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In this study, an applicable and e�ectivemethod, which is based on a least-squares residual power seriesmethod (LSRPSM), is proposed
to solve the time-fractional di�erential equations. �e least-squares residual power series method combines the residual power series
method with the least-squares method.�ese calculations depend on the sense of Caputo. Firstly, using the classic residual power series
method, the analytical solution can be solved. Secondly, the concept of fractional Wronskian is introduced, which is applied to validate
the linear independence of the functions. �irdly, a linear combination of the �rst few terms as an approximate solution is used, which
contains unknown coe�cients. Finally, the least-squares method is proposed to obtain the unknown coe�cients. �e approximate
solutions are solved by the least-squares residual power series method with the fewer expansion terms than the classic residual power
series method. �e examples are shown in datum and images.�e examples show that the new method has an accelerate convergence
than the classic residual power series method.

1. Introduction

�e fractional calculation has been a popular topic for the past
few years. Leibniz and L’Hopital were the �rst to propose
fractional di�erential equations. Fractional di�erential equa-
tions are applied to many di�erent �elds, such as control
science and engineering [1] and computer science and tech-
nology [2]. Many researchers have studied di�erent theories in
fractional di�erential equations. �ere are many di�erent
approximate analytical methods to solve fractional di�erential
equations, such as the homotopy analysis transform method
[3], (G′/G)-expansion method [4], homotopy perturbation
method [5], and variational iteration method [6].

In recent years, a new method has been proposed to solve
the fractional di�erential equations by the fractional residual
power series method, which was used to �nd the analytical
solution for several classes of fractional di�erential equations.
Many scholars have devoted themselves to the study of this
�eld. In [7], the time-fractional foam drainage equation was
worked out by the residual power series method. Wang and
Chen [8] proposed that the residual power series can be

applied to time-fractional Whitham–Broer–Kaup equations.
�e fractional variation of the (1 + 1)-dimensional Biswas–
Milovic equation [9] was �gured out by the residual power
series method. Alquran et al. [10] solved the time-fractional
Phi-4 equation by the residual power method. A system of
multipantograph delay di�erential equations using the re-
sidual power series method was calculated by Komashynska
et al. [11]. �e approximate solutions for the time-fractional
Sharma–Tasso–Olever equation [12] were solved by the re-
sidual power series method. In [13], an approach was applied
to �nd the exact solutions of fractional-order time-dependent
Schrödinger equations.�e residual power series method was
also used for many other problems, such as the gas dynamic
equation [14], the fractional initial Emden–Fowler equation
[15], the generalized Berger-Fisher equation [16], and the
nonlinear time-space-fractional Benney–Lin equation [17].

Recently, some existing methods have been modi�ed by
the least-squares method so that the approximate solution
achieves higher accuracy. Kumar and Koundal [18] pro-
posed an approach in which the system of nonlinear frac-
tional partial di�erential equations was �gured out by
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generalized least-squares homotopy perturbations. ,e ap-
proximate analytical solutions for nonlinear differential
equations were solved by the least-squares homotopy per-
turbation method [19]. ,e linear and nonlinear fractional
partial differential equations were figured out by the least-
squares homotopy perturbation method [20].

In this paper, the least-squares method is combined with
the residual power series method, which is called the least-
squares residual power series method (LSRPSM). Compared
with the classic residual power series method, a more ac-
curate approximate solution with fewer expansion terms can
be obtained by the new method.

,e rest of the structure is as follows. In Section 2, some
basic definitions about the sense of Caputo and fractional
partial Wronskian are introduced. In Section 3, the least-
squares residual power series method is proposed with
necessary definitions. Numerical results and discussions are
presented by graphics and charts in Section 4. At last, the
conclusion is drawn in Section 5.

2. Basic Definitions

In this section, the definition of the Caputo fractional is
introduced systematically. ,is section also presents the
definition of fractional partial Wronskian.

