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Assume that H1 and H2 are two given closed subintervals of R and that f2 : H1⟶ H2 and f1 : H2⟶ H1 are continuous
maps. Let Υ(h1, h2) � (f1(h2), f2(h1)) be a Cournot map over the spaceH1 ×H2. In this paper, we study (G1,G2)-chaos (resp.
strong (G1,G2)-chaos) of such a Cournot map. We will show that the following are true: (1) Υ is (G1,G2)-chaotic (resp. strong
(G1,G2)-chaotic) if and only if Υ2|Λ1 is (G1,G2)-chaotic (resp. strong (G1,G2)-chaotic) if and only if Γ2|Λ2 is (G1,G2)-chaotic
(resp. strong (G1,G2)-chaotic). (2) Υ is (G1,G2)-chaotic (resp. strong (G1,G2)-chaotic) if and only if Υ2|Λ1∪Λ2 is
(G1,G2)-chaotic (resp. strong (G1,G2)-chaotic). (3) f1∘f2 is (G1,G2)-chaotic (resp. strong (G1,G2)-chaotic) if and only if so is
f2∘f1. MR(2000) Subject Classi cation: Primary 37D45, 54H20, and 37B40 and Secondary 26A18 and 28D20.

1. Introduction

Let H1 and H2 be closed subintervals of R, and let f1 :
H2⟶ H1 and f2 : H1⟶ H2 be continuous. In the
whole paper, Υ : H1 ×H2⟶ H1 ×H2 is de�ned by
Υ(h1, h2) � (f1(h2), f2(h1)) for any (h1, h2) ∈ H1 ×H2.
Such a map has been investigated to give a mathematical
analysis of Cournot duopoly (see [1]). Probably the �rst
notion of chaos in a mathematically rigorous way was posed
by Li and Yorke [2]. Since then, a lot of di�erent notions of
chaos have been posed. Akin and Kolyada gave the concept
of Li–Yorke sensitivity for the �rst time [3]. ey also gave
the concept of spatiotemporal chaos. Schweizer and Smı́tal
gave the concept of distributional chaos [4]. We know that
distributional chaos is equivalent to positive topological
entropy and some other chaotic properties for some par-
ticular spaces (see [4, 5]), and that this equivalence re-
lationship will become invalid for some higher dimensional
spaces [6] and some zero-dimensional spaces [7]. In [8],
Wang et al. gave the de�nition of distributional chaos with
respect to a sequence and got that such chaos is equivalent to
Li–Yorke chaos for continuous maps over a closed sub-
interval. Over the past few decades, people have been paying
very close attention to the chaotic properties of Cournot
maps (see [1,9–13]). From [1, 12] one can see that there exist

Markov perfect equilibria processes. at is, two �xed
players move alternatively and ensure that any of them
chooses the best reply to the previous action of another
player. Put Λ1 � (f1(h2), h2) : h2 ∈ H2{ }, Λ2 � (h1, f2{
(h1)) : h1 ∈ H1}, and Λ12 � Λ1∪Λ2. Obviously, Υ(Q12)
⊂ Λ12. e set Λ12 is said to be a MPE set for Υ (see [9]).
Moreover, in [9], the authors studied several kinds of chaos
for Cournot maps and obtained that for any de�nition they
considered in [9], and it does not satisfy the condition that Υ
is chaotic if and only if so is Υ|Λ12. It is well known that some
chaotic properties of Cournot maps have been explored (see
[1,12–17]). Recently, Lu and Zhu further studied some
chaotic properties of Cournot maps and showed that some
chaotic properties of Υ|Λ12, Υ

2|Λ1 and Υ
2|Λ2 are same. In this

paper, it is shown that for any Cournot map Υ(h1, h2) �
(f1(h2), f2(h1)) over the product space H1 ×H2, the fol-
lowing properties are hold:

(1) Υ is (G1,G2)-chaotic (resp. strong (G1,G2)-cha-
otic) if and only if Υ2|Λ1 is (G1,G2)-chaotic (resp.
strong (G1,G2)-chaotic) if and only if Γ2|Λ2 is
(G1,G2)-chaotic (resp. strong (G1,G2)-chaotic).

(2) Υ is (G1,G2)-chaotic (resp. strong (G1,G2)-cha-
otic) if and only if Υ2|Λ1∪Λ2 is (G1,G2)-chaotic (resp.
strong (G1,G2)-chaotic)

Hindawi
Complexity
Volume 2019, Article ID 5484629, 8 pages
https://doi.org/10.1155/2019/5484629

mailto:gdoulrs@163.com
https://orcid.org/0000-0003-3381-5786
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/5484629


(3) f1∘f2 is (G1,G2)-chaotic (resp. strong (G1,

G2)-chaotic) if and only if so is f2∘f1

2. Preliminaries

Let (H, ξ) be a compact metric space. A dynamic system
(H, f) means that f is a continuous self-map over the space
H.

