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e circular RNAs (circRNAs) have signi�cant e�ects on a variety of biological processes, the dysfunction of which is closely
related to the emergence and development of diseases. erefore, identi�cation of circRNA-disease associations will contribute to
analysing the pathogenesis of diseases. Here, we present a computational model called BRWSP to predict circRNA-disease
associations, which searches paths on a multiple heterogeneous network based on biased randomwalk. Firstly, BRWSP constructs
a multiple heterogeneous network by using circRNAs, diseases, and genes. en, the biased random walk algorithm runs on the
multiple heterogeneous network to search paths between circRNAs and diseases. Finally, the performance of BRWSP is sig-
ni�cantly better than the state-of-the-art algorithms. Furthermore, BRWSP further contributes to the discovery of novel circRNA-
disease associations.

1. Introduction

circRNAs are a special type of endogenous noncoding RNAs
(ncRNAs), which widely exist in the gene expression of
various organisms. e discovery of circRNAs could date
back to the nineteen seventies. Sanger et al. [1] �rst observed
circRNAs in the process of studying plant viruses by using
electron microscopy. circRNAs were gradually found in
di�erent species and cells after the following decades, such as
yeast [2], zebra�sh [3], and mouse [4]. Because of the low
abundance of circRNAs and the lack of known function,
circRNAs have not got more attention for a very long time.

With the rise and development of high-throughput se-
quencing technologies, a large number of circRNAs have
been found and identi�ed [5, 6]. Along with gradually
penetrating to the study of circRNAs, more and more
circRNAs have been identi�ed and published. erefore,
various circRNA databases with di�erent emphases have
been constructed, such as CircR2Disease [7], circBase [8],

exoRBase [9], PlantcircBase [10], circAtlas 2.0 [11], and
CSCD [12]. In addition, the biological function of circRNAs
has also been gradually revealed, such as acting as miRNA
sponges [13], interacting with RNA-binding proteins (RBPs)
[14], participating in transcriptional regulation [15] and so
forth.

Complex diseases seriously threaten human health
[16–18]. erefore, studies on complex diseases have been a
hot topic in the �eld of medicine and bioinformatics [19, 20].
As more and more biological functions of circRNAs have
been revealed, massive evidence has indicated that circRNAs
play an important role in the emergence and development of
complex diseases. According to the reports of Liu et al. [21],
the function of circRNAs was also versatile to function as
microRNA (miRNA) sponges [5, 13] and protein sponges
[22, 23]. For example, the circSMARCA5 [24] and circCFH
[25] have been found to be expressed in a glioma-speci�c
pattern which may be used as the tumor biomarkers.
CircNFIX [26] and circNT5E [27] have been found that they
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play oncogenic roles in glioma, whereas circFBXW7 and
circSHPRH have been reported to function as the tumor
suppressors. Furthermore, circRNAs might become an ideal
choice for gene/protein delivery in future brain cancer
therapies [21].

-e above methods of predicting circRNA-disease as-
sociations are time-consuming and costly. -e disadvantage
can be properly overcome by adopting computational
methods to identify circRNA-disease associations. Due to
the low number of known circRNA-disease associations in
the past years, machine learning methods are not widely
used in the identification of circRNA-disease associations.
However, the research progression of prediction in miRNA-
disease association and lncRNA-disease association would
benefit the development of computational models for
circRNAs [28–30]. Recently, Fan et al. [7] constructed
CircR2Disease database by using the method of literature
retrieval, which provides 661 circRNAs, 100 diseases, and
725 circRNA-disease associations. Another similar database
is circRNA-Disease [31], which provides an opportunity to
identify circRNA-disease associations by using computa-
tional methods. Lei et al. [32] employed a method called
depth-first search to search paths between circRNAs and
diseases in heterogeneous network composed of circRNAs
and diseases and then used the path weighted method to
infer the probability of circRNA-disease based on searched
paths. Fan et al. [33] built a heterogeneous network by using
circRNA similarity network, disease similarity network, and
circRNA-disease associations, and then they employed the
KATZmethod to predict circRNA-disease associations. Xiao
et al. [34] utilized a manifold regularization learning
framework to predict human disease-related circRNAs
based on a heterogeneous circRNA-disease bilayer network.
Zhao et al. [35] proposed a novel computational algorithm to
identify circRNA-disease associations, which is based on the
bipartite network projection and KATZ algorithm.Wei et al.
[36] employed an improved matrix factorization identifi-
cation algorithm to identify circRNA-disease associations.
Yan et al. [37] utilized a DWNN-RLS algorithm based on
regularized least squares of Kronecker product kernel to
identify circRNA-disease associations.