Definition 1 (see [21–23]). ,e Riemann–Liouville fractional
integral operator of order α≥ 0 is defined as

J
α
f(t) �

1
Γ(α)


t

0

f(s)

(t − s)1− α ds �
1
Γ(α)

t
α− 1 ∗f(t), α> 0, t> 0,

f(t), α � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where tα− 1 ∗f(t) is the convolution product of tα− 1 and
f(t).

For the Riemann–Liouville fractional integral, we have

(1) Jαtβ � Γ(β + 1)/Γ(β + α + 1)tα+β, β> − 1,

(2) Jα(λf(t) + μg(t)) � λJαf(t) + μJαg(t),

where λ and μ are real constants.

Definition 2 (see [24, 25]). Let f(t) : [0, +∞) be a function
and α be the upper positive integer of α (α> 0). ,e Caputo
fractional derivative is defined by

D
α
f(t) �

1
Γ(α − α)


t

0

f(α)(s)

(t − s)α+1−α ds, α − 1< α≤ α, n ∈ N.

(2)

For the Caputo derivative, we have

(1) DαJαf(t) � f(t),

(2) JαDαf(t) � f(t) − 
n− 1
i�0 y(i)(0)(ti/i!),

(3) Dαtβ �
(Γ(β + 1)/Γ(β + 1 − α))tβ− α, β≥ α,

0, β< α,


(4) Dαc � 0,

(5) Dα(λf(t) + μg(t)) � λDαf(t) + μDαg(t),

where λ, μ, and c are real constants.

Definition 3 (see [18]). Let Φ1,Φ2, . . . ,Φn be n functions of
variables x and t which are defined on domain Ω; then,
fractional partial Wronskian of Φ1,Φ2, . . . ,Φn is

W
α Φ1,Φ2, . . . ,Φn  �

Φ1 Φ2 Φ3 · · · Φn

DαΦ1 DαΦ2 DαΦ3 · · · DαΦn

D2αΦ1 D2αΦ2 D2αΦ3 · · · D2αΦn

⋮ ⋮ ⋮ ⋮ ⋮
Dα(n− 1)Φ1 Dα(n− 1)Φ2 Dα(n− 1)Φ3 · · · Dα(n− 1)Φn





, (3)

where Dα(Φi) � (z/zx + zα/ztα)(Φi) and Dnα � Dα·

Dα · · · Dα(n − times) for 0< α≤ 1 and i � 1, 2, 3, . . . , n.

Theorem 1 (see [18]). If the fractional partial Wronskian of
n functionsΦ1(x, t),Φ2(x, t), . . . ,Φn(x, t) is nonzero, at last
at one point of the domain Ω � [a, b] × [a, b], then functions
Φ1(x, t),Φ2(x, t), . . . ,Φn(x, t) are said to be linearly
independent.

3. Direct Method of Least-Squares Residual
Power Series Method (LSRPSM)

In this section, the general procedure of the least-squares
residual power series method is proposed. Based on the
classic residual power series method, the method of

combining residual power series with the least-squares
method is used for the time-fractional differential
equations.

3.1. Classic Residual Power Series Method. We consider the
following time-fractional differential equation:

L
α
(u(x, t)) + N(u(x, t)) � 0, t> 0, 0< α≤ 1, (4)

with

I(u) � 0, (5)

where L is a linear operator, N is a nonlinear operator,
u(x, t) is an unknown function, and I is an initial condition.
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Following the classic residual power series method
[26, 27], the algorithm can be proposed by

u(x, t) � 
∞

n�0
fn(x)

tnα

Γ(1 + nα)
. (6)

In order to obtain the approximate value of (6), the form
of the ith series of u(x, t) is proposed. ,en, the truncated
series ui(x, t) is defined by

ui(x, t) � 
i

n�0
fn(x)

tnα

Γ(1 + nα)
. (7)

With the initial condition I(u) � 0, we define the ith
residual function as follows:

Resi(x, t) � L
α

ui(x, t)(  + N ui(x, t)( . (8)

In order to getfn(x), n ∈ N∗ , we look for the solution of

D
(n− 1)α
t Resi(x, 0) � 0, i ∈ N

∗
, (9)

where N∗ � 1, 2, 3, . . .{ }.
Here, classic residual power series method will give the

ith-order approximate solutions with

ui � ϕ0 + ϕ1 + u2 + · · · + ϕi, (10)

where
ϕ0 � f0(x),

ϕ1 � f1(x)
tα

Γ(1 + α)
,

ϕ2 � f2(x)
t2α

Γ(1 + 2α)
,

⋮

ϕi � fi(x)
tiα

Γ(1 + iα)
.