Let f : H⟶ H be amap on the space (H, ξ).,emap f
is chaotic in the sense of Li–Yorke if there is an uncountable
set C ⊂ H satisfying that for any h1, h2 ∈ C with h1 ≠ h2:

lim inf
l⟶∞

ξ f
l

h1( , f
l

h2(   � 0,

lim sup
l⟶∞

ξ f
l

h1( , f
l

h2(  > 0.
(1)

,is uncountable set C is called a scrambled set of f.
An important generalization of Li–Yorke chaos is dis-

tributional chaos, which is given in 1994 by Puu and Sushko
[1].

Let (H, ξ) be a metric space and f : H⟶ H be con-
tinuous. For any h1, h2 ∈ H, the upper (lower) distribution
function F∗h1h2

(t, f) (Fh1h2
(t, f)) deduced by (h1, h2) and f is

defined by

F
∗
h1h2

(t, f) � lim sup
m⟶∞

1
m



m

j�1
χ[0,t) ξ f

j
h1( , f

j
h2(   ,

Fh1h2
(t, f) � lim inf

m⟶∞

1
m



m

j�1
χ[0,t) ξ f

j
h1( , f

j
h2(   ,

(2)

where χ[0,t) is the characteristic function of the set [0, t). ,e
map f is distributional chaotic if there is an uncountable
subset C ⊂ H satisfying that for any h1 ≠ h2 ∈ C,
F∗h1h2

(t, f) � 1 (∀t> 0), and ∃t> 0 such that Fh1h2
(t, f) � 0.

,is uncountable subset C is called a distributionally
scrambled set of f. And this point pair (h1, h2) which satisfies
the above two conditions is called a distributionally
scrambled pair of f.

In 1997, Furstenberg family is introduced by Akin [18].
,en, Xiong and Tan defined (G1,G2)-chaos and described
chaos via Furstenberg family couple. Also, they obtained
some sufficient conditions of (G1,G2)-chaos (see [19]).

Let N � 1, 2, 3, . . .{ }, N0 � N∪ 0{ }, and P be the col-
lection of all subsets of N0. A collection G ⊂ P is called a
Furstenberg family (see [19]) if it satisfies that if G1 ⊂ G2 and
G1 ∈ G then G2 ∈ G. A familyG is said to be proper if it is a
proper subset of P (see [19]). In the whole paper, we
suppose that all Furstenberg families are proper. Clearly, a
family G is proper if and only if N0 ∈ G and ∅ ∉ G (see
[19]).

For any Furstenberg families G1 and G2 and any map
f : H⟶ H, C ⊂ H is called a (G1,G2)-scrambled set of f
(see [19]), if ∀ h1 ≠ h2 ∈ C, the following two conditions are
satisfied:

(1) ∀t> 0, m ∈ N : ξ(fm(h1), fm(h2))< t  ∈ G1

(2) ∃δ > 0, m ∈ N : ξ(fm(h1), fm(h2))> δ  ∈ G2

,is pair (h1, h2) is called a (G1,G2)-scrambled pair of f.
,e map f is said to be (G1,G2)-chaotic if there is an
uncountable (G1,G2)-scrambled set of f. When G1 � G2
� G, the map f is said to beG-chaotic and the pair (h1, h2) is
a G-scrambled pair. ,e map f is said to be strong
(G1,G2)-chaotic if one can find δ > 0 satisfying that for any
h1 ≠ h2 ∈ C, ∀t> 0, m ∈ N : ξ(fm(h1), fm(h2))< t  ∈ G1
and m ∈ N : ξ(fm(h1), fm(h2))> δ  ∈ G2.

Similarly, one can give the concept of strong G-chaos.
Let G ⊂ N. ,e upper density μ(G) and the lower density

μ(G) of G are defined by

μ(G) � lim sup
m⟶∞

#(G∩ 1, 2, . . . , m{ })

m
,

μ(G) � lim inf
m⟶∞

#(G∩ 1, 2, . . . , m{ })

m
,

(3)

where #(G) denotes the cardinality of the set G.
Let B denotes the set of all infinite subsets of N. For

arbitrary t ∈ [0, 1], put M(t) � F ∈B : μ(F)≥ t . ,en, a
pair (h1, h2) is a (M(0), M(0))-scrambled pair if and only if
it is a Li–Yorke scrambled pair (see [19]). A pair (h1, h2) is a
(M(1), M(1))-scrambled pair if and only if it is a dis-
tributionally scrambled pair (see [19]). Hence, (M(0),

M(0))-chaos is Li–Yorke chaos, and (M(1), M(1))-chaos is
distributional chaos.

