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In order to further improve the complexity of chaotic system, a new four-dimensional chaotic system is constructed based on
Sprott B chaotic system. By analyzing the system’s phase diagrams, symmetry, equilibrium points, and Lyapunov exponents, it is
found that the system can generate not only both two-wing and four-wing attractors but also the attractors with symmetrical
coexistence, and the dynamic characteristics of the new system constructed are more abundant. In addition, the system is
simulated by Multisim software, and the simulation results show that the results of circuit simulation and numerical simulation
analysis are basically the same.

1. Introduction

Chaos is a complex, apparently random, and often sur-
prising behavior in simple nonlinear dynamical systems [1].
Chaos, as a unique form of motion in nonlinear dynamic
systems, is widely used in electronic engineering [2], in-
formation engineering [3], and other �elds [4–6] because of
its initial value sensitivity, boundedness, and inherent
randomness [7]. In 1963, American meteorologist Lorenz
put forward the �rst chaotic system model [8], which
attracted wide attention of the scienti�c community, and
then, new chaotic systems were constantly discovered. In
1976, Rössler proposed a new system named Rössler chaotic
system [9], which had a di�erent topology from Lorenz
system. Chua proposed Chua’s circuit in 1986 [10, 11], which
was one of the simplest chaotic oscillation circuits. In 1994,
Sprott constructed several di�erent simple chaotic systems
[12]. In 1999, Chen and Ueta . discovered the Chen system
while studying the anticontrol of chaos [13]. In 2002, Lü et al.
proposed a kind of transition system named Lü system
which connected Lorenz and Chen systems [14]. In 2003, Liu
and Chen constructed the �rst four-wing butter�y chaotic
attractor [15], which attracted many researchers’ attention.
To improve the security of chaotic secure communication
and chaotic information encryption, more and more

researchers began to �nd chaotic systems with more com-
plex dynamic behaviors [16–21].

In recent years, coexisting attractors had gradually be-
come a research hotspot [22–24]. Compared with general
chaotic attractors, the dynamic behaviors of coexisting
attractors are more complex. In order to improve the se-
curity of information and reduce the possibility of in-
formation being decoded, coexisting attractors are more and
more used in the �eld of encryption [25, 26]. In 2013, Li and
Sprott proposed a multistable system with coexisting
attractors [27] and found that the dynamic of the equilib-
rium points of the system depended on its stability and
system structure. In 2014, Li and Sprott discovered a coex-
isting hidden attractor on a simple 4D Lorenz system [28],
which had a large parameter region on a quasiperiodic torus.
In 2017, Lai et al. proposed a unique 4D autonomous system
with a signum function term [29], which can generate
various types of coexisting attractors. In 2019, Zhou et al.
proposed a chaotic system with multiple asymmetric
coexisting attractors [30] and carried out circuit simulation
and pulse synchronization research.

In this paper, a new 4D chaotic system based on Sprott B
system is proposed. It includes the following elements: (i) It
contains eight terms, including three nonlinear terms and
one constant term. (ii) It is symmetric about the z-axis.
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(iii) It can produce two-wing and four-wing attractors at the
same time. (iv) It can also produce symmetric coexisting
attractors. (v) ,e realization of the system circuit in physics
is verified by the circuit simulation software, which is fa-
vorable for future engineering applications. ,is paper is
organized as follows: In Section 2, a new chaotic system is
proposed, and the coexistence of two-wing and four-wing
attractors is observed through phase diagrams. In Section 3,
we analyze its dynamic behaviors by symmetry, equilibrium
points, bifurcation diagrams, Lyapunov exponents, and
trajectory diagrams and introduce its symmetric coexisting
attractors. An electronic circuit is designed in Section 4, and
the correctness of the theoretical analysis is verified by
circuit simulation experiment. Finally, the conclusion of this
paper is given in Section 5.

2. A New Four-Dimensional Chaotic System

In this section, wemainly design the new chaotic system, and
the new system proposed in this paper is described as
follows:

_x � a(y − x),

_y � xz + w,

_z � b − xy,

_w � yz − cw,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1)

where positive real numbers a, b, and c are system pa-
rameters and x, y, z, and w are state variables. ,e new
system (1) adds a state-feedback controller on the Sprott B
chaotic system. Set a � 6, b � 11, and c � 5; the chaotic
system can be generated. By calculation, the Lyapunov
exponents are LE1 � 0.5162, LE2 � − 0.0001, LE3 � − 4.9208,
and LE4 � − 6.5954. ,e corresponding Lyapunov expo-
nential dimension is as follows:

DL � j +
1

LEj+1






j

i�1
LEi

� 3 +
LE1 + LE2 + LE3

LE4




� 3 +
0.5162 − 0.0001 − 4.9208

| − 6.5954|

� 2.3322.

