzzy ramp metering strategy
based on the correction factor was proposed [21]. -e fuzzy
control rules of the proposed self-adjusted fuzzy ramp
metering strategy are replaced with correction factors. -e
proposed correction factors simplify the rule definitions of
the three-dimensional fuzzy controller. Based on the fuzzy

logic algorithm, many different control strategies such as a
genetic-fuzzy algorithm [22] and a genetic-fuzzy algorithm
with the optimization algorithm [23] have been proposed.
Moreover, a ramp metering strategy based on the fuzzy logic
algorithm achieves a good robustness and rapid response to
traffic demand [24].

Although studies on local ramp metering under normal
weather conditions have been exploited well, few studies
have been conducted on local ramp metering under foggy
weather conditions. In this study, a macroscopic traffic
model based on a model correction factor (cm) under foggy
weather conditions is proposed using the T-S model. -e
traffic model is regulated using the T-S model according to
the different degrees of visibility and the curve radius of the
freeway. Freeway traffic data derived from the VISSIM
simulator are used for traffic modelling under foggy weather
conditions. -e sum of the mean absolute percentage error
based on the mainstream traffic density and speed is used to
evaluate the proposed traffic model. -e traffic model pa-
rameters are optimized using the PSO algorithm. -e
proposed traffic model is simulated in MATLAB.

Based on the proposed macroscopic traffic model, a local
ramp metering strategy based on a density correction factor
(cd) under foggy weather conditions is proposed. Based on a
T-S-type FLC, the proposed local ramp metering strategy
regulates the on-ramp flow according to the mainstream
density, mainstream speed, and visibility. A real-time crash-
risk prediction model reflecting the level of safety of the
freeway traffic is used to evaluate the proposed local ramp
metering strategy. -e parameters of the proposed ramp
metering strategy are also optimized using the PSO algo-
rithm, and the proposed local ramp metering strategy is
simulated in MATLAB.

2. Macroscopic Traffic Model under Foggy
Weather Conditions

2.1. T-S-Type Fuzzy 'eory. In this study, the T-S model is
adopted for use as a macroscopic traffic model and for local
ramp metering under foggy weather conditions. For a T-S-
type fuzzy controller, xm is denoted as the m-th input
variable, with m � 1, . . . , M, whereM is the number of input
variables; in addition, Ai(xm) is denoted as the input fuzzy
subset of the input variable xm corresponding to the i-th
fuzzy rule, in which i � 1, . . . , N, where N is the number of
fuzzy rules. -e i-th fuzzy rule is expressed in the IF-THEN
form as follows:

IFx1 isA
i

x1( AND x2 isA
i

x2(  · · ·ANDxM isA
i

xM( 
√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√
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THENy
i

� p
i
0 + p
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1x1 + · · · + p

i
MxM√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

consequent part

,

(1)
where pi

l is a constant parameter of the consequent part
related to the i-th fuzzy rule, in which l � 0, 1, . . . , M, and yi

denotes the output value corresponding to this rule.
In addition, μi(xm) denotes the membership value of the

input variable xm corresponding to the linguistic variable
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Ai(xm), and μi refers to the membership value of the i-th
fuzzy rule, which is calculated as follows:

μi
� min μi

x1( , μi
x2( , . . . , μi

xM(  

or μi
� μi

x1( ∗ μi
x2( ∗ · · · ∗ μi

xM( .
(2)

-e final output of the T-S model is expressed as follows:

y �
iμiyi

iμi
. (3)

2.2. Macroscopic Traffic Model with Correction Factor under
Foggy Weather Conditions. Considering such factors as the
topography and construction costs in the design of a freeway
plane alignment, circular curved sections are unavoidable
and are applied as a main linear section of a freeway. Owing
to the particularity of its linear conditions and the com-
plexity of driving behaviors, such sections have become areas
with a high incidence of traffic accidents. -e freeway
friction coefficient and visibility are reduced under foggy
weather conditions, adding to the complexity of driving
behaviors on curved sections. -e curve radius is the main
characteristic of a circular curved section of a freeway, and
the crash risk will increase with a decrease in the curve
radius. -e freeway visibility and curve radius are two of the
most critical factors affecting the traffic model applied under
foggy weather conditions. METANET [25] is a well-known
macroscopic traffic model. However, it has difficulty
reflecting freeway characteristics under foggy weather.
-erefore, in this study, a traffic model applied under foggy
weather conditions that introduces a model correction factor
(cm) into the METANET traffic model is proposed. -is
model correction factor can reflect the effects of foggy
weather on a freeway because the factor is regulated
according to the different levels of visibility and the curve
radius of the freeway. -e model correction factor is directly
determined using the T-S model. -e proposed traffic model
is expressed as follows:

