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In order to make the pump turbine governing system (PTGS) adaptable to the change of working conditions and suppress the
frequency oscillation caused by the “S” characteristic area running at middle or low working water heads, the traditional single-
objective optimization for fractional-order PID (FOPID) controller under single working conditions is extended to amultiobjective
framework in this study. To establish themultiobjective FOPID controller optimization (MO-FOPID) problemundermultiworking
conditions, the integral of the time multiplied absolute error (ITAE) index of PTGS running at low and high working water
heads is adopted as objective functions. An improved nondominated sorting genetic algorithm III based on Latin hypercube
sampling and chaos theory (LCNSGA-III) is proposed to solve the optimization problem. The Latin hypercube sampling is
adopted to generate well-distributed initial population and take full of the feasible domain while the chaos theory is introduced
to enhance the global search and local exploration ability of the NSGA-III algorithm. The experimental results on eight test
functions and a real-world PTGS have shown that the proposed multiobjective framework can improve the Pumped storage units’
adaptability to changeable working conditions and the proposed LCNSGA-III algorithm is able to solve the MO-FOPID problem
effectively.

1. Introduction

With the continuous expansion of the power system scale,
the power grid’s requirements for power quality, safety, and
intelligence have been constantly improving. Pumped storage
units (PSUs) have played an important role in maintaining
the balance of power supply and demand because of their
fast start-up and shutdown speed, flexible working condition
conversion, excellent peak-load regulation, and frequency
regulation ability [1–3]. Pump turbine governing system is
the core control system of the pumped storage power station
which is responsible for stabilizing the unit frequency and
regulating the unit power [4, 5]. Due to the huge flow inertia

of the long-distance water pipeline and the existence of the
unstable “S” characteristic area, the optimal control of PTGS
is highly complex [6].Therefore, it is of great theoretical value
and practical significance to explore optimization methods
for PTGS and research new control laws. The control quality
of PSU and the dynamic response performance of PTGS can
then be improved.

The classical Proportional-Integral-Derivative (PID) con-
troller is widely used in the optimal control of PTGS because
of its simple and reliable structure and easy adjustment of
control parameters [7–10]. However, due to the strong non-
linear characteristics of different parts of PSUand the change-
able working conditions, the traditional PID controller often
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fails to realize the global optimization of PTGS. The con-
trol problems of phase modulation instability and no-load
frequency fluctuation are becoming increasingly prominent.
As an extension of the classical PID controller, the fractional-
order PID controller (FOPID) has attracted the attention of
many scholars for its better adaptability and flexibility and
greater potential to obtain better control performance [11–
15]. Li et al. [16] proposed an improved gravitational search
algorithmusing theCauchy andGaussianmutations to adjust
the parameters of the FOPID controller automatically. A
number of tests have shown that the FOPID controller can
improve the dynamic characteristics and stability of regula-
tion frequency of PSUs. In Xu et al. [17], a robust nonfragile
FOPID controller was proposed for PTGS. The parameters
of the FOPID controller were selected using the bacterial
foraging algorithm and multiscenario analysis functions.
The FOPID controller turned out to have obtained higher
robustness and stability compared with the traditional PID
controller. And it can fully track the nonlinear characteristics
of PTGS in the “S” area. Xu et al. [18] proposed an adaptively
fast fuzzy fractional-order PID (AFFFOPID) control method
for PSUs by combining a fuzzy fractional-order PD controller
with a fuzzy fractional-order PI controller. Experiments of
PTGS at variouswater heads under unload running condition
have shown that the controller can effectively improve the
performance and control quality of PSUs during the transient
process.

Apart from the advantages of the FOPID compared with
the PID controller, one of the most important and challenge
issues of the employment of FOPID controller in PTGS is the
optimal optimization of its parameters. With the continuous
development of optimization algorithms and control theory
in recent years, scholars have combined the FOPID controller
with intelligent algorithms to achieve the optimal tuning
of control parameters and improvement of control laws for
PTGS [19]. The related works on optimal optimization for
PID controller or hydroturbine governing system (HTGS)
can also provide meaningful reference for the research of
FOPID controller for PTGS. Fang et al. [20] developed
an improved particle swarm optimization (PSO) algorithm
for optimal tuning of PID control parameters for water
turbine governor. Simulation results have demonstrated the
stable convergence characteristic and good computational
ability of the developed optimization stagey. Kou et al. [21]
proposed a novel BFO-PSO algorithm by introducing PSO
into the framework of the bacterial foraging optimization
(BFO) algorithm to improve the control performance of the
PID controller for HTGS. The advantages of the proposed
algorithm to the BFO and PSO algorithms have been demon-
strated through experiments at real working conditions.
Wang et al. [22] proposed a three-stage start-up strategy for
PSUs by opening guide vanes to a large opening degree firstly
and then reducing the opening degree and finally switching
to the PID controller. The switching time and PID control
parameters are optimized synchronously using an integrated
optimization scheme based on artificial sheep algorithm
(ASA). Simulation results under various water heads have
shown that the control strategy can shorten the start-up time
and reduce the speed oscillation.

Some researchers have paid attention to multiobjective
designing to consider multiobjectives that reflect the specific
characteristics of the control system [23, 24]. Zamani et al.
[25] developed a multiobjective cuckoo search approach to
optimize the parameters of a FOPID controller. Sánchez et
al. [26] proposed a multiobjective optimization strategy for
identifying the optimal solution for a robust FOPID con-
troller. Zhao et al. [27] proposed a parameter tuning scheme
based on two lbests multiobjective PSO (2LB-MOPSO) to
minimize the integral squared error and balanced robust
performance criteria of a robust PID controller simultane-
ously. Chen et al. [28, 29] put forward a parameter tuning
scheme to optimize the integral of the squared error (ISE)
and the integral of the time multiplied squared error (ITSE)
performance indices of PTGS simultaneously. The adaptive
grid PSO (AGPSO) and the chaotic nondominated sorting
genetic algorithm II (NSGA II) were adopted to realize
the optimal control of the PID and the FOPID controllers,
respectively. The proposed multiobjective PID and FOPID
controller turned out to have achieved better control effects
than the compared methods.

It is noticed that most of the research works on optimal
control of the PID or FOPID controllers are designed under a
singleworking condition.The traditionalmultiobjective opti-
mization control usually adopts a set of objective functions
to obtain the Pareto optimal solutions for a certain condition
and then select the compromise optimal solution. The tra-
ditional multiobjective optimization control is essentially an
optimization scheme for singleworking conditions.However,
the characteristics of the controlled object of PTGS are not
only related to the nonlinear characteristics of the pump
turbine, the penstock system, the generator, and the other
parts of PTGS but also vary with the changes of the working
conditions. The optimal control of a single working condition
is often at the expense of the deterioration of some other
working conditions. The optimal control of PTGS under
multiworking conditions should be a process of overall trade-
off and cannot be limited to the pursuit of the optimal control
under a certain working condition. In order to enhance the
adaptability of PTGS to the change of working conditions,
a multiobjective optimization framework which takes into
account the integral of the time multiplied absolute error
(ITAE) index of PTGS running at multiworking conditions
is constructed. The nondominated sorting genetic algorithm
III based on the Latin hypercube sampling and chaos theory
(LCNSGA-III) is proposed to optimize the control parame-
ters of the FOPID controller for PTGS under multiworking
conditions.