(11)

Theorem 2 (see [28]) (convergence theorem). Suppose that
u(x,t) ∈C([r, t0] × [r,t0 + r]), Diα

t u(x,t) ∈C([r, t0] × [r,t0+

r]) for i � 0,1,2, . . . ,N +1, where 0≤m − 1<α≤m and
Diα

t u(x,t) can be differentiated m − 1 with respect to t on
(t0, t0 + r). 7en,

u(x, t) � 
m− 1

j�0


N

i�0
Uj+iα(x) t − t0( 

j+iα
, (12)

where

Uj+iα(x) �
D

j+iα
t

Γ(j + iα + 1)
u x, t0( , (13)

and r is the radius of convergence.

Moreover, there exists a value ξ, where 0≤ ξ ≤ t so that
the error term rN(x, t) has the form

rN(x, t)





 � Supt∈[0,T] 

m− 1

j�0

D(N+1)α+ju(x, ξ)t(N+1)α+j

Γ((N + 1)α + i + 1)
 




.

(14)

According to ,eorem 1, we can obtain

lim
i⟶∞

ui(x, t) � u(x, t), (15)

so

lim
i⟶∞

Res x, t, ui(x, t)(  � Res(x, t, u(x, t)) � 0. (16)

3.2. Least-Squares Residual Power Series Method. ,e pro-
cedure of the least-squares residual power series method is
presented, and some definitions we require are proposed in
this section.

Let the remainder Res for the differential equation (4) be
Res(x, t, u) � L

α
(u(x, t)) + N(u(x, t)), x, t ∈ R,

(17)

with the condition

I(u) � 0, (18)

where u is the approximate solution of equation (4).

Remark 1. If

lim
i⟶∞

Res x, t, s
α
i (x, t)(  � 0, (19)

sαi (x, t) i∈N∗ converge to the solution of equation (4).

Definition 4. We say u is the ε-approximate residual power
series method solution of equation (4) on domain Ω if

| Res(x, t, u)|< ε, (20)

and (18) is also satisfied by u.

Definition 5. We call u is the weak ε-approximate residual
power series method solution of equation (4) on domainΩ if

B
Ω

Res2(x, t, u)dx dt≤ ε, (21)

and (18) is also satisfied by u.
We propose the following steps for the least-squares

residual power series method.

Step 1. We use the classic residual power series method.,e
form of ui(x, t) can be written as

ui(x, t) � 

i

n�0
fn(x)

tnα

Γ(1 + nα)
, (22)

and the ith residual function is as follows:

Resi(x, t) � L
α

ui(x, t)(  + N ui(x, t)( . (23)

,en, we look for the solution of fn(x) by
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D
(n− 1)α
t Resi(x, 0) � 0, i ∈ N

∗
, (24)

where N∗ � 1, 2, 3, . . .{ }.
Here the classic residual power series method will give

the ith-order approximate solutions with

ui � ϕ0 + ϕ1 + ϕ2 + · · · + ϕi, (25)

where ϕ0,ϕ1, . . . ,ϕi can be calculated by (11).

Step 2. ,e linearly independent functions can be verified by

W
α ϕ0, ϕ1,ϕ2, . . . ,ϕi  �

ϕ0 ϕ1 ϕ2 · · · ϕi

Dαϕ0 Dαϕ1 Dαϕ2 · · · Dαϕi

D2αϕ0 D2αϕ1 D2αϕ2 · · · D2αϕi

⋮ ⋮ ⋮ ⋮ ⋮

Dα(n− 1)ϕ0 Dα(n− 1)ϕ1 Dα(n− 1)ϕ2 · · · Dα(n− 1)ϕi





≠ 0, (26)

where Dα � (z/zx + zα/ztα), 0< α≤ 1.
Let Si � ϕ0,ϕ1, . . . ,ϕi , where i � 0, 1, 2, . . . and the

elements of Si are linearly independent in the vector space of
continuous functions defined on R.