(2)

,erefore, the attractor of the new system is a strange
attractor with fractal dimension. Select the initial value
(x, y, z, w) � (10, 10, 0, 0). ,rough numerical simulation,
we can get the chaotic attractors of system (1) as shown in
Figure 1. As can be seen from Figure 1, system (1) presents
two-wing butterfly chaotic attractors in the x − y, x − z,
y − z, and z − w phase planes. ,e four-wing butterfly
chaotic attractors appear in the x − w and y − w phase
planes. ,is coexistence can be better observed in
Figures 1(g)–1(h). It can be concluded that system (1) can
generate chaotic butterfly attractors of two-wing and four-
wing at the same time.

3. Some Basic Properties of New System

3.1. Symmetric and Dissipative Properties. ,e Sprott B
system is symmetric about the z-axis, and system (1) is also
symmetric about the z-axis. A simple proof is shown in the
following equation:

_x � a(y − x)

_y � xz + w

_z � b − xy

_w � yz − cw

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⟺

− _x � a(− y − (− x)) � − a(y − x),

− _y � (− x)z +(− w) � − xz − w,

_z � b − (− x)(− y) � b − xy,

− _w � (− y)z − c(− w) � − yz + cw.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3)

,e state space of system (1) is four-dimensional, so the
vector field of system (1) is defined as follows:

f[X] �

f1(X)

f2(X)

f3(X)

f4(X)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

ay − ax

xz + w

b − xy

yz − cw

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

,e divergence of system (1) is obtained from the vector
field as follows:

∇V �
zf1

zx
+

zf2

zy
+

zf3

zz
+

zf4

zw
� − (a + c). (5)

According to equation (5), as long as (a + c)> 0, system
(1) is dissipative, and the system converges in exponential
form dV/dt � e− (a+c)t. As t⟶∞, all trajectories of the
system will eventually be restricted to a set with a volume
of zero, and the extreme motion will converge to an
attractor, thus proving the existence of the attractors of the
system.

3.2. Equilibria and Stability. In order to obtain the equi-
librium points of system (1), let the right side of the equation
be equal to zero. ,e system of equations is as follows:

a(y − x) � 0,

xz + w � 0,

b − xy � 0,

yz − cw � 0.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

By calculation, we get that the two equilibrium points of
system (1) are S1 � (

�
b

√
,

�
b

√
, 0, 0) and S2 � (−

�
b

√
, −

�
b

√
,

0, 0). System (1) has the same characteristic equation at S1,2:

λ4 +(a + c)λ3 +(b + ac)λ2 +(2ab + bc + b)λ + 2abc + 2ab � 0.

(7)

According to the classical Routh–Hurwitz stability cri-
terion, if a> 0, b> 0, and c> 0, the equilibrium points S1,2 is
unstable.

Let a � 6, b � 11, and c � 5, we can get the equilibrium
points S1 � (

��
11

√
,

��
11

√
, 0, 0) and S2 � (−

��
11

√
, −

��
11

√
, 0, 0).

For the first equilibrium point S1 � (
��
11

√
,

��
11

√
, 0, 0), system

(1) is linearized to Jacobian matrix as follows:
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Figure 1: ,e two-wing butterfly chaotic attractors of system (1): (a) x − y, (b) x − z, (c) y − z, and (d) z − w. ,e four-wing butterfly
chaotic attractors of system (1): (e) x − w and (f) y − w. ,e coexisting chaotic attractors of system (1): (g) x − y − w and (h) y − z − w.
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J1 �

− a a 0 0

z 0 x 1

− y − x 0 0

0 z y − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 6 6 0 0

0 0
��
11

√
1

−
��
11

√
−

��
11

√
0 0

0 0
��
11

√
− 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8)

Let |λI − J1| � 0, the eigenvalues of Jacobian matrix are
as follows:

λ1 � 0.7301 + 4.4609i,

λ2 � 0.7301 − 4.4609i,

λ3 � − 6,

λ4 � − 6.4602.

(9)

It can be seen that λ3 and λ4 are negative real numbers, λ1
and λ2 are a pair of conjugate complex numbers, and the real
part is positive, so the equilibrium point S1 is a saddle-focus,
and system (1) is unstable at S1.