ρi(k + 1) � cm · ρi(k) +
T

Δi

qi− 1(k) − qi(k) + ui(k)  ,

(4)

qi(k) � ρi(k) · vi(k) · λi, (5)

vi(k + 1) � cm · vi(k) +
T

τ
V ρi(k)(  − vi(k) 

+
T

Δi

vi(k) vi− 1(k) − vi(k) 

−
cT

τΔi

ρi+1(k) − ρi(k)

ρi(k) + θ
,

(6)

V ρi(k)(  � vf · 1 −
ρi(k)

ρjam
 

δ
⎡⎣ ⎤⎦

m

, (7)

where T is the length of the time step; k indicates the time
step t� kT, where k � 1, . . . , λi denotes the number of lanes

in the segment i; vi(k) and ρi(k) are the average speed and
average mainstream density in the segment i at the time step
kT, respectively; qi(k) represents the mainstream flow
through the segment i entering the next segment during the
time step kT; ui(k) represents the on-ramp metering flow
entering the segment i at the time step kT; the notations vf,
ρjam, Δi, and V(ρi(k)) represent the free-flow speed, the jam
density, the length of the segment i, and the static speed in
the segment i at the time step kT, respectively;m, c, τ, δ, and
θ are global parameters reflecting the freeway characteristics;
and cm denotes the model correction factor. Equations
(4)–(7) are for determining the conservation, traffic pa-
rameter relationship, dynamic mean speed, and static speed-
density relationship, respectively.

2.3. Model Correction Factor Regulation Based on T-S Model.
-e visibility and curve radius are the two most important
factors affecting freeway traffic under the foggy weather
condition. -us, in this study, the freeway visibility and
curve radius are applied as input variables of the T-S model,
and the model correction factor is applied as the output
variable. -e freeway visibility and curve radius can be
obtained from a freeway information system. -e freeway
visibility and curve radius at the time step kT are denoted as
r(k) and b(k), respectively. Assume thatA(r) andA(b) are the
input fuzzy sets of the input variables r(k) and b(k), re-
spectively. Two input fuzzy subsets are defined for each
input fuzzy set. -e normalized domain of the input fuzzy
sets and the input variables is [− 1, 1]. It is assumed that the
actual physical domains of the visibility and radius curve are
[r1, r2] and [b1, b2], respectively. -e mean values of rm and
bm and the scaling factors Kr and Kb are used to transform
the physical domains [r1, r2] and [b1, b2] into the normalized
domains [− 1, 1] and [− 1, 1], respectively, the mathematical
formulas of which are as follows:

rm �
r1 + r2

2
,

bm �
b1 + b2

2
,

Kr �
1

r2 − rm( 
,

Kb �
1

b2 − bm( 
.

(8)

-us, the measured values r(k) and b(k) can be trans-
formed into the normalized domain using the appropriate
scaling factors as follows:

A(r) � Kr · r(k) − rm( ,

A(b) � Kb · b(k) − bm( .
(9)

-emembership function of normalized input fuzzy sets
described using a trapezoidal function [26] is as shown in
Figure 1.

-ere are four different combinations of input variables
in the fuzzy rules, as summarized in Table 1.
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An example of a fuzzy rule is expressed in the IF-THEN
form as follows:

IF r is BIGAND b is SMALL︸������������︷︷������������︸
antecedent part

THEN cim � βi0 + βi1r + βi2b︸�����������︷︷�����������︸
consequent part

,
(10)

where βij, in which j� 0, 1, 2, is a constant parameter of the
consequent part corresponding to the i-th fuzzy rule and cim
denotes the output value corresponding to the i-th fuzzy
rule.