For i ∈ N0 and G ∈ P, let G + i � j + i : j ∈ G ∩N0 and
G − i � j − i : j ∈ G ∩N0. A Furstenberg familyG is said to
be translation-invariant if for any G ∈ G and any i ∈ N0 G +

i ∈ G and G − i ∈ G. It is easily seen that B is a proper and
translation-invariant family (see [19]).

Clearly, for any t ∈ [0, 1], M(t) is a translation-invariant
Furstenberg family and M(0) �B (see [19]).

3. Main Results

Theorem 1. Let the product metric ξ on the product space
H1 × H2 be defined by ξ((a1, b1), (a2, b2)) � max
|a2 − a1|, |b2 − b1|  and the product map π1 × π2 of
π1 : H1⟶ H1 and π2 : H2⟶ H2 be defined by (π1 ×

π2)(a, b) � (π1(a), π2(b)) for any a ∈ H1 and any b ∈ H2,
where H1, H2 ⊂ R are compact intervals, and let Υ(a, b) �

(f1(b), f2(a)) be a Cournot map. If G1 and G2 are two
Furstenberg families such that G2 is translation-invariant,
then f1∘f2 is (G1,G2)-chaotic if and only if so is f2∘f1.

Proof. Suppose that f1∘f2 is (G1,G2)-chaotic. By the
definition, there is an uncountable (G1,G2)-scrambled set
D ⊂ H1 of f1∘f2. By the definition, for any given b> 0 and
any h1, h2 ∈ H1 with h1 ≠ h2 one has that

m ∈ N : f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


< b  ∈ G1. (4)

As f2 is uniformly continuous, for any a> 0 there is b> 0
such that |p1 − p2|< b and p1, p2 ∈ H1 imply that
|f2(p1) − f2(p2)|< a. So, if

f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


< b, (5)
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then

f2∘f1( 
m

f2 h1( (  − f2∘f1( 
m

f2 h2( ( 


< a. (6)

Consequently, by

m ∈ N : f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


< b  ∈ G1,

m ∈ N : f2∘f1( 
m

f2 h1( (  − f2∘f1( 
m

f2 h2( ( 


< a  ∈ G1.

(7)

By the definition, for any h1, h2 ∈ H1 with h1 ≠ h2 there is
δ > 0 such that

m ∈ N : f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


> δ  ∈ G2. (8)

As f1 is uniformly continuous, for the above δ > 0 there
is δ′ > 0 such that |p1 − p2|≤ δ′ and p1, p2 ∈ H2 imply that
|f1(p1) − f1(p2)|≤ δ. So, if

f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


> δ, (9)

then

f2∘f1( 
m− 1

f2 h1( (  − f2∘f1( 
m− 1

f2 h2( ( 


> δ′. (10)

As G2 is translation-invariant, by
m ∈ N : f1∘f2( 

m
h1(  − f1∘f2( 

m
h2( 


> δ  ∈ G2,

m − 1 ∈ N : f2∘f1( 
m− 1

f2 h1( (  − f2∘f1( 
m− 1

f2 h2( ( 


> δ′  ∈ G2.

(11)

,is means that
m ∈ N : f2∘f1( 

m
f2 h1( (  − f2∘f1( 

m
f2 h2( ( 


> δ′  ∈ G2.

(12)

,us, ,eorem 1 is true. □

Theorem 2. Let the product metric ξ on the product space
H1 × H2 be defined by ξ((a1, b1), (a2, b2)) � max |a2

− a1|, |b2 − b1|} and the product map π1 × π2 of
π1 : H1⟶ H1 and π2 : H2⟶ H2 be defined by (π1 ×

π2)(a, b) � (π1(a), π2(b)) for any a ∈ H1 and any b ∈ H2,
where H1, H2 ⊂ R are compact intervals, and let Υ(a, b) �

(f1(b), f2(a)) be a Cournot map. If G1 and G2 are two
Furstenberg families such that G2 is translation-invariant,
then f1∘f2 is strong (G1,G2)-chaotic if and only if so is
f2∘f1.

Proof. Suppose thatf1∘f2 is strong (G1,G2)-chaotic. By the
definition, there is an uncountable strong (G1,

G2)-scrambled set D ⊂ H1 of f1∘f2. By the definition, for
any given b> 0 and any h1, h2 ∈ H1 with h1 ≠ h2 one has that

m ∈ N : f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


< b  ∈ G1.