The rest of this paper is arranged as follows: Section 2
gives a brief introduction to the multiobjective optimiza-
tion problem; Section 3 builds the mathematical model of
MO-FOPID under multiworking conditions; Section 4 pro-
poses the LCNSGA-III algorithm based on Latin hyper-
cube sampling and the chaos theory to solve the MO-
FOPID problem; Section 5 employs eight benchmark func-
tions and a real-world PTGS to verify the effectiveness of
the LCNSGA-III algorithm and the developed multiobjec-
tive optimization framework; Section 6 gives the conclu-
sions.
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2. Multiobjective Optimization
Problem (MOOP)

The purpose of the single-objective (SO) optimization prob-
lem is to obtain the optimal solution by searching for the
minimum or maximum value of one single objective func-
tion. However, optimization problems in scientific research
or engineering application usually contain not only one
objective. These objectives are sometimes in concordance
with each other, but sometimes there are conflicts between
them. The objective of the multiobjective optimization prob-
lem (MOOP) is to search for the optimal solutions of all
objectives, which is also known as the Pareto optimal solution
[30]. A typical MOOP with D decision variables, N objective
functions, andm+k constraints can be described as follows:

min 𝐹 (𝑋) = (min𝑓1 (𝑥) ,min𝑓2 (𝑥) , . . . ,min𝑓𝑖 (𝑥) ,
. . . ,min𝑓𝑁 (𝑥))

𝑠𝑡. {{{
𝑔𝑖 (𝑋) ≥ 0, 𝑖 = 1, 2, . . . , 𝑚
ℎ𝑗 (𝑋) = 0, 𝑖 = 1, 2, . . . , 𝑘

𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑑, . . . , 𝑥𝐷, ]
𝑥𝑑 min ≤ 𝑥𝑑 ≤ 𝑥𝑑 max 𝑑 = 1, 2, . . . , 𝐷

(1)

where 𝑋 is the decision variable in 𝐷 dimensions; 𝐹(𝑋) is
the objective function in 𝑁 dimensions; 𝑔𝑖(𝑋) represents
the 𝑖th inequality equation; ℎ𝑗(𝑋) represents the 𝑖th equality
equation; 𝑥𝑑 min and 𝑥𝑑 min represent the upper and lower
bounds of the 𝑑th decision variable, respectively.

To define the Pareto optimal solution, four definitions are
given as follows.

Pareto Dominance Relationship. A vector 𝑋∗ = [𝑥∗1 , 𝑥∗2 , . . . ,𝑥∗𝑑 , . . . , 𝑥∗𝐷, ] is said to dominate𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑑, . . . , 𝑥𝐷, ]
(known as𝑋∗ ≺ 𝑋) if and only if the following two conditions
are satisfied:∀𝑛, 𝑓𝑛 (𝑋∗) ≤ 𝑓𝑛 (𝑋) , 𝑛 = 1, 2, . . . ,N,

∃𝑛0, 𝑓𝑛0 (𝑋∗) < 𝑓𝑛0 (𝑋) , 1 ≤ 𝑛0 ≤ N. (2)

ParetoOptimal Solution. Pareto optimal solution is a solution
that cannot be dominated by any solution in the feasible
region 𝑆 which means that if and only if ¬∃𝑋 ∈ 𝑆 : 𝑋 ≺ 𝑋∗,𝑋∗ is the Pareto optimal solution.

Pareto Optimal Set. For a given MOOP, the Pareto optimal
set 𝑃∗ can be defined as

𝑃∗ = {𝑋∗ ∈ 𝑆 | ¬∃𝑋 ∈ 𝑆 : 𝑋 ≺ 𝑋∗} (3)

Pareto Optimal Front. For a given MOOP, the Pareto optimal
front 𝑃𝑓∗ can be described as

𝑃𝑓∗ = {𝑢 = 𝐹 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) , . . . , 𝑓𝑁 (𝑥))𝑇 | 𝑋
∈ 𝑃∗} (4)

3. Problem Formulation of the MO-FOPID
Problem under Multiworking Conditions

To formulate the multiobjective FOPID controller optimiza-
tion problem (MO-FOPID) under multiworking conditions,
the fractional calculus theory and fractional-order PID
(FOPID) controller are first introduced.

3.1. Introduction to Fractional Calculus Theory and FOPID
Controller. Fractional calculus theory is an extension of the
traditional calculus theory to the fractional systems. The
fractional calculus theory can describe complex systems in an
easy way with a clear physical meaning. Among the various
fractional calculus operators, the Laplacian transformation
defined by Caputo is the most usual mathematical expression
for calculating the fractional-order time derivatives and has
been widely used in fractional-order PID controller [28,
31]. Given a continuous derivable function 𝑓(𝑡), Caputo’s
fractional derivative of order 𝑎 can be defined as

0𝐷𝛼
𝑡 𝑓 (𝑡) = 1Γ (𝑛 − 𝛼) ∫𝑡

0

𝑓𝑛 (𝑡)(𝑡 − 𝜏)𝛼+1−𝑛𝑑𝜏 (5)

where 0𝐷𝛼
𝑡 denotes the fractional calculus operator and Γ(⋅)

denotes the Euler Gamma function.
Fractional calculus equations usually need to be trans-

formed into algebraic equations. The Laplacian transforma-
tion of (5) under zero initial condition can be expressed as

∫∞

0
𝑒−𝑠𝑡𝐷𝛼𝑓 (𝑡) 𝑑𝑡 = 𝑠𝛼𝐹 (𝑠) (6)

In recent years, with the further research and devel-
opment of fractional calculus theory, the combination of
fractional calculus theory and modern control theory is
becoming more and more popular. Controllers based on
fractional calculus have been implemented and applied in
many research fields [12, 25]. The Oustaloup recursive filter
and its improved version have been widely adopted to realize
the discretization approximation of the fractional calculus
operator. The expression of the Oustaloup filter is as follows:

𝑠𝛼 ≈ 𝐾 𝑁∏
𝑘=−𝑁

((𝑠 + 𝜔
𝑘)(𝑠 + 𝜔𝑘) ) (7)

where 𝜔𝑘 = 𝜔𝑏(𝜔ℎ/𝜔𝑏)(𝑘+𝑁+(1+𝛼)/2)/(2𝑁+1); 𝜔
𝑘 = 𝜔𝑏(𝜔ℎ/𝜔𝑏)(𝑘+𝑁+(1−𝛼)/2)/(2𝑁+1); 𝐾 = 𝜔𝛼

ℎ ; 𝛼 denotes the order of the
fractional calculus; (2N+1) is the order of filter; (𝜔𝑏, 𝜔ℎ)
denotes the expected fitting range; 𝑁, 𝜔𝑏, and 𝜔ℎ are
determined according to the accuracy requirement of the
numerical approximation.