In this paper, we propose a new computational method,
named BRWSP, to identify circRNA-disease associations
based on biased random walk to search paths on a multiple
heterogeneous network. Specifically, BRWSP first establishes
a multiple heterogeneous network by using circRNA
coexpression similarity network, gene similarity network,
disease similarity network, circRNA-gene associations,
circRNA-disease associations, and gene-disease associations.
Containing multiple types of biological data can facilitate a
comprehensive analysis of circRNA-disease associations.
Next, a biased random walk runs on this multiple hetero-
geneous network to search paths between a specific circRNA
and a specific disease. BRWSP then calculates the score of
specific circRNA-disease association by using those searched
paths. Compared with state-of-the-art algorithms, BRWSP
obtains better performance in the identification of circRNA-
disease associations. -e overall framework of BRWSP is
depicted in Figure 1.

2. Materials and Methods

2.1. Motivations

(1) Ba-Alawi et al. [38] used depth-first search algorithm to
traverse all simple paths between a specific drug and a
specific target protein and then aggregated the score
from these searched paths to infer drug-target in-
teractions. -en this algorithm was extended to
identify miRNA-disease associations [39], lncRNA-
disease associations [40], circRNA-disease associations
[32], and microbe-disease associations [41] and ob-
tained satisfactory performance. However, this algo-
rithm needs to search for all paths between a specific
circRNA and a specific disease. If the network is very
enormous, this type of algorithm cannot handle it well.
-erefore, this type of algorithm cannot be well ex-
tended to a multiple heterogeneous network con-
structed by using many different types of biological
networks. Being inspired by [42], a biased randomwalk
is proposed to search paths. Compared with depth-first
search algorithm, it chooses the paths according to the
probabilities (such as Figure 1(c)). -erefore, if the
probability of one path is very smaller than other paths,
it is very likely that the walker will not select this path in
the process of selecting the next path.

(2) Recently, many methods [32–34] have been pro-
posed based on a heterogeneous network to identify
circRNA-disease associations. However, these
methods use fewer biological data and depend
greatly on the known circRNA-disease associations,
which lead to insufficient analysis of circRNA-dis-
ease associations from a variety of biological per-
spectives. -erefore, gene similarity networks and
gene-disease associations are imported to build a
multiple heterogeneous network which contains
circRNA coexpression network, circRNA-disease
associations, and disease similarity network.

2.2. Materials and Preprocessing

2.2.1. circRNA-Disease Associations. -e datasets of
circRNA-disease associations are downloaded from the
CircR2Disease database (http://bioinfo.snnu.edu.cn/) [7].
-e CircR2Disease database contains 725 circRNA-disease
associations consisting of 661 circRNAs and 100 diseases. In
order to ensure the accuracy of data, we only extract
circRNAs with circBase IDs and gene symbols. Finally, 427
circRNA-disease associations, consisting of 372 circRNAs,
330 gene symbols, and 77 diseases, are remained.

2.2.2. Disease Semantic Similarity. -e similarity between
diseases can be calculated by a directed acyclic graph (DAG).
Firstly, we search DOID corresponding to 77 diseases, being
extracted in Section 2.2.1, from the Disease Ontology da-
tabase (http://www.disease-ontology.org/) [43]. After de-
leting diseases without DOID, the dataset contains 55
diseases with DOID, 291 circRNAs, 261 gene symbols, and
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340 circRNA-disease associations. Based on disease ontol-
ogy, Yu et al. [44] created a DOSE package of R, which can
calculate disease semantic similarity by doSim function
based on Wang’s method [45]. In this study, we adopt this
DOSE package to calculate disease semantic similarity.