According to equations (1)–(3), the model correction
factor (cm) is calculated as follows:

cm �
∑iμicim
∑iμi

. (11)

�e T-S model of the model correction factor contains
four fuzzy rules, and each fuzzy rule has three parameters to
be regulated. �us, the T-S model regulates a total of 12
parameters. Including vf, τ, ρjam, m, c, θ, and δ, there are a
total of 19 parameters to be regulated in the proposed tra�c
model. �e performance of the T-S model depends on the
structure and parameter identi¥cation. However, in this
study, the performance of the T-S model is merely related to
the parameters of the consequent part because the input
fuzzy sets are prede¥ned. �erefore, to minimize the per-
formance objective, the problem of tra�c modelling under
foggy weather conditions is equivalent to seeking the op-
timal values of the 19 parameters. �e PSO algorithm is
adopted to optimize these parameters.

2.4. Parameter Regulation Based on PSO. As a swarm in-
telligence algorithm, PSO is inspired by the search strategy
applied in the foraging behaviors of organisms such as
�ocking bird [27]. �e PSO algorithm is based on a pop-
ulation iterative search. For the parameter optimization,
each particle denotes a set of candidate solutions. Each

particle includes the position and velocity, which determine
its direction and distance of �ight, as well as the ¥tness value
calculated using a ¥tness function. During the particle search
process, each particle can update its position in a better
direction by tracking the individual and global best posi-
tions. If the number of iterations reaches the maximum, the
global best position of the particle swarm is the optimal
solution. During each iteration, each particle updates its
velocity and position by tracking the individual and global
best positions as follows [28]:

vj+1i � wvji + c1r1 p
j
i − x

j
i( ) + c2r2 p

j
g − x

j
i( ),

xj+1i � xji + v
j+1
i ,

(12)

where i refers to the index of the particle, j represents the
index of the iteration, vji denotes the velocity of the i-th
particle during the j-th iteration, xji denotes the position of
the i-th particle during the j-th iteration, pji is the individual
best position of the i-th particle during the j-th iteration, pjg
is the global best position of the particle swarm during the j-
th iteration, w is the inertia weight, c1 and c2 are learning
factors regulating the attraction of the individual and global
best positions to the particle, and r1 and r2 are random values
within the range of zero to 1.

During the application of the PSO algorithm, the ¥tness
function is used to evaluate the e�ectiveness of the pa-
rameter optimization during the k-th iteration. �e sum of
the mean absolute percentage error of the mainstream tra�c
density and speed is used for the ¥tness function. �e ¥tness
function is expressed as follows:

J � 0.5 ∑
1≤k≤K

ρo(k) − ρi(k)
∣∣∣∣

∣∣∣∣
ρo(k)

+
vo(k) − vi(k)
∣∣∣∣

∣∣∣∣
vo(k)

{ }, (13)

where k indicates the time step t� kT, where k � 1, 2, . . . , K
is the total time period; ρo(k) and ρi(k) are the actual
mainstream density and the density derived from the pro-
posed tra�c model at the time step kT, respectively; and
vo(k) and vi(k) are the actual mainstream speed and the
speed derived from the proposed tra�c model at the time
step kT, respectively; in addition, the data on ρo(k) and vo(k)
under foggy weather conditions can be obtained from a
freeway information system.

�e mainstream tra�c �ow is a product of the main-
stream tra�c density and speed, and thus, the mainstream
�ow is indirectly taken into account through the ¥tness
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Figure 1: Membership functions of (a) visibility and (b) curve radius.

Table 1: Combinations of input variables in fuzzy rules.

i A(r) A(b)
1 SMALL BIG
2 SMALL SMALL
3 BIG SMALL
4 BIG BIG
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function. It is known that the speed, density, and flow are
considered to be explanatory variables of the freeway traffic
model. -erefore, the fitness function, which includes the
mainstream speed, density, and flow, represents a com-
prehensive assessment of the proposed traffic model.

-e implementation steps of the PSO algorithm are
divided into two parts: initialization and iteration.