The FOPID controller proposed by Professor Podlubny
[32] is an extension of the classical PID controller. Compared
with the classical PID controller, the range of control rate of
the FOPID controller is much wider.The transfer function of
the FOPID controller is as follows:

𝑈 (s)𝐸 (s) = 𝐾𝑝 + 𝐾𝑖𝑠𝜆 + 𝐾𝑑𝑠𝑢 (8)
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Figure 1: The structure of the FOPID controller for pumped turbine governing system.

where 𝐸 denotes the control deviation; 𝑈 denotes the con-
troller output; 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 represent the gain parameter,
the integral order, and the differential order, respectively.
The traditional PID controller is a special case of the
FOPID controller when 𝜆 = 1 and 𝑢 = 1. Because the
integral and differential orders are variational, the FOPID
controller has better adaptability and flexibility and bigger
potential to obtain better control performance [33]. The
structure of the FOPID controller for PTGS is shown in
Figure 1. In Figure 1, 𝑥𝑐 denotes the given unit speed; 𝑥
denotes the unit speed; 𝑏𝑝 denotes the permanent slip
coefficient; 𝑇𝑑 denotes the differential time constant; 𝐾𝑝, 𝐾𝑖,
and 𝐾𝑑 represent the proportional, integral, and differential
gain coefficients of the controller, respectively; 𝜆 and 𝜇
denote the integral and differential orders of the controller,
respectively.

3.2. Description of the PTGS System. PTGS is a complex
nonlinear time-varying system of hydraulic, mechanical,
and electrical connections. PTGS mainly contains five parts,
namely, a controller, an electrohydraulic servomechanism
system, a pump turbine, a generator, and a penstock system,
where the controller and the servomechanism system consist
of the speed governor of PTGS [4]. A PID controller has
always been employed as part of the speed governor of PTGS.
In this study, the FOPID controller is designed for PTGS.The
FOPID controller has been described in Section 3.1. In what
follows, transfer functions of the other four connectors are
illuminated.

(1) Servomechanism System. Servomechanism is the actuator
of the governor of PSU. It is made up of an auxiliary
servomotor and a main servomotor of which the transfer
functions are as follows:

𝐺 (𝑠) = 𝐾V1 + 𝑇𝑦1𝑠
𝐺V (𝑠) = 1𝑇𝑦𝑠

(9)

where 𝑇𝑦1 and 𝐾V are the time constant and scale factor of
the auxiliary servomotor, respectively, and 𝑇𝑦 represents the
main servomotor open-loop time constant.

(2) Pump Turbine. To reflect the complex nonlinear char-
acteristics among water, machine, and electricity during the
operation process accurately, the pump turbine model based
on characteristic curves is constructed. The model of pump
turbine is as follows:

𝑀11 = 𝑓𝑀 (𝑎,𝑁11)
𝑄11 = 𝑓𝑄 (𝑎,𝑁11) (10)

where𝑀11, 𝑄11, and𝑁11 represent the unit torque, unit flow,
and unit speed, respectively; 𝑎 is the guide vane opening;𝑓𝑀 and 𝑓𝑄 denote the functions of the moment and flow
characteristic curves, respectively. Because of the strong
nonlinear characteristics of the flow and moment charac-
teristic curves, the improved Suter transform is introduced
to transfer the flow and moment characteristic curves into
WH and WM characteristic curves, respectively [4]. The
WH and WM characteristic curves of a pump turbine in a
pumped storage power station in China using the improved
Suter transform have been illustrated in Zhou et al. [4]. In
this study, the WH and WM characteristic curves in two
dimensions in [4] have been changed to three dimensions.
The three-dimensional WH and WM characteristic curves
are illustrated as in Figure 2.

(3) Generator. The common first-order model [6, 16, 18] is
adopted in this study to balance the pump turbine torque and
the generator torque. The transfer function of the first-order
model is as follows:

𝐺𝑔 (𝑠) = 1𝑇𝑎𝑠 + 𝑒𝑛 (11)

where 𝑇𝑎 and 𝑒𝑛 are the inertia time constant and self-
adjusting factor of the generator, respectively.

(4) Penstock System. Because of the fluid and tube wall
elastic effects on the penstock, the second-order elastic water
hammer model is exploited in this study by applying the
second-order Taylor expansion on the nonlinear hyperbolic
tangent function. The transfer function of the second-order
elastic water hammer model is as follows:

𝐺ℎ (𝑠) = 𝐻 (𝑠)𝑄 (𝑠) = −𝑇𝑤𝑠1 + 0.5𝑓𝑇𝑟𝑠 + 0.125𝑇𝑟2𝑠2 (12)
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Figure 2: Three-dimensional surface of the characteristic curves of pump turbine.

where 𝑇𝑤 denotes water flow inertia time constant, 𝑓 repre-
sents the water head loss coefficient, and 𝑇𝑟 is the reflection
time of water hammer wave.

3.3. Multiobjective Optimization of FOPID Controller for
PTGS. For single-optimization of the FOPID controller
under a certain working condition, the ITAE [34, 35] is
usually employed as the objective function to obtain satisfac-
tory transient dynamic performance of the system.The ITAE
index is defined as follows:

ITAE = ∫𝑇

0
𝑡 |𝑒 (𝑡)| 𝑑𝑡 (13)

where 𝑒(𝑡) denotes the relative deviation of the rotational
speed of PTGS.The ITAE index considers the stable time and
overshoot of the dynamic response of PTGS simultaneously.
It can evaluate the speed and stability of the system at the
same time. The smaller the ITAE, the better the speed and
stability of the system.

When operating at the working condition of low water
head, the PSU is easy to fall into the “S” characteristic
region, resulting in oscillation of the unit speed near the
rated frequency. The working condition of medium or high
water head, in the other way, is the most common working
condition in the operation process of PSU. The optimal
control of PTGS under different working conditions should
be considered and researched to make the PTGS system
better adapt to the changeable working environment. How-
ever, the ITAE for PTGS at working condition of low head
(referred as ITAE1) and that of high head (referred as ITAE2)
usually influence and restrict each other. In this study, the
single-objective optimization of the FOPID controller for
PTGS is expanded to multiobjective theoretical framework
to find a compromise solution and ensure that the PTGS
system can achieve relatively better control performance
under changeable working conditions. To formulate the
MO-FOPID problem, the ITAE1 and ITAE2 are adopted
as objective functions. The five parameters of the FOPID

controller for PTGS including the proportional coefficient𝐾𝑝, the integral coefficient 𝐾𝑖, the differential coefficient 𝐾𝑑,
the integral order 𝜆, and the differential order 𝜇 are taken
as decision variables. The MO-FOPID problem can then be
formulated as

Min
{{{

𝑓1 = ITAE1 = 𝑓1 (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇)𝑓2 = ITAE2 = 𝑓2 (𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇) (14)

subject to

{{{{{{{{{{{{{{{{{{{{{

𝐾𝑝min ≤ 𝐾𝑝 ≤ 𝐾𝑝max𝐾𝑖min ≤ 𝐾𝑖 ≤ 𝐾𝑖max𝐾𝑑min ≤ 𝐾𝑑 ≤ 𝐾𝑑max𝜆min ≤ 𝜆 ≤ 𝜆max𝜇min ≤ 𝜇 ≤ 𝜇max

(15)

where 𝑓1(⋅) and 𝑓2(⋅) are functions of 𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇 at
working condition of low water head and high water head,
respectively. 𝑋min and 𝑋max are the lower and upper bounds
of 𝐾𝑝, 𝐾𝑖, 𝐾𝑑, 𝜆, 𝜇 of the FOPID controller, respectively.

4. Nondominated Sorting Genetic
Algorithm-III Based on Latin-Hypercube
Sampling and Chaos Theory (LCNSGA-III)

An improved version of NSGA-III based on Latin-hypercube
sampling and chaos theory is developed to solve the proposed
MO-FOPID problem under multiworking conditions.

