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We propose and study a viral infectionmodel with two nonlocal effects and a general incidence rate. First, the semigroup theory and
the classical renewal process are adopted to compute the basic reproduction numberR0as the spectral radius of the next-generation
operator. It is shown thatR0 equals the principal eigenvalue of a linear operator associated with a positive eigenfunction.Then we
obtain the existence of endemic steady states by Shauder fixed point theorem. A threshold dynamics is established by the approach
of Lyapunov functionals. Roughly speaking, ifR0 < 1, then the virus-free steady state is globally asymptotically stable; ifR0 > 1,
then the endemic steady state is globally attractive under some additional conditions on the incidence rate. Finally, the theoretical
results are illustrated by numerical simulations based on a backward Euler method.

1. Introduction

Viruses are very tiny germs. Their presence in the body
causes not only familiar infectious diseases (such as the
common cold, flu, and warts) but also severe illnesses (such
as HIV/AIDS [1–3], hepatitis B [4–7], hepatitis C [6, 7], and
human T cell leukemia [8]). Because of the long infectious
periods and difficulties in treating them, viral infections have
been regarded as serious health problems and have brought
heavy economic burden worldwide. The mechanism on a
viral infection is quite complicated. Roughly, viruses invade
target cells (healthy cells) and replicate in them and then
replicated viruses are released. Mathematical modeling has
been a very important and efficient way to better understand
the evolution of viral infections and to evaluate antiviral drug
therapies. In a typical compartmental viral infection model,
there are three compartments for uninfected target cells (𝑇),
infected cells (𝐼), and free virions (V).

In recent years, spatial-structured models have played a
crucial role in exploring viral dynamics. In most of the study
(see, e.g., [5, 9–11]), uninfected cells and infected cells are

assumed to be motionless, while virions can move freely.
Obtained results include the existence of travelling waves
[5] and asymptotical behavior [10, 11]. To the best of our
knowledge, the spatial domain Ω is either one-dimensional
or infinitely dimensional. Usually a Laplacian operator with a
diffusion coefficient is used to describe the random diffusion
of each virion in the adjacent habitat (position).The diffusion
term follows Fick’s law and this leads to systems coupling two
ordinary differential equations with one parabolic equation.

Such mentioned diffusion is assumed such that the
diffusive habitat is small. In fact, the motions of virions are
always free and thus the limitations for the short diffusion are
not reasonable. Thus, nonlocal diffusion accounting for the
long-range diffusion effect has been proposed and extensively
investigated. The convolution diffusion operator takes the
form𝐿 (V) fl 𝑑∫

Ω
𝐽 (𝑥 − 𝑦) [V (𝑦) − V (𝑥)] 𝑑𝑦, 𝑥, 𝑦 ∈ Ω, (1)

where V ∈ 𝐵 and 𝐵 is a suitable Banach space. This means
that a virion at position 𝑦 can affect another virion at position
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𝑥 at the probability of 𝐽(𝑥 − 𝑦). In [12], Garcia-Melian and
Rossi assumed that 𝐽(𝑥 − 𝑦) represents the probability of
skipping from location 𝑦 to 𝑥. Then virions arrive at location𝑥 from other places at rate ∫Ω 𝐽(𝑥 − 𝑦)V(𝑦)𝑑𝑦. Based on
peculiar features of the nonlocal diffusion operators, models
in ecology [13–15], in epidemiology [16–19], and even in
materials science [20, 21] have been investigated.

It is well known that incidence rates play a key role
in understanding intrinsic mechanisms of viral infections.
Though commonly used, the bilinear incidence (or called
mass action) may not completely capture the viral dynamics.
To overcome this deficiency, several forms of incidence rates
have been proposed, which include the saturated incidence
rate 𝛽𝑇V/(1 + 𝛼V)(𝛼 ≥ 0) [22], Crowley-Martin functional
response 𝛽𝑇V/(1 + 𝛾𝑇)(1 + 𝛼V)(𝛼, 𝛾 ≥ 0) [23], and a general
form of 𝑓(𝑇, V) [8, 24].

Motivated by the aforementioned works, we propose
a nonlocal diffusive viral infection model with a general
incidence rate. To build the model, we still assume that there
are three compartments involved in the viral infection for
uninfected target cells, infected cells, and free virions. Their
densities at time 𝑡 and position 𝑥 ∈ Ω are denoted by 𝑇(𝑡, 𝑥),𝐼(𝑡, 𝑥), and V(𝑡, 𝑥), respectively. HereΩ ⊂ R𝑛 is compact and
connected with a smooth boundary and satisfies Ω = int(Ω).
The model to be studied is𝜕𝑇 (𝑡, 𝑥)𝜕𝑡 = 𝜆 (𝑥) − 𝜇 (𝑥) 𝑇 (𝑡, 𝑥)

− ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦,

𝑥 ∈ Ω,𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 = ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦

− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) , 𝑥 ∈ Ω,𝜕V (𝑡, 𝑥)𝜕𝑡 = ∫
Ω
𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦 − 𝛾 (𝑥) V (𝑡, 𝑥)

+ 𝑝 (𝑥) 𝐼 (𝑡, 𝑥) − 𝑐 (𝑥) V (𝑡, 𝑥) , 𝑥 ∈ Ω

(2)

with the initial condition𝑇 (0, 𝑥) = 𝑇0 (𝑥) > 0,𝐼 (0, 𝑥) = 𝐼0 (𝑥) ≥ 0,
V (0, 𝑥) = V0 (𝑥) ≥ 0

for 𝑥 ∈ Ω.
(3)

Here 𝜆(𝑥) is the created rate of uninfected cells at 𝑥;𝜇(𝑥), 𝛿(𝑥), and 𝑐(𝑥) are, respectively, the death rates
of uninfected cells, infected cells, and virions at 𝑥;∫Ω 𝑓(𝑥, 𝑦, 𝑇(𝑡, 𝑥), V(𝑡, 𝑦))𝑑𝑦 denotes the rate of new
infections at time 𝑡 and location 𝑥; ∫Ω 𝜃(𝑥, 𝑦)V(𝑡, 𝑦)𝑑𝑦
represents the transfer rate of virions from positions inΩ \ {𝑥} to position 𝑥 with a kernel function 𝜃(𝑥, 𝑦) while−𝛾(𝑥)V(𝑡, 𝑥) is the total transfer rate of virions from location

𝑥 to all the other locations. Note that if we take the kernel
function 𝜃(𝑥, 𝑦) = 𝐽(𝑥 − 𝑦), then system (2) becomes a
classical within-host model with the nonlocal diffusion.

The main contribution of this paper has three aspects.
Firstly, it is easy to see that the equation for 𝐼 has an
integral term and thus the solution of system (2) lacks strong
regularity.This implies that the semiflow generated by system
(2) is not compact. To overcome this difficulty, we use Arzelà-
Ascoli Theorem [25] to establish the asymptotic smoothness
of the semiflow, which enables us to pass the dissipativity
of system (2) from 𝐿1(Ω;R+) to 𝐶(Ω;R+). Secondly, the
nonlocal diffusion further weakens the regularity of the
solution and this requires nonroutine methods to deal with
compactness and nonsupporting of the next generation
operator. Finally, the nonlocal diffusion term enhances the
difficulty in proving the global stability of the steady states.
Inspired by the work of Thieme [26, Section 11], in order to
construct a suitable Lyapunov functional, a nonnegative Borel
measurable function should be picked to balance the nonlocal
term.We explicitly identify such a Borel measurable function
as V∗(𝑥) instead of in an abstract form.

Theorganization of this paper is as follows. Section 2 gives
the existence, uniqueness, and nonnegativity of solutions to
system (2). Section 3 shows that the solution semiflow is
asymptotically smooth by applying Arzelà-Ascoli Theorem.
Section 4 focuses on the basic reproduction number R0
of system (2) defined as the spectral radius of the next-
generation operator R(𝑥) and the relationship between R0
and the spectral bound of a linear operator. Section 5 is
devoted to the existence of endemic steady states by employ-
ing Shauder fixed theorem. We discuss the stability of the
virus-free steady state in Section 6. The global behavior of
system (2) including uniform persistence and global stability
of endemic steady states is established in Sections 7 and 8.
In Section 9, we carry out numerical experiments to validate
the theoretical results. Section 10 concludes the paper with a
succinct discussion.

2. Preliminaries

Let𝑋 = 𝐶(Ω;R) equip with the supremum norm ‖ ⋅ ‖𝑋󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩𝑋 = sup
𝑥∈Ω

󵄨󵄨󵄨󵄨𝜙 (𝑥)󵄨󵄨󵄨󵄨 , 𝜙 ∈ 𝑋. (4)

Moreover, for 𝜙 ∈ 𝑋, we denote 𝜙 = sup𝑥∈Ω𝜙(𝑥) and 𝜙 =
inf𝑥∈Ω𝜙(𝑥). Let 𝑌 = 𝑋3 and define

󵄩󵄩󵄩󵄩𝜓󵄩󵄩󵄩󵄩𝑌 = √󵄩󵄩󵄩󵄩𝜓1󵄩󵄩󵄩󵄩2𝑋 + 󵄩󵄩󵄩󵄩𝜓2󵄩󵄩󵄩󵄩2𝑋 + 󵄩󵄩󵄩󵄩𝜓3󵄩󵄩󵄩󵄩2𝑋
for 𝜓 = (𝜓1, 𝜓2, 𝜓3) ∈ 𝑌. (5)

Then 𝑌 is also a Banach space equipped with the norm ‖ ⋅ ‖𝑌.
Clearly, 𝑋+ = 𝐶(Ω;R+) and 𝑌+ = 𝑋3

+ are positive cones of 𝑋
and 𝑌, respectively.

To study the asymptotic dynamics of system (2), wemake
the following assumptions.
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Assumption 1.

(i) 𝜆(⋅), 𝜇(⋅), 𝛿(⋅), 𝑝(⋅), and 𝑐(⋅) ∈ 𝑋 are all strictly
positive.

(ii) 𝑓 ∈ 𝐶(Ω2 × R2
+,R) is continuously differentiable

with respect to the third and fourth variables and also
satisfies the following:

(ii-1) 𝑓(𝑥, 𝑦, 0, V) = 𝑓(𝑥, 𝑦, 𝑇, 0) = 0 for all (𝑥, 𝑦,𝑇, V) ∈ Ω2 ×R2
+;

(ii-2) for all (𝑥, 𝑦) ∈ Ω2, 𝑓(𝑥, 𝑦, 𝑇, V) is increasing in
both 𝑇 and V;

(ii-3) for all (𝑥, 𝑦, 𝑇) ∈ Ω2 × R+, the function 𝑓(𝑥,𝑦, 𝑇, V)/V is decreasing associated with the vari-
able V on (0,∞);

(ii-4) for any 𝑐 > 0 there exists some 𝐿𝑐 > 0 such that󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑇, V) − 𝑓 (𝑥, 𝑦, 𝑇, V)󵄨󵄨󵄨󵄨󵄨 ≤ 𝐿𝑐 (󵄨󵄨󵄨󵄨󵄨𝑇 − 𝑇󵄨󵄨󵄨󵄨󵄨 + |V − V|)
for 𝑇, 𝑇, V, V ∈ [0, 𝑐] . (6)

(iii) 𝜃 ∈ 𝐶(Ω2,R+) and satisfies 𝜃(𝑥, 𝑥) > 0. Moreover, it
is irreducible and symmetrical for all 𝑥, 𝑦 ∈ Ω.

(iv) 𝛾 ∈ 𝑋+ and 𝜃 satisfy the balance condition
∫
Ω
𝜃 (𝑥, 𝑦) 𝑑𝑦 = 𝛾 (𝑥) for all 𝑥 ∈ Ω. (7)

To continue the discussion, we define a linear operator 𝐴
and a nonlinear operator 𝐹 on 𝑌 by

(𝐴𝜓) (𝑥) = (−𝜇 (𝑥) 𝜓1 (𝑥) ,
− 𝛿 (𝑥) 𝜓2 (𝑥) , ∫

Ω
𝜃 (𝑥, 𝑦) 𝜓3 (𝑦) 𝑑𝑦

− (𝑐 (𝑥) + 𝛾 (𝑥)) 𝜓3 (𝑥))
(8)

and

𝐹 (𝜓) (𝑥) = (𝜆 (𝑥) − ∫
Ω
𝑓 (𝑥, 𝑦, 𝜓1 (𝑥) , 𝜓3 (𝑦)) 𝑑𝑦,

∫
Ω
𝑓 (𝑥, 𝑦, 𝜓1 (𝑥) , 𝜓3 (𝑦)) 𝑑𝑦, 𝑝 (𝑥) 𝜓2 (𝑥)) (9)

for 𝜓 ∈ 𝑌 and 𝑥 ∈ Ω, respectively. Here 𝑓 is extended toΩ2 × R2 through continuity.

Lemma2. 	eoperator𝐴 defined by (8) generates a uniformly
continuous semigroup {𝑒𝑡𝐴}𝑡≥0 on 𝑌. Furthermore, 𝑒𝐴𝑡𝑌+ ⊂ 𝑌+
for all 𝑡 ∈ R+.

