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This paper addresses variable-time impulsive control for coordinated tracking problem in nonlinear multiagent systems. To make
followers coordinately track the leader, a variable-time impulsive controller is designed. Under some well-selected conditions, the
comparison system of variable-time impulsive tracking control system is constructed by employing B-equivalence method. And
we theoretically demonstrate that the two systems have the same stability property. Coordinated tracking criteria of multiagent
systems are obtained by considering the comparison system. Numerical simulation is also provided to illustrate the correctness of
theoretical results and the efficiency of the variable-time impulsive controller.

1. Introduction

Multiagent systems consist of many interacting dynamical
units with specific contents [1, 2]. They are wildly applied to
both science and engineering fields like ecosystems, social
networks, traffic management, expert systems, and so on.
Recently, coordination phenomena inmultiagent systems are
investigated from a wide range of disciplines for their vast
potential applications, including networkmanagement, wire-
less sensor networks, and autonomous vehicles maneuvering
[3]. Among the common coordination phenomena such
as synchronization and consensus of multiagent systems,
coordinated tracking is an important topic. In this topic, a
small number of agents play the leading roles in the systems,
while others are the followers tracking the leader agents
[4–6]. And the primary researches on coordinated tracking
problem are to design appropriate control protocol for the
multiagent system.

A lot of useful coordinated tracking controlmethods have
been obtained in the previous research works. In [3], a con-
stant bearing strategy was considered in the distributed con-
trol law for multiple autonomous surface vehicles. Adaptive
neural network control of uncertain dynamical was studied
in [7]; therein, the adaptive controller with an augmented

NN adaptive term was designed based on the state informa-
tion of its neighborhood. And, moreover, this method was
also extended to output feedback case. In [8], a nonlinear
distributed control protocol for leader-following consensus
of nonlinear multiagent was proposed. Fuzzy observed-based
adaptive controller is proposed for second-order multiagent
systems with heterogeneous nonlinear dynamics in [9]. It
observes that all the control strategies in above-mentioned
works were continuous time control. In realistic application,
due to limited energy of agent and real-time communica-
tion constraints of networks, continuous time control for
multiagent systems is generally costly. However, impulsive
control provides the viewpoint that control strategy only
occurs at somediscrete times, which reduces the transmission
among agents dramatically [10]. Because of the discrete-
time impulse, impulsive control protocol provides an efficient
mechanism to deal with the large uncertainties in multiagent
systems and has better performance in transient response and
bandwidth usage.

Impulsive control for multiagent systems has been pro-
foundly studied in many aspects, for example, network
topology switch [11], different order agents [12], and commu-
nication time delay. In [11], a distributed impulsive protocol
was proposed to implement second-order multitracking task
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by using only position sampled data of agents. Reference [13]
investigated network-based leader-following impulsive con-
sensus in nonlinear multiagent systems, which took network-
deduced delay into consideration. However, impulsive con-
trol of [11–13] often happens at fixed time, which means
the impulsive instants are predesigned and independent of
systems. In the practical cases, especially in biological and
physiological fields, impulses do not always happen at fixed
time. Instead, variable-time impulses often arise naturally.
So, variable-time impulsive control for multiagent systems is
much more practical in modeling and application. Despite
these efforts on fixed-time impulsive control, there are few
(if any) literatures addressing variable-time impulsive control
for multiagent systems, because they present numerous ana-
lytical challenges of augmenting an variable-time impact on
impulsive instants in impulsive control method.

On the other hand, a number of useful results have been
obtained on variable-time impulsive system. In [14, 15], B-
equivalence method was proposed to analyze discontinuous
system. By using this method, variable-time impulsive system
can be reduced to fixed-time one, which can be regarded
as the comparison system of the original one. Based on
these results, a theoretical framework was formulated to
reveal the principle of reduction and comparison in nonlinear
variable-time impulsive system in [16]. The authors therein
constructed the relationship between the original jump
operator and comparison system jump operator and then
demonstrated that the two systems have the same stability
property. The stability of Hopfield neural networks (HNN)
with state-dependent impulses was discussed in [17] and the
periodicity and stability for variable-time impulsive neural
networks was discussed in [18]. Mittag-Leffler stability in
fractional-order neural networks under time-varying control
was investigated in [19, 20]. In [21], the authors analyzed
synchronization between two memristive systems under
state-dependent control. Note thatmost of the existing results
on stability discussion of variable-time impulsive system
concentrated on system with one dynamic without commu-
nication topology. However, compared with systems with one
or two dynamics, multiagent systems are composed of large
number of agent dynamics and each agent interacts with
other agents according to their communication topology.
Therefore, the discussion on variable-time impulsive control
for multiagent systems is more complex than the works
mentioned above.

Motivated by the above discussions, we investigate
variable-time impulsive control for coordinated tracking
problem in nonlinear multiagent systems. The main con-
tributions of this paper are twofold: first, compared with
fixed-time impulsive control for coordinated tracking in
multiagent systems in the existing works in [11–13], the
impulsive time instants are designed to a more general case,
varying with time, called variable-time impulsive control. To
copewith the difficulty in directly analyzing the variable-time
impulsive controllers, we select some proper conditions that
guarantee that the coordinated tracking solution intersects
impulsive surface only at once, and then B-equivalence
method is employed to construct comparison systems with
fixed-time impulsive controller of the variable-time ones;

at last, we theoretically present that the two systems have
the same stability. Coordinated tracking criteria of variable-
time impulsive controller can be derived by analyzing fixed-
time impulsive one without any difficulty. Second, from
the variable-time impulsive system [16–21] standpoint, we
extend the application of B-equivalence method on one
dynamic to multiple dynamics, which should consider the
constrains of communication topology among dynamics.
And, moreover, coordinated tracking controller is designed
to specific function containing impulsive matrices; this is
more challenging in analysis than virtual functions in [16–21].

The rest of this paper is organized as follows: some
preliminaries are introduced in Section 2. In Section 3,
problem formulation is described and a global tracking
error system between leader and followers is established.
In Section 4, along the line of research on variable-time
impulsive nonlinear system, some assumptions are proposed
to ensure that each solution of the global tracking error
system meets each surface of the discontinuity exactly once;
then B-map between the original system and comparison
system is constructed. According to the B-map and using B-
equivalence method, original variable-time impulsive system
is reduced to fixed-time one. Furthermore, we demonstrate
that the two systems have the same stability properties. In
Section 5, several sufficient criteria are proposed to guarantee
the stability of the global tracking error system between
the leader and the followers. By considering the selected
Lyapunov function candidate and numerical simulation,
we prove the followers’ coordinated tracking of the leader
under the variable-time impulsive control with the proposed
criteria.