2.4.1. Initialization Part

Step 1. Set the particle swarm size as 100, the number of
particle dimensions as 19, the maximum number of itera-
tions as 300, both c1 and c2 as 2, and the inertia weight w as
0.8.

Step 2. Initialize the position and velocity vectors for each
particle randomly while taking into account the particle
limits.

Step 3. Input the traffic data on the flow, speed, and density.

Step 4. Randomly set the initial solution of each particle, and
initialize the individual and global best positions.

2.4.2. Iteration Part

Step 1. Calculate the fitness value of each particle according
to equations (4)–(7) and (12).

Step 2. Determine the individual and global best positions
for the i-th particle at the j-th iteration, and if the fitness
value is smaller than the previous fitness value, let the in-
dividual best position p

j
i � x

j
i ; otherwise, the individual best

position p
j

i remains unchanged. In addition, if the individual
best position p

j

i is smaller than the global best position p
j
g,

let p
j
g � p

j

i ; otherwise, the global best position p
j
g remains

unchanged.

Step 3. Update the velocity and position of each particle
according to equation (11).

Step 4. Repeat the iteration part until the maximum number
of iterations is satisfied.

3. Local Ramp Metering under Foggy
Weather Conditions

During the past several decades, studies on local ramp
metering under normal weather conditions have been well
exploited. However, the problem of local rampmetering under
foggy weather conditions has been rarely studied. Because of
traffic safety, on-ramps are typically closed under foggy
weather conditions.-e consequence of closing an on-ramp is
not only a reduction in the mainstream traffic flow but also a
decrease in the traffic efficiency. -erefore, improving the
freeway traffic efficiency during foggy weather on the basis of
ensuring traffic safety is a popular area of study. Owing to the
complexity of foggy weather conditions, the desired density

varies from moment to moment, which cannot be properly
solved using PI-ALINEA. -us, the application of local ramp
metering under foggy weather conditions is proposed.

A ramp metering strategy similar to PI-ALINEA is ap-
plied in the present paper. PI-ALINEA is expressed as follows:

u(k + 1) � u(k) − KPρ(k) − ρ(k − 1) + KR ρd − ρ(k) ,

(14)

where KP and KR are the gain factors for the proportional
and integral terms, respectively.

-e proposed local rampmetering strategy based on the
density correction factor (cd) can regulate the on-ramp flow
according to the freeway traffic state. In addition, the
density correction factor (cd) is directly determined using
the T-S model. -e proposed local ramp metering strategy
based on the density correction factor (cd) can be expressed
as follows:

u(k + 1) � u(k) − KPρ(k) − ρ(k − 1) + KR ρd − ρ(k) ,

(15)

ρd � ρp · cd, (16)

where KP and KR are the gain factors for the proportional
and integral terms, respectively; ρp is the predefined density
value; and cd represents the density correction factor.

-e mainstream traffic density (ρ), speed (v), and visi-
bility (r) of the freeway are three key factors affecting the
traffic safety under foggy weather conditions. -us, this
paper sets the mainstream traffic density (ρ), speed (v), and
visibility (r) as input variables of the T-S model and the
density correction factor (cd) as the output variable. Assume
that A(ρ), A(v), and A(r) are input fuzzy sets of the main-
stream density, speed, and visibility, respectively. Two fuzzy
subsets are defined for each input fuzzy set. -e normalized
domains of the input fuzzy sets and input variables are all
[− 1, 1]. Assume that the actual physical domains of the
visibility, speed, and visibility are [ρ1, ρ2], [v1, v2], and [r1,
r2], respectively. -e mean values of ρm, vm, and rm and the
scaling factors Kρ, Kv, and Kr transform the physical do-
mains [ρ1, ρ2], [v1, v2], and [r1, r2] into the normalized
domains [− 1, 1], [− 1, 1], and [− 1, 1], respectively, the
mathematical formulas of which are as follows:

ρm �
ρ1 + ρ2

2
,

vm �
v1 + v2

2
,

rm �
r1 + r2

2
,

Kρ �
1

ρ2 − ρm

,

Kv �
1

v2 − vm

,

Kr �
1

r2 − rm

.