Proof. We decompose the operator 𝐴 as 𝐴 = 𝐴1 + 𝐴2, where(𝐴1𝜓) (𝑥) = (−𝜇 (𝑥) 𝜓1 (𝑥) , −𝛿 (𝑥) 𝜓2 (𝑥) ,− (𝑐 (𝑥) + 𝛾 (𝑥))𝜓3 (𝑥)) (10)

and

(𝐴2𝜓) (𝑥) = (0, 0, ∫
Ω
𝜃 (𝑥, 𝑦) 𝜓3 (𝑦) 𝑑𝑦) (11)

for 𝜓 ∈ 𝑌 and 𝑥 ∈ Ω. We readily see that 𝐴1 generates a
strongly continuous and positive semigroup {𝑒𝐴1𝑡}𝑡≥0 with(𝑒𝐴1𝑡𝜓) (𝑥)

= (𝑒−𝜇(𝑥)𝑡𝜓1 (𝑥) , 𝑒−𝛿(𝑥)𝑡𝜓2 (𝑥) , 𝑒−(𝑐(𝑥)+𝛾(𝑥))𝑡𝜓3 (𝑥)) (12)

for𝜓 ∈ 𝑌 and 𝑥 ∈ Ω. Moreover, it follows fromAssumption 1
that the operator 𝐴2 is bounded. Then [27, Corollary VI 1.11]
and [28, Theorem 1.2] combined ensure that the operator𝐴 generates a positively continuous semigourp {𝑒𝐴𝑡}𝑡≥0.This
completes the proof.

The following proposition gives the existence and unique-
ness of solutions of system (2).

Proposition 3. For all 𝑢0 ∈ 𝑌, system (2) admits a unique
classical solution 𝑢(⋅, 𝑢0) ∈ 𝐶([0, 𝑇𝑚𝑎𝑥), 𝑌) ∩ 𝐶1((0, 𝑇𝑚𝑎𝑥), 𝑌)
with 𝑇𝑚𝑎𝑥 > 0. Moreover, the solution has the following
properties:

(i) If 𝑇𝑚𝑎𝑥 < ∞ then lim𝑡󳨀→𝑇−
𝑚𝑎𝑥

‖𝑢(𝑡, 𝑢0)‖𝑌 = ∞.
(ii) Let 𝑇 ∈ (0, 𝑇𝑚𝑎𝑥). If {𝑢𝑛} ⊂ 𝑌 with 𝑢𝑛 󳨀→ 𝑢0 in 𝑌 as𝑛 󳨀→ ∞, then

lim
𝑛󳨀→∞

sup
𝑡∈[0,𝑇]

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑢𝑛) − 𝑢 (𝑡, 𝑢0)󵄩󵄩󵄩󵄩𝑌 = 0. (13)

(iii) 𝑇(𝑡, 𝑥) > 0 for 𝑡 ∈ (0, 𝑇max) and 𝑥 ∈ Ω.
(iv) If 𝑢0 ∈ 𝑌+, then 𝑢(𝑡, 𝑢0) ∈ 𝑌+ for all 𝑡 ∈ (0, 𝑇𝑚𝑎𝑥).

Proof. [29, Lemma 3.1], together with Assumption 1, ensures
that the operator 𝐹 defined by (9) is continuously Fréchet
differentiable on 𝑌. Therefore,

𝑢 (𝑡, 𝑢0) (𝑥) = 𝑒𝐴𝑡𝑢0 (𝑥) + ∫𝑡
0
𝑒𝐴(𝑡−𝑠)𝐹 (𝑢 (𝑠, 𝑥)) 𝑑𝑠

for 𝑥 ∈ Ω. (14)

Then from [30, Proposition 4.16] and [28, Theorems 1.2–1.5
in Chapter 6] assertions (i) and (ii) follow immediately.

We use by way of contradiction to prove (iii). We claim
that there exists 𝑡0 ∈ (0, 𝑇max) and 𝑥0 ∈ Ω such that𝑇(𝑡0, 𝑥0) = 0. Notice that 𝑇(𝑡, 𝑥0) > 0 for all small enough𝑡. Hence, by the continuous dependence of the solution on
the initial values, define𝑡̂ = inf {𝑡 ∈ (0, 𝑇max) | 𝑇 (𝑡, 𝑥0) = 0} . (15)

Thus 𝑡̂ ∈ (0, 𝑇max) and 𝑇(𝑡̂, 𝑥0) = 0 with 𝜕𝑇(𝑡̂, 𝑥0)/𝜕𝑡 ≤ 0. But
then 𝜕𝑇 (𝑡̂, 𝑥0)𝜕𝑡 = 𝜆 (𝑥0) > 0 (16)

is a contradiction. This proves assertion (iii).
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In order to establish (iv), note that for each positive 𝑟 there
exists a sufficiently large 𝜅𝑟 such that

𝐹 (𝑢 (𝑡, ⋅)) + 𝜅𝑟𝑢 (𝑡, ⋅) > 0
for 𝑡 ∈ R+ and 𝑢 ∈ 𝐶 (R+, 𝑌+) ∩ B (0, 𝑟) , (17)

where B(0, 𝑟) is an open ball in 𝑌 with the center at (0, 0, 0)
and radius 𝑟. We rewrite system (2) in the form of

𝑑𝑢 (𝑡, ⋅)𝑑𝑡 = 𝐴𝜅𝑟𝑢 (𝑡, ⋅) + 𝐹𝜅𝑟 (𝑢 (𝑡, ⋅)) , (18)

𝐴𝜅𝑟 = 𝐴 − 𝜅𝐼𝑑 where 𝐼𝑑 is an indentity operator on 𝑋 and𝐹𝜅𝑟(𝑢) = 𝐹(𝑢) + 𝜅𝑟𝑢. Applying the method of variation of
constant, we have

𝑢 (𝑡, 𝑥) = (𝑒𝐴𝜅𝑟 𝑡𝑢0) (𝑥) + ∫𝑡
0
𝐹𝜅𝑟 (𝑢 (𝑠, 𝑥)) 𝑒𝐴𝜅𝑟 (𝑡−𝑠)𝑑𝑠. (19)

Hence, for (𝑡, 𝑢0) ∈ (0, 𝑇max) × 𝑌+, 𝑢(𝑡, 𝑢0) ∈ 𝑌+.
In fact, as the following result shows, solutions exist

globally with initial values in 𝑌+.
Proposition 4. Let 𝑢0 ∈ 𝑌+. 	en the solution of (2) with the
initial value 𝑢0 exists on R+.

Proof. Let 𝐽 = [0, 𝑇max) be the maximal existence interval of
the solution through 𝑢0. Define 𝑍(𝑡, 𝑥) = 𝑇(𝑡, 𝑥) + 𝐼(𝑡, 𝑥), for(𝑡, 𝑥) ∈ (𝐽 × Ω).Then, for any 𝑡 ∈ 𝐽, first, we add the first two
equations of (2) to obtain

𝜕𝑍 (𝑡, 𝑥)𝜕𝑡 = 𝜆 (𝑥) − 𝜇 (𝑥) 𝑇 (𝑡, 𝑥) − 𝛿 (𝑥) 𝐼 (𝑡, 𝑥)
≤ 𝜆 (𝑥) − ] (𝑥) 𝑍 (𝑡, 𝑥) , (20)

where ](𝑥) = min{𝜇(𝑥), 𝛿(𝑥)}. It follows that
𝑍 (𝑡, 𝑥) ≤ 𝑒−𝑡](𝑥)𝑍 (0, 𝑥) + 𝜆 (𝑥)

] (𝑥) (1 − 𝑒−𝑡](𝑥))≤ 𝑀1 (𝑥) , (21)

where 𝑀1(𝑥) = 𝑍(0, 𝑥) + 𝜆(𝑥)/](𝑥). Next we integrate the
third equation of system (2) on the set Ω to obtain

𝑑∫Ω V (𝑡, 𝑥) 𝑑𝑥𝑑𝑡 = ∫
Ω
(∫

Ω
𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦)𝑑𝑥

− ∫
Ω
𝛾 (𝑥) V (𝑡, 𝑥) 𝑑𝑥 + ∫

Ω
𝑝 (𝑥) 𝐼 (𝑡, 𝑥) 𝑑𝑥

− ∫
Ω
𝑐 (𝑥) V (𝑡, 𝑥) 𝑑𝑥

= ∫
Ω
(∫

Ω
𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑥) 𝑑𝑦 (interchange order of integration)

− ∫
Ω
𝛾 (𝑥) V (𝑡, 𝑥) 𝑑𝑥 + ∫

Ω
𝑝 (𝑥) 𝐼 (𝑡, 𝑥) 𝑑𝑥

− ∫
Ω
𝑐 (𝑥) V (𝑡, 𝑥) 𝑑𝑥

= ∫
Ω
(∫

Ω
𝜃 (𝑦, 𝑥) V (𝑡, 𝑦) 𝑑𝑥) 𝑑𝑦 − ∫

Ω
𝛾 (𝑥)

⋅ V (𝑡, 𝑥) 𝑑𝑥 (by Assumption 1) + ∫
Ω
𝑝 (𝑥)

⋅ 𝐼 (𝑡, 𝑥) 𝑑𝑥 − ∫
Ω
𝑐 (𝑥) V (𝑡, 𝑥) 𝑑𝑥 = ∫

Ω
𝛾 (𝑦)

⋅ V (𝑡, 𝑦) 𝑑𝑦 − ∫
Ω
𝛾 (𝑥) V (𝑡, 𝑥) 𝑑𝑥 + ∫

Ω
𝑝 (𝑥)

⋅ 𝐼 (𝑡, 𝑥) 𝑑𝑥 − ∫
Ω
𝑐 (𝑥) V (𝑡, 𝑥) 𝑑𝑥 = ∫

Ω
𝑝 (𝑥)

⋅ 𝐼 (𝑡, 𝑥) 𝑑𝑥 − ∫
Ω
𝑐 (𝑥) V (𝑡, 𝑥) 𝑑𝑥 ≤ ∫

Ω
𝑝 (𝑥)

⋅ 𝑀1 (𝑥) 𝑑𝑥 − 𝑐∫
Ω
V (𝑡, 𝑥) 𝑑𝑥.

(22)

Solving this differential inequality, we get

∫
Ω
V (𝑡, 𝑥) 𝑑𝑥 ≤ 𝑒−𝑐𝑡 ∫

Ω
V (0, 𝑥) 𝑑𝑥

+ ∫Ω 𝑝 (𝑥)𝑀1 (𝑥) 𝑑𝑥𝑐 (1 − 𝑒−𝑐𝑡)
≤ ∫

Ω
V (0, 𝑥) 𝑑𝑥 + ∫Ω 𝑝 (𝑥)𝑀1 (𝑥) 𝑑𝑥𝑐

fl𝑀2

(23)

for 𝑡 ∈ 𝐽. Lastly, it also follows from the last equation of (2)
that 𝜕V (𝑡, ⋅)𝜕𝑡 ≤ 𝜃𝑀2 + 𝑝𝑀1 − (𝛾 + 𝑐) V (𝑡, ⋅) , (24)

which gives

V (𝑡, ⋅) ≤ V (0,⋅) 𝑒−(𝛾+𝑐)𝑡 + 𝜃𝑀2 + 𝑝𝑀1𝛾 + 𝑐 (1 − 𝑒−(𝛾+𝑐)𝑡)
for 𝑡 ∈ 𝐽. (25)

In summary, we have obtained that

‖𝑢 (𝑡, ⋅)‖𝑌 ≤ √2𝑀1
2 + (‖V (0, ⋅)‖𝑋 + 𝜃𝑀2 + 𝑝𝑀1𝛾 + 𝑐 )2

for 𝑡 ∈ 𝐽. (26)

By (i) of Proposition 3, we get 𝑇max = ∞ and this completes
the proof.

By Propositions 3 and 4, a solution semiflow Φ : R+ ×𝑌+ 󳨀→ 𝑌+ is defined by

Φ (𝑡, 𝜓) = (𝑇 (𝑡, ⋅) , 𝐼 (𝑡, ⋅) , V (𝑡, ⋅)) (27)
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for (𝑡, 𝜓) ∈ R+ × 𝑌+. Moreover, the existence of the solution
of (2) is indeed global and the semiflow Φ is bounded and
dissipative. Define

Γ = {{{{{{{{{
𝜓 ∈ 𝑌+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
0 < 𝜓1 (𝑥) + 𝜓2 (𝑥) ≤ 𝜆 (𝑥)

min {𝜇 (𝑥) , 𝛿 (𝑥)} for 𝑥 ∈ Ω
and ∫Ω 𝜓3 (𝑥) 𝑑𝑥 ≤ ∫Ω 𝑝 (𝑥) (𝜆 (𝑥) /min {𝜇 (𝑥) , 𝛿 (𝑥)}) 𝑑𝑥𝑐

}}}}}}}}}
. (28)

Then it follows easily from the proof of Proposition 4 (actually
using the same differential inequalities and the resulting
inequalities in the proof) that Γ is positively invariant and
attracts all the bounded subsets of (2) in 𝑌+. Therefore, to
study the asymptotic behavior of (2), we only need to focus
on solutions with initial values in Γ.
3. The Asymptotic Smoothness

A semiflow Φ is asymptotically smooth if there exists a
nonempty compact set attracting each forward invariant
bounded closed set (see [31, Definition 2.25]), in other words,
if the semiflow is asymptotically compact on every forward
invariant bounded closed set.