4.1. Brief Introduction to NSGA-III. TheNSGA-III algorithm
[36], first introduced by Deb and Jain in 2014, is a novel
reference-point-based nondominated sorting genetic algo-
rithm following the NSGA-II framework. Unlike the crowd-
ing distance operator exploited in NSGA-II [37], NSGA-
III employed a reference point-based mechanism to make
the Pareto optimal front well-distributed. The step-to-step
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procedures of the NSGA-III algorithm can be expressed as
follows.

Step 1. Calculate the number of reference points (𝐻) to be
placed on the hyper-plane.

𝐻 = (𝐶 + 𝑔 − 1𝑔 ) (16)

where 𝐶 represents the number of objective functions and 𝑔
denotes the number of divisions (For 𝐶 = 3 and 𝑔 = 4, 𝐻 is
calculated as 15).

Step 2. Generate NP individuals in the feasible region
randomly to form the initial population of the NSGA-III
algorithm, and record it as 𝑃𝑘. Set the iteration number as𝑘 = 1.
Step 3. Generate the offspring population 𝑄𝑘 using the
simulation binary crossover (SBX) operator and polynomial
mutation operator.

Step 4. Let𝑅𝑘 = 𝑄𝑘∪𝑃𝑘 and calculate the fitness value of each
individual in 𝑅𝑘.

Step 5. Identify the nondominated level 𝐹1, 𝐹2, . . . , 𝐹𝑡 for each
individual in 𝑅𝑘 using the nondominated sorting operator.

Step 6. Normalize the objectives and associate the solutions
in 𝑅𝑘 with the reference points. Delete the useless reference
points and preserve solutions with higher rankings according
to the niche preservation strategy to construct the next
generation of population 𝑃𝑘+1.
Step 7. If 𝑘 < 𝐺max, skip to Step 3; else stop iteration and
output the Pareto optimal set.

The crossover and mutation operators in Step 3 and the
nondominated sorting operator in Step 5 of the NSGA-III
algorithm are the same as those of the NSGA-II algorithm. In
Step 6, the NSGA-III algorithm generates the next population
using the reference point-based selection mechanism other
than the crowding distance operator of NSGA-II. Readers
can refer to [36] for more details about NSGA-III. The
improvements of the NSGA-III algorithms including the
Latin hypercube sampling-based initialization technique and
the chaotic crossover and mutation operators are introduced
in the following subsections.

4.2. Latin Hypercube Sampling Based Initialization Technique.
NSGA-III generates the initial values of the decision variables
in the feasible region randomly to form the initial population
of the algorithm. However, a large number of individuals may
assemble into a local area of the feasible region because of
the random initiation, leading to premature convergence in
the iterative process. In order to make the individuals of the
initial population well-distributed in the feasible region, the
Latin hypercube sampling based initialization technique [38]
is introduced toNSGA-III to improve its search performance.

The brief steps to generate the initial population of NSGA-III
using Latin hypercube sampling are as follows.

Step 1. Suppose the size of the population is 𝑁 and each
individual in the population contains𝐿discrete elements.The
range of the discrete element 𝑥𝑙, 𝑙 = 1, 2, . . . , 𝐿 of individual𝑥 can be divided into 𝑁 equal mini zones:

𝑥𝑙 𝑚𝑖𝑛 = 𝑥0𝑙 < 𝑥1𝑙 < ⋅ ⋅ ⋅ < 𝑥𝑗
𝑙
< ⋅ ⋅ ⋅ < 𝑥𝑁𝑙 = 𝑥𝑙 𝑚𝑎𝑥 (17)

where 𝑃(𝑥𝑗
𝑙
< 𝑥 < 𝑥𝑗+1

𝑙
) = 1/𝑁 and the value space of 𝑥 can

be divided into 𝑁𝐿 small hypercubes finally.

Step 2. Generate a matrix 𝑀 of which the dimension is𝑁 × 𝐿, and every column of 𝑀 is the full permutation of{1, 2, . . . , 𝑁}.
Step 3. Generate an individual in each row of 𝑀 randomly;
an initial population with 𝑁 individuals is then generated.

4.3. Chaotic Crossover and Mutation Operators. The NSGA-
III algorithm generates a random number 𝑟𝑐 to determine
whether to apply the crossover operator or not. The SBX
operator is implemented when 𝑟𝑐 < 𝜂𝑐, where 𝜂𝑐 represents
the crossover distribution index. For two parent individuals𝑥𝑝1 = {𝑥1𝑝1, . . . , 𝑥𝑖𝑝1, . . . , 𝑥𝑛𝑝1} and 𝑥𝑝2 = {𝑥1𝑝2, . . . , 𝑥𝑖𝑝2, . . . ,𝑥𝑛𝑝2}, the NSGA-III algorithm generates two offspring indi-
viduals 𝑥𝑐1 = {𝑥1𝑐1, . . . , 𝑥𝑖𝑐1, . . . , 𝑥𝑛𝑐1} and 𝑥𝑐2 = {𝑥1𝑐2, . . . , 𝑥𝑖𝑐2,. . . , 𝑥𝑛𝑐2} according to the following:

𝑥𝑖𝑐1 = 12 [(1 − 𝛽) 𝑥𝑖𝑝1 + (1 + 𝛽) 𝑥𝑖𝑝2]
𝑥𝑖𝑐2 = 12 [(1 + 𝛽) 𝑥𝑖𝑝1 + (1 − 𝛽) 𝑥𝑖𝑝2]

(18)

where 𝛽 represents the crossover coefficient. 𝛽 can be calcu-
lated according to the following:

𝛽 = {{{{{
(2𝑢)1/(𝜂𝑐+1) , 𝑢 ≤ 0.5
( 12 (1 − 𝑢))

1/(𝜂𝑐+1) , 𝑒𝑙𝑠𝑒 (19)

where 𝑢 = rand (⋅) is a random number uniformly generated
in [0, 1].

The NSGA-III algorithm generates a random number𝑟𝑚 to determine whether to apply the mutation operator or
not.The polynomial mutation operator is implemented when𝑟𝑚 < 𝜂𝑚, where 𝜂𝑚 represents the mutation distribution
index. For the feasible solution 𝑥𝑠, the mutation individual
is generated using the polynomial mutation operator:

𝑥∗𝑠 = 𝑥𝑠 + (𝑥𝑢𝑠 − 𝑥𝑙𝑠) × 𝛿𝑠 (20)

where 𝑥∗𝑠 represents the mutation individual; 𝑥𝑢𝑠 and 𝑥𝑙𝑠
represent the upper and lower bounds of 𝑥𝑠, respectively; 𝛿𝑠
is the mutation coefficient; 𝛿𝑠 can be calculated as follows:

𝛿𝑠 = {{{
(2𝑢𝑠)1/(𝜂𝑚+1) − 1, 𝑢𝑠 < 0.5
1 − (2 × (1 − 𝑢𝑠))1/(𝜂𝑚+1) , 𝑒𝑙𝑠𝑒 (21)
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where 𝑢𝑠 = rand(⋅) is a random number uniformly generated
in [0, 1].