2.2.3. circRNA Expression Profile. To calculate the circRNA
coexpression similarity network, the circRNA expression
profile is downloaded from the database exoRBase (http://
www.exorbase.org/) [9]. After converting exor_circ_ID to
circBase ID, we eliminate some circRNAs without expres-
sion profile among 291 circRNAs. -e final data contain
expression profile data of 154 circRNAs on 90 samples, 192
circRNA-disease associations consisting of 154 circRNAs
(corresponding to 140 gene symbols) and 48 diseases (being
shown in Figure 2).

2.2.4. Gene-Disease Associations. In order to detect associ-
ations between 48 diseases and 140 genes (corresponding to
circRNAs), we download the integrated gene-disease asso-
ciations from the human_disease_textmining_full.tsv file of
the DISEASE Database [46]. A confidence score is given to
evaluate associations in this database. In order to ensure the
reliability of data, we only select the gene-disease associa-
tions whose confidence score is greater or equal to 2
according to previous research [47]. In total, among 48
diseases and 140 gene symbols, we obtain sufficiently 80

gene-disease associations consisting of 29 diseases and 34
genes.

Besides, we also extract some genes associated with the
48 diseases mentioned above from the DISEASE database
[46] and DisGeNETdatabase [48]. Similarly, we only extract
gene-disease associations with confidence score greater or
equal to 2 for the human_disease_experiments_full.csv file
of the DISEASE database [46]. And for the DisGeNET
database, the gene-disease associations are extracted from
the curated_gene_disease_associations.tsv.gz file. Finally,
among the 48 diseases mentioned above, 2193 disease-gene
associations are extracted, which contain 37 diseases and
1607 disease-related genes.

2.2.5. Constructing Multiple Heterogeneous Network. In this
paper, we extract 140 gene symbols (corresponding to
circRNAs) from CircR2Disease. According to these gene
symbols, gene similarity network is constructed by mapping
gene products to GO annotations [49]. Genes are annotated
by cellular component (CC), molecular function (MF), and
biological process (BP). Herein, we use the biological process
(BP) to measure gene semantic similarity value, which has
been proven to embrace better performance in previous
papers [50]. Finally, the adjacency matrix GS is utilized to
represent the gene similarity network, and the value GS(i, j)

represents a functional similarity value between gene i and
gene j, which can be calculated by the function of geneSim in
the GoSemSim package of R [49].
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Figure 1: -e framework of BRWSP. (a) Some original data are downloaded from corresponding databases. (b) A multiple heterogeneous
network is constructed. (c) Biased random walk algorithm runs on a heterogeneous network to find paths between a specific circRNA and a
specific disease.
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e adjacency matrix CD is constructed to represent
circRNA-disease associations and CD(i, j) is equal to 1
when circRNA c(i) is associated with disease d(j); similarly,
the adjacency of CG and GD is used to describe circRNA-
gene interactions and gene-disease associations, respectively.
Besides, we employ the adjacency matrix DS to describe
disease semantic similarity, in which the DS(i, j) indicates
the semantic similarity between disease d(i) and disease
d(j). For circRNA coexpression similarity CS, CS(i, j)
represents the similarity value between circRNA c(i) and
circRNA c(j), which is calculated by using the Pearson
correlation coe¤cients based on circRNA expression pro�le.

In the process of predicting circRNA-disease associa-
tions, the performance of the algorithm largely depends on
the known circRNA-disease associations. However, the
existing known circRNA-disease associations are still

limited, which will a�ect the accuracy of the algorithm for
predicting circRNA-disease associations. In order to solve
this problem, we calculate the initial score for circRNA-
disease associations based on the gene-disease associations.
e initial score of the association between circRNA i and
disease k is as follows:

InitialScore(i,k) � max genSim gi, dg
k
j( )( ), (1)

where gi is the gene corresponding to circRNA c(i) and dgkj
represents the gene associating with disease d(k).
geneSim(gi, dgkj ) represents the semantic similarity value
between gene gi and gene dgkj calculated by the GoSemSim
package of R [49]; InitialScore(i,k) represents the initial score
of the association of circRNA c(i) and disease d(k). If
CD(i, j) is equal to 0, InitialScore(i,k) will be assigned
CD(i, j) as a new value.