Theorem 5. 	e semiflow {Φ}𝑡≥0 defined by (27) is asymptot-
ically compact and hence it is asymptotically smooth.

Proof. The proof is inspired by the ideal in [26, Section 4].
Assume that 𝐵 is any forward invariant bounded subset of𝑌+. We show that Φ is asymptotically compact on 𝐵 [32, pp.
28]. This needs to show that a sequence of solutions 𝑢𝑛 =(𝑆𝑛, 𝐼𝑛, V𝑛) is equi-bounded. That is, there exists a sequence{𝑡𝑛} with 𝑡𝑛 󳨀→ ∞ as 𝑛 󳨀→ ∞ such that {𝑢𝑛(𝑡𝑛)} has a
convergent subsequence in 𝑌+. Let us consider the translated
solutions 𝑢𝑛 = (𝑇𝑛, 𝐼𝑛, V𝑛) = 𝑢𝑛(𝑡𝑛 + ⋅). Then𝜕𝑇𝑛 (𝑡, 𝑥)𝜕𝑡 = 𝜆 (𝑥)

− ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦)) 𝑑𝑦− 𝜇 (𝑥) 𝑇𝑛 (𝑡, 𝑥) ,

(29)

𝜕𝐼𝑛 (𝑡, 𝑥)𝜕𝑡 = ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦)) 𝑑𝑦− 𝛿 (𝑥) 𝐼𝑛 (𝑡, 𝑥) , (30)

𝜕V𝑛 (𝑡, 𝑥)𝜕𝑡 = ∫
Ω
𝜃 (𝑥, 𝑦) V𝑛 (𝑡, 𝑦) 𝑑𝑦− (𝛾 (𝑥) + 𝑐 (𝑥)) V𝑛 (𝑡, 𝑥)+ 𝑝 (𝑥) 𝐼𝑛 (𝑡, 𝑥) .

(31)

By the Arzelà-Ascoli theorem, it suffices to show that{𝑇𝑛(0, ⋅)}, {𝐼𝑛(0, ⋅)}, and {V𝑛(0, ⋅)} are equi-continuous. Then,
for each 𝑥, 𝑥 ∈ Ω, we obtain

𝜕 (𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))2𝜕𝑡 = 2 (𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))
⋅ {𝜆 (𝑥) − 𝜆 (𝑥) − 𝜇 (𝑥) 𝑇𝑛 (𝑡, 𝑥) + 𝜇 (𝑥) 𝑇𝑛 (𝑡, 𝑥)
− ∫

Ω
[𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))

− 𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))] 𝑑𝑦}
= 2 (𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥)) (𝜆 (𝑥) − 𝜆 (𝑥)) − 2𝜇 (𝑥)⋅ (𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))2 − 2 (𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))
⋅ (𝜇 (𝑥) − 𝜇 (𝑥)) 𝑇𝑛 (𝑡, 𝑥) − 2∫

Ω
(𝑇𝑛 (𝑡, 𝑥)

− 𝑇𝑛 (𝑡, 𝑥)) [𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))− 𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))] 𝑑𝑦
− 2∫

Ω
(𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))

⋅ [𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))− 𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))] 𝑑𝑦
≤ (𝜆 (𝑥) − 𝜆 (𝑥))2𝜁2 + 3𝜁2 (𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))2
− 2𝜇 (𝑥) (𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))2
+ (𝜇 (𝑥) − 𝜇 (𝑥))2 𝑇𝑛 (𝑡, 𝑥)2𝜁2 + 1𝜁2
⋅ ∫

Ω
[𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))

− 𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))]2 𝑑𝑦.

(32)

Here we have used the fact that 𝑓 is increasing with respect
to 𝑇 and 𝑎𝑏 ≤ [(𝜁𝑎)2 + (𝑏/𝜁)2]/2, where 𝜁 > 0 is small enough
and satisfies

3𝜁2 − 2𝜇 (𝑥) < −𝜁 for 𝑥 ∈ Ω. (33)
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Integrating the inequality (32) from −𝑡𝑛 to 𝑡 ≥ −𝑡𝑛, we obtain
(𝑇𝑛 (𝑡, 𝑥) − 𝑇𝑛 (𝑡, 𝑥))2 ≤ (𝑇𝑛 (0, 𝑥) − 𝑇𝑛 (0, 𝑥))2
⋅ 𝑒−𝜁(𝑡+𝑡𝑛) + (𝜆 (𝑥) − 𝜆 (𝑥))2𝜁3 + (𝜇 (𝑥) − 𝜇 (𝑥))2𝜁3
⋅ sup
−𝑡𝑛≤𝑙≤𝑡

𝑇2𝑛 (𝑙, 𝑥) + 1𝜁3
⋅ sup
−𝑡𝑛≤𝑙≤𝑡

(∫
Ω
[(𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑙, 𝑥) , V𝑛 (𝑙, 𝑦))

− 𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑙, 𝑥) , V𝑛 (𝑙, 𝑦))]2 𝑑𝑦) .

(34)

ByAssumption 1, for each bounded setΩ2×[0, 𝑐]2(𝑐 > 0),𝑓 is
uniformly continuous. The boundedness of 𝑓, together with𝑒−𝜁𝑡𝑛 󳨀→ 0 as 𝑛 󳨀→ ∞, implies that (𝑇𝑛(𝑡, 𝑥) − 𝑇𝑛(𝑡, 𝑥))2 󳨀→0 as 𝑥 󳨀→ 𝑥. This limitation is uniform for both 𝑛 ∈ N and 𝑡
in compact subsets ofR. The equi-continuity of {𝑇𝑛(𝑡, ⋅) : 𝑛 ∈
N, 𝑡 ∈ [−𝑇, 𝑇]} holds immediately for any 𝑇 > 0.

Similarly, for 𝑡 ≥ −𝑡𝑛, we can get

(𝐼𝑛 (𝑡, 𝑥) − 𝐼𝑛 (𝑡, 𝑥))2 ≤ (𝐼𝑛 (0, 𝑥) − 𝐼𝑛 (0, 𝑥))2 𝑒−𝜁(𝑡+𝑡𝑛)
+ (𝛿 (𝑥) − 𝛿 (𝑥))2𝜁3 sup

−𝑡𝑛≤𝑟≤𝑡
𝐼2𝑛 (𝑟, 𝑥) + 1𝜁2

⋅ ∫𝑡
−𝑡𝑛
𝑒−𝛿(𝑥)(𝑡−𝑠) ∫

Ω
[𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑠, 𝑥) , V𝑛 (𝑠, 𝑦))

− 𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑠, 𝑥) , V𝑛 (𝑠, 𝑦))]2 𝑑𝑦𝑑𝑠
(35)

Arguing directly, we claim that {𝐼𝑛(𝑡̂, ⋅)} is not equi-
continuous for some 𝑡̂ ≥ 0. Then we can pick up a sequence{𝑥𝑛}𝑛 such that 𝑥𝑛 󳨀→ 𝑥 as 𝑛 󳨀→ ∞. Moreover, we choose a
subsequence of {𝐼𝑛} satisfying

lim sup
𝑛󳨀→∞

(𝐼𝑛 (𝑡̂, 𝑥) − 𝐼𝑛 (𝑡̂, 𝑥𝑛))2 > 0. (36)

Since, for each 𝑡, {𝑇𝑛(𝑡, ⋅)} is equi-continuous, 𝑇𝑛(𝑡, 𝑥𝑛) 󳨀→𝑇𝑛(𝑡, 𝑥) as 𝑛 󳨀→ ∞. Applying Fatou’s lemma and Assump-
tion 1, we get from (35) that

lim sup
𝑛󳨀→∞

(𝐼𝑛 (𝑡̂, 𝑥) − 𝐼𝑛 (𝑡̂, 𝑥𝑛))2 ≤ 1𝜁2 ∫𝑡̂−∞ 𝑒𝜁𝑡𝑑𝑡
⋅ lim sup

𝑛󳨀→∞
∫
Ω
[𝑓 (𝑥, 𝑦, 𝑇𝑛 (𝑡, 𝑥) , V𝑛 (𝑡, 𝑦))

− 𝑓 (𝑥𝑛, 𝑦, 𝑇𝑛 (𝑡, 𝑥𝑛) , V𝑛 (𝑡, 𝑦))]2 𝑑𝑦𝑑𝑠
(37)

is a contradiction. This proves that {𝐼𝑛(𝑡, ⋅)}𝑛 : 𝑛 ∈ N, 𝑡 ∈[−𝑇, 𝑇]} is also equi-continuous for any 𝑇 > 0.

Finally, again similarly as before, we can obtain

(V𝑛 (0, 𝑥) − V𝑛 (0, 𝑥))2≤ (V𝑛 (0, 𝑥) − V𝑛 (0, 𝑥))2 𝑒−𝜁(𝑡+𝑡𝑛)
+ (𝑝 (𝑥) − 𝑝 (𝑥))2𝜁3 sup

−𝑡𝑛≤𝑙≤𝑡
𝐼2𝑛 (𝑙, 𝑥)

+ (𝛾 (𝑥) + 𝑐 (𝑥) − 𝛾 (𝑥) − 𝑐 (𝑥))2𝜁3 sup
−𝑡𝑛≤𝑙≤𝑡

V2𝑛 (𝑙, 𝑥)
+ ∫

Ω

󵄨󵄨󵄨󵄨𝜃 (𝑥, 𝑦) − 𝜃 (𝑥, 𝑦)󵄨󵄨󵄨󵄨 𝑑𝑦 sup
−𝑡𝑛≤𝑙≤𝑡

V𝑛 (𝑙, 𝑥) .

(38)

By Assumption 1 and sup𝑥∈ΩV𝑛(0, 𝑥) < ∞, we have (V𝑛(0, 𝑥)−
V𝑛(0, 𝑥))2 󳨀→ 0 as 𝑥 󳨀→ 𝑥 uniformly for 𝑛 ∈ N. This proves
the equi-continuity of {V𝑛(0, ⋅)} and the hence the proof is
complete.

4. The Basic Reproduction Number

This section is conducted for estimation of the basic repro-
duction number, which is defined as the expected numbers
of secondary cases created by a typical infected individual
among a completely susceptible population. Clearly, system
(2) has a virus-free steady state 𝐸0 = (𝑇0(𝑥), 0, 0), where𝑇0(𝑥) = 𝜆(𝑥)/𝜇(𝑥) for 𝑥 ∈ Ω. Linearize (2) around 𝐸0 in
the disease invasion phase to obtain

𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 = ∫
Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) V (𝑡, 𝑦) 𝑑𝑦− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) ,𝜕V (𝑡, 𝑥)𝜕𝑡 = ∫

Ω
𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦 + 𝑝 (𝑥) 𝐼 (𝑡, 𝑥)

− (𝑐 (𝑥) + 𝛾 (𝑥)) V (𝑡, 𝑥) .
(39)

Solving them, we have

𝐼 (𝑡, 𝑥)= 𝐼0 (𝑥) 𝑒−𝛿(𝑥)𝑡
+ ∫𝑡

0
𝑒−𝛿(𝑥)(𝑡−𝑠) ∫

Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) V (𝑠, 𝑦) 𝑑𝑦𝑑𝑠

(40)

and

V (𝑡, 𝑥) = V0 (𝑥) 𝑒−(𝑐(𝑥)+𝛾(𝑥))𝑡
+ ∫𝑡

0
𝑒−(𝑐(𝑥)+𝛾(𝑥))(𝑡−𝑠) (∫

Ω
𝜃 (𝑥, 𝑦) V (𝑠, 𝑦) 𝑑𝑦

+ 𝑝 (𝑥) 𝐼 (𝑠, 𝑥)) 𝑑𝑠,
(41)
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respectively. Plugging (40) into (41) yields

V (𝑡, 𝑥) = V0 (𝑥) 𝑒−(𝑐(𝑥)+𝛾(𝑥))𝑡
+ ∫𝑡

0
𝑒−(𝑐(𝑥)+𝛾(𝑥))(𝑡−𝑠)∫

Ω
𝜃 (𝑥, 𝑦) V (𝑠, 𝑦) 𝑑𝑦𝑑𝑠

+ 𝑝 (𝑥) ∫𝑡
0
𝑒−(𝑐(𝑥)+𝛾(𝑥))(𝑡−𝑠)𝐼0 (𝑥) 𝑒−𝛿(𝑥)𝑠𝑑𝑠 + 𝑝 (𝑥)

⋅ ∫𝑡
0
𝑒−(𝑐(𝑥)+𝛾(𝑥))(𝑡−𝑠)∫𝑠

0
𝑒−𝛿(𝑥)(𝑠−𝜏)

⋅ ∫
Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) V (𝜏, 𝑦) 𝑑𝑦𝑑𝜏𝑑𝑠.

(42)

Using change of variables gives us

V (𝑡, 𝑥) = V0 (𝑥) 𝑒−(𝑐(𝑥)+𝛾(𝑥))𝑡 + 𝑝 (𝑥)
⋅ ∫𝑡

0
𝑒−(𝑐(𝑥)+𝛾(𝑥))(𝑡−𝑠)𝐼0 (𝑥) 𝑒−𝛿(𝑥)𝑠𝑑𝑠

+ ∫𝑡
0
𝑒−(𝑐(𝑥)+𝛾(𝑥))𝑠∫

Ω
𝜃 (𝑥, 𝑦) V (𝑡 − 𝑠, 𝑦) 𝑑𝑦𝑑𝑠

+ 𝑝 (𝑥) ∫𝑡
0
𝑒−(𝑐(𝑥)+𝛾(𝑥))𝑠∫𝑡

𝜏
𝑒−𝛿(𝑥)(𝜏−𝑠)

⋅ ∫
Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) V (𝑡 − 𝜏, 𝑦) 𝑑𝑦𝑑𝜏𝑑𝑠.