2. Preliminaries

In this section, some preliminaries about model are
described. Let 𝐺 = (𝑉, 𝜁, 𝐴) be digraph (or directed graph)
of order𝑁 with a node set 𝑉 = {𝜋1, 𝜋2 ⋅ ⋅ ⋅ , 𝜋𝑁} and an edge
set 𝜁 ⊆ 𝑉 × 𝑉. The matrix 𝐴 = (𝑎𝑖𝑗)𝑁×𝑁 is the weighted
adjacency matrix; if there is connection between 𝜋𝑖 and𝜋𝑗, 𝑎𝑖𝑗 = 1; otherwise, 𝑎𝑖𝑗 = 0. The index set of neighbors
of node 𝜋𝑖 is denoted by 𝑁𝑖 = {𝜋𝑖 ∈ 𝑉 | (𝜋𝑗, 𝜋𝑖) ∈ 𝜁}.𝐷 = diag(𝑑1, 𝑑2, . . . , 𝑑𝑁), with 𝑑𝑖 = ∑𝑛𝑗=1 𝑎𝑖𝑗, denotes the
degree matrix of graph 𝐺, and the Laplacian of graph 𝐺 is𝐿 = 𝐷 − 𝐴, 𝐿 = (𝑙𝑖𝑗)𝑁×𝑁. The Euclidean norm of a vector

𝑥 = (𝑥1, 𝑥2 ⋅ ⋅ ⋅ , 𝑥𝑛)𝑇 ∈ R𝑛 is denoted by ‖𝑥‖ = √∑𝑛𝑖=1 𝑥2𝑖 , and
the spectral norm of a matrix 𝑃 = (𝑝𝑖𝑗)𝑛×𝑛 ∈ R𝑛×𝑛 is denoted

by ‖𝑃‖ = √𝜆max(𝑃𝑇𝑃); 𝜆max(⋅) is the maximum eigenvalue
of matrix 𝑃. The appropriate dimension identity matrix
is denoted by 𝐼. The Kronecker product of two matrices𝑅 = (𝑟𝑖𝑗)𝑛×𝑛 and 𝑆 = (𝑠𝑖𝑗)𝑛×𝑛 is defined as

𝑅 ⊗ 𝑆 =
[[[[[[
[

𝑟11𝑆 𝑟12𝑆 ⋅ ⋅ ⋅ 𝑟1𝑛𝑆𝑟21𝑃 𝑟22𝑆 ⋅ ⋅ ⋅ 𝑟2𝑛𝑆... ... ... ...
𝑟𝑚1𝑃 𝑟𝑚2𝑆 ⋅ ⋅ ⋅ 𝑟𝑚𝑛𝑆

]]]]]]
]
, (1)
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and some properties of Kronecker product are restated as
follows:

(𝑖) 𝑘 (𝑅 ⊗ 𝑆) = 𝑘𝑅 ⊗ 𝑆 = 𝑅 ⊗ 𝑘𝑆, 𝑘 ∈ R;
(𝑖𝑖) (𝑅 + 𝑆) ⊗ 𝐶 = 𝑅 ⊗ 𝐶 + 𝑆 ⊗ 𝐶;
(𝑖𝑖𝑖) (𝑅 ⊗ 𝑆 ⊗ 𝐶) = 𝑅 ⊗ (𝑆 ⊗ 𝐶) .

(2)

3. Problem Description

Now we consider a class of multiagent systems consisting of𝑁 follower agents indexed by 𝑖 ∈ {1, 2, . . . ,𝑁} and one leader
agent labeled as 𝑖 = 0. The dynamics of 𝑖th follower agent are
governed by the following nonlinear dynamical equation:

̇𝑥𝑖 (𝑡) = 𝑓 (𝑥𝑖 (𝑡)) + 𝑢𝑖 (𝑡) , (3)

where 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑛)𝑇 ∈ R𝑛 is the state of agent 𝑖,𝑢𝑖 ∈ R𝑛 denotes the controller of follower agent 𝑖, and 𝑓(𝑡, 𝑥𝑖)
is continuous with 𝑓(𝑡, 0) = 0, which satisfies the Lipschitz
condition with respect to 𝑥; that is, there exists a positive
number 𝑙𝑓 such that ‖𝑓(𝑥𝑖) − 𝑓(𝑥𝑗)‖ ≤ 𝑙𝑓‖𝑥𝑖 − 𝑥𝑗‖ for any𝑥𝑖, 𝑥𝑗 ∈ R𝑛.

The dynamics of the leader agent are described by

̇𝑥0 (𝑡) = 𝑓 (𝑥0 (𝑡)) , (4)

where 𝑥0 is the state of the leader agent.
Make the assumption that at least one follower can

exchange information with the leader. Then the impulsive
coordinated tracking controller for multiagent systems is
described as follows:

𝑢𝑖 = ∞∑
𝑘=1

ℎ (𝑡 − 𝑡𝑘) 𝑏𝑖((∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)))

+ 𝑐𝑖 (𝑥𝑖 (𝑡) − 𝑥0 (𝑡))) ,
(5)

where 𝑡𝑘 (𝑘 = 1, 2, 3, ⋅ ⋅ ⋅ ) are the discrete instants varying
with state of agent to be specified later; ℎ(𝑡) is Dirac delta
function with the property that ∫𝛼+𝜀

𝛼−𝜀
𝑔(𝑡)ℎ(𝑡 − 𝛼)𝑑𝑡 = 𝑔(𝛼)

for 𝜀 ̸= 0. The Dirac delta function is often used to
describe the narrow spike function such as an impulse. 𝑏𝑖 ∈
R𝑛 where 𝑏𝑖 is the impulsive strength constant of the 𝑖th
controller to be designed later; 𝑎𝑖 is the connected weight
between followers; if and only if there is an information
communication between follower agents, 𝑎𝑖 = 1; otherwise𝑎𝑖 = 0, 𝐴 = diag(𝑎1, 𝑎2, . . . , 𝑎𝑁) ∈ R𝑁×𝑁, and 𝑐𝑖 is the
connectedweight between follower 𝑥𝑖 and leader 𝑥0 , similarly
defined as 𝑎𝑖, 𝐶 = diag(𝑐1, 𝑐2, . . . , 𝑐𝑁) ∈ R𝑁×𝑁. Without
loss of generality, we assume that the solution 𝑥𝑖(𝑡) is left-
continuous; that is, lim𝑡󳨀→𝜉−0𝑥(𝑡) = 𝑥(𝜉).