Remark 2. If we cannot find the point so that the value of
Wα[ϕ0, ϕ1,ϕ2, . . . ,ϕi] is not 0, the set Si is linearly de-
pendent. So, we must use the classic residual power series
method in this case.

Step 3. Assume

ui � 

i

n�0
k

n
i ϕr, (27)

as the approximate solution of equation (4). And
substituting the approximate solution ui in (17), we obtain

Res x, t, k
n
i(  � Res x, t, ui( . (28)

Step 4. We attach to the following functional:

minJ � B
Ω

Res2 x, t, kn
i(  dx dt, (29)

Here, we calculate some constants kn
i (km+1

i , km+2
i , . . . , kn

i ).
We compute the values of k

m+1
i , k

m+2
i , . . . , k

n

i as the
values which give the minimum of (29) and the values of
k
0
i , k

1
i , . . . , k

m

i again as functions of k
m+1
i , k

m+2
i , . . . , k

n

i by
using the initial conditions.

So, we can obtain the value of sαi (x, t) by solving (29):

s
α
i (x, t) � 

i

n�0

k
n

i ϕr. (30)

From (27)–(30), we can get
Res2 x, t, s

α
i (x, t)( ≤ Res2 x, t, ui(x, t)( . (31)

Theorem 3. 7e values of sαi (x, t) from (30) satisfy the
property:

lim
i⟶∞

B
Ω

Res2 x, t, s
α
i (x, t)( dx dt � 0. (32)

Proof. Based on the way that sαi (x, t) is computed, the
following inequality holds:

B
Ω

Res2 x, t, s
α
i (x, t)( dx dt≥ 0. (33)

Also, from (31) we have

B
Ω

Res2 x, t, ui(x, t)( dx dt≥B
Ω

Res2 x, t, s
α
i (x, t)( dx dt,

∀i ∈ N.

(34)

,en, according to the convergence of the residual power
series solution from (16), we can get

0≤ lim
i⟶∞

B
Ω

Res2 x, t, s
α
i (x, t)( dx dt,

≤ lim
i⟶∞

B
Ω

Res2 x, t, ui(x, t)( dx dt � 0.

(35)

,e ϵ-approximate residual power series solutions
sαi (x, t) are also the weak solutions of equation (4). □

4. Illustrative Examples

In this section, some examples are presented by the least-
squares residual power series method (LSRPSM). Using
the new method, we usually compute the initial iterations
by the fractional residual power series method, the rest can
be ignored. ,en, the least-squares method is applied, and
the unknown coefficients are obtained. ,e approximate
solutions are calculated by Maple in Windows 7 (64 bit).
We analyse the approximate solutions by charts and
graphics.

Example 1. Consider the following time-fractional
Fornberg–Whitham equation:

D
α
t u − Dxxtu + Dxu � uDxxxu − uDxu

+ 3DxuDxxu, t> 0, 0< α≤ 1,
(36)
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with the initial condition

u(x, 0) �
4
3
exp

x

2
 , (37)

and the exact solution when α � 1 is

u(x, t) �
4
3
exp

x

2
−
2t

3
 . (38)

Using the classic residual power series method, we can
obtain the following equations [29]:

ϕ0(x, t) �
4
3
exp

x

2
 ,

ϕ1(x, t) � −
2
3
exp

x

2
 

tα

Γ(1 + α)
,

ϕ2(x, t) �
1
3
exp

x

2
 

t2α

Γ(1 + 2α)
.