(43)

Therefore, following the approach of Diekmann et al. [33], we
define the next-generation operatorR : 𝑋 󳨀→ 𝑋 by

(R𝜙) (𝑥) = ∫
Ω
∫∞
0
𝑒−(𝑐(𝑥)+𝛾(𝑥))𝜏𝜃 (𝑥, 𝑦) 𝜙 (𝑦) 𝑑𝜏𝑑𝑦

+ ∫
Ω
∫∞
0
∫∞
𝜏
𝑝 (𝑥)

⋅ 𝑒−(𝑐(𝑥)+𝛾(𝑥))𝜏𝑒−𝛿(𝑥)(𝑠−𝜏)𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)
⋅ 𝜙 (𝑦) 𝑑𝑠𝑑𝜏𝑑𝑦 = ∫Ω 𝜃 (𝑥, 𝑦) 𝜙 (𝑦) 𝑑𝑦𝑐 (𝑥) + 𝛾 (𝑥)
+ 𝑝 (𝑥)𝛿 (𝑥) (𝛾 (𝑥) + 𝑐 (𝑥)) ∫Ω 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)⋅ 𝜙 (𝑦) 𝑑𝑦

(44)

for 𝜙 ∈ 𝑋 and 𝑥 ∈ Ω. Based on Assumption 1, the operatorR
is well defined, continuous, and positive. In the following, we
show thatR is compact and nonsupporting. Nonsupporting
means that, for any V ∈ 𝑋+\{0} and 𝜉 ∈ (𝑋∗)+\{0}, there exists
positive𝑁0 = 𝑁0(V, 𝜉) such that ∫Ω(R𝑁0V)(𝑦)𝜉(𝑦)𝑑𝑦 > 0.
Proposition 6. Suppose that Assumption 1 holds. 	en the
next-generation operator R defined by (44) is compact and
nonsupporting.

Proof. Let 𝐵 ⊂ 𝑋+ be a bounded set. It follows from
Assumption 1 that R(𝐵) is bounded. To show that R is

compact, it suffices to show that R(𝐵) is equi-continuous by
Arzelà-Ascoli theorem. For 𝑥, 𝑥 ∈ Ω, and 𝜙 ∈ 𝐵,

(R𝜙) (𝑥) − (R𝜙) (𝑥) = [ 𝑝 (𝑥)𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))
− 𝑝 (𝑥)𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))]∫Ω 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)
⋅ 𝜙 (𝑦) 𝑑𝑦 + 𝑝 (𝑥)𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))
⋅ ∫

Ω
[𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) − 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)]

⋅ 𝜙 (𝑦) 𝑑𝑦 + 𝑝 (𝑥)𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))
⋅ ∫

Ω
[𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) − 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)]

⋅ 𝜙 (𝑦) 𝑑𝑦 + ∫Ω [𝜃 (𝑥, 𝑦) − 𝜃 (𝑥, 𝑦)] 𝜙 (𝑦) 𝑑𝑦𝛾 (𝑥) + 𝑐 (𝑥)
+ [ 1𝛾 (𝑥) + 𝑐 (𝑥) − 1𝛾 (𝑥) + 𝑐 (𝑥)]∫Ω 𝜃 (𝑥, 𝑦)⋅ 𝜙 (𝑦) 𝑑𝑦.

(45)

Note that the uniform continuity byAssumption 1 and ‖𝜙‖𝑋 ≤𝑀, where 𝑀 is a positive constant. We can easily see that
R(𝐵) is equi-continuous.

Now, we show thatR is nonsupporting. For any 𝜙 ∈ 𝑋+ \{0}, by Proposition 3 and the monotonicity property of 𝑓, we
have

(R𝜙) (𝑥) ≥ ∫Ω 𝜃 (𝑥, 𝑦) 𝜙 (𝑦) 𝑑𝑦𝑐 + 𝛾 , 𝑥 ∈ Ω. (46)

From the assumption on 𝜃, it follows that (R𝜙)(𝑥) > 0
for 𝑥 ∈ Ω. Then, for any 𝜉 ∈ (𝑋∗)+ \ {0, }, we have∫Ω(R𝜙)(𝑥)𝜉(𝑥)𝑑𝑥 > 0 (with𝑁0 = 𝑁0(𝜙, 𝜉) = 1). This proves
thatR is nonsupporting.

From the definition of the basic reproduction number by
Diekmann [33], such value is defined by

R0 fl 𝑟 (R) (47)

where 𝑟(⋅) represents the spectral radius of an operator.
Hence,R(⋅) can be considered as a next-generation operator
in [33–35].

Now, in order to clarify the relationship between the next-
generation operator and a linear operator, we define L :𝑋 󳨀→ 𝑋:

L [𝜙] (𝑥) = 𝑝 (𝑥)𝛿 (𝑥) ∫Ω 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) 𝜙 (𝑦) 𝑑𝑦+ ∫
Ω
𝜃 (𝑥, 𝑦) 𝜙 (𝑦) 𝑑𝑦

− (𝑐 (𝑥) + 𝛾 (𝑥)) 𝜙 (𝑥)
(48)
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for 𝜙 ∈ 𝑋 and 𝑥 ∈ Ω. From definitions of operators R and
L, we immediately see that L = (𝑐 + 𝛾)(R − 𝐼𝑑) or R =𝐼𝑑 + (1/(𝑐 + 𝛾))L, where 𝐼𝑑 is the identity operator on 𝑋.
Theorem 7. 𝑟(R) > 1, 𝑟(R) < 1, and 𝑟(R) = 1 if and only
if 𝑠(L) > 0, 𝑠(L) < 0, and 𝑠(L) = 0, respectively, where𝑠(L) = sup{Re 𝜉 : 𝜉 ∈ 𝜎(L)} denotes the spectral bound ofL.

Proof. First, suppose that 𝑟(R) = 1. It follows from [36,
Proposition 4.4] that there exists a positive function 𝜙 ∈ 𝑋
such that R𝜙 = 𝜙 or (R − 𝐼𝑑)𝜙 = 0. This implies that(𝑐 + 𝛾)(R − 𝐼𝑑)𝜙 = L𝜙 = 0. Therefore, 𝑠(L) = 0. On the
other hand, suppose that 𝑠(L) = 0.Then, with the help of the
irreducibility of 𝜃 and [37, Theorem 2.2], we conclude that
there exists an eigenfunction 𝜙 > 0 with respect to 𝑠(L) = 0;
namely,L𝜙 = 0. It follows thatR𝜙 = 𝜙+ (1/(𝑐 + 𝛾))L𝜙 = 𝜙,
which gives 𝑟(R) = 1. This proves theta 𝑟(R) = 1 if and only
if 𝑠(L) = 0.

Now, we only show that 𝑟(R) > 1 if and only if 𝑠(R) > 0
as the proof of 𝑟(R) < 1 if and only if 𝑠(L) < 0 is similar. On
one hand, let 𝑟(R) > 1 hold. Then Proposition 6 implies that
there exists a positive eigenfunction associated with 𝑟(R) >1; that is, R𝜙 = 𝜙 + (1/(𝑐 + 𝛾))L𝜙 = 𝑟(R)𝜙. It follows that
L𝜙 = (𝑐 + 𝛾)(𝑟(R) − 1)𝜙. Based on Assumption 1, we know
that (𝑐 + 𝛾)(𝑟(R) − 1) > 0. It follows that 𝑠(L) > 0. On the
other hand, let 𝑠(L) > 0. Following the above approach, we
obtain the existence of a positive eigenfunction 𝜙with respect
to the eigenvalue 𝑠(L) > 0; that is,L𝜙 = (𝑐 + 𝛾)(R − 𝐼𝑑)𝜙 =𝑠(L)𝜙.ThenR𝜙 = ((1/(𝑐+𝛾))𝑠(L)+1)𝜙 > 𝜙, which implies
that 𝑟(R) > 1. This completes the proof.

5. Existence of Endemic Steady States

This section is conducted for the existence of endemic steady
states of (2). Let 𝐸∗ = (𝑇∗(⋅), 𝐼∗(⋅), V∗(⋅)) ∈ 𝑌+ be a feasible
steady state and then it satisfies

𝜆 (𝑥) − ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) 𝑑𝑦

− 𝜇 (𝑥) 𝑇∗ (𝑥) = 0,
∫
Ω
𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) 𝑑𝑦 − 𝛿 (𝑥) 𝐼∗ (𝑥) = 0,

∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑦) 𝑑𝑦 − (𝑐 (𝑥) + 𝛾 (𝑥)) V∗ (𝑥)
+ 𝑝 (𝑥) 𝐼∗ (𝑥) = 0.

(49)

We apply Shauder fixed point theorem to find solutions
of (49). To overcome the difficulty caused by the nonlinear
function 𝑓, we make the following modifications on 𝑓. For𝑛 ∈ N, define𝑓𝑛 (𝑥, 𝑦, 𝑇, V) = 𝑓 (𝑥, 𝑦, 𝑇, V ∧ 𝑛)

for (𝑥, 𝑦, 𝑇, V) ∈ Ω2 ×R
2
+, (50)

where V ∧ 𝑛 = min{V, 𝑛}. We focus on the following
perturbation systems:

𝜆 (𝑥) − ∫
Ω
𝑓𝑛 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) 𝑑𝑦

− 𝜇 (𝑥) 𝑇∗ (𝑥) = 0,
∫
Ω
𝑓𝑛 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) 𝑑𝑦 − 𝛿 (𝑥) 𝐼∗ (𝑥) = 0,

∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑦) 𝑑𝑦 − (𝑐 (𝑥) + 𝛾 (𝑥)) (V∗ (𝑥) − 𝜖𝑛)
+ 𝑝 (𝑥) 𝐼∗ (𝑥) = 0,

(51)

where {𝜖𝑛} is a bounded and decreasing sequence in R+ with𝜖𝑛 󳨀→ 0 as 𝑛 󳨀→ ∞.
Define

𝑔𝑛 (𝑇, V) = 𝜆 (𝑥) − ∫
Ω
𝑓𝑛 (𝑥, 𝑦, 𝑇 (𝑥) , V (𝑦)) 𝑑𝑦

− 𝜇 (𝑥) 𝑇 (𝑥) . (52)

Since 𝑓 is, and so is 𝑓𝑛, increasing in 𝑇, for each 𝑥 ∈ Ω and
V ∈ 𝑋+ there exists a unique 𝐺𝑛(V)(𝑥) ∈ [0, 𝑇0(𝑥)] such that

𝜆 (𝑥) − ∫
Ω
𝑓𝑛 (𝑥, 𝑦, 𝐺𝑛 (V) (𝑥) , V (𝑦)) 𝑑𝑦

− 𝜇 (𝑥) 𝐺𝑛 (V) (𝑥) = 0. (53)

Lemma 8 ([26, Lemma 7.3]). For fixed 𝑛 ∈ N, 𝐺𝑛(V) is
continuouswith respect to𝑥, uniformly for V in bounded subsets
of𝑋+.

Theorem 9. Suppose that R0 = 𝑟(R) > 1 holds. 	en
system (2) admits at least one feasible endemic steady state𝐸∗ = (𝑇∗, 𝐼∗, V∗) ∈ 𝑌+ with V∗ ∈ 𝑋+ \ {0}.
Proof. Solving the second equation of (51) yields 𝐼∗(𝑥) =(∫Ω 𝑓𝑛(𝑥, 𝑦, 𝑇∗(𝑥), V∗(𝑦))𝑑𝑦)/𝛿(𝑥). Then substitute this ex-
pression of 𝐼∗(𝑥) into the third equation of (51) to get

∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑦) 𝑑𝑦 − (𝑐 (𝑥) + 𝛾 (𝑥)) (V∗ (𝑥) − 𝜖𝑛)
+ 𝑝 (𝑥) ∫Ω 𝑓𝑛 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) 𝑑𝑦𝛿 (𝑥) = 0. (54)

Therefore, we can define a mapF𝑛(𝑛 ∈ N) : 𝑋+ 󳨀→ 𝑋+ by

F𝑛 (V) (𝑥)
= 𝑝 (𝑥) ∫Ω 𝑓 (𝑥, 𝑦, 𝐺𝑛 (V) (𝑥) ,min {V (𝑦) , 𝑛}) 𝑑𝑦𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))
+ ∫Ω 𝜃 (𝑥, 𝑦)min {V (𝑦) , 𝑛} 𝑑𝑦𝑐 (𝑥) + 𝛾 (𝑥) + 𝜖𝑛

(55)
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for V ∈ 𝑋+ and 𝑥 ∈ Ω. Clearly, F𝑛 is continuous and
nonincreasing by Assumption 1 and Lemma 8. Furthermore,
for all V ∈ 𝑋+,

F𝑛 (V) (𝑥) ≤ 𝑛 ∫Ω 𝜃 (𝑥, 𝑦) 𝑑𝑦𝑐 (𝑥) + 𝛾 (𝑥)
+ 𝑝 (𝑥) ∫Ω 𝑓 (𝑥, 𝑦, 𝐺𝑛 (V) (𝑥) , 𝑛) 𝑑𝑦𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))
+ 𝜖1 for V ∈ 𝑋+ and 𝑥 ∈ Ω.