For the second equilibrium point S2 � (−
��
11

√
,

−
��
11

√
, 0, 0), system (1) is linearized to Jacobian matrix as

follows:

J2 �

− a a 0 0

z 0 x 1

− y − x 0 0

0 z y − c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

− 6 6 0 0

0 0 −
��
11

√
1

��
11

√ ��
11

√
0 0

0 0 −
��
11

√
− 5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

In the same way, let |λI − J2| � 0, the eigenvalue ob-
tained is shown in equation (9), so the equilibrium point S2 is
also a saddle-focus, and system (1) is unstable at S2. Ob-
viously, two saddle-foci are the key to the chaotic motion of
system (1).

3.3. Bifurcation Diagrams, Lyapunov Exponents, and Period-
Doubling Bifurcation Process. ,e dynamic behaviors of
system (1) can be further analyzed by bifurcation diagrams,
Lyapunov exponents, and period-doubling bifurcation
process.

Let a � 6, c � 5, and b ∈ [9, 20]. We draw the bifurcation
diagrams of the z peak of system (1) changing with b, as
shown in Figure 2(a). In Figure 2(a), the red and blue
branches represent the different attractors generated from
different initial values X+ � (10, 10, 0, 0) and X− � (− 10,

− 10, 0, 0), and the overlapped parts represent the same
attractors generated. As b increases in [12, 20], the bi-
furcation diagrams clearly show the trajectory of system (1)
from classical period-doubling bifurcation to chaos.
Figures 2(b) and 2(c) show the Lyapunov exponents of
system (1) which changes with the increase of parameter b,
where LE1 > LE2 > LE3 > LE4. By comparing the three dia-
grams, it can be seen that the bifurcation diagrams are
completely consistent with the dynamic behaviors described
by Lyapunov exponents.

Figures 3(a)–3(d) describe in detail the main orbital
states through which system (1) operates. When b � 13.6,
system (1) has a pair of period-1 attractors. When b � 14.5,
system (1) has a pair of period-2 attractors. When b � 15,

system (1) has a pair of strange attractors. When b � 18.5,
system (1) has a strange attractor.

Table 1 shows the comparison of the Lyapunov expo-
nents of the new system with the literature [12, 28–30]. It can
be seen that the maximum LE1 of the new system is larger. It
indicates that the chaotic characteristics of the new system
are more obvious, the chaotic degree is higher, and the
dynamic characteristics of the system are more difficult to
predict.

3.4. Coexisting Attractors. Let a � 10, b � 10, and c ∈ [0, 6],
and we draw the bifurcation diagrams of the x peak of system
(1) changing with parameter c. Similarly, the red and blue
branches in Figure 4(a), respectively, represents the different
attractors generated from different initial values of X+ �

(10, 10, 0, 0) and X− � (− 10, − 10, 0, 0), and the overlaps
represent the same attractors generated. Figures 4(b) and
4(c) show the Lyapunov exponents of system (1) changing
with the increase of parameter c. It is obvious that
LE1 > LE2 > LE3 > LE4. Figure 4 shows that periodic attrac-
tors, chaotic attractors, and coexisting attractors exist in
system (1).

Figure 4(a) not only shows that system (1) has coexisting
attractors but also shows that with the increase of c in
[1, 4.18], system (1) shows a trajectory from reverse period-
doubling bifurcation to chaos. Figures 5(a)–5(d) describe the
major orbital states of ergodic when symmetrically coex-
isting attractors appear in system (1). When c � 1.55, the
system gets a pair of strange attractors. When c � 1.92, the
system has a pair of period-2 attractors. When c � 2.01, the
system has a pair of period-1 attractors. When c � 4.3, the
system also has a pair of strange attractors. Figures 4(b)–4(c)
Lyapunov exponents verify the above process and determine
the property of the attractors.

Figure 6 is a dynamical map, mainly depicting the
influence of changing parameters b and c on the dy-
namical map characteristics of the system. Taking the
relationship between the maximum Lyapunov exponent
and 0 as the standard, the blue region represents the
chaotic state of the system, and the maximum Lyapunov
exponent is greater than 0; the yellow region represents
the periodic state, and the maximum Lyapunov exponent
is equal to 0; and the red region represents the system is
stable under this parameter condition, and the maximum
Lyapunov exponent is less than 0. It can be seen from the
figure that as the parameter c increases, the system state
alternates between chaotic state and periodic state and
occasionally tends to be stable.