(39)

,en,

W
α ϕ0, ϕ1,ϕ2  �

4
3
exp

x

2
  −

2
3
exp

x

2
 

tα

Γ(1 + α)

1
3
exp

x

2
 

t2α

Γ(1 + 2α)

Dα4
3
exp

x

2
  Dα −

2
3
exp

x

2
 

tα

Γ(1 + α)
  Dα1

3
exp

x

2
 

t2α

Γ(1 + 2α)

D2α4
3
exp

x

2
  D2α −

2
3
exp

x

2
 

tα

Γ(1 + α)
  D2α1

3
exp

x

2
 

t2α

Γ(1 + 2α)





. (40)

When α � 1, x � 0, t � 0.5, W1[ϕ0, ϕ1, ϕ2]≠ 0. Hence,
the functions ϕ0,ϕ1, and ϕ2 are linearly independent.

So, we can obtain the approximate solution, which can
be written as

u � k0
4
3
exp

x

2
  + k1 −

2
3
exp

x

2
 

tα

Γ(1 + α)
 

+ k2
1
3
exp

x

2
 

t2α

Γ(1 + 2α)
.

(41)

From (36), we can get the residual function
Res(x, t, u) � D

α
t u − Dxxtu + Dxu − uDxxxu + uDxu

− 3DxuDxxu,

(42)

with the initial condition

u(x, 0) �
4
3
exp

x

2
 . (43)

Using the given condition (43) in (41), we get k0 � 1. So,
(41) can be written as

u �
4
3
exp

x

2
  + k1 −

2
3
exp

x

2
 

tα

Γ(1 + α)
 

+ k2
1
3
exp

x

2
 

t2α

Γ(1 + 2α)
.

(44)

So, we can obtain Res by substituting (44) into (42).
,en, the functional J will be

J k1, k2(  � B
Ω

Res2 x, t, k1, k2( dx dt. (45)

We compute the functional J of (45). We receive two
algebraic equations as

zJ

zk1
� 0,

zJ

zk2
� 0,

(46)

and then we determine the unknown coefficients of (46)
when α � 1:

k1 � 1.29503916449089,

k2 � 1.28807658833778.
(47)

In Figure 1, the exact solutions and the approximate
solutions using the least-squares residual power series
method are presented by the three-dimensional graphics.
Figure 1(a) presents the exact solution and Figure 1(b)
presents the approximate solution when
α � 1, 0≤ t≤ 1, − 10≤x≤ 10. ,ere are little differences be-
tween Figures 1(a) and 1(b). So, the approximate solution is
accurate when the values of α approach 1.

We present the absolute errors between the exact so-
lutions and the approximate solutions by the new method.
,e absolute error can be written as

error � ui(x, t) − u(x, t)


. (48)

As is shown in Table 1, we present the absolute error
between different values of x and t when
α � 1, 0≤ t≤ 1, − 10≤x≤ 10. For each item in the table, the
upper corner is the name of the method, and the lower
corner is the number of items expanded under the method.
And the least-squares residual power series method
(LSRPSM) with ui(x, t) when i � 2 is compared with the
classic residual power series method (RPSM) with ui(x, t)

when i � 5, as shown in Table 1.
From Table 1, we can find that the absolute errors by the

least-squares residual power series method with different x
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and t between the approximate solutions and the exact
solutions are within the acceptable range. ,e range of
magnitude of absolute errors is from 10− 3 to 10− 7. ,e
smaller the value of the variable t with fixed x is, the bigger
the absolute errors are. In the meantime, the smaller the
value of the variable x with fixed t is, the smaller the absolute
errors are. Comparing the classical method with our new
method, we found that the new method has high accuracy.

Using the same method, the linearly independent
functions can be verified when α � 0.35, 0.55, 0.75, 0.95.
,en, we can obtain the unknown coefficients k1 and k2,
respectively, by using the least-squares method.

Figure 2 shows the influence of different α on the ap-
proximate solutions when 0≤ t≤ 1, − 10≤ x≤ 10. Figure 2(a)
presents approximate solutions for α � 0.35, Figure 2(b)
presents approximate solutions when α � 0.55, and
Figures 2(c) and 2(d) show the approximate solutions when
α � 0.75 and α � 0.95.

From Figure 2, the larger the value of α, the smoother the
plane. As the parameter α increases, the graphics get closer
and closer to the exact solution of the graphic.