(56)

Let 𝐵𝑛 = {V ∈ 𝑋+ : V ≤ 𝑟𝑛} be a closed nonnegative ball
with the radius 𝑟𝑛 ≫ 1 and the center at 0. If we pick up large
enough 𝑟𝑛, thenF𝑛 maps 𝐵𝑛 into itself. Since 𝐵𝑛 is closed and
convex, applying Shauder fixed theorem gives the existence of
some V ∈ 𝐵𝑛 such that F𝑛(V) = V. Note that V ̸= 0. Then 𝑇 =𝐺𝑛(V), 𝐼 = (∫Ω 𝑓(𝑥, 𝑦, 𝐺𝑛(V)(𝑥), V(𝑦))𝑑𝑦)/𝛿(𝑥), and V satisfy

𝜆 (𝑥) − ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑥) , V (𝑦)) 𝑑𝑦 − 𝜇 (𝑥) 𝑇 (𝑥) = 0,

∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑥) , V (𝑦)) 𝑑𝑦 − 𝛿 (𝑥) 𝐼 (𝑥) = 0,

∫
Ω
𝜃 (𝑥, 𝑦)min {V (𝑦) , 𝑛} 𝑑𝑦
− (𝑐 (𝑥) + 𝛾 (𝑥)) (V (𝑥) − 𝜖𝑛) + 𝑝 (𝑥) 𝐼 (𝑥) = 0.

(57)

Adding the first two equations of (57) gives

𝑍 (𝑥) ≤ 𝜆 (𝑥)
] (𝑥) , (58)

where 𝑍(𝑥) = 𝑇(𝑥) + 𝐼(𝑥) and ] = min{𝜇(𝑥), 𝛿(𝑥)}.
Integrating the last equation of (57) on Ω with respect to 𝑥,
together with ∫Ω 𝜃(𝑥, 𝑦)min{V(𝑦), 𝑛}𝑑𝑦 ≤ ∫Ω 𝜃(𝑥, 𝑦)V(𝑦)𝑑𝑦,
we have

∫
Ω
𝑐 (𝑥) V (𝑥) 𝑑𝑥 ≤ ∫

Ω
𝑝 (𝑥) 𝐼 (𝑥) 𝑑𝑥

+ 𝜖𝑛 ∫
Ω
(𝑐 (𝑥) + 𝛾 (𝑥)) 𝑑𝑥. (59)

Consequently, {∫Ω V(𝑥)𝑑𝑥} is bounded. Thus {V} is uniformly
bounded. Furthermore, we can apply the similar argument as
that in the proof of Proposition 6 to show that {V} is equi-
continuous. Thus it is precompact in𝑋+.Then we can choose
a subsequence, say itself, such that (𝑇, 𝐼, V) 󳨀→ (𝑇∗, 𝐼∗, V∗)
uniformly in 𝑥 ∈ Ω as 𝑛 󳨀→ ∞. Letting 𝑛 󳨀→ ∞ in (57), we
see that (𝑇∗, 𝐼∗, V∗) is a steady state of system (2).

Now, we show that (𝑇∗, 𝐼∗, V∗) is an endemic steady state
by showing that V∗ ̸= 0. By way of contradiction, assume that
V∗ ≡ 0, which implies that 𝐼(𝑥) 󳨀→ 0, and 𝑇(𝑥) 󳨀→ 𝑇0(𝑥)
uniformly for 𝑥 ∈ Ω as 𝑛 󳨀→ ∞ and V 󳨀→ 0. For large
enough 𝑛, we know that V(𝑥) ≤ 𝑛 for all 𝑥 ∈ Ω. Define

G (𝑇, V) (𝑥) = ∫Ω 𝜃 (𝑥, 𝑦) V (𝑦) 𝑑𝑦𝑐 (𝑥) + 𝛾 (𝑥)
+ 𝑝 (𝑥) ∫Ω 𝑓 (𝑥, 𝑦, 𝑇 (𝑥) , V (𝑦)) 𝑑𝑦𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))

for 𝑥 ∈ Ω.
(60)

Then V = F(V) = G(𝑇, V) + 𝜖𝑛. It follows that
V‖V‖𝑋 = G (𝑇, V) −R (V)‖V‖𝑋 +R( V‖V‖𝑋) + 𝜖𝑛‖V‖𝑋 . (61)

Note that‖G (𝑇, V) −R (V)‖𝑋‖V‖𝑋 = sup
𝑥∈Ω

𝑝 (𝑥)𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))
⋅ ∫

Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑇 (𝑥) , V (𝑦))V (𝑦) − 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
⋅ V (𝑦)‖V‖𝑋 𝑑𝑦 ≤ sup

𝑥∈Ω

𝑝 (𝑥)𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥))
⋅ ∫

Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑦, 𝑇 (𝑥) , V (𝑦))V (𝑦)
− 𝑓V (𝑥, 𝑦, 𝑇 (𝑥) , 0)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑦
+ sup

𝑥∈Ω

𝑝 (𝑥)𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥)) ∫Ω 󵄨󵄨󵄨󵄨󵄨𝑓V (𝑥, 𝑦, 𝑇 (𝑥) , 0)− 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)󵄨󵄨󵄨󵄨󵄨 𝑑𝑦.

(62)

Lemma 8, together with Assumption 1, implies that the
above inequality converges to zero as 𝑛 󳨀→ ∞. From the
compactness ofR and boundedness of 𝜖𝑛/‖V‖𝑋, we can pick
up a subsequence, again say itself, such that

R( 𝜖𝑛‖V‖𝑋) 󳨀→ 𝐿
and 𝜖𝑛‖V‖𝑋 󳨀→ 𝜉

as 𝑛 󳨀→ ∞
(63)

for some 𝜉 ≥ 0 and 𝐿 ∈ 𝑋+. Set 𝑢𝑛 = V/‖V‖𝑋.Then 𝑢𝑛 󳨀→ 𝑢 as𝑛 󳨀→ ∞ in 𝑋. Proposition 6 ensures that 𝑢 ∈ 𝑋+. By Krein-
Rutman theorem, there exists some 𝑢∗ ∈ 𝑋∗ \ {0} and 𝑢∗ ≥ 0
such thatR∗𝑢∗ =R0𝑢∗. Hence∫

Ω
𝑢 (𝑥) 𝑑𝑢∗ (𝑥) = ∫

Ω
R (𝑢) (𝑥) 𝑑𝑢∗ (𝑥) + 𝜉𝑢∗ (Ω)

≥ ∫
Ω
𝑢 (𝑥) 𝑑R∗𝑢∗ (𝑥)

=R0 ∫
Ω
𝑢 (𝑥) 𝑑𝑢∗ (𝑥) .

(64)

This leads to a contradiction withR0 > 1.
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6. Stability of the Virus-Free Steady State 𝐸0
The objective of this section is to establish the stability of the
virus-free steady state 𝐸0 = (𝑇0, 0, 0).
Lemma 10. If 𝑇0(𝑥) ≤ 𝑇0(𝑥), then 𝑇(𝑡, 𝑥) ≤ 𝑇0(𝑥) for all(𝑡, 𝑥) ∈ R+ × Ω.
Proof. Define 𝑤(𝑡) = 𝑇(𝑡, 𝑥) − 𝑇0(𝑥). Noting that 𝜆(𝑥) =𝜇(𝑥)𝑇0(𝑥), we get𝜕𝑤 (𝑡, 𝑥)𝜕𝑡= −(𝜇 (𝑥) + ∫

Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦)

⋅ 𝑤 (𝑡, 𝑥) − 𝑇0 (𝑥) ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦.

(65)

Solving this equation, we have

𝑤 (𝑡, 𝑥) = 𝑤0 (𝑥) 𝑒−∫𝑡0 (𝜇(𝑥)+∫Ω 𝑓(𝑥,𝑦,𝑇(𝑠,𝑥),V(𝑠,𝑦))𝑑𝑦)𝑑𝑠
− 𝑇0 (𝑥) ∫𝑡

0
𝑒−∫𝑡𝑠 (𝜇+∫Ω 𝑓(𝑥,𝑦,𝑇(𝜉,𝑥),V(𝜉,𝑦))𝑑𝑦)𝑑𝜉

⋅ ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑠, 𝑥) , V (𝑠, 𝑦)) 𝑑𝑦𝑑𝑠.

(66)

Because 𝑓 is nonnegative on Ω2 × R2
+ by Assumption 1(ii)

and 𝑤0(𝑥) = 𝑇0(𝑥) − 𝑇0(𝑥) ≤ 0, we conclude that, for all(𝑡, 𝑥) ∈ (R+ × Ω), 𝑤(𝑡, 𝑥) = 𝑇(𝑡, 𝑥) − 𝑇0(𝑥) ≤ 0.
Define Φ̂ : 𝐷(Φ̂) 󳨀→ 𝑋2

+ by

Φ̂ (𝜓𝐼𝜓V) (𝑥) = ( ∫
Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) 𝜓V (𝑦) 𝑑𝑦 − 𝛿 (𝑥) 𝜓𝐼 (𝑥)∫

Ω
𝜃 (𝑥, 𝑦) 𝜓V (𝑦) 𝑑𝑦 − (𝑐 (𝑥) + 𝛾 (𝑥)) 𝜓V (𝑥) + 𝑝 (𝑥) 𝜓𝐼 (𝑥)) , (67)

where (𝜓𝐼, 𝜓V) ∈ 𝐷(Φ̂) and 𝑥 ∈ Ω. We can separate Φ̂ into
two operators 𝐹 and 𝐴 defined by

𝐹(𝜓𝐼𝜓V) (𝑥)
= ( 0∫

Ω
𝜃 (𝑥, 𝑦) 𝜓V (𝑦) 𝑑𝑦 + 𝑝 (𝑥) 𝜓𝐼 (𝑥))

(68)

and

𝐴(𝜓𝐼𝜓V) (𝑥)
= (∫Ω 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)𝜓V (𝑦) 𝑑𝑦 − 𝛿 (𝑥) 𝜓𝐼 (𝑥)− (𝑐 (𝑥) + 𝛾 (𝑥)) 𝜓V (𝑥) ) , (69)

respectively. Denote 𝐴 = (𝐴𝐼, 𝐴V)𝑇. Observe that 𝐴V actually
acts on 𝜓V by𝐴V𝜓V = − (𝑐 (𝑥) + 𝛾 (𝑥))𝜓V, 𝜓V ∈ 𝑋, 𝑥 ∈ Ω. (70)

Lemma 11. If the problem

𝐴𝜓 = 𝜂𝐹𝜓, 𝜓 ∈ 𝑋2 (71)

has a positive eigenvalue 𝜂0 with a positive eigenfunction 𝜓,
then

R0 = 𝑟 (−𝐹𝐴−1) = 𝑟 (−𝐴−1𝐹) = 1𝜂0 . (72)

Proof. Let 𝜂 ∈ 𝜌(𝐴), where 𝜌(𝐴) represents the resolvent set
of the operator 𝐴. For any 𝜙 ∈ 𝑋2, let 𝜓 ∈ 𝐷(𝐴) such that

𝜓 = (𝜂𝐼𝑑 − 𝐴)−1 (𝜙) . (73)

Then𝜓𝐼 = 1𝜂 + 𝛿 (𝜙𝐼 + ∫Ω 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0)𝜓V (𝑦) 𝑑𝑦) (74)

and

𝜓V = 𝜙V𝜂 + 𝑐 + 𝛾 . (75)

Let 𝑍 be a positive semigroup generated by the operator 𝐴.
Then (𝜂𝐼𝑑 − 𝐴)−1 𝜙 = ∫∞

0
𝑒−𝜂𝑡𝑍 (𝑡, 𝜙) 𝑑𝑡, 𝜙 ∈ 𝑋2. (76)

Without loss of the generality, letting 𝜂 = 0 and 𝜙𝐼 = 0 gives−𝐴−1𝜙 = ∫∞0 𝑍(𝑡, 𝜙)𝑑𝑡 for each 𝜙 ∈ 𝑋2. By the definition of𝐹, we have
𝐹 (−𝐴)−1 𝜙 (𝑥) = ( 0𝑝 (𝑥) ∫Ω 𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) 𝜙V (𝑡, 𝑦) 𝑑𝑦𝛿 (𝑥) (𝑐 (𝑥) + 𝛾 (𝑥)) + ∫Ω 𝜃 (𝑥, 𝑦) 𝜙V (𝑦) 𝑑𝑦𝑐 (𝑥) + 𝛾 (𝑥) ) = ( 0

R [𝜙V] (𝑥)) . (77)
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Let 𝜓̃ fl −𝐴−1𝜙.Then the above equality can be rewritten:

𝐹 [𝜓̃] (𝑥) = ( 0−R𝐴V [𝜓̃V] (𝑥)) . (78)

This means that

( 0−𝐴V [𝜓̃V] (𝑥)) = (R)−1 𝐹 [𝜓̃] (𝑥) . (79)

Following the approach in [38], we derive that the eigenvalue
problem 𝐴 (𝑥) 𝜓 = 𝜂𝐹 (𝑥) 𝜓, 𝑥 ∈ Ω (80)

has a positive eigenvalue 𝜂0 with a positive eigenvector 𝜓(𝑥)
for 𝑥 ∈ Ω. Since 𝜓̃ is positive, it follows that 𝜂0 = 1/R0.
Theorem 12. Suppose thatR0 < 1. 	en the virus-free steady
state 𝐸0 = (𝑇0(𝑥), 0, 0) is locally asymptotically stable.