In this paper, we design the impulsive instants varying
with state of agent. This is different from the fixed-time
impulsive controller designed in the previous works. The
instants of impulsive controller adjust according to the agents’
state; it is more realistic modeling in the field of ecological

management and medical science. Moreover, we need not
predesign the accurate impulsive instants before coordinated
tracking. The function of instants 𝑡𝑘 is described as follows:

𝑡𝑘 = 𝜃𝑘 + 𝜏𝑘 (𝑥) , (6)

where 𝑥 = (𝑥1𝑇, 𝑥2𝑇, . . . , 𝑥𝑁𝑇)𝑇, 𝜃𝑘 satisfies 0 = 𝜃0 ≤ 𝜃1 ≤⋅ ⋅ ⋅ ≤ 𝜃𝑘−1 ≤ 𝜃𝑘 < ⋅ ⋅ ⋅ , lim𝑘󳨀→+∞𝜃𝑘 = +∞, and 𝜏(𝑥) ∈ R is a
continuous function.

Under variable-time impulsive controller, we say that
followers coordinately tracked the leader if and only if

lim
𝑡󳨀→∞

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥0 (𝑡)󵄩󵄩󵄩󵄩 = 0. (7)

To move on, let 𝛿𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑥0(𝑡) be the track-
ing error between follower 𝑥𝑖(𝑡) and leader 𝑥0(𝑡), 𝛿 =(𝛿1𝑇, 𝛿2𝑇, . . . , 𝛿𝑁𝑇)𝑇, 𝑥 = (𝑥1𝑇, 𝑥2𝑇, . . . , 𝑥𝑁𝑇)𝑇, and 1𝑁 =(𝐼, 𝐼, . . . , 𝐼)𝑇; then the global tracking error 𝛿(𝑡) is described
as

𝛿 (𝑡) = 𝑥 − 1𝑁𝑥0. (8)

Denote Φ𝑖(𝛿𝑖) = Φ𝑖(𝑥𝑖 − 𝑥0) = 𝑓(𝑥𝑖) − 𝑓(𝑥0). Under
controller (5), the tracking error dynamic can be written as
an impulsive system:
̇𝛿𝑖 (𝑡) = Φ𝑖 (𝛿𝑖 (𝑡)) , 𝑡 ̸= 𝜃𝑘 + 𝜏𝑘 (𝑥) ,
Δ𝛿𝑖 (𝑡)
= 𝑏𝑖(∑

𝑗∈𝑁𝑖

(𝑎𝑖𝑗 (𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡))) + 𝑐𝑖 (𝑥𝑖 (𝑡) − 𝑥0 (𝑡))) ,
𝑡 = 𝜃𝑘 + 𝜏𝑘 (𝑥) .

(9)

Let impulsive strength 𝑏𝑖 of each agent be the same constant
that 𝑏𝑖 = 𝑏; then system (9) can be written as a compact form:

̇𝛿 (𝑡) = Φ (𝛿 (𝑡)) , 𝑡 ̸= 𝜃𝑘 + 𝜏𝑘 (𝛿) ,
Δ𝛿 (𝑡) = 𝑏 ((𝐿 + 𝐶) ⊗ 𝐼) 𝛿 (𝑡) , 𝑡 = 𝜃𝑘 + 𝜏𝑘 (𝛿) , (10)

where Φ(𝛿) = (Φ1(𝛿1), Φ2(𝛿2), . . . , Φ𝑁(𝛿𝑁))𝑇, 𝐿 is the
Laplacian of communication graph of followers, 𝜏(𝛿) ∈ R

is a map of 𝜏(𝑥) satisfying 𝜏(𝛿) = 𝜏(𝑥) for all 𝑥 ∈ R𝑁⋅𝑛,𝜏𝑖(0) = 0, and there exists a positive number 𝑙𝜏 such that‖𝜏𝑖(𝛿1) − 𝜏𝑖(𝛿2)‖ ≤ 𝑙𝜏‖𝛿1 − 𝛿2‖, for all 𝑖 ∈ Z+. Moreover,
we assume that there exists a positive constant 𝜍 such that0 ≤ 𝜏𝑖(𝛿) < 𝜍, for all 𝑖 ∈ Z+, 𝛿 ∈ R𝑁⋅𝑛.

To move on, the following definitions are required.

Definition 1 (see [10]). Let 𝑉 : R+ × R𝑛×𝑁 󳨀→ R+; then 𝑉 is
said to belong to class of∑, if

(a) 𝑉 is continuous in (𝜏(𝑖−1), 𝜏𝑖] ×R𝑛×𝑁 and, for each 𝛿 ∈
R𝑛×𝑁, 𝑖 = 1, 2, . . ., lim(𝑡,𝑦)󳨀→(𝜏+

𝑖
,𝛿)𝑉(𝑡, 𝑦) = 𝑉(𝜏+𝑖 , 𝛿) exists,

(b) 𝑉 is locally Lipschitzian in 𝛿.
According to the definition of 𝑉, it observes that, in

analyzing the stability of ODE, 𝑉 associated with system
(10) is the analog Lyapunov-like functions, which are usually
discontinuous. Therefore, a generalized derivative known as
the right and upper Dini’s derivative should be defined.
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Definition 2 (see [10]). The right upper Dini’s derivative of𝑉(𝑡, 𝛿) is defined as

𝐷+𝑉 (𝑡, 𝛿)
≡ lim
ℎ󳨀→0+

sup 1ℎ {𝑉 [𝑡 + ℎ, 𝛿 + ℎΦ (𝑡, 𝛿)] − 𝑉 (𝑡, 𝛿)} .
(11)

Definition 3 (see [10]). For any 𝑡 ≥ 𝑡0, if there exist constants𝛼 > 0 and 𝜔 > 0 such that the global tracking error
󵄩󵄩󵄩󵄩𝛿 (𝑡, 𝑡0, 𝛿 (𝑡0))󵄩󵄩󵄩󵄩 ≤ 𝜔 exp (−𝛼 (𝑡 − 𝑡0)) , (12)

system (10) is said to be exponentially stable.

From the definition of 𝛿(𝑡), one can find if system (10)
is exponentially stable, the tracking error between followers
and leader asymptotically reaches zero. For system (3), the
followers exponentially coordinately tracked leader under
controllers (5).

4. Comparison System

In this section, we shall construct a fixed-time impulsive
system that can be considered as the comparison system
of system (10) by using B-equivalence method. By means
of B-equivalence method, we first propose some conditions
that guarantee that each solution of system (10) meets the
impulsive surface exactly at once and then prove that the two
systems have the same stability.

Denote by Γ𝑖 = {(𝑡, 𝛿(𝑡)) ∈ R+×R𝑛⋅𝑁 : 𝑡 = 𝜃𝑖+𝜏𝑖(𝛿(𝑡)), 𝑡 ∈
R+, 𝛿 ∈ R𝑛⋅𝑁} the 𝑖th surface of discontinuity. By means of B-
equivalence method, the following theorem is necessary.

Theorem 4. Each solution 𝛿(𝑡) of system (10) intersects each
surface Γ𝑖 exactly once, if the following conditions hold:

(H1) There exist positive numbers 𝜃 and 𝜃, such that 𝜃 +𝜍 < 𝜃𝑖 − 𝜃𝑖−1 < 𝜃 − 𝜍, for all 𝑖 ∈ Z+, which demonstrates that𝜃 < [𝜃𝑖+1 + 𝜏𝑖+1(𝛿)] − [𝜃𝑖 + 𝜏𝑖(𝛿)] < 𝜃 and implies that “beating
phenomenon” will not occur.