Figure 2: e bipartite graph of circRNA-disease associations.
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Next, a multiple heterogeneous network is constructed
by using circRNA coexpression network, disease similarity
network, gene functional similarity network, and their as-
sociation information, which is represented as follows:

H �

CS CG C D

CGT GS G D

CDT GDT DS

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (2)

where CGT, CDT, and DST are the transposed matrices of
CG, C D, and DS, respectively. To avoid the biases caused by
larger values in the multiple heterogeneous network, H is
utilized to construct a normalized multiple heterogeneous
network NMH � D− (1/2)HD− (1/2), and D is a degree matrix
of H.

-e overall framework of BRWSP is depicted in Figure 3.

2.3. BRWSP Methods

2.3.1. Biased Random Walk to Search Paths. In the paper
[42], DFS can search for more different types of nodes
because it explored a network as deeply as possible. -e
breadth-first search (BFS) can search the neighbourhoods of
source node. Being inspired by it, a biased random walk
algorithm is designed to search paths between circRNAs and
diseases, which combines the advantages of DFS and BFS by
adjusting the BRWSP’s parameter (being explained as
follows).

Formally, let Path � p1, p2, . . . , pL+1  represents one
path between circRNA p1 and disease pL+1. In this Path, pi

represents the node (circRNA or disease) of Path and L
represents the length of Path. Let ck indicate the node
accessed by the kth biased random walk. -e strategy of
selecting the next node is described as follows:

P ck+1 � x ck

 � v, ck− 1 � t  �

Φ(t, v, x)∗NMH(v, x)

i∈Nei(v)NMH(v, i)
, if x ∈ Nei(v), x ∉ Path,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Φ(t, v, x) �

q, if x ∈ Nei(v) andx ∈ Nei(t),

1 − q, otherwise,

⎧⎪⎨

⎪⎩

(3)

where P(ck+1 � x | ck � v, ck− 1 � t) represents the transition
probability of selecting node x the next biased random walk,
and the currently visited node and the last visited node are v

and t, respectively. Nei(v) and Nei(t) represent the
neighbourhoods of v and t, respectively. For parameter q, if q
is assigned a larger value, the nodes of Path are highly
interconnected and belong to communities or similar net-
work clusters (similar to BFS algorithm). Otherwise, the
nodes of Path can more exactly describe a macroview of the
neighbourhood (similar DFS algorithm). In other words, we
can integrate the strategies of DFS and BFS by adjusting the
value of the parameter q. Finally, each neighbourhood of v

can obtain a probability of being visited in the next biased
random walk. A roulette selection algorithm, a simple
random choice based on probability, is employed to ran-
domly select the next node from the neighbourhood of v

based on their probability.-en the selected node is added to
corresponding Path. If k is equal to 1, the next node is
randomly selected from the neighbourhoods of the last node
based on their probability.

In the process of biased random walk to search paths
between circRNA c(i) and disease d(j), the path from c(i) to
d(j) will be saved if its length is less than or equal to L.
Otherwise, the current biased walk fails to search for a
corresponding path. In order to search for more possible
paths between circRNA c(i) and disease d(j), we will repeat
the above steps maxiter times. -erefore, after the biased
random walk, we can get a lot of paths from circRNA c(i) to
disease d(j).

2.3.2. Calculating circRNA-Disease Score Based on Paths.
It is known that circRNA c(i) and disease d(j) are possibly
associated with each other if many paths with higher weight
and shorter length are found among them. -erefore, an
exponential decay function for circRNA c(i) and disease
d(j) is utilized to give more support for paths with high
weight and short length as follows:

score(c(i), d(j)) � 
Pathi∈All Path

⎛⎝ 

len Pathi( )

e�1
We Pathi( ⎞⎠

α×len Pathi( )

,

(4)
where score(c(i), d(j)) represents the score of predicted
association score between circRNA c(i) and disease d(j).
All Path � Path1,Path2, . . . , Pathn  represents all paths we
have searched between circRNA c(i) and disease d(j), where
Pathi represents the ith searched path. We(Pathi) represents
the weight of the eth edge in Pathi. len(Pathi) is the length of
Pathi and the parameter α represents a decay factor.