(13)

As f2 is uniformly continuous, for any a> 0 there is b> 0
such that |p1 − p2|< b and p1, p2 ∈ H1 imply that
|f2(p1) − f2(p2)|< a. So, if

f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


< b, (14)

then

f2∘f1( 
m

f2 h1( (  − f2∘f1( 
m

f2 h2( ( 


< a. (15)

Consequently, by

m ∈ N : f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


< b  ∈ G1,

m ∈ N : f2∘f1( 
m

f2 h1( (  − f2∘f1( 
m

f2 h2( ( 


< a  ∈ G1.

(16)

By the definition, for any h1, h2 ∈ H1 with h1 ≠ h2 there is
δ > 0 satisfying that for any h1, h2 ∈ H1 with h1 ≠ h2, one has
that

m ∈ N : f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


> δ  ∈ G2.

(17)

As f1 is uniformly continuous, for the above δ > 0 there
is δ′ > 0 such that |p1 − p2|≤ δ′ and p1, p2 ∈ H2 imply that
|f1(p1) − f1(p2)|≤ δ. So, if

f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


> δ, (18)

then

f2∘f1( 
m− 1

f2 h1( (  − f2∘f1( 
m− 1

f2 h2( ( 


> δ′. (19)

As G2 is translation-invariant, by

m ∈ N : f1∘f2( 
m

h1(  − f1∘f2( 
m

h2( 


> δ  ∈ G2,

m − 1 ∈ N : f2∘f1( 
m− 1

f2 h1( (  − f2∘f1( 
m− 1

f2 h2( ( 


> δ′  ∈ G2.

(20)

,is means that

m ∈ N : f2∘f1( 
m

f2 h1( (  − f2∘f1( 
m

f2 h2( ( 


> δ′  ∈ G2.

(21)

,us, ,eorem 2 is true. □

Corollary 1. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot
map on the product spaceH1 × H2.6en, for any a, b ∈ [0, 1],
f1∘f2 is (M(a), M(b))-chaotic (resp. strong (M(a),

M(b))-chaotic) if and only if so is f2∘f1.

Proof. As M(t) is a translation-invariant Furstenberg family
for any t ∈ [0, 1], by ,eorems 1 and 2 one can see that
Corollary 1 holds. □

Theorem 3. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot map
on the product space H1 × H2. If G1 and G2 are two Fur-
stenberg families such that G2 is translation-invariant and
satisfy that for any k ∈ 1, 2{ } and any G ∈ Gk, there is
j ∈ 0, 1{ } satisfying that G2,j ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G 

∈ Gk, and that for any k ∈ 1, 2{ } and any G ∈ Gk,

G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ Gk, (22)

then Υ is (G1,G2)-chaotic if and only if so is Υ2|Λ2
.
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Proof. We assume that Υ is (G1,G2)-chaotic. □

Claim 1. Υ2 is (G1,G2)-chaotic.

6e Proof of Claim 1. Assume that D ⊂ H1 × H2 is a
(G1,G2)-scrambled set of the system (H1 × H2,Υ). As Υ
and Υ2 are uniformly continuous, for any t> 0 there is t′ > 0
satisfying that h1, h2 ∈ H1 × H2 and ξ(h1, h2)< t′ imply
ξ(Υ(h1),Υ(h2))< t and ξ(Υ2(h1),Υ2(h2))< t. By the hy-
pothesis and the definition, for any d1, d2 ∈ D with d1 ≠ d2,
one has that

G � m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( < t′  ∈ G1.

(23)

As G1 satisfies that for any G ∈ G1, there is j ∈ 0, 1{ }

satisfying that G2,j ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G  ∈ G1, by
the definition there is j ∈ 0, 1{ } satisfying that

G2,j ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G  ∈ G1. (24)

By the above argument, one has that

G2,j ⊂ m ∈ 0, 1, . . .{ } : ξ Υ2m+j+2− j
d1( ,Υ2m+j+2− j

d2(  < t .

(25)

,at is,

G2,j ⊂ m ∈ 0, 1, . . .{ } : ξ Υ2m+2
d1( ,Υ2m+2

d2(  < t .

(26)

So,

m ∈ 0, 1, . . .{ } : ξ Υ2m+2
d1( ,Υ2m+2

d2(  < t  ∈ G1.

(27)

As G1 is translation-invariant,

m ∈ 0, 1, . . .{ } : ξ Υ2m
d1( ,Υ2m

d2(  < t  ∈ G1. (28)

By the hypothesis and the definition, for any given
d1, d2 ∈ D with d1 ≠ d2 there is δ > 0 satisfying that

G′ � m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ  ∈ G2.