(H2) 𝜏𝑖(𝛿 + 𝑏((𝐿 + 𝐶) ⊗ 𝐼)𝛿) ≤ 𝜏𝑖(𝛿), for all 𝑖 ∈ Z+.
(H3) √𝑁𝑙𝜏 ⋅ 𝑀Φ < 1, where𝑀Φ = sup ‖Φ𝑖(𝑡, 𝛿𝑖)‖ < +∞.

We have the observations that if H1 holds, for (𝑖 < 𝑗 < 𝑘),𝑖 ∈ Z+, then each solution 𝛿(𝑡) of (10) intersects Γ𝑖 and Γ𝑘
must intersect Γ𝑘 and intersect every surface Γ𝑖; if H2 and H3
hold, each solution 𝛿(𝑡) of (10) intersects Γ𝑖 at most once.This
proof follows theorem 1 in [16]; we omit it.

Now we shall use B-equivalent method to construct the
comparison system of system (10).

Fix a number 𝑖; let 𝛿0(𝑡) = 𝛿(𝑡, 𝜃𝑖, 𝛿) be a solution of the
continuous subsystem of (10) in time interval [𝜃𝑖, 𝜉𝑖], which
intersects the surface Γ𝑖 of discontinuity at themoment 𝜉𝑖, and𝜉𝑖 = 𝜃𝑖 + 𝜏𝑖(𝛿0(𝜉𝑖)). Note that 𝜉𝑖 ≥ 𝜃𝑖, because of 0 ≤ 𝜏𝑖(𝛿) < 𝜍.
Let 𝛿1(𝑡) be another solution of the continuous subsystem of
(10) in time interval (𝜃𝑖, 𝜉𝑖] having the relationship of 𝛿0(𝑡)
that

𝛿1 (𝜉𝑖) = 𝛿0 (𝜉𝑖+) = 𝛿0 (𝜉𝑖) + 𝑏 ((𝐿 + 𝐶) ⊗ 𝐼𝑛) 𝛿0 (𝜉𝑖) . (13)

Define the following map:

𝑊𝑖 (𝛿) = 𝛿1 (𝜃𝑖) − 𝛿0 (𝜃𝑖)
= 𝛿1 (𝜉𝑖) + ∫𝜃𝑖

𝜉𝑖

Φ(𝛿1 (𝑠)) 𝑑𝑠 − 𝛿0 (𝜃𝑖)
= 𝛿0 (𝜉𝑖) + 𝑏 ((𝐿 + 𝐶) ⊗ 𝐼𝑛) 𝛿0 (𝜉𝑖)
+ ∫𝜃𝑖
𝜉𝑖

Φ(𝛿1 (𝑠)) 𝑑𝑠 − 𝛿0 (𝜃𝑖)
= ∫𝜉𝑖
𝜃𝑖

Φ(𝛿0 (𝑠)) 𝑑𝑠
+ 𝑏 ((𝐿 + 𝐶) ⊗ 𝐼𝑛) (𝛿0 (𝜃𝑖) + ∫𝜉𝑖

𝜃𝑖

Φ(𝛿0 (𝑠)) 𝑑𝑠)
+ ∫𝜃𝑖
𝜉𝑖

Φ(𝛿1 (𝑠)) 𝑑𝑠.

(14)

Based on the map𝑊𝑖(𝛿) and Figure 1, the following observa-
tions are obtained obviously.

Observation 5. 𝛿0(𝑡) = 𝛿(𝑡, 𝜃𝑖, 𝛿) can be extended to be
system (10) in R+.

Observation 6. 𝛿1(𝑡) = 𝛿(𝑡, 𝜉𝑖, 𝛿0(𝜉𝑖+)) is the solution of
the following multiagent systems with fixed-time impulsive
control in R+:

̇𝛿 (𝑡) = Φ (𝑡, 𝛿 (𝑡)) , 𝑡 ̸= 𝜃𝑖,
Δ𝛿 = 𝑊𝑖 (𝛿 (𝜃𝑖)) , 𝑡 = 𝜃𝑖. (15)

Observation 7. In the time interval (𝜉𝑖−1, 𝜃𝑖], for 𝑖 ∈ Z+, one
has

𝛿0 (𝑡) ≡ 𝛿1 (𝑡)
𝛿1 (𝜃𝑖+) ≡ 𝛿0 (𝜃𝑖) + 𝑊𝑖 (𝛿0 (𝜃𝑖))
𝛿1 (𝜉𝑖+) = 𝛿0 (𝜉𝑖) + 𝑏𝑘 (𝐿 + 𝐶) 𝛿0 (𝜉𝑖) .

(16)

Observation 8. For all 𝑖 ∈ Z+, on time interval (𝜃𝑖, 𝜉𝑖],
𝛿1 (𝑡) − 𝛿0 (𝑡) = 𝛿0 (𝜃𝑖) + 𝑊𝑖 (𝛿0 (𝜃𝑖))

+ ∫𝑡
𝜃𝑖

Φ(𝛿1 (𝑢)) 𝑑𝑢 − 𝛿0 (𝜃𝑖)
− ∫𝑡
𝜃𝑖

Φ(𝛿0 (𝑢)) 𝑑𝑢
= 𝑊𝑖 (𝛿0 (𝜃𝑖))
+ ∫𝑡
𝜃𝑖

(Φ (𝛿1 (𝑢)) − Φ (𝛿0 (𝑢))) 𝑑𝑢.

(17)

To present the relationship of system (15) and system (10),
we have the following theorem.
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

Γi−1 : t = i−1 + i−1()

Γi : t=i+i ()

Γi+1 : t = i+1 + i+1()

1() =  + Wi () 1(t)

1(i) = 0(i+)

0 (t)

0(t)

1() = 

0()

1(t)

0(t) = 1(t)

t = i−1 t = i t = i t = i+1
t

Figure 1: The 𝐵 − 𝑚𝑎𝑝 of the two systems.

Theorem 9. The variable-time impulsive system (10) and
the fixed-time impulsive system (15) have the same stability
property.