(17)
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-us, the measured values r(k) and b(k) can be trans-
formed into the normalized domain as follows:

A(ρ) � Kρ · ρ(k) − ρm( ,

A(v) � Kv · v(k) − vm( ,

A(r) � Kr · r(k) − rm( .

(18)

-e membership function of the normalized input fuzzy
sets described using a trapezoidal function is shown in
Figure 2.

Owing to dynamic characteristics of a traffic flow, when
the mainstream traffic density is high, the mainstream traffic
speed should be low. -erefore, four different combinations
of input variables are applied in the fuzzy rules, as sum-
marized in Table 2.

For example, the i-th fuzzy rule is expressed as follows:

IF ρ is HIGHAND v is LOWAND r is HIGH
√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√

antecedent part

THEN c
i
d � o

i
0 + o

i
1ρ + o

i
2v + o

i
3r√√√√√√√√√√√√√√√√√√√√√√√√√√

consequent part

,
(19)

where oi
j, in which j� 0, 1, 2, 3, is a constant parameter of the

consequent part corresponding to the i-th fuzzy rule and ci
d

denotes the output value corresponding to the i-th fuzzy rule.
According to equations (1)–(3), the density correction

factor (cd) can be calculated as follows:

cd �
iμici

d

iμi
. (20)

According to equations (15) and (18), the desired density
can be calculated as follows:

ρd � ρp ·
iμici

d

iμi
 . (21)

-e T-S model of the density correction factor contains
four fuzzy rules, each of which has four parameters to be
regulated.-us, the T-S model has 16 parameters to regulate
in the proposed local ramp metering strategy. -e PSO
algorithm is used to optimize these 16 parameters.

-e principle and implementation steps of the PSO al-
gorithm are described in Section 2.4. -e determined dif-
ference is the fitness function. Freeway traffic safety during
foggy weather conditions is the primary control target. -us,
the real-time crash-risk prediction model, which reflects the
traffic safety, is used as the fitness function to evaluate the
proposed local ramp metering. -e real-time crash-risk
prediction model is actually described as a logistic regression
function of the freeway traffic variables and regulates the
model parameters using the actual freeway traffic incident
data. -e real-time crash-risk prediction model [29] is cal-
culated as follows:

VU(t − ΔT, t) �


λi

λ�1
N1
n�1V

λ
U tn − Δt, tn( 

λi · N1
, (22)

VD(t − ΔT, t) �


λi

λ�1
N1
n�1V

λ
D tn − Δt, tn( 

λi · N1
, (23)

OU(t − ΔT, t) �


λi

λ�1
N1
n�1O

λ
D tn − Δt, tn( 

λi · N1
, (24)
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Figure 2: Membership functions of (a) mainstream density, (b) mainstream speed, and (c) visibility.

Table 2: Combinations of input variables used in fuzzy rules.

i A(ρ) A(v) A(r)
1 HIGH LOW HIGH
2 HIGH LOW LOW
3 LOW HIGH HIGH
4 LOW HIGH LOW
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RCRI �
VU(t − ΔT, t) − VD(t − ΔT, t)  · OU(t − ΔT, t)

1 − OU(t − ΔT, t)
,

(25)

σ OU(  �

������������������������������������


λi

λ�1
N1
n�1 Oλ

U tn − Δt, tn(  − OU(t − ΔT, t) 
2

λi · N1




,

(26)

σ OD(  �

������������������������������������


λi

λ�1
N1
n�1 Oλ

D tn − Δt, tn(  − OD(t − ΔT, t) 
2

λi · N1




,

(27)

Logit(P(Y � 1)) � α1 + α2 · RCRI + α3 · σ OU( 

+ α4 · σ OD( ,
(28)

P(Y � 1) �
exp α1 + α2 · RCRI + α3 · σ OU(  + α4 · σ OD( ( 

1 + exp α1 + α2 · RCRI + α3 · σ OU(  + α4 · σ OD( ( 
,

(29)

whereVU(t − ΔT, t) and VD(t − ΔT, t) are the average speed
in the upstream and downstream segments during the time
period ΔT, respectively; OU(t − ΔT, t) denotes the average
occupancy in the upstream segment during the time period
ΔT; RCRI represents the rear-end collision risk induced by
kinematic waves; and Vλ