(29)

As G2 satisfies that for any G ∈ G2, there is j ∈ 0, 1{ }

satisfying that G2,j ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G  ∈ G2, by
the definition there is j ∈ 0, 1{ } satisfying that

G2,j
′ ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G′  ∈ G2. (30)

As Υ and Υ2 are uniformly continuous, for the above
δ > 0, there is δ′ > 0 satisfying that h1, h2 ∈ H1 × H2 and
ξ(h1, h2)≤ δ′ imply ξ(Υ(h1),Υ(h2))≤ δ and ξ(Υ2(h1),

Υ2(h2))≤ δ. Clearly,

G2,j
′ ⊂ m ∈ 0, 1, . . .{ } : ξ Υ2m

d1( ,Υ2m
d2(  > δ′ , (31)

which means that

m ∈ 0, 1, . . .{ } : ξ Υ2m
d1( ,Υ2m

d2(  > δ′  ∈ G2. (32)

,us, Claim 1 holds.
As Υ2 � (f1∘f2) × (f2∘f1), by hypothesis, Claim 1, the

definition of (G1,G2)-chaos, and ,eorem 1 and its proof,
one can easily verify that f1∘f2 and f2∘f1 are
(G1,G2)-chaotic.

Assume that f1∘f2 is (G1,G2)-chaotic. By the defini-
tion, there is an uncountable subset C ⊂ H1 which is
(G1,G2)-scrambled set of f1∘f2. By the proof of,eorem 1,
f2(C) is an uncountable (G1,G2)-scrambled set of f2∘f1.
Set A � (a, g2(a)) : a ∈ C . ,en, A is uncountable. By the
above argument, the definition of (G1,G2)-chaos and the
proof of ,eorem 1, it is easy to prove that A is a
(G1,G2)-scrambled set of Υ2|Λ2.

Now, we assume that Υ2|Λ2 is (G1,G2)-chaotic.

Claim 2. Υ is (G1,G2)-chaotic.

6e Proof of Claim 2. By the hypothesis and the definitions,
Υ2 is (G1,G2)-chaotic. Assume that D is a (G1,

G2)-scrambled set of the system (H1 × H2,Υ2). As Υn is
uniformly continuous for any n ∈ 0, 1{ }, for any t> 0 there is
t′ > 0 satisfying that h1, h2 ∈ H1 × H2 and ξ(h1, h2)< t′
imply ξ(Υn(h1),Υn(h2))< t for any n ∈ 0, 1{ }. By hypothesis
and the definition, for any d1, d2 ∈ D with d1 ≠d2, one has
that

G � m ∈ 0, 1, . . .{ } : ξ Υ2m
d1( ,Υ2m

d2(  < t′  ∈ G1.

(33)

So, for any m ∈ G and any n ∈ 0, 1{ } we have that

ξ Υ2m+n
d1( ,Υ2m+n

d2(  < t. (34)

As G1 satisfies that for any G ∈ G1,

G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ G1, (35)

by the definition we have

G2 ≔ 2m + n : m ∈ G, n ∈ 0, 1{ }{ } ∈ G1. (36)

Clearly,

G2 ⊂ m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( < t . (37)

,is means that

m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( < t  ∈ G1. (38)

By the hypothesis and the definition, for any given
d1, d2 ∈ D with d1 ≠ d2 there is δ′ > 0 satisfying that

G′ � m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ′  ∈ G2.

(39)

As Υn is uniformly continuous for any n ∈ 0, 1{ }, for the
above δ′ > 0 there is δ > 0 satisfying that h1, h2 ∈ H1 × H2
and ξ(Υ2(h1),Υ2(h2))> δ imply ξ(Υn(h1),Υn(h2))> δ for
any n ∈ 0, 1{ }. So, for any m ∈ G′ and any n ∈ 0, 1{ } we have
that
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ξ Υ2(m− 1)+n
d1( ,Υ2(m− 1)+n

d2(  > δ. (40)

As G2 is translation-invariant, G′ − 1 ∈ G2. As G2 sat-
isfies that for any G ∈ G2,

G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ G2,

G′ − 1( 2 ≔ 2(m − 1) + n : m − 1 ∈ G′ − 1, n ∈ 0, 1{ }  ∈ G2.

(41)

Clearly,

G′ − 1( 2 ⊂ m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ ,

(42)

which means that

m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ  ∈ G2. (43)

,us, Claim 2 holds.
Consequently, ,eorem 3 is true.