4. Circuit Implementation

In order to verify the dynamic behaviors of chaotic system,
an actual circuit is designed to realize the chaotic system
according to equation (1). ,e circuit is mainly realized by
linear resistances of different resistance values, linear ca-
pacitances, operational amplifier TL082IP, and multiplier
AD633. However, it should be noted that in the actual
circuit, the allowable voltage range of the analog multiplier is

4 Complexity
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Figure 2: Bifurcation diagrams and Lyapunov exponential spectrums of system (1) when a � 6, c � 5, and b ∈ [9, 20]: (a) bifurcation
diagrams of z peak changing with parameter b; (b) LE1 and LE2; (c) LE3 and LE4.
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±10V and the allowable voltage range of the operational
amplifier is ±18V. ,e dynamic range of variables x, y, z,
and w are approximately [− 15, 15], [− 20, 20], [− 20, 15],
and [− 20, 20], respectively. It is beyond the allowable
voltage range of analog multipliers and operational am-
plifiers, so it is necessary to make appropriate variable
proportional compression transformation to the system
state variables, so as to facilitate the implementation of the
circuit. System (1) is transformed by proportional com-
pression of uniform variables, so that x, y, z, and w are
compressed to the original 1/5, which is (x, y, z, w)⟶
(5x, 5y, 5z, 5w). ,e chaotic system equation after trans-
formation is as follows:

dx

dt
� a(y − x)

dy

dt
� xz + w

dz

dt
� b − xy

dw

dt
� yz − cw

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�

d(5x)

dt
� a(5y − 5x)

d(5y)

dt
� 5x · 5z + 5w

d(5z)

dt
� b − 5x · 5y

d(5w)

dt
� 5y · 5z − 5cw

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
� ay − ax,

dy

dt
� 5xz + w,

dz

dt
�

b

5
− 5xy,

dw

dt
� 5yz − cw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)
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Figure 3: Attractors of system (1) with a � 6 and c � 5: (a) b � 13.6, (b) b � 14.5, (c) b � 15, and (d) b � 18.5.

Table 1: ,e Lyapunov exponents of five systems.

Name System Parameter values Lyapunov exponents

Sprott B system _x � yz

_y � x − y

_z � 1 − xy

None LE1 � 0.210
LE2 � 0
LE3 � − 1.210

Li system

_x � y − x

_y � − xz + u

_z � xy − a

_u � − by

a � 2.6
b � 0.44

LE1 � 0.070
LE2 � 0.013
LE3 � 0
LE4 � − 1.083

Lai system

_x � a(y − x)

_y � xz − xw

_z � b − xy

_w � csgn(z) − kw

a � 1
b � 1
c � 9
k � 2

LE1 � 0.211
LE2 � 0
LE3 � − 1.210
LE4 � − 2

Zhou system

_x � a(w − x)

_y � − by + zw

_z � cx − xw

_w � dy − z + xz

a � 2
b � 3.9
c � 3
d � 1

LE1 � 0.092
LE2 � 0
LE3 � − 1.988
LE4 � − 4.004

New system

_x � a(y − x)

_y � xz + w

_z � b − xy

_w � yz − cw

a � 6
b � 11
c � 5

LE1 � 0.516
LE2 � 0
LE3 � − 4.921
LE4 � − 6.595
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Figure 4: Bifurcation diagrams and Lyapunov exponential spectrums of system (1) when a � 10, b � 10, and c ∈ [0, 6]: (a) bifurcation
diagrams of x peak changing with parameter c; (b) LE1 and LE2; (c) LE3 and LE4.
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Figure 5: Continued.
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In this way, the amplitude of the output chaotic signal
can be reduced to 1/5 of the original system.

Make time-scale transformation of equation (11), and
transform t into τ0t in the equation, where τ0 � 100, and the
results are as follows:

dx

dt
� 100ay − 100ax,

dy

dt
� 500xz + 100w,

dz

dt
� 20b − 500xy,

dw

dt
� 500yz − 100cw.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

,e modular circuit is designed according to the above
formula, as shown in Figure 7.

According to the circuit schematic diagrams, the cor-
responding self-excited oscillation circuit equation is ob-
tained as follows:

dx

dt
� −

R3

R2R4C1
(− y) −

R3

R1R4C1
x,

dy

dt
� −

R9

R7R10C2
(− w) −

R9

10R8R10C2
(− x)z,

dz

dt
� −

R15

R13R16C3
(− 1) −

R15

10R14R16C3
xy,

dw

dt
� −

R21

R19R22C4
w −

R21

10R20R22C4
y(− z).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By comparing equation (12) with equation (13), we can
get

a �
R3

100R1R4C1
�

R3

100R2R4C1
,

500 �
R9

10R8R10C2
,

100 �
R9

R7R10C2
,

b �
R15

20R13R16C3
,

500 �
R15

10R14R16C3
,

500 �
R21

10R20R22C4
.

c �
R21

100R19R22C4
,

(14)

