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In this paper, by means of the Hirota bilinear method, a dimensionally reduced nonlinear evolution equation is in-
vestigated. �rough its bilinear form, lump solutions are obtained. We construct interaction solutions between lump
solutions and one soliton solution by choosing quadratic functions and exponential function. Interaction solutions with
the combinations of exponential functions and sine function are also given. Meanwhile, the �gures of these solutions are
plotted. �e dynamical characteristics and properties of obtained solutions are discussed, respectively. �e results show
that the corresponding physical quantities and properties of nonlinear waves are associated with the values of
the parameters.

1. Introduction

Nonlinear evolution equations (NLEEs) are becoming more
and more important in modern science. People have paid
much more attention than ever before on the study of
NLEEs. �ey have signi�cant applications in many subject
�elds, especially in nonlinear science, for instance, mathe-
matical physics, nonlinear mechanics, particle physics,
marine science, atmospheric science, and automation. �is
trend stems from the fact that NLEEs can explain a lot of
natural phenomena; for example, in mathematical physics,
many physical quantities of nonlinear waves can be de-
scribed by the parameters of equations and the solutions of
equations can also well interpret the propagation of water
waves. In order to obtain the solutions of NLEEs, researchers
have put forward many methods, including the Hirota direct
method [1], Painlevé analysis method [2], inverse scattering
transformation (IST) [3, 4], Riemann–Hilbert method [5–7],
Lie symmetry method, and so on [8–12]. Among these
methods, the Hirota direct method is so prompt and ef-
fective. Based on this approach, researchers have obtained

many di¡erent kinds of solutions, including lump solutions
[13–15], breather solutions [16–18], rogue wave solutions
[19–21], interaction solutions, and so on [22–26]. With the
help of the Riemann–Hilbert method, people also acquire
soliton solutions of integrable hierarchies and coupled
systems [27–31]. By taking the long wave limit of soliton
solutions, rational solutions of NLEEs are presented [32].
Meanwhile, some di¡erence equations also possess lump
solutions and interaction solutions, such as the Toda lattice
equation [33]. In recent years, researchers generalize the
existing NLEEs to new ones and obtain the corresponding
lump solutions [34, 35]. �ese results are good supplements
to the theory of exact solutions for NLEEs.

In this paper, we focus on the (3 + 1)-dimensional
nonlinear evolution equation [36]; its form is

3uxz − 2ut − 2uux + 2uxxx( )y + 2 ux∫
x
uy( )

x
� 0, (1)

where u � u(x, y, z, t), ∫
x
is the integral with respect to x.

Let z � y; we derive dimensionally reduced situation of
equation (1) as follows:
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3uxy − 2ut − 2uux + 2uxxx( 􏼁y + 2 ux􏽚
x
uy􏼒 􏼓

x
� 0. (2)

Equation (2) has wide applications in different areas, for
example, mathematical physics, ocean science, engineering,
and others. It could describe propagation of shallow water
wave in nonlinear dispersive channel. So, it is very important
to find the exact solution for this dimensionally reduced
nonlinear evolution equation.

+e structure of this paper is as follows. In Section 2,
we present the Hirota bilinear form and lump solutions of
equation (2). In Section 3, we obtain interaction solutions
with the combination of lump solutions and one soliton
solution. In Section 4, we acquire interaction solutions
with the combination of two exponential functions and

one sine function. In Section 5, some conclusions are
given.

2. Hirota Bilinear Form and Lump Solutions

2.1. Hirota Bilinear Form of the Dimensionally Reduced
Nonlinear Evolution Equation. By means of variable
transformation u � − 6(lnF)xx, we transform equation (2)
into the Hirota bilinear form [37, 38]:

2DyDt + 2D
3
xDy − 3DxDy􏼐 􏼑F · F � 0, (3)

where D is the Hirota bilinear differential operator which is
defined as follows:

D
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zy
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z
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zt
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z

zt ′
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􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌x ′�x,y ′�y,t ′�t

.

(4)

2.2. Lump Solutions Consisting of Two Quadratic Functions.
In order to obtain lump solutions of equation (2), we take
function F in the following form:

F � f
2
1 + f

2
2 + α9,

f1 � α1x + α2y + α3t + α4,

f2 � α5x + α6y + α7t + α8,

(5)

where αi(1≤ i≤ 9) are real parameters to be determined.
Substituting equation (5) into equation (3) and con-

sidering the coefficients of all powers of the variables to be 0,
with the help of Maple, we have the following relations:

α3 �
3
2
α1,

α6 � −
α1α2
α5

,

α7 �
3
2
α5,

(6)

where α1, α2, α4, α5, α8, and α9 are free parameters.
For convenience, we let the parameters to be

α1 � 1,

α2 � 1,

α4 � 0,

α5 � 1,

α8 � 0,

α9 � 1.