The standard NSGA-III algorithm has excellent com-
putational efficiency and stability. However, the NSGA-III
algorithm sometimes may fall into the local optimal solu-
tion because of the insufficient exploration of the feasible
region. Because of the ergodicity and stochasticity of chaotic
sequences [39], the chaotic map which can generate chaotic
sequences is introduced into the crossover and mutation
operators of NSGA-III to enhance its global search and local
exploration ability [40]. In this study, the tent map [41] is
employed to improve the crossover and mutation operators
of NSGA-III.

The tent chaotic map with uniform distribution probabil-
ity density can be expressed as

𝑐𝑥(𝑘+1) = {{{{{
𝑐𝑥(𝑘)0.5 𝑐𝑥(𝑘) < 0.5
2 ⋅ (1 − 𝑐𝑥(𝑘)) 𝑒𝑙𝑠𝑒 (22)

where 𝑥(𝑘) ∈ (0, 1) denotes the chaotic variable generated in
the 𝑘th iteration.

According to (19) and (21), the crossover and mutation
operators of the standard NSGA-III algorithm need to gen-
erate two random numbers 𝑢 and 𝑢𝑠 in [0, 1], respectively.
The two numbers 𝑢 and 𝑢𝑠 are generated using the tent
chaotic map in the LCNSGA-III algorithm. The two random
numbers 𝑢 and 𝑢𝑠 are generated according to the following:

𝑢 = 𝑐𝑥(𝑘+1) (23)

𝑢𝑠 = 𝑐𝑥(𝑘+1) (24)

4.4. The Flowchart of LCNSGA-III for MOOPs. Based on
the above introduction of LCNSGA-III, the Latin hypercube
sampling, and the chaotic crossover and mutation operators,
the flowchart of LCNSGA-III for MOOPs is shown in
Figure 3.

4.5. Implementation of LCNSGA-III for Solving the MO-
FOPID Problem under Multiworking Conditions. The above
LCNSGA-III algorithm is used to optimize the FOPID
controller for PTGS under multiworking conditions. The
schematic diagram of the MO-FOPID problem optimized
by LCNSGA-III under multiworking conditions is shown in
Figure 4. In Figure 4, 𝑥𝑐 denotes the rotational speed (or
frequency) and 𝑦𝑐 denotes the given guide vane opening.
Since the frequency of the rotational speed is 50 Hz and the
frequency disturbance is 2 Hz, the frequency perturbation is
set as 4% of the rated frequency.

5. Numerical Experiments and Analysis

5.1. Experiments for Benchmark Functions

5.1.1. Benchmark Functions and Performance Metrics. In
order to validity the effectiveness of the newly developed
LCNSGA-III algorithm based on Latin-hypercube sampling

Generate the initial population Pk using 
Latin-hypercube sampling

Generate the offspring population Qk based on 
chaotic crossover and mutation operators

Let Rk = Pk Qk and calculate the fitness 
value of each individual in Rk

Start

Initialize the parameters and set the ranges 
for LCNSGA-III

Apply the non-dominated sorting algorithm 
to each individual in Rk and identify its 

non-dominated level F1 ,F2 ,…,Ft

Select NP best individuals as the next population 
based on the reference point-based mechanism

Reach the maximum 
iteration

Yes

No

End

∪

Figure 3: Flowchart of LCNSGA-III for MOOPs.

and chaotic map, a total number of eight test functions
including the ZDT1-4, 6 [42] and the DTLZ1-2, 5 [43] (shown
in Table 1) are employed to test its performance. Among
the eight test functions for MOOPs, the ZDT benchmark
functions are two-objective MOOPs. The dimension of the
decision variables and the number of the test functions of the
DTLZbenchmark functions can be adjusted. In this study, the
number of the objective functions of the DTLZ test functions
is selected as three to display the Pareto front of three-
objective MOOPs. Four other typical multiobjective algo-
rithms including NSGA-II, NSGA-III, MOEA/D, and PESA-
II [30, 44] are adopted as control group. The performances
of the multiobjective evolutionary algorithms (MOEAs) are
evaluated and compared using the widely used evaluation
metrics of generational distance (GD) and Spread. GD is
adopted to measure the mean value of the distance between
the Pareto solution set and the real Pareto front. Spread
is employed to describe the distribution uniformity of the
Pareto optimal set [40]. GD can be expressed as follows:

GD = 1𝑁√ 𝑁∑
𝑖=1

𝐷𝑖
2 (25)
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Figure 4: Schematic diagram of the MO-FOPID problem optimized by LCNSGA-III under multiworking conditions.

where𝐷𝑖 denotes the Euclideandistance between the ith non-
dominated solution and the nearest nondominated solution
on the real Pareto front and 𝑁 denotes the size of the Pareto
optimal set.The smaller theGD, the closer the Pareto solution
set to the real Pareto front and the better the convergence
accuracy.

Spread can be expressed as follows:

Spread = ∑𝑀
𝑗=1 𝑑𝑒𝑗 + ∑𝑁

𝑖=1

𝑑𝑖 − 𝑑∑𝑀
𝑗=1 𝑑𝑒𝑗 + 𝑁 ⋅ 𝑑 (26)

where 𝑑𝑖 denotes the distance between ith solution with its
neighboring solution; 𝑑 is the mean of 𝑑𝑖; 𝑑𝑒𝑗 denotes the
Euclidean distance between the extreme solution of the real
Pareto front and the boundary solution of the obtained Pareto
optimal set; M denotes the number of objective functions.
The smaller the Spread, the better the distribution of the
solutions.

5.1.2. Results Analysis. The parameters of the five algorithms
for MOOPs with two objectives are set as follows: the
population size is set as 100 while the number of iterations is
set as 300. The parameters of the five algorithms for MOOPs
with three objectives are set as follows: the population size is
set as 150 while the number of iterations is 500.The crossover
and mutation probability of the five algorithms are set as 0.7
and 0.3, respectively. The neighborhood size of MOEA/D is
set as 20 [45, 46]. All the experiments are implemented in
Matlab environment. Because of the random initialization of
theMOOPs, all the experiments have been repeated ten times
independently to eliminate the effectiveness of randomness.
The average GD and Spread of the five algorithms for the
eight benchmark functions are given in Tables 2 and 3,
respectively. Numbers in bold represent the optimal GD and
Spread among the five algorithms for the eight benchmark
functions.

As can be seen fromTable 2, the GD of the Pareto optimal
solution obtained by the newly developed LCNSGA-III is the

best out of the total eight benchmark functions. Although
the GD of LCNSGA-III algorithm is slightly worse than that
of NSGA-II and NSGA-III to optimize ZDT4 and DTLZ1,
the Spread of LCNSGA-III is prominent. The Spread of
LCNSGA-III performs best to optimize the ZDT1, ZDT4, and
DTLZ5 benchmark problems. And the Spread for LCNSGA-
III does not differ much from those for the other five MOOPs
except DTLZ1, which indicates that the LCNSGA-III algo-
rithm can obtain good convergence performance for the eight
benchmark functions. The Pareto optimal front obtained by
LCNSGA-III to optimize the eight benchmark functions is
shown in Figure 5 (ZDT1-4) and Figure 6 (ZDT6, DTLZ1-2,
5) (Grey points denote the true Pareto front while blue ones
denote the obtained Pareto front), respectively. As depicted
in Figures 5 and 6, the Pareto front obtained by LCNSGA-III
to optimize the eight benchmark MOOPs can approximate
the real Pareto front perfectly and the distributions of the
Pareto optimal sets are uniform. As a result, the LCNSGA-
III algorithm has prominent convergence performance and
optimization ability compared with the other algorithms.