Proof. Linearizing system (2) around the virus-free steady
state 𝐸0, we have𝜕𝑇 (𝑡, 𝑥)𝜕𝑡 = −𝜇 (𝑥) 𝑇 (𝑡, 𝑥)

− ∫
Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) V (𝑡, 𝑦) 𝑑𝑦,𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 = ∫

Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) V (𝑡, 𝑦) 𝑑𝑦− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) ,𝜕V (𝑡, 𝑥)𝜕𝑡 = ∫

Ω
𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦

− (𝑐 (𝑥) + 𝛾 (𝑥)) V (𝑡, 𝑥)+ 𝑝 (𝑥) 𝐼 (𝑡, 𝑥) .

(81)

Let 𝑇(𝑡, 𝑥) = 𝜓𝑇(𝑥)𝑒𝜂𝑡, 𝐼(𝑡, 𝑥) = 𝜓𝐼(𝑥)𝑒𝜂𝑡, and V(𝑡, 𝑥) =𝜓V(𝑥)𝑒𝜂𝑡 be a solution of system (81). After substitution, we
arrive at𝜂𝜓𝑇 (𝑥) = −𝜇 (𝑥) 𝜓𝑇 (𝑥)

− ∫
Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) 𝜓V (𝑦) 𝑑𝑦,

𝜂𝜓𝐼 (𝑥) = ∫
Ω
𝑓V (𝑥, 𝑦, 𝑇0 (𝑥) , 0) 𝜓V (𝑦) 𝑑𝑦− 𝛿 (𝑥) 𝜓𝐼 (𝑥) ,

𝜂𝜓V (𝑥) = ∫
Ω
𝜃 (𝑥, 𝑦) 𝜓V (𝑦) 𝑑𝑦− (𝑐 (𝑥) + 𝛾 (𝑥)) 𝜓V (𝑥) + 𝑝 (𝑥) 𝜓𝐼 (𝑥) .

(82)

Observe that the first equation of system (82) decouples with
the other two equations. Furthermore, the last two equations
can be rewritten in the form(𝜂𝐼𝑑 − 𝐴) [𝜓] (𝑥) = 𝐹 [𝜓] (𝑥) (83)

where 𝐹 and 𝐴 are defined by (68) and (69), respectively.
By [Theorem 2.2, [39]], the eigenvalue problem (83) has a
principal eigenvalue 𝜂0 with a unique positive eigenfunction.
Lemma 11 implies that 𝜂0 < 0 ifR0 < 1. Otherwise, (𝜓𝐼, 𝜓V) =(0, 0) and then it follows from the first equation of (82) that𝜂 = 0. Therefore, local stability of the virus-free steady state𝐸0 follows immediately.

Next, we show the global attractivity of the virus-free
steady state 𝐸0. To establish this result, we need the following
Volterra-type: 𝑔 (𝑧) = 𝑧 − 1 − ln 𝑧, 𝑧 > 0. (84)𝑔 has the property as follows: for all 𝑧 > 0 𝑔(𝑧) ≥ 0 and the
quality holds if and only if 𝑧 = 1.This function has been used
very often to construct Lyapunov functionals (see, e.g., Yang
et al. [40], Kuniya and Wang [29], and McCluskey [41] and
the references therein).

Theorem 13. Suppose that R0 < 1 and 𝑢 ∈ Γ.	e virus-free
steady state 𝐸0 is globally asymptotically stable.

Proof. For (𝑡, 𝑥) ∈ R+ × Ω, we consider the following
Lyapunov functional:𝑉̂ [𝑢] (𝑡, 𝑥) = Δ (𝑥) 𝑉𝑇 (𝑡, 𝑥) + 𝑉𝐼 (𝑡, 𝑥) + 𝑉V (𝑡, 𝑥) , (85)

where 𝑉𝐼(𝑡, 𝑥) = 𝐼(𝑡, 𝑥), 𝑉V(𝑡, 𝑥) = V(𝑡, 𝑥), 𝑉𝑇(, 𝑥) = 𝑔(𝑇(𝑡,𝑥)/𝑇0(𝑥)), and Δ(𝑥) is a weighted positive function to be
determined later. Based on Lemma 10, 𝑉̂ is well defined.

Taking the derivative of 𝑉𝑇(𝑡, 𝑥) along solutions of (2)
with respect to 𝑡, one arrives at𝜕𝑉𝑇 (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = 1𝑇0 (𝑥) (1 − 𝑇0 (𝑥)𝑇 (𝑡, 𝑥)) 𝜕𝑇 (𝑡, 𝑥)𝜕𝑡

= 1𝑇0 (𝑥) (1 − 𝑇0 (𝑥)𝑇 (𝑡, 𝑥)) (𝜆 (𝑥)
− ∫

Ω
𝑓(𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦) 𝑑𝑦 − 𝜇𝑇 (𝑡, 𝑥))

= 1𝑇0 (𝑥) (1 − 𝑇0 (𝑥)𝑇 (𝑡, 𝑥)) (𝜇 (𝑇0 (𝑥) − 𝑇 (𝑡, 𝑥))
− ∫

Ω
𝑓(𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦) 𝑑𝑦)

= 1𝑇0 (𝑥) [[−
𝜇 (𝑇 (𝑡, 𝑥) − 𝑇0 (𝑥))2𝑇 (𝑡, 𝑥)

− ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦

+ 𝑇0 (𝑥)𝑇 (𝑡, 𝑥) ∫Ω 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦]] .

(86)
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Similarly, we get𝜕𝑉𝐼 (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = ∫Ω 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) (87)

and𝜕𝑉V (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = ∫Ω 𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦 + 𝑝 (𝑥) 𝐼 (𝑡, 𝑥)− (𝑐 (𝑥) + 𝛾 (𝑥)) V (𝑡, 𝑥) . (88)

Therefore, we can pick up Δ(𝑥) = 𝑇0(𝑥) and take a Lyapunov
functional in the form of

𝑉 [𝑢] (𝑡) = ∫
Ω

𝑝 (𝑥) 𝜓V (𝑥)𝛿 (𝑥) [𝑇0 (𝑥) 𝑉𝑇 (𝑡, 𝑥)
+ 𝑉𝐼 (𝑡, 𝑥) + 𝑉V (𝑡, 𝑥)] 𝑑𝑥, (89)

where 𝜓V defined in (82) is a positive eigenvector function
associated with eigenvalue 𝜂0. Then𝑑𝑉 [𝑢] (𝑡)𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = ∫Ω [𝑝 (𝑥) 𝜓V (𝑥)𝛿 (𝑥) (𝑇0 (𝑥) 𝜕𝑉𝑇 (𝑡, 𝑥)𝜕𝑡

+ 𝜕𝑉𝐼 (𝑡, 𝑥)𝜕𝑡 ) + 𝜕𝑉V (𝑡, 𝑥)𝜕𝑡 ] 𝑑𝑥 ≤ ∫
Ω
𝜓V (𝑥)

⋅ [𝑝 (𝑥)𝛿 (𝑥) ∫Ω 𝑓 (𝑥, 𝑦, 𝑇0 (𝑥) , 0) V (𝑡, 𝑦) 𝑑𝑦+ ∫
Ω
𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦 − (𝛾 (𝑥) + 𝑐 (𝑥))

⋅ V (𝑡, 𝑥)] 𝑑𝑥 = ∫
Ω
L [𝜓V] (𝑥) V (𝑡, 𝑥) 𝑑𝑥

= 𝜂0 ∫
Ω
𝜓V (𝑥) V (𝑡, 𝑥) 𝑑𝑥,

(90)

where L is defined by (48). It follows from Theorem 7 that𝑑𝑉[𝑢](𝑡)/𝑑𝑡 ≤ 0 provided that R0 < 1. The equality holds if
and only if V(𝑡, 𝑥) = 0 and 𝑇(𝑡, 𝑥) = 𝑇0(𝑥) for each 𝑥 ∈ Ω.
Therefore, the largest invariant set in𝑀 = {𝑢 ∈ Γ | 𝑉̇(𝑡) = 0}
is {𝐸0}.We employ the LaSalle invariant principle to conclude
that 𝐸0 is globally asymptotically stable.

7. Uniform Persistence

Denote Γ0 = {𝜓 ∈ Γ | 𝜓3 ̸≡ 0} ,𝜕Γ0 = {𝜓 ∈ Γ | 𝜓3 = 0} . (91)

Let 𝑀𝜕 = {𝜓 ∈ 𝜕Γ0 | Φ (𝑡, 𝜓) ∈ 𝜕Γ0 for 𝑡 ∈ R+} , (92)

And let 𝑂+(𝜙) be the positive orbit {Φ𝑡𝜙}𝑡≥0. From Theo-
rem 13, we readily have the following result.

Lemma 14. For every 𝑢0 ∈ 𝑀𝜕, 𝜔(Φ(𝑡, 𝑢0)) = {𝐸0}, where𝜔(Φ(𝑡, 𝑢0)) represents the omega limit set of 𝑂+(𝜙).
The semiflow {Φ𝑡}𝑡≥0 is said to be persistent associated

with (Γ0, 𝜕Γ0) if there exists an 𝜖 such that

lim inf
𝑡󳨀→∞

𝑇 (𝑡, ⋅) ≥ 𝜖,
lim inf
𝑡󳨀→∞

𝐼 (𝑡, ⋅) ≥ 𝜖,
lim inf
𝑡󳨀→∞

V (𝑡, ⋅) ≥ 𝜖 (93)

for any solution 𝑢(𝑡) = (𝑇(𝑡, ⋅), 𝐼(𝑡, ⋅), V(𝑡, ⋅)) with 𝑢(0) ∈ Γ0.
Lemma 15. Let 𝑢(𝑡) = (𝑇(𝑡, ⋅), 𝐼(𝑡, ⋅), V(𝑡, ⋅)) be any solution of
system (2) with the initial value 𝑢0 ∈ Γ0. 	en 𝑢(𝑡, ⋅) > 0 for all𝑡 > 0.
Proof. Proposition 3(iii) has already asserted that 𝑇(𝑡, ⋅) > 0
for 𝑡 > 0. Now we show that 𝐼(𝑡, ⋅) > 0 and V(𝑡, ⋅) > 0 for
all 𝑡 > 0. Moreover, since 𝑢0 = (𝜓1, 𝜓2, 𝜓3) ∈ Γ0, we have𝜓3 ̸= 0. Then a similar argument to that for the proof of
Proposition 3(iii) can also give V(𝑡, ⋅) > 0 for 𝑡 > 0. Now,
from the second equation of (2), it follows that, for 𝑡 > 0,
𝐼 (𝑡, ⋅) ≥ 𝑒−𝛿(𝑥)𝑡 ∫𝑡

0
∫
Ω
𝑓(⋅, 𝑦, 𝑇 (𝑠, ⋅) , V (𝑠, 𝑦) 𝑑𝑦𝑑𝑠 > 0. (94)

Lemma 15 implies that Γ0 is a positive invariant of (2). LetΦ|Γ0 be the restricted semiflow of Φ on R+ × Γ0.
Lemma 16. Suppose thatR0 > 1.	en system (2) is uniformly
weakly persistent.	at is to say that there exists a positive value𝜖 such that, for all 𝜓 ∈ Γ0,

lim sup
𝑡󳨀→∞

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜓) − 𝐸0󵄩󵄩󵄩󵄩∞ ≥ 𝜖. (95)

Proof. For any 𝜖 > 0, define 𝐹𝜖 by
𝐹𝜖 (𝜓𝐼𝜓V) (𝑥)
= (∫

Ω

𝑓 (𝑥, 𝑦, 𝑇0 (𝑥) − 𝜖, 𝜖)𝜖 𝜓V (𝑦) 𝑑𝑦0 ) . (96)

Clearly, 𝐹𝜖 󳨀→ 𝐹 as 𝜖 󳨀→ 0+. Note that 𝑠(Φ̂) = 𝑟(𝐹 − 𝐴) > 0
since R0 > 1. Then, for small enough 𝜖0, 𝜂𝜓 = (𝐹𝜖0 − 𝐴)𝜓
has a positive principle eigenvalue 𝜂𝜖0 > 0 with an associated
eigenvector function 𝜓𝜖0 > 0.