U(tn − Δt, tn) and Vλ
D(tn − Δt, tn) are

the average speed of the λ-th lane in the upstream and
downstream segments during the time interval Δt, re-
spectively. In addition, Oλ

U(tn − Δt, tn) is the average oc-
cupancy of the λ-th lane in the upstream segment during the
time interval Δt; σ(OU) and σ(OD) are the standard deviation
of the occupancy in the upstream and downstream segments
during the time period ΔT, respectively; λi is the number of
lanes in the segment i;N1 is the number of time intervals in a
single time period (N1 �ΔT/Δt); P(Y � 1) is the probability
of a crash; and α1, α2, α3, and α4 are constant parameters.

In this study, the performance of the T-S model is simply
related to the parameters of the consequent part because the
input fuzzy sets are predefined. -erefore, the problem of
local ramp metering under foggy weather conditions is
equivalent to seeking the optimal values of the 16 parameters
to minimize the performance objective. -e configuration
parameters of the PSO algorithm used in the proposed local
ramp metering strategy are listed in Table 3.

4. Simulation Experiment and Analysis

4.1. Simulation of Traffic Model under Foggy Weather
Conditions

4.1.1. Experimental Setup. -e hypothetical freeway stretch
is divided into five segments with a length of Δxi, namely,
Δx1 � 643m, Δx2 � 643m, Δx3 � 643m, Δx4 � 643m, and
Δx5 � 643m. -e hypothetical freeway stretch has two lanes
and two on-ramps. -e lengths of on-ramps R1 and R2 are

both 400m. -e hypothetical freeway stretch is shown in
Figure 3.

Segment 4 is used for traffic modelling under foggy
weather conditions. -e freeway traffic data under such
conditions derived from VISSIM with time intervals of
5min are used as inputs for the trafficmodelling, as shown in
Figure 4. -e demand (Q3) of segment 3 from detector 4 and
demand (d2) of on-ramp R2 from detector 8 are shown in
Figure 4(a). -e units of the segment 3 demand (Q3) and on-
ramp R2 demand (d2) are both the hourly flow. -e average
speed (V3) of segment 3 from detector 4 and the density (ρ5)
of segment 5 from detector 6 are shown in Figures 4(b) and
4(c), respectively. -e experiment simulates the freeway
traffic from 1 : 00 am to 23 : 40 pm with a simulation time
step of 10 s.

-e higher the fog concentration, the lower the visibility.
To analyze the effects of foggy weather on the freeway
conditions, the traffic data on the density and speed in
segment 4 are sampled fromVISSIM under different freeway
visibility conditions, as shown in Figure 5. As Figure 5(a)
indicates, the desired density of the freeway decreases with
the elevated concentration of fog. As shown in Figure 5(b),
the speed fluctuation is greater with the increase in fog
concentration. -erefore, the freeway traffic safety and ef-
ficiency decrease with the elevated concentration of fog. -e
influence of foggy weather on the traffic model is mainly in
terms of density and speed.

-e proposed traffic model was simulated using the
traffic data under foggy weather conditions as derived from
VISSIM. Two cases were simulated with a visibility of
r � 150m and a curve radius of b� 1,500m. For case 1, one
model correction factor is used for the traffic model under
foggy weather conditions. For case 2, two model correction
factors are used for the traffic model under such conditions.
-e parameters used for the proposed traffic model are set
as follows: initial speed v(1) � 97 km/h and initial density
ρ(1) � 0.735 veh/km/ln, where the actual physical domains
of the visibility and curve radius in the traffic model are
[100m, 200m] and [500m, 1,500m], respectively.
According to equation (8), mean values of rm � 100m and
bm � 1000m and scaling factors of Kr � 0.02 and Kb � 0.002
are used.

4.1.2. Simulation Results and Analysis. As shown in Figure 6,
one model correction factor (cm) is applied to the main-
stream traffic density and velocity.-e fitness value is used to
evaluate the performance of the proposed traffic model.
According to equation (12), the fitness value of the traffic
model with one model correction factor (cm) is 5.96%. As

Table 3: Combinations of input variables in fuzzy rules.