5.2. Experiments for Nonlinear PTGS

5.2.1. Experiments Design and Results. In order to fully
verify the performance and effectiveness of the LCNSGA-
III algorithm in solving the MO-FOPID problem under
multiworking conditions, the nonlinear model of PTGS with
different controllers (PID and FOPID) and water heads
(198m, 205m, and 210m) under no-load conditions is simu-
lated onMATLAB environment. The frequency perturbation
is set as 4% of the rated frequency and the simulation time is
set as 50s. A total number of ten schemes have been designed
to obtain the optimal parameters. The ten schemes can be
divided into four categories as follows:

(1) The backtracking search algorithm (BSA) [47] is
exploited to optimize the parameters of PID controller under
a single working condition of different water heads (198m,
205m, and 210m). The ITAE of PTGS under a certain
working condition is selected as the objective function for
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Table 1: Eight test functions for MOOPs.

Name Functions Dimension of
decision variable Feasible region Type of Pareto Front

ZDT1

𝑓1(𝑋) = 𝑥1,
30 [0, 1] High dimension, convex𝑓2(𝑋) = 𝑔 ⋅ (1 − √𝑓1𝑔 )

𝑔 (𝑋) = 1 + 9 ⋅ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)
ZDT2

𝑓1(𝑋) = 𝑥1,
30 [0, 1] High dimension, convex𝑓2(𝑋) = 𝑔 ⋅ (1 − (𝑓2𝑔 )2)

𝑔(𝑋) = 1 + 9 ⋅ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)
ZDT3

𝑓1(𝑋) = 𝑥1
30 [0, 1] Discontinuous, convex𝑓2 (𝑋) = 𝑔 ⋅ (1 − √𝑓1𝑔 ) − (𝑓1𝑔 ) sin (10𝜋𝑓1))

𝑔(𝑋) = 1 + 9 ⋅ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)
ZDT4

𝑓1(𝑋) = 𝑥1
10

𝑥1 ∈ [0, 1]
Multi-modal, convex𝑓2(𝑋) = 𝑔 ⋅ (1 − √𝑓1𝑔 ) 𝑥𝑖 ∈ [−5, 5]

𝑔(𝑋) = 1 + 10(𝑛 − 1) + 𝑛∑
𝑖=2

[𝑥2𝑖 − 10 cos(4𝜋𝑥𝑖)] 𝑖 = 2, 3, . . . , 𝑛

ZDT6

𝑓1 (𝑋) = 1 − exp (−4𝑥1) sin6 (6𝜋𝑥1)
10 [0, 1] Inhomogeneous𝑓2 (𝑋) = 𝑔 ⋅ (1 − (𝑓1𝑔 )2)

𝑔 (𝑋) = 1 + 9 ⋅ [ 𝑛∑
𝑖=2

𝑥𝑖(𝑛 − 1)]
0.25

DTLZ1

𝑓1(𝑋) = 12𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑀−1 (1 + 𝑔 (𝑥𝑀))

7 [0, 1] Linear, multimodal

𝑓2(𝑋) = 12𝑥1𝑥2 ⋅ ⋅ ⋅ (1 − 𝑥𝑀−1) (1 + 𝑔 (𝑥𝑀))...
𝑓𝑀−1 (𝑋) = 12𝑥1 (1 − 𝑥2) (1 + 𝑔 (𝑥𝑀))

𝑓𝑀(𝑋) = 12 (1 − 𝑥1) (1 + 𝑔 (𝑥𝑀))
𝑔 (𝑋𝑀) =

100(𝑥𝑀 + ∑
𝑥𝑖∈𝑥𝑀

∗ (𝑥 − 0.5)2 + cos (20𝜋 (𝑥 − 0.5)))

DTLZ2

𝑓1 (𝑋) = (1 + 𝑔 (𝑥𝑀)) cos(𝑥2𝜋2 ) ⋅ ⋅ ⋅ cos (𝑥𝑀−1𝜋2 )

12 [0, 1] Complex nonconvex
𝑓2(𝑋) = (1 + 𝑔 (𝑥𝑀)) cos (𝑥1𝜋2 ) ⋅ ⋅ ⋅ cos(𝑥𝑀−1𝜋2 )...

𝑓𝑀(𝑋) = (1 + 𝑔 (𝑥𝑀)) sin(𝑥1𝜋2 )
𝑔(𝑋𝑀) = ∑ ∗ (𝑥 − 0.5)2)

DTLZ5

replace the 𝑥𝑖 in DTLZ2 with 𝜃𝑖
12 [0, 1] Space arc𝜃𝑖 = 𝜋4 (1 + 𝑞 (𝑟)) (1 + 2𝑔 (𝑟) 𝑥𝑖)

𝑔 (𝑥𝑀) = Σ𝑥𝑖∈𝑥𝑀
𝑥0.1𝑖
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Table 2: Comparison of GD for eight benchmark functions.

Benchmark functions Multi-objective optimization algorithms
PESA-II MOEA/D NSGA-II NSGA-III LCNSGA-III

ZDT1 7.72E-05 3.66E-04 5.77E-05 7.95E-05 3.80E-05
ZDT2 3.37E-04 8.27E-04 3.11E-05 6.77E-05 2.84E-05
ZDT3 6.14E-05 1.90E-03 4.23E-05 7.48E-05 3.56E-05
ZDT4 1.41E-02 2.05E-03 2.00E-04 2.52E-04 3.15E-04
ZDT6 1.09E-02 7.38E-04 4.30E-05 7.84E-05 3.63E-05
DTLZ1 1.97E-02 3.01E-04 4.75E-04 2.25E-04 4.33E-04
DTLZ2 9.77E-04 4.18E-04 9.30E-04 4.14E-04 3.78E-04
DTLZ5 1.50E-04 7.88E-05 1.32E-04 1.55E-04 5.34E-05

Table 3: Comparison of Spread for eight benchmark functions.

Benchmark functions Multi-objective optimization algorithms
PESA-II MOEA/D NSGA-II NSGA-III LCNSGA-III

ZDT1 9.67E-01 4.53E-01 4.25E-01 3.47E-01 3.24E-01
ZDT2 9.83E-01 6.73E-01 4.68E-01 2.15E-01 2.99E-01
ZDT3 1.01E+00 6.79E-01 5.87E-01 7.52E-01 6.65E-01
ZDT4 1.02E+00 5.51E-01 4.31E-01 3.93E-01 3.30E-01
ZDT6 1.04E+00 1.55E-01 4.15E-01 1.13E-01 1.20E-01
DTLZ1 8.02E-01 3.11E-02 4.95E-01 3.40E-02 3.51E-01
DTLZ2 3.88E-01 1.73E-01 5.21E-01 1.74E-01 3.01E-01
DTLZ5 9.20E-01 2.03E+00 6.61E-01 9.78E-01 4.58E-01
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Figure 5: Pareto optimal solutions obtained by LCNSGA-III for ZDT1-4.
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Figure 6: Pareto optimal solutions obtained by LCNSGA-III for ZDT6, DTLZ1-2, 5.