Theorem 4. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot map
on the product space H1 × H2. If G1 and G2 are two Fur-
stenberg families such that G2 is translation-invariant and
satisfy that for any k ∈ 1, 2{ } and any G ∈ Gk, there is
j ∈ 0, 1{ } satisfying that G2,j ≔ i ∈ 0, 1, . . .{ } : 2j+

i ∈ G} ∈ Gk, and that for any k ∈ 1, 2{ } and any G ∈ Gk,

G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ Gk, (44)

then Υ is strong (G1,G2)-chaotic if and only if so is Υ2|Λ2
.

Proof. We assume that Υ is strong (G1,G2)-chaotic. □

Claim 3. Υ2 is strong (G1,G2)-chaotic.

6e Proof of Claim 3. Assume that D ⊂ H1 × H2 is a strong
(G1,G2)-scrambled set of the system (H1 × H2,Υ). As Υ
and Υ2 are uniformly continuous, for any t> 0 there is t′ > 0
satisfying that h1, h2 ∈ H1 × H2 and ξ(h1, h2)< t′ imply
ξ(Υ(h1),Υ(h2))< t and ξ(Υ2(h1),Υ2(h2))< t. By hypothesis
and the definition, for any d1, d2 ∈ D with d1 ≠ d2, one has
that

G � m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( < t′  ∈ G1.

(45)

As G1 satisfies that for any G ∈ G1,

G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ G1, (46)

by the definition there is j ∈ 0, 1{ } satisfying that

G2,j ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G  ∈ G1. (47)

By the above argument, one has that

G2,j ⊂ m ∈ 0, 1, . . .{ } : ξ Υ2m+j+2− j
d1( ,Υ2m+j+2− j

d2(  < t .

(48)

,at is,

G2,j ⊂ m ∈ 0, 1, . . .{ } : ξ Υ2m+2
d1( ,Υ2m+2

d2(  < t .

(49)

So,

m ∈ 0, 1, . . .{ } : ξ Υ2m+2
d1( ,Υ2m+2

d2(  < t  ∈ G1.

(50)

As G1 is translation-invariant,

m ∈ 0, 1, . . .{ } : ξ Υ2m
d1( ,Υ2m

d2(  < t  ∈ G1. (51)

By the hypothesis and the definition, there is δ > 0 such
that for any d1, d2 ∈ D with d1 ≠ d2,

G′ � m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ  ∈ G2.

(52)

As G2 satisfies that for any G ∈ G2, there is j ∈ 0, 1{ }

satisfying that G2,j ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G  ∈ G2, by
the definition there is j ∈ 0, 1{ } satisfying that

G2,j
′ ≔ i ∈ 0, 1, . . .{ } : 2j + i ∈ G′  ∈ G2. (53)

As Υ and Υ2 are uniformly continuous, for the above
δ > 0 there is δ′ > 0 satisfying that h1, h2 ∈ H1 × H2 and
ξ(h1, h2)≤ δ′ imply ξ(Υ(h1),Υ(h2))≤ δ and ξ(Υ2(h1),

Υ2(h2))≤ δ. Clearly,

G2,j
′ ⊂ m ∈ 0, 1, . . .{ } : ξ Υ2m

d1( ,Υ2m
d2(  > δ′ , (54)

which means that

m ∈ 0, 1, . . .{ } : ξ Υ2m
d1( ,Υ2m

d2(  > δ′  ∈ G2. (55)

,us, Claim 3 holds.
As Υ2 � (f1∘f2) × (f2∘f1), by hypothesis, Claim 3, the

definition of strong (G1,G2)-chaos, and ,eorem 2 and its
proof, one can easily verify that f1∘f2 and f2∘f1 are strong
(G1,G2)-chaotic.

Assume that f1∘f2 is strong (G1,G2)-chaotic. By the
definition, there is an uncountable subset C ⊂ H1 which is
strong (G1,G2)-scrambled set of f1∘f2. By the proof of
,eorem 2, f2(C) is an uncountable and strong (G1,

G2)-scrambled set of f2∘f1. Set A � (a, g2 (a)) : a ∈ C}.
,en, A is uncountable. By the above argument, the defi-
nition of strong (G1,G2)-chaos and the proof of,eorem 2,
it is easy to prove thatA is a strong (G1,G2)-scrambled set of
Υ2|Λ2.

Now, we assume that Υ2|Λ2 is strong (G1,G2)-chaotic.

Claim 4. Υ is strong (G1,G2)-chaotic.