(7)

Consequently, the lump solutions of equation (2) can be
written as

u � − 6(lnF)xx � − 6 􏼔 2 α21 + α25􏼐 􏼑 α1x + α2y +(3/2)α1t + α4( 􏼁
2

+ α5x − α1α2/α5( 􏼁y +(3/2)α5t + α8( 􏼁
2

+ α9􏼐 􏼑􏽨 􏽩􏼒􏼒

− 􏼔2 α1 α1x + α2y +(3/2)α1t + α4( 􏼁 + α5 α5x − α1α2/α5( 􏼁y +(3/2)α5t + α8( 􏼁( 􏼁􏼕
2
􏼕􏼡

· α1x + α2y +(3/2)α1t + α4( 􏼁
2

+ α5x − α1α2/α5( 􏼁y +(3/2)α5t + α8( 􏼁
2

+ α9􏽨 􏽩
2

􏼒 􏼓

� − 6 4(x + y +(3/2)t)
2

+ 4(x − y +(3/2)t)
2

− (4x + 6t)
2

+ 4􏼐 􏼑 · (x + y +(3/2)t)
2

+(x − y +(2/3)t)
2

+ 1􏽨 􏽩
2

􏼒 􏼓
− 1

􏼠 􏼡.

(8)
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From equations (5) and (6), we can find that the lump
solution is a kind of rational solution. Based on parameter
relations (6), we know F is analytical if and only if α5 ≠ 0 and
α9 > 0. Let us make a simple dynamical characteristic
analysis. Figure 1(a) shows the lump solutions of equation
(2). When α4 � 0, α8 � 0, and t � 0, the lump wave will
center at the origin; here we take α1 � 1, α2 � 1,

α4 � 0, α5 � 1, α8 � 0, α9 � 1, and t � 1. +e lump wave is
located in arbitrary directions in the space, so it is a kind of
localized wave actually. From equation (8), we can find that
if x⟶ ±∞ or y⟶ ±∞, then f1 and f2⟶∞,
u⟶ 0. +e lump wave has one peak and two valleys, and
valleys are symmetrically distributed on both sides of the
peak. According to the extreme value principle
of multivariate functions, by the calculation, we obtain
that the lump wave’s minimum point (extreme value point)
is (− (3(α21 + α25)t + 2(α1α4 + α5α8)/2(α21 + α25)), α5(α1α8 −

α4α5)/α2(α21 + α25)) � (− (3/2), 0) and the corresponding
amplitude is − (12(α21 + α25)/α9) � − 24. It propagates along
the line y � 0 with the velocity of − (3/2). +is mode of
motion is uniform linear motion in physics.

2.3. Lump Solutions Consisting of 0ree Quadratic Functions.
We will seek for the lump solutions consisting of three
quadratic functions. +is situation has rarely been seen in
existing literatures [13–15, 35]. In order to do it, we take
function F in the following form:

F � f
2
1 + f

2
2 + f

2
3 + α13,

f1 � α1x + α2y + α3t + α4,

f2 � α5x + α6y + α7t + α8,

f3 � α9x + α10y + α11t + α12,

(9)

where αi(1≤ i≤ 13) are real parameters to be determined.

Substituting equation (9) into equation (3) and con-
sidering the coefficients of all powers of the variables to be 0,
with the help of Maple, we have the following relations:

α1 � −
1
3
2α6α7 + 3α9α10

α2
,

α3 � −
1
2
2α6α7 + 3α9α10

α2
,

α5 �
2
3
α7,

α11 �
3
2
α9,

(10)

where α2, α4, α6, α7, α8, α9, α10, α12, and α13 are free
parameters.

For convenience, we let the parameters to be

α2 � 1,

α4 � 0,

α6 � 1,

α7 � 1,

α8 � 0,

α9 � 1,

α10 � 1,

α12 � 0,

α13 � 1.

(11)

Consequently, the lump solutions consisting of three
quadratic functions of equation (2) can be written as

u � − 6(lnF)xx

� − 6
(76/9)(− (5/3)x + y − (5/2)t)2 +(76/9)((2/3)x + y + t)2 +(76/9)(x + y +(3/2)t)2 − ((76/9)x +(38/3)t)2 +(76/9)

(− (5/3)x + y − (5/2)t)2 +((2/3)x + y + t)2 +(x + y +(3/2)t)2 + 1􏽨 􏽩
2 .