Proof. From the definition of𝑊𝑖(𝛿0(𝜃𝑖)), we have estimation
of ‖𝑊𝑖(𝛿0(𝜃𝑖))‖ as follows:
󵄩󵄩󵄩󵄩󵄩𝑊𝑖 (𝛿0 (𝜃𝑖))󵄩󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝜉𝑖

𝜃𝑖

Φ(𝛿0 (𝑠)) 𝑑𝑠
+ 𝑏 ((𝐿 + 𝐶) ⊗ 𝐼𝑛) (𝛿0 (𝜃𝑖) + ∫𝜉𝑖

𝜃𝑖

Φ(𝛿0 (𝑠)) 𝑑𝑠)
+ ∫𝜃𝑖
𝜉𝑖

Φ(𝛿1 (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 ≤ 2√𝑁𝑀Φ (𝜉𝑖 − 𝜃𝑖)
+ 󵄩󵄩󵄩󵄩𝑏 ((𝐿 + 𝐶) ⊗ 𝐼𝑛)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩
+ √𝑁𝑀Φ 󵄩󵄩󵄩󵄩𝑏 ((𝐿 + 𝐶) ⊗ 𝐼𝑛)󵄩󵄩󵄩󵄩 (𝜉𝑖 − 𝜃𝑖) = √𝑁𝑀Φ (2
+ 𝑏 󵄩󵄩󵄩󵄩((𝐿 + 𝐶) ⊗ 𝐼𝑛)󵄩󵄩󵄩󵄩) (𝜏𝑖 (𝛿0 (𝜉𝑖)))
+ 𝑏 󵄩󵄩󵄩󵄩((𝐿 + 𝐶) ⊗ 𝐼𝑛)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 .

(18)

Note that

𝜏𝑖 (𝛿0 (𝜉𝑖)) ≤ 𝑙𝜏 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜉𝑖)󵄩󵄩󵄩󵄩󵄩
= 𝑙𝜏 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖) + ∫

𝜉𝑖

𝜃𝑖

Φ(𝛿0 (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ 𝑙𝜏 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 + 𝑙𝜏
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫
𝜉𝑖

𝜃𝑖

Φ(𝛿0 (𝑠)) 𝑑𝑠󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝑙𝜏 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 + √𝑁𝑀Φ𝑙𝜏 (𝜉𝑖 − 𝜃𝑖)
= 𝑙𝜏 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 + √𝑁𝑀Φ𝑙𝜏𝜏𝑖 (𝛿 (𝜉𝑖))

(19)

That is,

𝜏𝑖 (𝛿0 (𝜉𝑖)) ≤ (1 − √𝑁𝑀Φ𝑙𝜏)−1 𝑙𝜏 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 . (20)

We get
󵄩󵄩󵄩󵄩󵄩𝑊𝑖 (𝛿0 (𝜃𝑖))󵄩󵄩󵄩󵄩󵄩 ≤ (√𝑁𝑀Φ𝑙𝜏 (2 + 𝑏 ‖((𝐿 + 𝐶) ⊗ 𝐼)‖)
⋅ (1 − √𝑁𝑀Φ𝑙𝜏)−1 + 𝑏 ‖((𝐿 + 𝐶) ⊗ 𝐼)‖) 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩
= 𝑑𝑘 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 ,

(21)

where 𝑑𝑘 = √𝑁𝑀Φ𝑙𝜏(2 + 𝑏‖((𝐿 +𝐶) ⊗ 𝐼)‖)(1 −√𝑁𝑙𝜏𝑀Φ)−1 +𝑏‖((𝐿 + 𝐶) ⊗ 𝐼)‖.
Moreover, for all 𝑡 ∈ (𝜃𝑖, 𝜉𝑖], we can obtain󵄩󵄩󵄩󵄩󵄩𝛿1 (𝑡) − 𝛿0 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑊(𝛿0 (𝜃𝑖))󵄩󵄩󵄩󵄩󵄩

+ ∫𝑡
𝜃𝑖

󵄩󵄩󵄩󵄩󵄩Φ (𝛿1 (𝑢)) − Φ (𝛿0 (𝑢))󵄩󵄩󵄩󵄩󵄩 𝑑𝑢
≤ 󵄩󵄩󵄩󵄩󵄩𝑊(𝛿0 (𝜃𝑖))󵄩󵄩󵄩󵄩󵄩
+ 𝑙Φ ∫𝑡

𝜃𝑖

󵄩󵄩󵄩󵄩󵄩𝛿1 (𝑢) − 𝛿0 (𝑢)󵄩󵄩󵄩󵄩󵄩 𝑑𝑢,

(22)
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and by utilizing theGronwall-Bellman Inequality, one has

󵄩󵄩󵄩󵄩󵄩𝛿1 (𝑡) − 𝛿0 (𝑡)󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑊(𝛿0 (𝜃𝑖))󵄩󵄩󵄩󵄩󵄩 𝑒𝑙Φ(𝑡−𝜃𝑖)
≤ 𝑑𝑘𝑒𝑙Φ𝜍 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 .

(23)

This completes the proof.

From Theorem 9, system (15) can be regarded as the
comparison system of system (10). Therefore, we can get
the stability criteria of system (10) by analyzing system (15).
Thus, it avoids difficulty in directly considering variable-time
impulsive system.

5. Main Results

Weknow that the impulsive system (10) is the compact global
tracking error form of multiagent systems (3) and (4) with
impulsive control instants function (5). The stability criteria
of system (10) can be obtained by considering system (15).
Therefore, we proposed the following theorem.

Theorem 10. The comparison system (15) is globally exponen-
tially stable, if there exists a positive constant 𝛾 such that

ln𝑑𝑘2 + 𝑙𝑓 (𝜃 − 𝜍) ≤ −𝛾, (24)

where 𝑑𝑘 = √𝑁𝑀Φ𝑙𝜏(2+‖𝑏((𝐿+𝐶)⊗𝐼)+𝐼‖)(1−√𝑁𝑙𝜏𝑀Φ)−1+𝑏‖((𝐿 + 𝐶) ⊗ 𝐼) + 𝐼‖.
Before the proof of this theorem, we first compute the

range of ‖𝑊𝑖(𝛿) + 𝛿‖; similar to computation of ‖𝑊𝑖(𝛿)‖ in
Section 4, we have

󵄩󵄩󵄩󵄩󵄩𝑊𝑖 (𝛿0 (𝜃𝑖)) + 𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩
≤ (√𝑁𝑀Φ𝑙𝜏 (2 + ‖𝑏 ((𝐿 + 𝐶) ⊗ 𝐼)‖)
⋅ (1 − √𝑁𝑙𝜏𝑀Φ)−1 + ‖𝑏 ((𝐿 + 𝐶) ⊗ 𝐼) + 𝐼‖)
⋅ 󵄩󵄩󵄩󵄩󵄩𝛿0 (𝜃𝑖)󵄩󵄩󵄩󵄩󵄩 .