6e Proof of Claim 4. By the hypothesis and the definitions,
Υ2 is strong (G1,G2)-chaotic. Assume that D is a strong
(G1,G2)-scrambled set of the system (H1 × H2,Υ2). As Υn

is uniformly continuous for any n ∈ 0, 1{ }, for any t> 0 there
is t′ > 0 satisfying that h1, h2 ∈ H1 × H2 and ξ(h1, h2)< t′
imply ξ(Υn(h1),Υn(h2))< t for any n ∈ 0, 1{ }. By the hy-
pothesis and the definition, for any d1, d2 ∈ D with d1 ≠d2,
one has that

Complexity 5



G � m ∈ 0, 1, . . .{ } : ξ Υ2m
d1( ,Υ2m

d2(  < t′  ∈ G1.

(56)

So, for any m ∈ G and any n ∈ 0, 1{ }, we have that

ξ Υ2m+n
d1( ,Υ2m+n

d2(  < t. (57)

As G1 satisfies that for any G ∈ G1,

G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ G1, (58)

by the definition we have

G2 ≔ 2m + n : m ∈ G, n ∈ 0, 1{ }{ } ∈ G1. (59)

Clearly,

G2 ⊂ m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( < t . (60)

,is means that

m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( < t  ∈ G1. (61)

By the hypothesis and the definition, there is δ′ > 0
satisfying that for any d1, d2 ∈ D with d1 ≠ d2,

G′ � m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ′  ∈ G2.

(62)

As Υn is uniformly continuous for any n ∈ 0, 1{ }, for the
above δ′ > 0 there is δ > 0 satisfying that h1, h2 ∈ H1 × H2
and ξ(Υ2(h1),Υ2(h2))> δ imply ξ(Υn(h1),Υn(h2))> δ for
any n ∈ 0, 1{ }. So, for any m ∈ G′ and any n ∈ 0, 1{ }, we have
that

ξ Υ2(m− 1)+n
d1( ,Υ2(m− 1)+n

d2(  > δ. (63)

As G2 is translation-invariant, G′ − 1 ∈ G2. As G2 sat-
isfies that for any G ∈ G2,

G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ G2,

G′ − 1( 2 ≔ 2(m − 1) + n : m − 1 ∈ G′ − 1, n ∈ 0, 1{ }  ∈ G2.

(64)

Clearly,

G′ − 1( 2 ⊂ m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ ,

(65)

which means that

m ∈ 0, 1, . . .{ } : ξ Υm
d1( ,Υm

d2( ( > δ  ∈ G2. (66)

,us, Claim 4 holds.
Consequently, ,eorem 4 is true.

Corollary 2. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot
map on the product spaceH1 × H2.6en, for any a, b ∈ [0, 1],
Υ is (M(a), M(b))-chaotic (resp. strong (M(a),

M(b))-chaotic) if and only if so is Υ2|Λ2
.

Proof. We have the following two claims. □

Claim 5. For any t ∈ [0, 1], M(t) satisfies that for any
G ∈ G, there is j ∈ 0, 1{ } such that G2,j ≔ i ∈ 0, 1,{{

. . .} : 2j + i ∈ G} ∈ G.

6e Proof of Claim 5. It is clear that M(0) � B and that if
G ∈B, then there is j ∈ 0, 1{ } satisfying that G2,j ∈B.
Assume that there is t ∈ (0, 1] such that M(t) does not have
the property P(2). By this assumption and the definition,
there is G ∈M(t) such that for any j ∈ 0, 1{ }, μ(G2,j)

� ej < t. Choose δj ∈ (0, t − ej) for any j ∈ 0, 1{ }. As
μ(G2,j) � ej < t for any j ∈ 0, 1{ }, by the definition there is an
integer M> 0 such that for any j ∈ 0, 1{ } and any integer
m≥M, ♯(G2,j ∩ 1, 2, . . . , m{ })< (t − δj)m. ,is implies that

♯ 1, 2, . . .{ }\G2,j ∩ 1, 2, . . . , m{ } >m − t − δj m. (67)

Let n ∈ 2M + 1, 2M + 1, · · ·{ } and write n � 2[n/2] + ln,
where [n/2] is the integral part of n/2 and ln ∈ 0, 1{ }. By the
definition, i ∉ G2,j implies 2i + j ∉ G for any j ∈ 0, 1{ }.
Obviously, if j1, j2 ∈ 0, 1{ } and j1 ≠ j2 then 2i1 + j1 ≠ 2i2 + j2
for any i1, i2 ∈ 0, 1, . . . , m{ }. So,

♯(( 1, 2, . . .{ }\G)∩ 1, 2, . . . , n{ })≥ ♯ A0(  + ♯ A1( >
n

2
 

− t − e0( 
n

2
  +

n

2
  − t − e1( 

n

2
 ,

(68)

where

A0 � 1, 2, . . .{ }\G2,0 ∩ 1, 2, . . . ,
n

2
  ,

A1 � 1, 2, . . .{ }\G2,1 ∩ 1, 2, . . . ,
n

2
  .