single-objective optimization. The experiments are simpli-
fied as S-198-PID, S-205-PID, and S-210-PID, respectively.
The optimized control parameters are applied on the other
two working conditions to test the adaptability of different
schemes in tracking the dynamic responses of PTGS. (e.g., for
scheme S-198-PID, the working condition running at 198m
water head is used for training while those at 205m and 210m
are used for testing);

(2)TheBSAalgorithm is exploited to optimize the param-
eters of FOPID controller under a single working condition
of different water heads (198m, 205m, and 210m). The exper-
iments are simplified as S-198-FOPID, S-205-FOPID, and S-
210-FOPID, respectively. The optimized control parameters
are applied on the other two working conditions to test the
adaptability of different schemes in tracking the dynamic
responses of PTGS;

(3) The NSGA-III algorithm is adopted to optimize the
parameters of PID or FOPID controller under two working
conditions (198m and 210m). The ITAE of PTGS at working
conditions of 198m and 210m water head is selected as the
objective functions for multiobjective optimization, and the
compromise optimal solution among the Pareto optimal set
is selected. The experiments are simplified as NSGA-III-PID
and NSGA-III-FOPID for the PID and FOPID controller,
respectively. The compromise optimal control parameters are
applied on the working condition of 205m water head to test
the adaptability of different schemes in tracking the dynamic
responses of PTGS;

(4)TheLCNSGA-III algorithm is adopted to optimize the
parameters of PID or FOPID controller under two working
conditions (198m and 210m). The experiments are simplified

as LCNSGA-III-PID and LCNSGA-III-FOPID for the PID
and FOPID controller, respectively. The compromise optimal
control parameters are applied on the working condition of
205m water head to test the adaptability of different schemes
in tracking the dynamic responses of PTGS.

The parameters of PTGS are set as follows: the ranges
of 𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 of the PID and FOPID controllers are
all set as [0, 15] and the ranges of 𝜆 and 𝑢 are all set as[0, 2].The parameters of the BSA algorithm are set as follows:
the population size is set as 50, the number of iterations is
200, and the control parameter 𝐹 is set as the default value.
The parameters of the NSGA-III and LCNSGA-III algorithms
are as follows: the population size is set as 50; the iteration
number is 300; the crossover probability is 0.7; the mutation
probability is 0.3.

Apart from ITAE, the integral of the ITSE [29], the stable
time (ST) and the overshoot (OSO) is adopted to evaluate the
performance of different schemes. The ITSE index is defined
as follows:

ITSE = ∫𝑇

0
𝑡 (𝑒 (𝑡))2 𝑑𝑡 (27)

In this study, the best compromise solution is selected
according to the subjective weighting method based on
experts’ preferences of weights. The optimal control param-
eters of the ten schemes for PTGS are shown in Table 4. The
performance indices including ITAE, ITSE, ST, and OSO of
the ten schemes under different working water heads are
shown inTable 5. InTable 5, for scheme S-198-PID, the results
for 198m water head are training results while those for 205m
and 210mheads are testing results. For scheme S-205-PID, the
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Table 4: Optimal control parameters for nonlinear PTGS using different schemes.

Schemes Optimal parameters𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇
S-198-PID 5.05 0.72 2.08 / /
S-205-PID 8.00 1.00 2.91 / /
S-210-PID 6.97 0.87 5.00 / /
S-198-FOPID 9.00 0.52 0.82 0.49 0.97
S-205-FOPID 1.36 0.58 1.74 0.64 0.98
S-210-FOPID 8.91 0.56 1.98 0.77 0.99
NSGA-III-PID 9.92 1.04 1.62 / /
NSGA-III-FOPID 8.90 0.52 1.02 0.57 0.98
LCNSGA-III-PID 14.72 0.97 0.81 / /
LCNSGA-III-FOPID 10.62 0.58 1.12 0.56 0.98

Table 5: Performance indices for nonlinear PTGS using different schemes at different water heads.

Experiments 198m 205m 210m
ITAE ITSE ST (s) OSO (%) ITAE ITSE ST (s) OSO (%) ITAE ITSE ST (s) OSO (%)

S-198-PID 5.68 0.04 49.9 17.7 4.10 0.02 35.6 15.0 3.16 0.02 35.5 12.4
S-205-PID 37.28 0.17 / 25.4 2.69 0.02 29.3 22.9 1.93 0.02 20.1 20.5
S-210-PID 54.29 0.35 / 22.8 37.88 0.21 / 11.7 1.34 0.02 18.6 9.3
S-198-FOPID 2.10 0.02 27.6 3.6 1.50 0.02 26.1 0.5 1.87 0.02 27.1 0.9
S-205-FOPID 23.29 0.10 / 10.5 1.11 0.02 25.0 0.5 1.48 0.01 28.2 0.7
S-210-FOPID 20.11 0.08 / 7.9 1.81 0.02 25.7 3.3 0.96 0.02 17.0 0.3
NSGA-III-PID 5.88 0.04 / 37.1 2.82 0.03 23.2 34.5 2.04 0.02 23.7 32.4
NSGA-III-FOPID 2.18 0.02 27.4 5.6 1.52 0.02 24.1 3.0 1.41 0.02 26.6 0.9
LCNSGA-III-PID 5.43 0.04 / 33.3 2.76 0.03 18.4 30.4 1.90 0.02 18.4 27.6
LCNSGA-III-FOPID 1.90 0.02 27.6 5.5 1.37 0.02 23.3 2.3 1.42 0.01 25.9 1.1

results for 205m water head are training results while those
for 198m and 210m heads are testing results. For scheme S-
210-PID, the results for 210m water head are training results
while those for 198m and 205m heads are testing results.
The single-objective schemes are designed to compare with
the multiobjective schemes to highlight the effectiveness of
multiobjective schemes in optimizing PTGS. “/” means that
the system is unstable and when the fluctuation of frequency
is smaller than 0.003, it is considered to be stable.

5.2.2. Comparison of PID and FOPID Controllers under
Different Working Conditions. From Table 5, it is known that
the FOPID controller generally achieves better performance
than the corresponding PID controller in terms of ITAE,
ITSE ST, and OSO for 198m, 205m, and 210m working water
heads.The ITAE, ITSE ST, and OSO for the FOPID controller
are either smaller or in coincidence with those of the PID
controller. For example, the improved percentages of scheme
S-198-FOPID compared with scheme S-198-PID are 63.0%,
50.0%, 44.7%, and 79.7% in terms of ITAE, ITSE, ST, and
OSO, respectively in the training stage (198m).The improved
percentages in the testing stage (205m) are 63.4%, 26.7%, and
96.7% in terms of ITAE, ST, and OSO, respectively. The ITSE
for S-198-FOPID and scheme S-198-PID in the testing stage
(205m) is the same. To further compare the effects of different
controllers in capturing the dynamic performances of PTGS,

the test unit frequency at 198m, 205m, and 210m working
water heads using different controllers is illustrated in Figures
7–9, respectively. As can be seen fromFigures 7–9, the FOPID
controller for PTGS can obtain smaller overshoot ITAE,
ITSE, ST, and OSO in most cases. For working condition of
198mwater headwhich is easy to fall into the “S” area, the unit
frequency oscillates a lot using PID controller. The FOPID
controller, in the other way, can effectively restrain the strong
nonlinear characteristics of PTGS and significantly improve
the control quality.