(25)

Proof. The following Lyapunov function is considered:

𝑉 (𝛿) = 𝛿𝑇 (𝑡) 𝛿 (𝑡) . (26)

When 𝑡 ̸= 𝜃𝑘, by calculating the Dini derivative of𝑉(𝛿) along
the continuous subsystem of (15), we can obtain that

𝐷+𝑉 (𝛿 (𝑡)) = 2𝛿 (𝑡)𝑇Φ(𝛿 (𝑡))
= Σ𝑁𝑖=1𝛿𝑖 (𝑡) (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥0 (𝑡)))
≤ Σ𝑁𝑖=1 (𝑥𝑖 (𝑡) − 𝑥0 (𝑡)) (𝑓 (𝑥𝑖 (𝑡)) − 𝑓 (𝑥0 (𝑡)))
≤ 𝑙𝑓Σ𝑁𝑖=1 󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑥0 (𝑡)󵄩󵄩󵄩󵄩2 ≤ 𝑙𝑓𝛿 (𝑡)𝑇 𝛿 (𝑡) .

(27)

When 𝑡 = 𝜃𝑘, it follows from the state jump subsystem of (15)
and (25) that

𝑉 (𝛿 (𝜃𝑘) +𝑊𝑘 (𝛿 (𝜃𝑘)))
= [𝛿 (𝜃𝑘) +𝑊𝑘 (𝛿 (𝜃𝑘))]𝑇 [𝛿 (𝜃𝑘) +𝑊𝑘 (𝛿 (𝜃𝑘))]
= 󵄩󵄩󵄩󵄩𝛿 (𝜃𝑘) + 𝑊𝑘 (𝛿 (𝜃𝑘))󵄩󵄩󵄩󵄩2 ≤ 𝑑2𝑘 󵄩󵄩󵄩󵄩𝛿 (𝜃𝑘)󵄩󵄩󵄩󵄩2
= 𝑑2𝑘 ((𝛿 (𝜃𝑘) )𝑇 (𝛿 (𝜃𝑘)) .

(28)

Therefore, we have

𝐷+𝑉 (𝛿 (𝑡)) ≤ 𝑙𝑓𝑉(𝛿 (𝑡)) , 𝑡 ̸= 𝜃𝑘, (29)

𝑉 (𝛿 (𝜃𝑘) + 𝑊𝑘 (𝛿 (𝜃𝑘))) ≤ 𝑑2𝑘𝑉 (𝛿 (𝜃𝑘)) , 𝑡 = 𝜃𝑘. (30)

We now show that the following claim holds.

Claim. 𝑉(𝛿(𝑡)) ≤ 𝑉0 exp{𝑙𝑓𝑡 + ∑𝑘𝑖=1 ln𝑑2𝑖 }, for any 𝑡 ∈(𝜃𝑘, 𝜃𝑘+1], 𝑘 ∈ Z+, where 𝑉0 = 𝑉(𝛿(0)).
We introduce the mathematical induction to prove the

claim.
(i) When 𝑡 ∈ (0, 𝜃1] and 𝑘 = 0, from (26) and (30), we

have

𝑉(𝛿 (𝑡)) ≤ 𝑉0 exp {𝑙𝑓𝑡} ,
𝑉 (𝛿 (𝜃1) + 𝑊1 (𝛿 (𝜃1))) ≤ 𝑑21𝑉(𝛿 (𝜃1))
≤ 𝑑21𝑉0 exp {𝑙𝑓𝜃1} .

(31)

(ii) When 𝑡 ∈ (𝜃1, 𝜃2] and 𝑘 = 1, from (15), it follows that

𝑉(𝛿 (𝑡)) ≤ 𝑉 (𝛿 (𝜃1+)) exp {𝑙𝑓𝑡}
= 𝑉0 exp {𝑙𝑓𝑡 + ln𝑑21} ,

𝑉 (𝛿 (𝜃2) + 𝑊2 (𝛿 (𝜃2))) ≤ 𝑑22𝑉(𝛿 (𝜃2))
≤ 𝑑21𝑑22𝑉0 exp {𝑙𝑓𝜃2} ,

(32)

and, therefore, when 𝑡 ∈ (𝜃1, 𝜃2] and 𝑘 = 1, the claim is true.
(iii) When 𝑘 = 𝑠, 𝑠 > 1, we assume that the claim holds;

that is,

𝑉(𝛿 (𝑡)) ≤ 𝑉0 exp{𝑙𝑓𝑡 + 𝑠∑
𝑖=1

ln𝑑2𝑖} 𝑡 ∈ (𝜃𝑠, 𝜃𝑠+1] . (33)

(iv) When 𝑡 ∈ (𝜃𝑠+1, 𝜃𝑠+2] and 𝑘 = 𝑠 + 1, one observes that
𝑉(𝛿 (𝑡)) ≤ 𝑉 (𝛿 (𝜃𝑠+1))

+ 𝑊𝑠+1 (𝛿 (𝜃𝑠+1)) exp {𝑙𝑓 (𝑡 − 𝜃𝑠+1)}
≤ 𝑑2𝑠+1𝑉0 exp{𝑙𝑓𝑡 + 𝑠∑

𝑖=1

ln𝑑2𝑖}
= 𝑉0 exp{𝑙𝑓𝑡 + 𝑠+1∑

𝑖=1

ln 𝑑2𝑖} .

(34)
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From the above discussion, when 𝑡 ∈ (𝜃𝑠+1, 𝜃𝑠+2] and 𝑘 = 𝑠+1,
the claim holds. So, for all 𝑡 ∈ (𝜃𝑘, 𝜃𝑘+1], 𝑘 ∈ Z+, the claim
holds.

Note that

𝜃𝑘+1 = 𝜃𝑘+1 − 𝜃𝑘 + 𝜃𝑘 − 𝜃𝑘−1 + ⋅ ⋅ ⋅ + 𝜃2 − 𝜃1 + 𝜃1 − 𝜃0
≤ 𝑘+1∑
𝑖=1

(𝜃𝑖 − 𝜃𝑖−1) ≤ (𝑘 + 1) (𝜃 − 𝜍) . (35)

Therefore, when 𝑡 ∈ (𝜃𝑘, 𝜃𝑘+1], we have 𝑡 ≤ (𝑘 + 1)(𝜃 − 𝜍),
which implies that 𝑘 ≥ 𝑡/(𝜃 − 𝜍) − 1 and

𝑉 (𝛿 (𝑡)) ≤ 𝑉0 exp{𝑙𝑓𝑡 + 𝑘∑
𝑖=1

ln𝑑2𝑖} ≤ 𝑉0
⋅ exp{𝑙𝑓𝑘+1∑

𝑖=1

(𝜃𝑖 − 𝜃𝑖−1) + 𝑘∑
𝑖=1

ln 𝑑2𝑖} = 𝑉0
⋅ exp {𝑙𝑓 (𝜃 − 𝜍)} exp{ 𝑘∑

𝑖=1

[ln𝑑2𝑖 + 𝑙𝑓 (𝜃𝑖 − 𝜃𝑖−1)]}
≤ 𝑉0 exp {𝑙𝑓 (𝜃 − 𝜍)} exp {−𝑘𝛾} < 𝑉0
⋅ exp {𝑙𝑓 (𝜃 − 𝜍) + 𝛾} exp{−( 𝛾

(𝜃 − 𝜍)) 𝑡} .