(69)

,is implies that

♯(G∩ 1, 2, . . . , n{ })< n −
n

2
  − t − e0( 

n

2
  +

n

2
  − t − e1( 

n

2
  .

(70)

Set δ � min δ0, δ1 . As

μ(G) � lim sup
n⟶∞

1
n
♯(G∩ 1, 2, . . . , n{ })≤ lim sup

n⟶∞

1
n

· n −
n

2
  − t − e0( 

n

2
  +

n

2
  − t − e1( 

n

2
   ,

μ(G)≤
1
n

n − 2
n

2
  − (t − δ)

n

2
   .

(71)

By n � 2[n/2] + ln,

μ(G)≤ t − δ. (72)

,is is a contraction. Consequently, Claim 5 holds.

Claim 6. For any t ∈ [0, 1], M(t) satisfies that for any
G ∈ G:
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G2 ≔ 2i + j ∈ 0, 1, . . .{ } : j ∈ 0, 1{ }, i ∈ G  ∈ G. (73)

6e Proof of Claim 6. It is obvious that M(0) � B, and that
if G ∈B, then G2 ∈B. Assume that there is t ∈ (0, 1] such
that M(t) does not have the property Q(2). By this as-
sumption and the definition, there is G ∈M(t) such that
μ(G2) � e< t. Choose δ ∈ (0, t − e). As μ(G2) � e< t, by the
definition there is an integer M> 0 such that for any integer
m≥M, ♯(G2 ∩ 1, 2, . . . , m{ })< (t − δ)m. Let n ∈ 2M + 1, 2{

M + 1, · · ·} and write n � 2[n/2] + ln, where [n/2] is the
integral part of n/2 and ln ∈ 0, 1{ }. By the definition, i ∈ G

implies 2i + j ∈ G2 for any j ∈ 0, 1{ }. Obviously, if i1, i2 ∈ G

and j1 ≠ j2, then 2i1 + j1 ≠ 2i2 + j2 for any j1, j2 ∈ 0, 1{ }. So,

2♯ G∩ 1, 2, . . . ,
n

2
   ≤ ♯ G2 ∩ 1, 2, . . . , n{ }( < n(t − δ).

(74)

,is implies that

♯ G∩ 1, 2, . . . ,
n

2
   <

1
2

2
n

2
  + ln (t − δ). (75)

Consequently,

μ(G)≤ lim
n⟶∞

1
2[n/2]

2
n

2
  + ln (t − δ) � t − δ < t. (76)

,is is a contraction. Consequently, Claim 5 is true.
From the above two claims we know that M(t) satisfies

the conditions of ,eorems 3 and 4 for any t ∈ [0, 1]. ,us,
by these two theorems one can see that Corollary 2 holds.

Theorem 5. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot map
on the product space H1 × H2. If G1 and G2 are two Fur-
stenberg families such thatG2 is translation-invariant, then Υ
is (G1,G2)-chaotic (resp. strong (G1,G2)-chaotic) if and only
if so is Υ2|Λ1

.

Proof. ,e proof is similar to those of ,eorems 3 and 4 and
is omitted. □

Corollary 3. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot
map on the product spaceH1 × H2.6en, for any a, b ∈ [0, 1],
Υ is (M(a), M(b))-chaotic (resp. strong (M(a), M(b))

-chaotic) if and only if so is Υ2|Λ1
.

Proof. By ,eorem 5 and the proof of Corollary 2 one can
easily see that Corollary 3 holds. □

Theorem 6. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot map
on the product space H1 × H2. If G1 and G2 are two Fur-
stenberg families such thatG2 is translation-invariant, then Υ
is (G1,G2)-chaotic (resp. strong (G1,G2)-chaotic) if and only
if so is Υ2|Λ1∪Λ2

.

Proof. By hypothesis, the definitions of Λ1, Λ2, and
(G1,G2)-chaos (resp. strong (G1,G2)-chaos) and,eorems
3 and 4, it is easily seen that Υ is (G1,G2)-chaotic (resp.
strong (G1,G2)-chaotic) if and only if so is Υ2|Λ1∪Λ2. □

Corollary 4. Let Υ(a, b) � (f1(b), f2(a)) be a Cournot
map on the product spaceH1 × H2.6en, for any a, b ∈ [0, 1],
Υ is (M(a), M(b))-chaotic (resp. strong (M(a), M(b))

-chaotic) if and only if so is Υ2|Λ1∪Λ2
.

Proof. By ,eorem 6 and the proof of Corollary 2 one can
easily see that Corollary 4 holds. □
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