Parameter Value
N2 (swarm size) 100
K 300
w 0.8
c1 2.0
c2 2.0

Complexity 7



indicated in Figure 7, two model correction factors cm1 and
cm2 are applied to the mainstream tra�c density and speed,
respectively. �e ¥tness value of the tra�c model with two

model correction factors is 6.22%. Clearly, the tra�c model
with one model correction factor achieves a better perfor-
mance than that with two factors.
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Q3
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d1 d2

R2
Detector 2 Detector 4 Detector 5 Detector 6

Detector 7 Detector 8

∆x5
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Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

u

ρ5

Figure 3: Hypothetical freeway stretch.
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Figure 4: (a) Demands of segment 3 and on-ramp R2, (b) average speed of segment 3, and (c) average density of segment 5.
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Figure 5: (a) Mainstream density and (b) mainstream speed under di�erent foggy weather conditions.
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-e 19 parameters used in the traffic model with one
model correction factor through the PSO algorithm are
regulated as follows: ρjam � 88.9889 veh/km/ln, vf � 99.1510
km/h, τ � 18 s, c � 45.5616 km2/h, θ � 11.0836 veh/km,m� 1,
δ � 1.1861, f1 � 0.7631, f2 � 0.5976, f3 � 0.2099, f4 � 0.6452,
f5 � 0.1955, f6 � 0.3291, f7 � 0.7095, f8 � 0.1745, f9 � 0.3159,
f10 � 0.0034, f11 � 0.0535, and f12 � 0.3515. -e model cor-
rection factor (cm) is calculated from parameters f1 through
f12, and the value of 0.99 is obtained.

4.2. Simulation of the Proposed RampMetering Strategy under
Foggy Weather Conditions

4.2.1. Experimental Setup. Freeway traffic data with time
intervals of 10 s, such as for the upstream demand (Qu) and
on-ramp demand (d1 and d2), are employed as the input data
of the local ramp metering under foggy weather conditions,
as shown in Figure 8. -e units of upstream demand (Qu),
on-ramp R1 demand (d1), and on-ramp R2 demand (d2) are
all hourly flow. -e simulation time step is 10 s, and the
control time step is 30 s. Owing to the low on-ramp flow, a
no-control measure is used for on-ramp R1. On-ramp R2 is
controlled using PI-ALINEA and the proposed ramp
metering strategy. PI-ALINEA is described in equation (13).
-e simulations are carried out using a visibility of 150m

and a curve radius of 1,200m. -e parameters used for the
traffic modelling are set as follows: initial upstream demand
Qu(1)� 2730 veh/h, initial on-ramp R1 demand d1(1)�

181 veh/h, initial on-ramp R2 demand d2(1)� 301 veh/h,
maximum ramp metering flow umax � 1000 veh/h, and
minimum ramp metering umin � 100 veh/h, and the actual
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Figure 6: (a) Model speed and actual speed and (b) model density and actual density of case 1.
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Figure 7: (a) Model speed and actual speed and (b) model density and actual density of case 2.
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physical domains of the density, speed, and visibility of the
ramp metering are [32 veh/km/ln, 38 veh/km/ln], [80 km/h,
90 km/h], and [100m, 200m], respectively. According to
equation (16), the mean values are ρm � 35 veh/km/h,
vm � 85 km/h, and rm � 150m, and the scaling factors are
Kρ � 0.2, Kv � 0.2, andKr � 0.02.-e parameters in equations
(13) and (14) are listed as follows: KP � 10 and KR � 40.

4.2.2. Simulation Results and Analysis. According to
equations (20)–(27), a real-time crash-risk prediction model
reflecting traffic safety is used to evaluate the proposed local
ramp metering. -e data on traffic incidents are obtained
through a simulation in VISSIM. -e location of a traffic
incident is shown in Figure 3. -e time interval is Δt� 10 s,
the time period is ΔT� 60 s, and N1 �ΔT/Δt� 6 is applied.