3. Results and Discussion

3.1. Evaluation Metrics. In this paper, the leave-one-out
cross-validation (LOOCV) is utilized to analyse the per-
formance of BRWSP in the process of predicting circRNA-
disease associations. According to the results of LOOCV, the
receiver operating characteristic (ROC) curve is plotted and
the area under of ROC curve (AUC) is calculated as eval-
uation criteria.
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In the process of predicting circRNA associated with
disease k, the positive samples are those known circRNAs
associated with disease k. Reliable negative samples are
required in the process of evaluation. However, there is no
prior information about the negative samples (non-disease-
related circRNAs). All unknown genes can be regarded as
negative samples. However, there are two disadvantages to
this approach. Firstly, there is no evidence to prove that the
unknown circRNAs are related or unrelated to diseases
currently. It is not scienti�c to make that all unknown genes
are regarded as negative samples. Secondly, this approach
will lead to class-imbalance problem since the number of
known circRNAs is much fewer than the number of un-
known circRNAs. is phenomenon has also been widely
discussed in identifying disease-related genes, miRNAs and
lncRNAs [47,51–53]. erefore, it is not scienti�c to regard
all unknown genes as negative samples. To overcome these
problems and extract reliable negative samples, we �rst
calculate all initial scores of the associations between all
circRNAs and disease k according to equation (1) and ar-
range them in ascending order. e circRNAs whose
number is same with the number of positive samples are
selected as negative samples from the front of the results of
ascending order. If all initial scores are equal to 0, we
randomly select some circRNAs as negative samples from

unknown circRNAs associated with disease k, in which the
number of negative samples is equal to the number of
positive samples. Finally, we can get all predicted scores for
positive samples and negative samples.

3.2. Eects of Parameters. ere are four parameters in the
BRWSP algorithm. Among them, we set the path length L is
equal to 3 based on the previous studies [38–41]. However,
the values of q, maxiter, and decay factor α are unde�ned.
erefore, we set maxiter� 300, q ∈ 0.02, 0.04, 0.06, 0.08,{
0.1, 0.12, 0.14, 0.16, 0.18} and α ∈ 0.5, 1, 1.5, 2, 3, 5{ }. e
experimental results after combining di�erent values of q
and α are listed in Figure 4. Figure 4 shows that the BRWSP
algorithm will get the best AUC value (0.8675) when q� 0.12
and α � 1.

3.3. ComparisonwithOtherMethods. In order to analyse the
performance of the BRWSP algorithm in predicting
circRNA-disease associations, BRWSP (L� 3, q� 0.12,
maxiter� 300, and α � 1) is compared with KATZHCDA
[33], iCircDA-MF [36], RLS-Kron [37, 54], and DFSPW
[38–41]. Herein, for DFSPW algorithm, it �rst searches all
paths between circRNAs and diseases and then calculates the
score between circRNAs and diseases based on paths by

circRNA-disease associations from CircR2Disease 
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formula (4). For DFSPW algorithm’s parameters, the
maximum length of path and the decay factor are equal to 3
and 2.26, respectively, based on the previous study [38–41].
For the convenience of comparison, we apply these com-
putational methods on the same dataset in this paper.