By way of contradiction, assume that the conclusion fails.
Then, for 𝜖0 chosen above, there exists 𝜓𝜀0 ∈ Γ0 (will be
denoted by 𝜓 for simplicity of notation) such that

lim sup
𝑡󳨀→∞

󵄩󵄩󵄩󵄩Φ (𝑡, 𝜓) − 𝐸0󵄩󵄩󵄩󵄩𝑌 < 𝜖02 . (97)
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Then, with a possible shift in time 𝑡 and by Lemma 15, we can
assume that, for 𝑡 ∈ R+, 0 < V (𝑡, 𝑥) ≤ 𝜖0

and 𝑇0 (𝑥) − 𝜖0 ≤ 𝑇 (𝑡, 𝑥) ≤ 𝑇0 (𝑥) + 𝜖0. (98)

Then, by the monotonicity of 𝑓 in 𝑇 and V, we get𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 ≥ ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇0 (𝑥) − 𝜖0, V (𝑡, 𝑦)) 𝑑𝑦− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) . (99)

From Assumption 1 (ii-3), we obtain

𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 ≥ ∫
Ω

𝑓 (𝑥, 𝑦, 𝑇0 (𝑥) − 𝜖0, 𝜖0)𝜖0 V (𝑡, 𝑦) 𝑑𝑦
− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) . (100)

Let 𝑢̃ = (𝐼, Ṽ) be the solution of the following auxiliary system:

𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 = ∫
Ω

𝑓 (𝑥, 𝑦, 𝑇0 (𝑥) − 𝜖0, 𝜖0)𝜖0 Ṽ (𝑡, 𝑦) 𝑑𝑦
− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) , 𝑥 ∈ Ω,𝜕Ṽ (𝑡, 𝑥)𝜕𝑡 = ∫
Ω
𝜃 (𝑥, 𝑦) Ṽ (𝑡, 𝑦) 𝑑𝑦

− (𝛾 (𝑥) + 𝑐 (𝑥)) Ṽ (𝑡, 𝑥)+ 𝑝 (𝑥) 𝐼 (𝑡, 𝑥) , 𝑥 ∈ Ω
(101)

with 𝜓̃ = (𝜓̃(0, ⋅), Ṽ(0, ⋅)) = (𝜓2, 𝜓3). Then we have 𝑢(𝑡, ⋅) ≥𝑢̃(𝑡, ⋅) for 𝑡 ∈ R+. Let 𝜉 > 0 such that 𝜓2 ≥ 𝜉𝜓𝐼𝜖0 and 𝜓3 ≥𝜉𝜓V𝜖0 . By comparison principle, we get

𝑢 (𝑡, ⋅) ≥ 𝑢̃ (𝑡, ⋅) ≥ 𝜉𝑒𝜂𝜖0 𝑡𝜓̃ (⋅) (102)

for 𝑡 ∈ R+. This contradicts with the fact that (𝐼(𝑡, ⋅), V(𝑡, ⋅)) is
bounded and hence the proof is complete.

With the help of Lemmas 15 and 16, we can establish the
uniform persistence.

Theorem 17. If R0 > 1 and 𝑢0 ∈ Γ0, then system (2) is
uniformly strongly persistent and hence the deduced semiflowΦ|Γ0 has a global attractor A in Γ0.
Proof. Define 𝜌 : 𝑌+ 󳨀→ R+ by𝜌 (𝜓) = 𝜓3 for 𝜓 = (𝜓1, 𝜓2, 𝜓3) ∈ 𝑌+. (103)

Clearly, 𝜌−1(R+) ⊂ Γ0. It follows fromLemma 15 that 𝜌 has the
property that 𝜌(Φ(𝑡, 𝜓)) > 0 for 𝑡 > 0 if 𝜌(𝜓) > 0 or 𝜓 ∈ Γ0
with 𝜌(𝜓) = 0. Lemma 14 ensures that, for any 𝜓 ∈ 𝑀𝜕, we
have lim𝑡󳨀→∞Φ(𝑡, 𝜓) = 𝐸0 and hence there is no cycle in 𝜕Γ0
from 𝐸0 to itself. Moreover, Lemma 16 tells us that𝑊𝑆(𝐸0) ∩

Γ0 = 0, where𝑊𝑆(𝐸0) is the stable manifold of 𝐸0. Applying
[42, Theorem 3] gives a positive number 𝜖V such that

min
𝜓∈𝜔(𝜙)

𝜌 (𝜓) > 𝜖V for all 𝜙 ∈ Γ0, (104)

that is
lim inf
𝑡󳨀→∞

V (𝑡, ⋅) > 𝜖V. (105)

Since 𝑓 is continuously differentiable and system (2) is
dissipative, there exists a positive constant𝑀 such that𝜕𝑇 (𝑡, ⋅)𝜕𝑡 ≥ 𝜆 (⋅) − (𝜇 (⋅) + 𝑀)𝑇 (𝑡, ⋅) . (106)

Using comparison principle again, one admits

lim inf
𝑡󳨀→∞

𝑇 (𝑡, ⋅) ≥ 𝜆𝜇 + 𝑀 fl 𝜖𝑇. (107)

Then, it follows from the second equation of system (2) that𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 ≥ ∫
Ω
𝑓 (𝑥, 𝑦, 𝜖𝑇, 𝜖V) 𝑑𝑦 − 𝛿 (𝑥) 𝐼 (𝑡, 𝑥) . (108)

Therefore,

lim inf
𝑡󳨀→∞

𝐼 (𝑡, ⋅) ≥ sup𝑥∈Ω ∫Ω 𝑓 (𝑥, 𝑦, 𝜖𝑇, 𝜖V) 𝑑𝑦𝛿 fl 𝜖𝐼. (109)

Letting 𝜖 = {𝜖𝑇, 𝜖𝐼, 𝜖V} completes the proof.

8. Global Attractivity of Endemic Steady State

This section is devoted to the uniqueness and the global
stability of endemic steady states under R0 > 1 and
some additional condition on 𝑓. The approach is Lyapunov
functional method. Recall that the semiflow Φ on 𝑌+ is
bounded. Then the following result, which follows directly
from this and Theorem 17, is helpful to construct the Lya-
punov functional.

Lemma 18. Suppose that 𝑢(𝑡, 𝑥) = (𝑇(𝑡, 𝑥), 𝐼(𝑡, 𝑥), V(𝑡, 𝑥)) ∈Γ0 is a solution and𝐸∗ = (𝑇∗, 𝐼∗, V∗) is an endemic steady state
of system (2). 	en there exist two positive numbers 𝛿1 and 𝛿2
such that𝛿1 ≤ 𝑇 (𝑡, 𝑥)𝑇∗ (𝑥) , 𝐼 (𝑡, 𝑥)𝐼∗ (𝑥) , V (𝑡, 𝑥)V∗ (𝑥) ≤ 𝛿2

for 𝑡 > 0 and 𝑥 ∈ Ω. (110)

In order to establish the global attractivity of an endemic
steady state, we impose the following hypothesis.

Assumption 19. Suppose that an endemic steady state 𝐸∗ =(𝑇∗, 𝐼∗, V∗) of system (2) satisfies

(𝑇∗ (𝑥)𝑇 − 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))𝑓 (𝑥, 𝑦, 𝑇, V) )
⋅ (𝑇∗ (𝑥)𝑇 − 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V𝑓 (𝑥, 𝑦, 𝑇, V) V∗ (𝑦) ) ≤ 0 (111)

for all 𝑥, 𝑦 ∈ Ω and 𝑇, 𝐼, V > 0.
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Assumption 19 is obviously satisfied if𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑥)) = 𝛽 (𝑥) 𝑇 (𝑡, 𝑥) V𝑝 (𝑡, 𝑥) (112)

or

𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑥)) = 𝛽 (𝑥) 𝑇 (𝑡, 𝑥) V𝑝 (𝑡, 𝑥)1 + V𝑝 (𝑡, 𝑥) , (113)

where 𝑝 ∈ (0, 1].
Theorem 20. Suppose that R0 > 1 and 𝑢0 ∈ Γ0. Under
Assumption 19 and 𝑓(𝑥, 𝑦, 𝑇(𝑥), V(𝑦)) = 𝑓(𝑇(𝑥), V(𝑥)), the
endemic steady state 𝐸∗ of system (2) is globally attractive.

Proof. Consider the Lyapunov functional defined by

𝑉 [𝑢] (𝑡) = ∫
Ω
G (𝑥) 𝑈 (𝑡, 𝑥) 𝑑𝑥, (114)

where G(𝑥) is a strictly positive function to be defined later
and

𝑈 (𝑡, 𝑥) = 𝑉𝑇 (𝑡, 𝑥) + 𝑉𝐼 (𝑡, 𝑥) + 𝛿 (𝑥)𝑝 (𝑥)𝑉V (𝑡, 𝑥) (115)

with

𝑉𝑇 (𝑡, 𝑥) = 𝑇∗ (𝑥) 𝑔 (𝑇 (𝑡, 𝑥)𝑇∗ (𝑥) ) ,
𝑉𝐼 (𝑡, 𝑥) = 𝐼∗ (𝑥) 𝑔 (𝐼 (𝑡, 𝑥)𝐼∗ (𝑥) ) ,
𝑉V (𝑡, 𝑥) = V∗ (𝑥) 𝑔 (V (𝑡, 𝑥)

V∗ (𝑥) ) ,
(116)

and 𝑔 is defined as in the proof of Theorem 13. Lemmas 18
and 15 ensure that 𝑉𝑗(𝑡, 𝑥) (𝑗 = 𝑇, 𝐼, V) are well defined for(𝑡, 𝑥) ∈ (R+ × Ω).

Differentiating 𝑉𝑇(𝑡, 𝑥) along trajectories of system (2)
yields𝜕𝑉𝑇 (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = (1 − 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)) 𝜕𝑇 (𝑡, 𝑥)𝜕𝑡 = (1

− 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)) (𝜆 (𝑥) − 𝜇 (𝑥) 𝑇 (𝑡, 𝑥)
− ∫

Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦) = 𝜇 (𝑥) 𝑇∗ (𝑥)

⋅ (2 − 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥) − 𝑇 (𝑡, 𝑥)𝑇∗ (𝑥) ) + (1 − 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)
⋅ ∫

Ω
𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) 𝑑𝑦

− ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦)

≤ ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) [1 − 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)

− 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))
+ 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) ] 𝑑𝑦.

(117)

Similarly, we get

𝜕𝑉𝐼 (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = (1 − 𝐼∗ (𝑥)𝐼 (𝑡, 𝑥)) 𝜕𝐼 (𝑡, 𝑥)𝜕𝑡 = (1
− 𝐼∗ (𝑥)𝐼 (𝑡, 𝑥)) (∫Ω 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦
− 𝛿 (𝑥) 𝐼 (𝑡, 𝑥)) = ∫

Ω
𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) [1

+ 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − 𝐼 (𝑡, 𝑥)𝐼∗ (𝑥)
− 𝐼∗ (𝑥)𝐼 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) ] 𝑑𝑦

(118)

and𝜕𝑉V (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) = (1 − V∗ (𝑥)
V (𝑡, 𝑥)) 𝜕V (𝑡, 𝑥)𝜕𝑡 = (1

− V∗ (𝑥)
V (𝑡, 𝑥)) (∫Ω 𝜃 (𝑥, 𝑦) V (𝑡, 𝑦) 𝑑𝑦 + 𝑝 (𝑥) 𝐼 (𝑡, 𝑥)

− (𝑐 (𝑥) + 𝛾 (𝑥)) V (𝑡, 𝑥)) = 𝑝 (𝑥) 𝐼∗ (𝑥) (1
− V (𝑡, 𝑥)

V∗ (𝑥) + 𝐼 (𝑡, 𝑥)𝐼∗ (𝑥) − 𝐼 (𝑡, 𝑥)𝐼∗ (𝑥) V∗ (𝑥)
V (𝑡, 𝑥))

+ ∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑦)

⋅ [1 + V (𝑡, 𝑦)
V∗ (𝑦) − V∗ (𝑥) V (𝑡, 𝑦)

V (𝑡, 𝑥) V∗ (𝑦) − V (𝑡, 𝑥)
V∗ (𝑥) ] 𝑑𝑦.

(119)

Remember that 𝐼∗(𝑥) = (∫Ω 𝑓(𝑥, 𝑦, 𝑇∗(𝑥), V∗(𝑦))𝑑𝑦)/𝛿(𝑥).
Then we substitute (117)–(119) into 𝑈(𝑡, 𝑥) to obtain

𝜕𝑈 (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2) ≤ ∫Ω 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) [3
− 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥) + 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))
− 𝐼∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝐼 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − V (𝑡, 𝑥)

V∗ (𝑥)
− 𝐼 (𝑡, 𝑥)𝐼∗ (𝑥) V∗ (𝑥)

V (𝑡, 𝑥)] 𝑑𝑦 + 𝛿 (𝑥)𝑝 (𝑥) ∫Ω 𝜃 (𝑥, 𝑦)
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⋅ V∗ (𝑦) [1 + V (𝑡, 𝑦)
V∗ (𝑦) − V∗ (𝑥) V (𝑡, 𝑦)

V (𝑡, 𝑥) V∗ (𝑦)
− V (𝑡, 𝑥)

V∗ (𝑥) ] 𝑑𝑦.
(120)

We will rearrange the terms in (120) as follows.
First note that

3 − 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥) + 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))
− 𝐼∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝐼 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − V (𝑡, 𝑥)

V∗ (𝑥)
− V∗ (𝑥) V (𝑡, 𝑦)
V (𝑡, 𝑥) V∗ (𝑦) = − [𝑔( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥))

+ 𝑔(𝐼∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝐼 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) )
+ 𝑔(𝐼 (𝑡, 𝑥) V∗ (𝑥)𝐼∗ (𝑥) V (𝑡, 𝑥))]
+ 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − V (𝑡, 𝑥)

V∗ (𝑥)
+ ln

𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑥)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑥) .

(121)

Now the last term of (121) can be rewritten as𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − V (𝑡, 𝑥)
V∗ (𝑥)

+ ln
𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑥)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑥)

= −𝑔(𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑦))
+ ln V (𝑡, 𝑥)

V∗ (𝑥) − V (𝑡, 𝑥)
V∗ (𝑥) − ln

V (𝑡, 𝑦)
V∗ (𝑦) + V (𝑡, 𝑦)

V∗ (𝑦)
+ 𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑦) − 1
+ 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − V (𝑡, 𝑦)

V∗ (𝑦) .

(122)

Furthermore, the last term of equation (122) can be rear-
ranged to be𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑦) − 1

+ 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − V (𝑡, 𝑦)
V∗ (𝑦)

= 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − 1
+ 𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑦)
× (1 − 𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) )
= (𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) − 1)
⋅ (1 − 𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑦))
= 𝑓(𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))
⋅ 𝑇 (𝑡, 𝑥)𝑇∗ (𝑥) ( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥) − 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)))
× ( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥) − 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑦)) .

(123)

Next we can simplify the factor in the last term of (120) as

∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑦)
⋅ [1 + V (𝑡, 𝑦)

V∗ (𝑦) − V∗ (𝑥) V (𝑡, 𝑦)
V (𝑡, 𝑥) V∗ (𝑦) − V (𝑡, 𝑥)

V∗ (𝑥) ] 𝑑𝑦
= −∫

Ω
𝜃 (𝑥, 𝑦) V∗ (𝑦) 𝑔(V∗ (𝑥) V (𝑡, 𝑦)

V (𝑡, 𝑥) V∗ (𝑦))𝑑𝑦
+ ∫

Ω
𝜃 (𝑥, 𝑦) V∗ (𝑦) [V (𝑡, 𝑦)

V∗ (𝑦) − ln
V (𝑡, 𝑦)
V∗ (𝑦)

− V (𝑡, 𝑥)
V∗ (𝑥) + lnV (𝑡, 𝑥)

V∗ (𝑥) ] 𝑑𝑦

(124)

In summary, we have found

𝜕𝑊 (𝑡, 𝑥)𝜕𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2)
≤ −∫

Ω
𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) [𝑔 ( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)) + 𝑔(𝐼∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))𝐼 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) ) + 𝑔(𝐼 (𝑡, 𝑥) V∗ (𝑥)𝐼∗ (𝑥) V (𝑡, 𝑥)) + 𝑔(𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑇∗ (𝑥) 𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦) V∗ (𝑦)))]𝑑𝑦

+ ∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))
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⋅ 𝑇 (𝑡, 𝑥)𝑇∗ (𝑥) ( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥) − 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))) × ( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)
− 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) V∗ (𝑦))𝑑𝑦
+ ∫

Ω
(𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))

+ 𝛿 (𝑥)𝑝 (𝑥)𝜃 (𝑥, 𝑦)) [V (𝑡, 𝑦)V∗ (𝑦) − ln
V (𝑡, 𝑦)
V∗ (𝑦) − V (𝑡, 𝑥)

V∗ (𝑥) + ln V (𝑡, 𝑥)
V∗ (𝑥) ] 𝑑𝑦

− 𝛿 (𝑥)𝑝 (𝑥) ∫Ω 𝜃 (𝑥, 𝑦) V∗ (𝑦) 𝑔(V∗ (𝑥) V (𝑡, 𝑦)
V (𝑡, 𝑥) V∗ (𝑦))𝑑𝑦.

(125)

If 𝑓(𝑥, 𝑦, 𝑇(𝑥), V(𝑦) = 𝑓(𝑇(𝑥), V(𝑥)), then the last but two
term of (125) is equal to zero. Following [26, Proposition 11.1],
we catch V∗(𝑥) as a positive Borel function onΩ such that

∫
Ω
∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑥) V∗ (𝑦) [V (𝑡, 𝑦)

V∗ (𝑦) − ln
V (𝑡, 𝑦)
V∗ (𝑦)

− V (𝑡, 𝑥)
V∗ (𝑥) + ln V (𝑡, 𝑥)

V∗ (𝑥) ] 𝑑𝑦𝑑𝑥
= ∫

Ω
∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑥) V∗ (𝑦) [V (𝑡, 𝑦)

V∗ (𝑦)
− ln

V (𝑡, 𝑦)
V∗ (𝑦) − V (𝑡, 𝑥)

V∗ (𝑥) + ln V (𝑡, 𝑥)
V∗ (𝑥) ] 𝑑𝑥𝑑𝑦

= ∫
Ω
∫
Ω
𝜃 (𝑦, 𝑥) V∗ (𝑦) V∗ (𝑥) [V (𝑡, 𝑥)

V∗ (𝑥)
− ln V (𝑡, 𝑥)

V∗ (𝑥) − V (𝑡, 𝑦)
V∗ (𝑦) + ln

V (𝑡, 𝑦)
V∗ (𝑦) ] 𝑑𝑦𝑑𝑥

= ∫
Ω
∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑥) V∗ (𝑦) [V (𝑡, 𝑥)

V∗ (𝑥)
− ln V (𝑡, 𝑥)

V∗ (𝑥) − V (𝑡, 𝑦)
V∗ (𝑦) + ln

V (𝑡, 𝑦)
V∗ (𝑦) ] 𝑑𝑦𝑑𝑥.

(126)

Therefore,

2∫
Ω
𝜃 (𝑥, 𝑦) V∗ (𝑥) V∗ (𝑦) [V (𝑡, 𝑦)

V∗ (𝑦) − ln
V (𝑡, 𝑦)
V∗ (𝑦)

− V (𝑡, 𝑥)
V∗ (𝑥) + ln V (𝑡, 𝑥)

V∗ (𝑥) ] 𝑑𝑦𝑑𝑥 = 0.
(127)

Setting G(𝑥) = 2(𝑝(𝑥)V∗(𝑥)/𝛿(𝑥)) and plugging (127) into
(125), we arrive at

𝑑𝑉 (𝑡)𝑑𝑡 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(2)
≤ −2∫

Ω
∫
Ω

𝑝 (𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V∗ (𝑥)𝛿 (𝑥) [𝑔( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)) + 𝑔( 𝐼∗ (𝑥) 𝑓(𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)𝐼 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))) + 𝑔(𝐼 (𝑡, 𝑥) V∗ (𝑥)𝐼∗ (𝑥) V (𝑡, 𝑥)) + 𝑔(𝑇 (𝑡, 𝑥) 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑇∗ (𝑥) 𝑓(𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦) V∗ (𝑦) )]𝑑𝑦𝑑𝑥
+ 2∫

Ω
∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦))

⋅ 𝑝 (𝑥) 𝑇 (𝑡, 𝑥)𝛿 (𝑥) 𝑇∗ (𝑥) V∗ (𝑥) ( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)
− 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))𝑓(𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) × ( 𝑇∗ (𝑥)𝑇 (𝑡, 𝑥)
− 𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦)) V (𝑡, 𝑦)𝑓(𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦) V∗ (𝑦) ) 𝑑𝑦𝑑𝑥
− 2∫

Ω
∫
Ω
𝜃 (𝑥, 𝑦)

⋅ V∗ (𝑥) V∗ (𝑦) 𝑔(V∗ (𝑥) V (𝑡, 𝑦)
V (𝑡, 𝑥) V∗ (𝑦))𝑑𝑦𝑑𝑥.

(128)
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By virtue of 𝑔 and Assumption 19, (𝑑𝑉(𝑡)/𝑑𝑡)|(2) ≤ 0 and the
equality holds if and only if 𝑇 (𝑡, 𝑥) = 𝑇∗ (𝑥) ,

𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V∗ (𝑦))𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) = 1,𝐼 (𝑡, 𝑥) V∗ (𝑥)𝐼∗ (𝑥) V (𝑡, 𝑥) = 1.
(129)

Replacing 𝑇(𝑡, 𝑥) in the first equation of system (2) by 𝑇∗(𝑥),
we have0 = 𝜆 (𝑥) − ∫

Ω
𝑓 (𝑥, 𝑦, 𝑇∗ (𝑥) , V (𝑡, 𝑦)) 𝑑𝑦

− 𝜇 (𝑥) 𝑇∗ (𝑥) . (130)

FromAssumption 1, it is easy to see that V(𝑡, 𝑥) = V∗(𝑥) for all(𝑡, 𝑥) ∈ R+ × Ω. Using the second equation of system (2), we
conclude that the largest invariant set𝑀 = {(𝑇(⋅), 𝐼(⋅), V(⋅)) ∈Γ0 | (𝑑𝑉(𝑡)/𝑑𝑡)|(2) = 0} = {𝐸∗}. Consequently, it follows from
LaSalle Invariance Principle that the endemic steady state 𝐸∗
is globally attractive.

Remark 21. The existence and attractivity of endemic steady
states (see Theorems 9 and 20) indicate that system (2) has a
unique endemic steady state if the conditions of Theorem 20
hold.

9. Numerical Simulations

In this section, we perform numerical experiments to illus-
trate our main theoretical results and compare the effects of
diffusion rate and incidence. For this purpose, we take Ω =[−1, 1] ⊂ R and use the initial values in [29].𝑇 (0, 𝑥) = 0.99 cos (𝜋2 𝑥) ,

𝐼 (0, 𝑥) = 0.01 cos (𝜋2 𝑥) ,
V (0, 𝑥) = 10−6 cos (𝜋2 𝑥) .

(131)

Moreover, we fix the following parameters:𝜆 (𝑥) = 2.0,𝜇 (𝑥) = 0.5,𝛿 (𝑥) = 1,𝑝 (𝑥) = 2,𝛾 (𝑥) = 10,𝑐 (𝑥) = 0.5.
(132)

The incidence rate takes the form𝑓 (𝑥, 𝑦, 𝑇, V) = 𝛽 (𝑥) 𝑇 (𝑡, 𝑥) V (𝑡, 𝑦)1 + 𝛼V (𝑡, 𝑥) , (133)

where 𝛽 (𝑥) = 𝛽 (1 + 0.1 cos (5𝜋𝑥)) , 𝑥 ∈ [−1, 1] (134)

with 𝛽 varying. For the nonlocal effect, we set𝜃 (𝑥, 𝑦) = 1.5𝑑 (𝑥 − 𝑦)2 , (135)

where 𝑑 is the diffusive coefficient. Firstly, we set 𝛽 = 1.1,𝑑 = 10−5, and 𝛼 = 0.5. Then R0 ≈ 0.9219 < 1. Figures 1(a)
and 1(b) show that the density of free viruses approaches zero
as 𝑡 goes to infinity.

Now, we enlarge 𝛽 to 𝛽 = 1.5 and get R0 ≈ 1.257 > 1.
In view ofTheorem 20, the endemic steady state converges to
a spatially positive endemic steady state (see Figures 1(c) and
1(d)).

Secondly, Figure 2(a) shows that increasing the diffusion
rate enhances the infected risk and increases the final infected
size. This means that controlling virions diffusion beats the
viral replication. Figure 2(b) reflects that viral infection
models with bilinear incidence rate have higher infected risk
than ones with saturating incidence rates.

10. Discussion

In this paper, we firstly proposed a within-host viral infection
model with nonlocal diffusion and nonlocal transmission.
Themodel can be considered as a spatial generalization of that
proposed byNowark and Bangham [43], a continuous spatial
model of Funk et al. [9]. We derived the next-generation
operator R and built the relationship between the basic
reproduction number R0 = 𝑟(R) and the spectral bound of
the operatorL (seeTheorem 7).The asymptotic smoothness
of the semiflow Φ was established by Arzelà-Ascoli theorem
in Section 3. The threshold dynamics of system (2) has been
established by constructing suitable Lyapunov functionals.
Biologically, whether or not the viral infection outbreaks is
determined by the basic reproduction numberR0.

Compared with other within-host models with diffusion
(discrete style [9] and continuous style (Laplace operator)
[5]), our model can be considered as a generalization of
the model proposed by Zhao and Ruan [18], where for the
incidence they took the particular form

∫
Ω
𝑓 (𝑥, 𝑦, 𝑇 (𝑡, 𝑥) , V (𝑡, 𝑦)) 𝑑𝑦
= 𝛽 (𝑥) 𝑇 (𝑡, 𝑥) V (𝑡, 𝑥) . (136)

In [18], they adopted the semigroup method to investigate
the asymptotical behavior of system (2). In this paper, we
used functional analysis method together with the Lyapunov
functional method to study the asymptotical stability of the
system. We believe that the method used here can also be
applicable to or be generalized to deal with other nonscalar
systems with nonlocal diffusions.

Data Availability

The artificial data used to support the findings of this study
are included within the article.
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Figure 1: The evolution of the density of free viruses with parameters listed in the text. ((a) and (b)) The variation of the free virus density
with 𝛽 = 1.1. ((c) and (d)) The variation of the free virus density with 𝛽 = 1.5.
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Figure 2:The evolution of the cumulative density of free viruses with parameters as those for Figure 1 except 𝑑 and 𝛼. (a) 𝑑 ∈ [5.1 : 5 : 25.1]
and 𝛼 = 0.5; (b) 𝛼 ∈ [0 : 5 : 20] and 𝑑 = 10−5.
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