-e real-time crash-risk probability is calculated during
every six simulation time steps. -e parameters in equation
(27) are obtained through the logistic regression of the traffic
incident data as follows: α1 � − 2.2028, α2 � − 0.035,
α3 �10.4302, and α4 �13.3114. Partial traffic data used for the
parameter fitting are listed in Table 4.

-e freeway traffic density and speed under different
local ramp metering strategies are shown in Figures 9(a) and
9(b), respectively. Equation (27) shows the real-time colli-
sion rate, which is used to evaluate the proposed local ramp
metering strategy. -e real-time collision rate of different
local ramp metering strategies is shown in Figure 9(c).

As shown in Figure 9, within the first 500 time steps and
the last 260 time steps during the simulation time, the
strategies of no-control and PI-ALINEA have similar control
results under the traffic state and real-time crash-risk

Table 4: Partial traffic data.

σ(OU) σ(OD) RCRI Y
0.098089 0.088339 − 4.50532 1
0.031236 0.032004 − 23.0141 1
0.113061 0.013629 − 34.9231 1
0.072684 0.014553 − 0.28159 0
0.031923 0.045414 − 0.68701 0
0.672758 0.080934 − 4.76873 0
· · · · · · · · · · · ·
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Figure 9: (a) Mainstream density, (b) mainstream speed, and (c) real-time crash-risk probability of different local rampmetering strategies.
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probability. Because the mainstream density of a freeway is
always lower than the desired density, the flow of on-ramp
R2 is not controlled by PI-ALINEA. As the freeway main-
stream density gradually exceeds the desired density, PI-
ALINEA will reduce the entrance flow of on-ramp R2 and
slow down the increasing trend of density to maintain the
mainstream density around its critical value at the cost of
increasing the ramp queue. Correspondingly, the real-time
crash-risk probability will decrease during this period.

As indicated in Figure 9, the proposed ramp metering
strategy under foggy weather conditions differs from the PI-
ALINEA strategy, which has a consistent effect on on-ramp
R2. At the beginning of the simulation, on-ramp R2 is
continuously controlled by the proposed ramp metering
strategy under the premise of reducing the real-time crash-
risk probability. As shown in Figures 9(a) and 9(b), the
fluctuations of the mainstream density and speed are smaller
than those controlled by PI-ALINEA. As shown in
Figure 9(c), the real-time crash-risk probability of the
proposed ramp metering strategy is always lower than that
controlled by PI-ALINEA during the entire simulation time
step.

In order to further analyze the effects of PI-ALINEA and
the proposed strategy, the experimental results of PI-ALI-
NEA and the proposed strategy are used for statistical study.
Because the real-time collision rate of different strategies
characterizes normal distribution, the t-test is used to
evaluate statistical significance with MATLAB. -e signifi-
cant difference between these results is characterized by a
significance threshold fixed at a p value less than or equal to
0.05.-e calculated p value is much less than 0.01; therefore,
the proposed strategy is superior to PI-ALINEA in ensuring
traffic safety. Partial experimental data used to evaluate
statistical significance are listed in Table 5. On the whole, the
proposed ramp metering strategy achieves a better perfor-
mance in ensuring traffic safety and is more suitable for a
freeway system under foggy weather conditions.

5. Conclusions

A macroscopic traffic model applied under foggy weather
conditions and based on a model correction factor (cm) was
proposed in this paper. -e model correction factor (cm) is
regulated online based on different visibility conditions and
curve radius of the freeway to better optimize the traffic
model under foggy weather conditions.-e sum of the mean

absolute percentage error of the mainstream density and
speed is used as the fitness function to evaluate the proposed
traffic model. A local ramp metering strategy under foggy
weather conditions based on the density correction factor
(cd) is proposed when considering the proposed traffic
model. -e density correction factor (cd) is regulated online
based on the mainstream traffic density, speed, and visibility.
A real-time crash-risk predictionmodel that reflects the level
of traffic safety is used to evaluate the performance of the
proposed local ramp metering strategy. -e simulation re-
sults show the effectiveness of the proposed trafficmodel and
ramp metering strategy under foggy weather conditions.
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included within the supplementary information files.
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