5.2.3. Analysis of Controllers Optimized under a Single Work-
ing Condition. It is noticed from Table 5 that for controllers
optimized at a single working condition, the performance
is only good for the training working condition, but the
test working conditions. It can also be seen from Table 5
and Figures 7–9 that the S-210-FOPID scheme can obtain
good control performance when PTGS is running at 210m
water head, but not 198m. For schemes S-198-PID and S-198-
FOPID, PTGS can obtain good control performance at 205m
and 210mworking water heads, which conforms to the actual
physical phenomenon that the control parameters suitable
for low water head may also suitable for middle or high
water heads. However, due to the lack of comprehensive con-
sideration for complex working conditions, the adaptability
and robustness of the PID and FOPID controllers optimized
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Figure 7: Unit frequency obtained at 198m working water head.

at complex operating conditions simultaneously using mul-
tiobjective optimization algorithms should be studied and
investigated.

5.2.4. Analysis of Controllers Optimized under Multiworking
Conditions. The Pareto fronts obtained by LCNSGA-III-
PID and LCNSGA-III-FOPID are shown in Figure 10. From
Figure 10, it can be noticed that the Pareto front of LCNSGA-
III-FOPID can dominate that of LCNSGA-III-PID, which
further demonstrate the superiority of the FOPID controller.
It can also be noticed from Figure 10 that the ITAE1 for

low water head (198m) and the ITAE2 for high water head
(210m) are two conflicting indices. The optimal solution for
working condition at low water head is not the best one
for working condition at high water head. The employment
of multiobjective optimization algorithms to optimize the
two objectives simultaneously can help researchers find the
compromise optimal solutions. Compare the ITAE indices
for S-198-PID and S-210-PID in Table 5 with the Pareto
front obtained by LCNSGA-III-PID; in Figure 10, it can be
found that the ITAE indices for the two schemes are the
nearest to the two edge solutions of the Pareto front of
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Figure 8: Unit frequency obtained at 205m working water head.

LCNSGA-III-PID. Similar phenomenon also exists between
the solutions obtained by S-198-FOPID and S-210-FOPID
and the Pareto optimal solutions obtained by LCNSGA-III-
FOPID, which demonstrates that the pursing for a single
objective (high or low water head) is at the cost of the
other objective (corresponding low or high water head).
What is more, compared with the schemes for single working
conditions, the adaptability and robustness of the controllers
can be greatly improved using multiobjective optimization
schemes. A set of Pareto optimal solutions are obtained using
multiobjective optimization schemes; it is convenient for the

operator to select the most appropriate control parameters
when the working condition changes ormuchmore attention
should be paid to the extremely low water head or high water
head working conditions.

The effectiveness of the developed LCNSGA-III algo-
rithm has been verified using the eight test functions which
have been described in Section 5.1. In what follows the supe-
riority of the developed LCNSGA-III algorithm is further
demonstrated by applying it to PTGS. The Pareto fronts of
PID and FOPID controllers optimized by the two algorithms
have been illustrated in Figures 11(a) and 11(b), respectively.



Complexity 15

S-198-PID
ITAE: 3.16 ITSE: 0.02
Stable time (s): 35.5
Overshoot (%): 12.4

S-205-PID
ITAE: 1.93 ITSE: 0.02
Stable time (s): 20.1
Overshoot (%): 20.5

S-210-PID
ITAE: 1.34 ITSE: 0.02
Stable time (s): 18.6
Overshoot (%): 9.3

LCNSGA-III-PID
ITAE: 1.37 ITSE: 0.02
Stable time (s): 23.3
Overshoot (%): 2.3

0 5 10 15 20 25 30 35 40 45 50
−0.01

0.00

0.02

0.03

0.04

0.05

0.06

time (s)

S-198-PID
S-205-PID

S-210-PID
LCNSGA-III-PID

0.01

U
ni

t f
re

qu
en

cy

(a) PID controller

S-198-FOPID
ITAE: 2.10 ITSE: 0.02
Stable time (s): 27.6
Overshoot (%): 3.6

S-205-FOPID
ITAE: 23.29 ITSE: 0.10
Stable time (s): /
Overshoot (%): 10.5

S-210-FOPID
ITAE: 20.11 ITSE: 0.08
Stable time (s): /
Overshoot (%): 7.9

LCNSGA-III-FOPID
ITAE: 1.42 ITSE: 0.01
Stable time (s): 25.9
Overshoot (%): 1.1

0 5 10 15 20 25 30 35 40 45 50
−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

time (s)

S-198-FOPID
S-205-FOPID

S-210-FOPID
LCNSGA-III-FOPID

U
ni

t f
re

qu
en

cy

(b) FOPID controller

Figure 9: Unit frequency obtained at 210m working water head.

It can be observed from Figure 11 that the Pareto optimal
solutions obtained by LCNSGA-III can dominate almost all
of those obtained byNSGA-III. And the Pareto front obtained
by LCNSGA-III distributes more uniformly and extensively.
It can be found in Table 5 that the performances indices
for the compromise Pareto optimal solution of LCNSGA-III
are all smaller than NSGA-III, which further demonstrates
the superiority of LCNSGA-III in optimizing the MO-
FOPID problem. For example, the improved percentages
of scheme LCNSGA-III-PID to scheme NSGA-III-PID are
62.9%, 50.0%, and 84.9% in terms of ITAE, ITSE, and OSO,
respectively in the training stage (198m). The improved

percentages in the testing stage (205m) are 46.1%, 33.3%, and
91.3% in terms of ITAE, ITSE, and OSO, respectively.

6. Conclusions

In order to make PSUs adaptable to the changes of working
environment and improve their control quality and sta-
bility, this study constructs a multiobjective optimization
framework to optimize the FOPID controller for PTGS
under multiworking conditions. An LCNSGA-III algorithm
based on Latin-hypercube sampling and chaos theory is pro-
posed to solve the MO-FOPID problem under multiworking
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Figure 11: Comparison of Pareto fronts obtained by LCNSGA-III and NSGA-III for PID and FOPID controllers.

conditions. Implementation of the MO-FOPID controller
optimized by LCNSGA-III relies on the simultaneous opti-
mization of two complementary features: the ITAE index
under low and high water heads. The experiment results
indicate the following:

(1) The classical NSGA-III algorithm is improved using
the Latin hypercube sampling- based initialization technique
and the chaotic crossover and mutation operators. Exper-
iments of the eight test functions show that the improve-
ment strategies can effectively improve the convergence
and diversity of the Pareto optimal front of the NSGA-III
algorithm.

(2) Compared with the traditional PID controller, the
FOPID can effectively suppress the frequency oscillation of
PSUs in the “S” characteristic area running at middle or low
working water heads and can enhance the dynamic response
performance of PTGS.

(3) This study extends the single-objective optimiza-
tion under single working conditions to the multiobjective
optimization framework under multiworking conditions.
The multiobjective framework has provided better dynamic
performances than the single-objective optimization meth-
ods. The multiobjective implementation of FOPID makes
it much more convenient for a operator to select the most
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appropriate control parameters for a certain working condi-
tion.

This work sets a basis for research on multiobjective opti-
mization of a FOPID controller of PTGS under multiworking
conditions. The extension of the single-objective optimiza-
tion under a single working-condition to the multiobjective
framework under complex working conditions can provide
new control law and optimization algorithms for the optimal
control of PTGS. What is more, the proposed LCNSGA-III
algorithm can be easily extended to optimization problems in
other fields of scientific research and industrial application.
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