In this paper, Multisim software is used for circuit
simulation, in which the output scaling factor of the analog
multiplier AD633 is set as 100mV/1V and the power supply
voltage is ±12V. ,e integral time constant of the four
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Figure 5: Attractors of system (1) with a � 10 and b � 10: (a) c � 1.55, (b) c � 1.92, (c) c � 2.01, and (d) c � 4.3.
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Figure 6: Dynamical map with respect to parameters b and c.
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circuit channels can be changed by adjusting the capaci-
tance; set C1 � C2 � C3 � C4 � 10 nF, R4 � R10 � R16 �

R22 � 50 kΩ, and R3 � R5 � R6 � R9 � R12 � R15 � R17 �

R18 � R21 � R23 � R24 � 100 kΩ. When a � 6, b � 11, and
c � 5, it can be obtained from equation (14) that
R1 � R2 � 333 kΩ, R7 � 2000 kΩ, R8 � R14 � R20 � 40 kΩ,
R13 � 909 kΩ, and R19 � 400 kΩ. Circuit simulation results
are shown in Figure 8. ,ese trajectories are consistent with
numerical simulation results.

Similarly, we can use circuit simulations to observe the
orbital states of system (1) as it moves towards chaos. Keep
other parameters unchanged, and control the value of pa-
rameter b by changing R13. Figures 9(a)–9(d) describe the
trajectories starting from the initial value X+(10, 10, 0, 0),
where R13 � 735 kΩ corresponds to parameter b � 13.6,
R13 � 690 kΩ corresponds to parameter b � 14.5, R13 �

667 kΩ corresponds to parameter b � 15, and R13 � 540 kΩ
corresponds to b � 18.5. By comparing with Figure 3, it can

be seen that the results of circuit simulation and numerical
simulation are consistent.

,e following circuit simulation is used to verify the
symmetric coexisting attractors in system (1), mainly veri-
fying the first three orbital states. Because the parameters
have changed, the value of the corresponding resistances in
the circuit should also be changed. Equation (14) can be used
to calculate the corresponding resistances R1 � R2 � 200 kΩ
and R13 � 1000 kΩ when a � 10 and b � 10.,e parameter c
is controlled by the resistance R19. c � 1.55⟶ R19 �

1290 kΩ, c � 1.92⟶ R19 � 1042 kΩ, and c � 2.01⟶ R19
� 995 kΩ. ,e left graph of Figure 10 shows the attractors
starting from initial value X+(10, 10, 0, 0), and the right
graph of Figure 10 shows the attractors starting from initial
value X− (− 10, − 10, 0, 0). By comparing the circuit simu-
lation diagrams with the numerical simulation diagrams in
the previous section, we can see that the experimental results
of the two are in good agreement.
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Figure 7: Schematic diagrams of chaotic circuit: (a) variable x equivalent circuit, (b) variable y equivalent circuit, (c) variable z equivalent
circuit, and (d) variable w equivalent circuit.
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Figure 8: ,e circuit realization of phase diagrams for system (1): (a) x − y, (b) x − z, (c) x − w, (d) y − z, (e) y − w, and (f) z − w.
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5. Conclusion

In this paper, a new four-dimensional chaotic system is
designed by adding a state-feedback controller to the Sprott
B system. It contains three nonlinear terms and one constant
term and is symmetric about z-axis. ,rough the analysis of
system diagrams, bifurcation diagrams, and Lyapunov ex-
ponents, it is found that the new system can generate not
only two-wing and four-wing attractors but also symmet-
rical coexisting attractors, and the complexity of the system
is further improved. We also design the electronic circuit,
and the results of the circuit simulation experiment are
consistent with those of the numerical simulation experi-
ment, which proves the correctness of the theoretical
analysis and the realizability of the system. ,e dynamic
characteristics of the new system are more abundant, and it
has great prospects in the fields of image encryption and
secure communication.
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[9] O. E. Rössler, “An equation for continuous chaos,” Physics
Letters A, vol. 57, no. 5, pp. 397-398, 1976.

[10] L. Chua, M. Komuro, and T. Matsumoto, “,e double scroll
family,” IEEE Transactions on Circuits and Systems, vol. 33,
no. 11, pp. 1072–1118, 1986.

[11] R. N. Madan, Chua’s Circuit: A Paradigm for Chaos, World
Scientific, Singapore, 1993.

[12] J. C. Sprott, “Some simple chaotic flows,” Physical Review E,
vol. 50, no. 2, pp. 647–650, 1994.

[13] G. Chen and T. Ueta, “Yet another chaotic attractor,” In-
ternational Journal of Bifurcation and Chaos, vol. 9, no. 7,
pp. 1465-1466, 1999.
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