(12)

Based on parameter relations (10), we know F is ana-
lytical if and only if α2 ≠ 0 and α13 > 0. Figure 2(a) shows the
lump solutions consisting of three quadratic functions of
equation (2). Similar to the previous dynamical character-
istic analysis, when α4 � 0, α8 � 0, α12 � 0, and t � 0, the
lump wave will center at the origin; here we take α2 � 1, α4 �

0, α6 � 1, α7 � 1, α8 � 0, α9 � 1, α10 � 1, α12 � 0, α13 � 1, and
t � 1. From equation (12), we can find that if x⟶ ±∞ or
y⟶ ±∞, then f1, f2, and f3⟶∞, u⟶ 0. +e lump
wave consisting of three quadratic functions also has one
peak and two valleys, and valleys are symmetrically dis-
tributed on both sides of the peak. Similarly, we obtain that

the lump wave’s minimum point (extreme value point) is
(− ((3[(4α27(α22 + α26) + 9α29(α22 + α210) + 12α6α7α9α10)t + 4α2
α7(α2α8 − α4α6) + 6α2α9(α2α12 − α4α10)]) /2[4α27(α22 + α26) +

9α29 (α22 + α210) + 12α6 α7 α9α10]), − (( α2 α4 + α6α8 + α10α12)/
(α22 + α26 + α210) )) � (− (3/2), 0) and the corresponding
amplitude is − ((4(2α6α7 + 3α9α10)

2/3α22) + ((16/3)α27 + 12
α29))/α13 � − (152/3). It propagates along the line y � 0 with
the velocity of − (3/2). +is mode of motion is also uniform
linear motion in physics.

Compared with the previous results (Section 2.2), when
α4 � 0, α8 � 0, and α12 � 0, we realize that lump solutions
(8) and lump solutions (12) have the same minimum point
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(extreme value point); however, they have different extreme
values (amplitudes) at the same minimum point. +ese two
kinds of lump wave have the same mode of motion.

3. Interaction Solutions Consisting of Lump
Solutions and One Soliton Solution

We will seek for the interaction solutions between lump
solutions and one soliton solution. In order to do it, suppose
that F has the following form:

F � f
2
1 + f

2
2 + le

λ
+ α9,

f1 � α1x + α2y + α3t + α4,

f2 � α5x + α6y + α7t + α8,

λ � ξ1x + ξ2y + ξ3t,

(13)

where αi(1≤ i≤ 9), l, and ξi(1≤ i≤ 3) are real parameters to
be determined.

Substituting equation (13) into equation (3) and
considering the coefficients of all powers of the variables to

be 0, with the help of Maple, we have the following
relations:

α3 �
3
2
α1,

α6 � −
α1α2
α5

,

α7 �
3
2
α5,

ξ2 � 0,

ξ3 � − ξ1 −
3
2

+ ξ21􏼒 􏼓,

(14)

where α1, α2, α4, α5, α8, α9, l, and ξ1 are free parameters.
+us, the interaction solutions between lump solutions

and one soliton solution can be written as

u � − 6 2 α21 + α25􏼐 􏼑 + lξ21e
ξ1x− ξ1 − (3/2)+ξ21( )t

􏼒 􏼓 α1x + α2y +(3/2)α1t + α4( 􏼁
2

+ α5x − α1α2/α5( 􏼁y +(3/2)α5t + α8( 􏼁
2

+ α9􏼐􏼔􏼔􏼒

+ le
ξ1x− ξ1 − (3/2)+ξ21( )t

􏼓􏼕 − 2 α1 α1x + α2y +(3/2)α1t + α4( 􏼁 + α5 α5x − α1α2/α5( 􏼁y +(3/2)α5t + α8( 􏼁( 􏼁 + lξ1e
ξ1x− ξ1 − (3/2)+ξ21( )t

􏼔 􏼕
2
􏼣􏼡

· α1x + α2y +(3/2)α1t + α4( 􏼁
2

+ α5x − α1α2/α5( 􏼁y +(3/2)α5t + α8( 􏼁
2

+ α9 + le
ξ1x− ξ1 − (3/2)+ξ21( )t

􏼔 􏼕
2

􏼠 􏼡

− 1

.

(15)

Figure 3 shows the interaction solutions between lump
solutions and one soliton solution. Similar to previous section,
we know F is analytical if and only if α5 ≠ 0, α9 > 0, and l> 0.
In order to facilitate dynamic analysis, we take α1 � 1, α2 �

1, α4 � 1, α5 � 1, α8 � 1, α9 � 1, ξ1 � 1, and l � 1. When

t< − 3, there is only a solitary wave; at about t � − 2, a special
phenomenon occurs and the solitary wave starts to split into
two parts: one is the lump wave and the other is the solitary
wave. In this process, the amplitude of the lump wave has
changed. When t> − 2, the solitary wave still moves in the
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Figure 1: (a) Plots of lump solutions (8) with α1 � 1, α2 � 1, α4 � 0, α5 � 1, α8 � 0, α9 � 1, and t � 1; (b) contour map in the (x, y) plane.