(36)

Hence, we can obtain from (26) that

‖𝛿 (𝑡)‖
≤ √𝑉0 exp {𝑙𝑓 (𝜃 − 𝜍) + 𝛾} exp{− 𝛾𝑡

(2 (𝜃 − 𝜍))} .
(37)

The last inequality implies that system (15) is globally expo-
nentially stable.

Combining Definition 3 and Theorem 9, we have the
following corollary without proof.

Corollary 11. Under the stability criteria of system (15), the
followers of themultiagent systems coordinately track the leader
by variable-time impulsive control.

6. Numerical Simulation

In this section, a numerical simulation is given to illustrate
the correctness of the theoretical results obtained in the
previous sections. Consider multiagent systems consisting
of 3 followers and 1 leader agent with the communication

x0 leader

x1 follower

followerfollower x2 x3

Figure 2: The topological structure of one leader and 3 followers.

topology represented by Figure 2. And the Laplacian and the
connection matrix are defined as follows:

𝐿 = [[
[
2 −1 −1
−1 2 −1
−1 −1 2

]]
]
,

𝐶 = [[
[
1 0 0
0 0 0
0 0 0

]]
]
.

(38)

The dynamics of each agent are governed by the Chua
circuit [22], which exhibits the chaotic phenomena described
as

𝑓 (𝑥𝑖 ((𝑡) ) =
{{{{{{{{{

−𝛼 [𝑥𝑖1 − 𝑥𝑖2 − 𝜌𝑖1 (𝑥𝑖1)] ,
𝑥𝑖1 − 𝑥𝑖2 + 𝑥𝑖3,
−𝛽𝑥𝑖2,

(39)

where ‖𝑥𝑖𝑗‖ ≤ 1, 𝑖 = 0, 1, 2, 3, 𝑗 = 1, 2, 3, 𝛼 = 9.2156, 𝛽 =15.9946, 𝜌𝑖1 = 𝑝𝑥𝑖1 + 0.5(𝑔 − 𝑝)[‖𝑥𝑖1 + 1‖ − ‖𝑥𝑖1 − 1‖], and𝑔 = −1.24905 and 𝑝 = −0.75735.
Equation (39) is rewritten into compact form as follows:

𝑓 (𝑥𝑖 (𝑡)) = 𝑄𝑥𝑖 (𝑡) + 𝜌 (𝑥𝑖 (𝑡)) , (40)

where 𝑥𝑖(𝑡) = (𝑥𝑖1, 𝑥𝑖2, 𝑥𝑖3)𝑇 ∈ R3×3, 𝑄 = [ −𝛼(1+𝑝) 𝛼 01 −1 1
0 −𝛽 0,

] and
𝜌((𝑥𝑖(𝑡))) = [0.5(𝑔 − 𝑝)(‖𝑥𝑖1 + 1‖ − ‖𝑥𝑖1 − 1‖, 0.0)]𝑇.

To make followers coordinately track the leader, we
design the following impulsive controller with impulsive
instants varying with error 𝛿21, 𝑡 = 0.01𝑘 + 0.0001‖𝛿21‖, and𝑏 = −0.36.

𝑢𝑖 (𝑡) = −0.36∑
𝑗∈𝑁𝑖

(𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)) )
+ 𝑐𝑖 (𝑥𝑖 (𝑡) − 𝑥0 (𝑡)󵄨󵄨󵄨󵄨𝑡=0.01𝑘+0.0001‖𝛿21‖ ,

(41)
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and, together with (40), the multiagent system under
variable-time impulsive control can be described as

𝑥̇𝑖 = 𝑄𝑥𝑖 + 𝜌 (𝑥𝑖) , 𝑡 ̸= 0.01𝑘 + 0.0001 󵄩󵄩󵄩󵄩𝛿21󵄩󵄩󵄩󵄩 ,
Δ𝑥𝑖 = −0.36(∑

𝑗∈𝑁𝑖

(𝑥𝑖 (𝑡) − 𝑥𝑗 (𝑡)))
+ 𝑐𝑖 (𝑥𝑖 (𝑡) − 𝑥0 (𝑡)) ,

𝑡 = 0.01𝑘 + 0.0001 󵄩󵄩󵄩󵄩𝛿21󵄩󵄩󵄩󵄩 .

(42)

Bymeans of B-equivalence method of systems (42), (H1)-
(H3) inTheorem 4 should be satisfied.

For (H1), note that 𝑙𝜏 = 0.0001, 𝜍 = max{𝜏(𝛿)} = 0.00036,
and 𝜃𝑖+1 − 𝜃𝑖 = 0.01. Obviously, there exist positive numbers𝜃 and 𝜃, such that 𝜃 + 𝜍 < 𝜃𝑖 − 𝜃𝑖−1 < 𝜃 − 𝜍; that is, (H1) holds.

For (H2), note that 𝑏 = −0.36 and 𝜏(𝛿) = 0.0001‖𝛿21‖; we
have

𝜏𝑘 (𝛿21 + 𝑏 (𝐿 + 𝐶) 𝛿21) − 𝜏𝑘 (𝛿21)
≤ 0.0001 󵄩󵄩󵄩󵄩𝐼3 + 𝑏 (𝐿 + 𝐶)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝛿21󵄩󵄩󵄩󵄩 − 0.0001 󵄩󵄩󵄩󵄩𝛿21󵄩󵄩󵄩󵄩
= 0.0001 × (0.9035 󵄩󵄩󵄩󵄩𝛿21󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝛿21󵄩󵄩󵄩󵄩) ≤ 0,

(43)

and, therefore, 𝜏𝑘(𝛿 + 𝑏(𝐿 + 𝐶) ⊗ 𝐼) ≤ 𝜏𝑘(𝛿); (H2) holds.
For conditions (H3), we have the following computation:

𝑀Φ = sup 󵄩󵄩󵄩󵄩𝑓 (𝑥𝑖) − 𝑓 (𝑥0)󵄩󵄩󵄩󵄩
≤ sup 󵄩󵄩󵄩󵄩𝑓 (𝑥𝑖)󵄩󵄩󵄩󵄩 + sup 󵄩󵄩󵄩󵄩𝑓 (𝑥0)󵄩󵄩󵄩󵄩
≤ 2 sup 󵄩󵄩󵄩󵄩𝑄𝑥𝑖 (𝑡) + 𝜌 (𝑥𝑖 (𝑡))󵄩󵄩󵄩󵄩
≤ 2 (‖𝑄‖ 󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝜌 (𝑥𝑖)󵄩󵄩󵄩󵄩)
≤ 2 (‖𝑄‖ 󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡)󵄩󵄩󵄩󵄩 + 󵄨󵄨󵄨󵄨𝑔 − 𝑝󵄨󵄨󵄨󵄨) = 65.0674,

(44)

and thus √𝑁𝑙𝜏𝑀Φ = 1.7321 × 0.0001 × 65.0674 < 1; (H3)
holds.