-e comparison results of BRWSP and other algorithms
are shown in Figures 5–7. Obviously, we can observe clearly
from Figure 5 that the AUC value of BRWSP is 0.8675, which
improves the prediction precision by 6.49%, 19.36%, 21.65%,
and 22.81% compared to the KATZHCDA, RLS-Kron,
iCircDA-MF, and DFSPW algorithm, respectively. -e
precision and recall are listed at each top 100 circRNAs in
Figure 7, in which we can find BRWSP get excellent per-
formance. In addition, we calculate the number of circRNAs
with each disease. -en, we arrange them in ascending order
and select the top 4 cancer diseases (breast cancer, stomach
cancer, colorectal cancer, and papillary thyroid carcinoma)
to analysis. -e four common diseases are associated with 24
circRNAs, 22 circRNAs, 13 circRNAs, and 12 circRNAs,
respectively. Figure 7 shows the performance of each al-
gorithm on the four cancer diseases. In a word, we can see
that BRWSP gets the satisfactory performance from
Figures 5–7.
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Figure 4: -e influence of α and q on AUC. (a) α � 0.5, (b) α � 1, (c) α � 1.5, (d) α � 2, (e) α � 3, and (f) α � 5.
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Figure 5: Comparison between BRWSP and other algorithms.

Complexity 7



3.4.9e Effect of Gene Network. One of the highlights of our
paper is that the gene similarity network is utilized to
construct a multiple heterogeneous network with circRNA
coexpression similarity network, disease semantic similarity,
and associations among them. In this section, we analyse its
impact on predicting circRNA-disease associations. In other
words, we run our algorithm on a heterogeneous network
(constructed by circRNA coexpression similarity network,
disease semantic similarity, initial score, and their associa-
tion information) and a multiple heterogeneous network

(constructed by circRNA coexpression similarity network,
gene similarity network, disease semantic similarity, initial
score, and their association information).

Obviously, we can clearly see from Figure 8 that our
algorithm on a multiple heterogeneous network (Mul_-
Het_Net) gets better performance than that on heterogeneous
network (Het_Net). -e difference between Mul_Het_Net
and Het_Net is that Mul_Het_Net introduces gene similarity
network. -erefore, the introduction of gene similarity net-
work is helpful to identify circRNA-disease associations.
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Figure 6: -e precision and recall at top-k circRNAs.
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Figure 7: -e AUC performance of different algorithms for 4 common diseases.
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3.5. Case Study. To further demonstrate the effectiveness of
BRWSP (L� 3, q� 0.12,maxiter� 300, and α � 1) in predicting
new circRNA-disease associations, a case study is performed
for colorectal cancer, which is associated with 13 circRNAs
(being shown in Table 1). In the process of experiment, 13
circRNAs associating with colorectal cancer are still assigned as
training data and other circRNAs act as candidate samples. At
the end of the prediction, we rank the score of candidate
samples in descending order, and then the top 20 candidate
samples (circRNAs) are selected.-e literature mining method
and interaction network method are utilized to analyse asso-
ciations between them and colorectal cancer.

-e result of the literature validation method is shown in
Table 2. For the fourth column in Table 2, if there is a
corresponding literature indicating that the gene corre-
sponding to circRNA is associated with colorectal cancer,
and the corresponding position in the fourth column is set
the corresponding literature’s PMID, otherwise “-”. Obvi-
ously, we can clearly see that there are 12 literature studies to
support our result from Table 2.

Interaction network method is to show the host gene of
circRNA interacts with disease genes in PPI network and
Pathway network. If host gene of predicted circRNA interacts
with disease genes, this phenomenon indicates that the pre-
dicted circRNA is likely to be associated with the corresponding
disease. Genes associating with colorectal cancer are extracted
from the DISEASE database [46] and DisGeNETdatabase [48];
protein-protein interaction (PPI) network and Pathway net-
work are extracted from the research [55]. -en, we extract the
interaction between genes associatingwith colorectal cancer and
genes corresponding top 20 circRNAs in PPI network and
Pathway network.-e final analysis result is shown in Figure 9.
We can clearly observe that 11 genes corresponding to
circRNAs interact with colorectal cancer genes. -e gene
POLD1 is not just colorectal gene and also associated with
hsa_circ_0052012. In addition, three sets of connected graphs
are constructed by predicted circRNAs, the host gene of pre-
dicted circRNAs, and colorectal cancer genes. -e first set of
connected graph contains hsa_circ_0067531, hsa_circ_0002362,
hsa_circ_0091894, hsa_circ_0000893, hsa_circ_0052012,
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Figure 8: -e effect of BRWSP on different networks.