4 Complexity



–60

–40

–20

0

20

u

10
5

0
y –5

–10

10
5

0
x–5

–10

(a)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

(b)

Figure 2: (a) Plots of lump solutions (12) with α2 � 1, α4 � 0, α6 � 1, α7 � 1, α8 � 0, α9 � 1, α10 � 1, α12 � 0, α13 � 1, and t � 1; (b) contour
map in the (x, y) plane.
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same direction as before, but the lump wave moves in the
opposite direction, and they are farther and farther. +is is
a fission phenomenon. Figure 4 shows the opposite state of
motion (ξ1 � − 1), where a lump wave and a solitary wave
merge into a solitary wave. It is a fusion phenomenon. No
matter fission or fusion, during the interaction, the solitary
wave keeps its same amplitude and shape, and it is elastic.
On the contrary, the lump wave’s amplitude has changed,
and it is inelastic.

4. Interaction Solutions Consisting of Two
Exponential Functions and One
Sine Function

In this section, we will seek for the interaction solutions
consisting of two exponential functions and one sine function.
In order to do it, suppose that F has the following form:

F � e
− a1 x+b1y+c1t( ) + l1e

a1 x+b1y+c1t( ) + l2 sin a2(x + b2y + c2t( 􏼁,

(16)

where a1, a2, b1, b2, c1, c2, l1, and l2 are parameters to be
determined.

Substituting equation (16) into equation (3), with the
help of Maple, we have the following relations:

a1 �

�
6

√

4
,

a2 �

���
− 6

√

4
,

b1 � b2,

c1 � c2,

l1 �
l22
4

,

(17)

where b2, c2, and l2 are free parameters.
For convenience, we let the parameters to be

b2 � 3,

c2 � 1,

l2 � 1.

(18)

Consequently, the interaction solutions consisting of two
exponential functions and one sine function of equation (2)
can be written as

u � − 6(lnF)xx � − 6 (3/8)e
− (

�
6

√
/4)(x+3y+t)

+(3/8)i sinh((
�
6

√
/4)(x + 3y + t))􏼔 􏼕 · e

− (
�
6

√
/4)(x+3y+t)

+(1/4)e
�
6

√
/4

􏼔􏼔􏼒

+ i sinh((
�
6

√
/4)(x + 3y + t))􏽩 − − (

�
6

√
/4)e

− (
�
6

√
/4)(x+3y+t)

+(
�
6

√
/4)i cosh((

�
6

√
/4)(x + 3y + t))􏼔 􏼕

2
􏼣􏼡

· e
− (

�
6

√
/4)(x+3y+t)

+(1/4)e
�
6

√
/4

+ i sinh((
�
6

√
/4)(x + 3y + t))􏼔 􏼕

2
􏼠 􏼡.

(19)

Figure 5 shows the interaction solutions consisting of
two exponential functions and one sine function. Because u
is a complex solution, we plot its real part and imaginary

part, respectively. From Figure 4(a), we find that the real part
of u is very similar to soliton solution. Its peaks are sharp
while the soliton solution’s peak is smooth. All of its peaks

u
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Figure 3: Fission phenomenon: plots of interaction solutions (15) with α1 � 1, α2 � 1, α4 � 1, α5 � 1, α8 � 1, α9 � 1, ξ1 � 1, and l � 1.
(a) t � − 10; (b) t � − 3; (c) t � − 2; (d) t � 0; (e) t � 6.
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have the same amplitude. From Figure 4(c), we can see the
imaginary part of u has two rows of peaks. All of its all peaks
have the same amplitude, and this is similar to the real part.
When x or y is given, the amplitude and shape of the real part
of u remain the same when t changes, and this is similar to
the imaginary part.

+e obtained solution’s real part has one row of sharp
peaks, but its imaginary part has two rows of sharp peaks. As
far as we know, such solutions with sharp peaks in both real
and imaginary parts have rarely been seen in existing
literatures.

5. Conclusion

As a summary, we investigate different kinds of solutions for
a dimensionally reduced nonlinear evolution equation, in-
cluding lump solutions and two kinds of interaction solutions.
Dynamical characteristics and properties of obtained solu-
tions are discussed, respectively. For these solutions, we
discover many special physical phenomena, for example, the
fission and fusion phenomena from the first kind of in-
teraction solutions. +e results show that the Hirota bilinear
method is so prompt and effective to obtain solutions for
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Figure 4: Fusion phenomenon: plots of interaction solutions (15) with α1 � 1, α2 � 1, α4 � 1, α5 � 1, α8 � 1, α9 � 1, ξ1 � − 1, and l � 1.
(a) t � − 10; (b) t � − 2; (c) t � 0; (d) t � 2; (e) t � 6.
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nonlinear evolution equations. Based on this point, many
other kinds of solutions for equations especially nonlinear
mathematical physics equations are worth exploring.
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