Thereupon, (H1)-(H3) hold, which illustrate that the
parameters we selected guarantee that solutions of systems
(42) intersect the surface 𝑡 = 0.01𝑘 + 0.0001‖𝛿21‖ exactly
at once. Therefore, the comparison systems associated with
tracking error system of (42) are presented by employing B-
equivalence method:

̇𝛿𝑖 (𝑡) = 𝑄𝑥𝑖 (𝑡) + 𝜌 (𝑥𝑖 (𝑡)) − (𝑄𝑥0 (𝑡) + 𝜌 (𝑥0 (𝑡))) ,
𝑡 ̸= 0.01𝑘,

Δ𝛿𝑖 (𝑡) = 𝑊 (𝛿𝑖 (𝑡)) , 𝑡 = 0.01𝑘,
(45)

where 𝑘 ∈ Z+;𝑊(𝛿𝑖(𝑡)) is defined in Section 4.
By utilizing the results of Theorem 10, we consider this

Lyapunov function candidate of system (45):

𝑉(𝛿 (𝑡)) = 𝛿 (𝑡)𝑇 𝛿 (𝑡) (46)

As each agent governed by Chua circuit, when 𝑡 ̸= 0.01𝑘,
the Dini derivative 𝑉(𝛿(𝑡))with respect to time 𝑡 is calculated
as follows:

𝐷+𝑉 (𝛿 (𝑡)) = 2𝑖=3∑
𝑖=1

(𝑥𝑖 (𝑡) − 𝑥0 (𝑡))𝑇
⋅ (𝑄𝑥𝑖 (𝑡) + 𝜌 (𝑥𝑖 (𝑡)) − 𝑄𝑥0 (𝑡) − 𝜌 (𝑥0 (𝑡))) .

(47)

Noting that 𝑔 − 𝑝 ≤ 0 and −1 ≤ 𝑥𝑖𝑗 ≤ 1,
(𝑥𝑖 (𝑡) − 𝑥0 (𝑡))𝑇 (𝜌 (𝑥𝑖 (𝑡)) − 𝜌 (𝑥0 (𝑡)))
= 3∑
𝑖=0

(0.5 (𝑔 − 𝑝) (𝑥𝑖1 (𝑡) − 𝑥01 (𝑡))
⋅ (󵄩󵄩󵄩󵄩𝑥𝑖1 + 1󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑥𝑖1 − 1󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑥01 + 1󵄩󵄩󵄩󵄩 − 󵄩󵄩󵄩󵄩𝑥01 − 1󵄩󵄩󵄩󵄩))
= (𝑔 − 𝑝) 3∑

𝑖=0

(𝑥𝑖1 − 𝑥01)2 ≤ 0.

(48)

Then,

𝐷+𝑉 (𝛿 (𝑡))
≤ 2𝑖=3∑
𝑖=1

(𝑥𝑖 (𝑡) − 𝑥0 (𝑡))𝑇 (𝑄𝑥𝑖 (𝑡) − 𝑄𝑥0 (𝑡))
≤ 𝜆max (𝑄 + 𝑄𝑇) (𝑥𝑖 (𝑡) − 𝑥0 (𝑡))𝑇 (𝑥𝑖 (𝑡) − 𝑥0 (𝑡))
= 𝜆max (𝑄 + 𝑄𝑇) 𝛿 (𝑡)𝑇 𝛿 (𝑡)
≤ 16.5498𝛿 (𝑡)𝑇 𝛿 (𝑡) .

(49)

When 𝑡 = 0.01𝑘, according to inequality (25), one has
𝑉 (𝛿 (𝑡) + 𝑊 (𝛿 (𝑡)))
= [𝑊 (𝛿 (𝑡)) + 𝛿 (𝑡)]𝑇 [𝑊 (𝛿 (𝑡)) + 𝛿 (𝑡)]
≤ 𝑑𝑘2𝛿 (𝑡)𝑇 𝛿 (𝑡)

(50)

where𝑑𝑘 = √𝑁𝑀Φ𝑙𝜏(2+‖𝑏((𝐿+𝐶)⊗𝐼)+𝐼‖)(1−√𝑁𝑙𝜏𝑀Φ)−1+𝑏‖((𝐿 + 𝐶) ⊗ 𝐼) + 𝐼‖.
Substituting parameters to 𝑑𝑘, we calculate 𝑑𝑘 = 0.9418.

Thus, we have 𝑙𝑓 = 16.5498, 𝑑𝑘 = 0.9418, and 𝜃 − 𝜍 = 0.01
of criteria in Theorem 10; then 𝛾 = 0.0746, which satisfy
criteria of Theorem 10. Therefore, system (45) is globally
exponentially stable. Combining with Corollary 11, we have
reasons to state that, under the variable-time controller
(42), followers exponentially coordinately tracked the leader.
Taking initial values of agents randomly selected as 𝑥0(0) =(−0.0032, −0.4190, 0.3455)𝑇, the followers

𝑥𝑖𝑗 (0) = [[[
0.9760 0.5331 0.3322
−0.7381 −0.8092 −0.9703
−0.4236 0.6335 0.9710

]]
]
, (51)
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Figure 3:The 1-dimensional error value of agent𝑥𝑖 and leader agent𝑥0.
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Figure 4:The 2-dimensional error value of agent𝑥𝑖 and leader agent𝑥0.

where 𝑥𝑖𝑗 denotes the initial value of 𝑗-dimensional agents𝑥𝑖(0), 1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 3.
Simulation results are shown in Figures 3–5. Figures 3, 4,

and 5, respectively, show the 1-dimensional, 2-dimensional,
and 3-dimensional tracking error between followers and
leader. It can be seen from Figures 3–5 that each dimensional
error between followers and leader converges to 0. These
illustrate that each follower coordinately tracked the leader
under the variable-time impulsive control we proposed.

7. Conclusion

In this paper, we have investigated coordinated tracking
problem in the nonlinear multiagent systems under variable-
time impulsive control. Rigorous analysis by employing B-
equivalence method has demonstrated that the variable-
time impulsive controller we proposed guarantees that each
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Figure 5:The 3-dimensional error value of agent𝑥𝑖 and leader agent𝑥0.

follower agent coordinately tracked the leader. However, the
constraint of impulsive instants function 𝑡𝑘 = 𝜃𝑘 + 𝜏(𝛿) is
rigorous, and the stability criteria are also conservative as a
result of conservative estimation on norm of map 𝑊𝑘(𝛿). It
is excepted to extend this presented method to more general
variable-time impulsive controller for multiagent systems.
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