Table 1: -e known 13 circRNAs for colorectal cancer in the CircR2Disease database.

circRNA name circBase ID Gene symbol PMID
hsa_circ_0000284/circHIPK3 hsa_circ_0000284 HIPK3 29549306/27050392
hsa_circ_0000567 hsa_circ_0000567 SETD3 29333615
hsa_circ_0001313/circCCDC66 hsa_circ_0001313 CCDC66 28249903
hsa_circ_0001649 hsa_circ_0001649 SHPRH 29421663
hsa_circ_0000504 hsa_circ_0000504 TUBGCP3 28656150
CDR1as/ciRS-7/hsa_circ_0001946 hsa_circ_0001946 CDR1 28174233/28435295
hsa_circ_0014717 hsa_circ_0014717 CCT3 29571246
hsa_circ_0007534 hsa_circ_0007534 DDX42 29364478
hsa_circ_0000069 hsa_circ_0000069 STIL 28003761
hsa_circ_0007031 hsa_circ_0007031 TUBGCP3 28656150
circ-KLDHC10/hsa_circ_0082333 hsa_circ_0082333 KLHDC10 26138677
hsa_circ_0000677/hsa_circ_001569/circABCC hsa_circ_0000677 ABCC1 27058418
hsa_circ_0008509 hsa_circ_0008509 NAV3 28656150
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hsa_circ_0006022, hsa_circ_0008719, hsa_circ_0008615, hsa_-
circ_0001727, the host gene of the predicted circRNAs, and
corresponding disease genes.-e second set of connected graph
includes hsa_circ_0021549, hsa_circ_0021553, MPPED2, and
CAGE1. Similarly, the hsa_circ_0064996, SNRK, and STK11
construct the third set of connected graph.

4. Conclusion

In this study, we propose a novel path weighted computational
method, named BRWSP, to predict circRNA-disease associa-
tions. Highlights of BRWSP are to construct a multiple

heterogeneous network and to employ the biased randomwalk
strategy to search paths between circRNAs and diseases. Firstly,
BRWSP constructs a multiple heterogeneous network by using
circRNA similarity network, gene similarity network, disease
similarity network, and their associations, which can analyse
the circRNA-disease associations from different biological
perspectives. Secondly, the biased random walk is employed to
search paths, which can eliminate some low probability paths.
Experimental results show that BRWSP receives a satisfactory
performance compared with other algorithms.

Although the BRWSP can effectively predict circRNA-
disease associations, it still has several shortcomings. Firstly,

Table 2: Literature validation of the top 20 results.

Rank circRNA Gene symbol PMID Rank circRNA Gene symbol PMID
1 hsa_circ_0067531 PIK3CB 26747178 11 hsa_circ_0001875 FAM120A 26682245
2 hsa_circ_0002362 ASAP2 — 12 hsa_circ_0064996 SNRK —
3 hsa_circ_0021553 MPPED2 30846004 13 hsa_circ_0052012 POLD1 26133394
4 hsa_circ_0026143 TROAP 30021381 14 hsa_circ_0005218 FAM120A 26682245
5 hsa_circ_0021549 MPPED2 30846004 15 hsa_circ_0008615 PPP1R13L —
6 hsa_circ_0041150 RPH3AL 21536019 16 hsa_circ_0000893 DHPS —
7 hsa_circ_0072088 ZFR 31010678 17 hsa_circ_0091894 FLNA 31002357
8 hsa_circ_0001400 RELL1 — 18 hsa_circ_0001727 ZKSCAN1 —
9 hsa_circ_0002577 WDR26 — 19 hsa_circ_0006022 LYN 29188362
10 hsa_circ_0001666 FAM120B — 20 hsa_circ_0008719 AKT2 28837154
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Figure 9: -e interaction network method validated the top 20 results. Red nodes represent the circRNAs; pink nodes represent genes
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we only use a small amount of circRNA-disease associations
and do not consider those circRNAs without gene symbol,
circBase ID, and expression profile information. Besides,
BRWSP has to consider four parameters (maxiter, p, L, and
α). -erefore, it is a challenge about how to select optimal
parameters in different situations. In a word, these limita-
tions will encourage us to do further research studies in the
future work.
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