For any α ∈ (0, 1], the exact value of | Res(x, t)| is 0. ,e
distinction between the 2thapproximate solutions and the
exact solutions can be shown by the values of | Res(x, t)|. So,
we can use the values of | Res(x, t)| to represent the deviation
between the approximate solution and the exact solution.

Using the same method, the linearly independent
functions can be verified when α � 0.2, 0.4. ,en, the un-
known coefficients k1 and k2 can be solved, respectively, by
using the least-squares method. And we compare the results
of the least-squares residual power series method (LSRPSM),
the residual power series method (RPSM) and the variational
iteration method (VIM) [30]. ,e approximate solutions of
VIM can be written as

u0(x, t) �
4
3
exp

x

2
 ,

u1(x, t) �
2
3
exp

x

2
 (2 − t),

u2(x, t) �
1
6
exp

x

2
  8 − 9t + t

2
+

4t2− α

Γ(3 − α)
 .

(49)

Table 1: Absolute errors by LSRPSM and RPSM for α � 1.

x t u(x, t)exact ui(x, t)LSRPSMi�2 Error(x, t)LSRPSMi�2 Error(x, t)RPSMi�5

− 10

0.1 8.4045 × 10− 3 8.4167 × 10− 3 1.2138659 × 10− 5 1.4124929 × 10− 4

0.2 7.8625 × 10− 3 7.8783 × 10− 3 1.5839983 × 10− 5 1.5839983 × 10− 5

0.3 7.3554 × 10− 3 7.3689 × 10− 3 1.3513929 × 10− 5 3.7712027 × 10− 4

0.4 6.8810 × 10− 3 6.8885 × 10− 3 7.4149830 × 10− 6 4.7437238 × 10− 4

0.5 6.4373 × 10− 3 6.4369 × 10− 3 3.4775600 × 10− 7 5.5942160 × 10− 4

− 5

0.1 1.0239 × 10− 1 1.0254 × 10− 1 1.4787910 × 10− 4 1.7207686 × 10− 3

0.2 9.5785 × 10− 2 9.5978 × 10− 2 1.9297050 × 10− 4 3.2466366 × 10− 3

0.3 8.9607 × 10− 2 8.9772 × 10− 2 1.6463335 × 10− 4 4.5942654 × 10− 3

0.4 8.3828 × 10− 2 8.3919 × 10− 2 9.0332970 × 10− 5 5.7790387 × 10− 3

0.5 7.8422 × 10− 2 7.8418 × 10− 2 4.2365400 × 10− 6 6.8151503 × 10− 3

1

0.1 2.0565 2.0595 2.9702320 × 10− 3 3.4562561 × 10− 2

0.2 1.9239 1.9278 3.8759170 × 10− 3 6.5210440 × 10− 2

0.3 1.7998 1.8031 3.3067490 × 10− 3 9.2278286 × 10− 2

0.4 1.6837 1.6856 1.8143870 × 10− 3 1.1607510 × 10− 1

0.5 1.5751 1.5751 8.5092000 × 10− 5 1.3688595 × 10− 1

10
5 1

0.8
x
0 0.6

t

0

50

100

150

200

0.4–5 0.2
–10 0

(a)

t

10
5 1

0.8
x
0 0.6

0

50

100

150

200

0.4–5 0.2–10 0

(b)

Figure 1: 3D graphics of exact and approximate solutions. (a) u(x, t)exact. (b) u(x, t)LSRPSM.
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Table 2 presents the approximate solutions and the
values of | Res(x, t)| when x � − 10.

Example 2. Consider the following time-fractional BBM-
Burger equation:

D
α
t u − uxxt + ux +

u2

2
 

x

� 0, t> 0, 0< α≤ 1, (50)

with the initial condition

u(x, 0) � sec h
2 x

4
 , (51)

and the exact solution when α � 1 is

u(x, t) � sec h
2 x

4
−

t

4
 . (52)

Using the classic residual power series method, we can
obtain the following equations [31]:

Table 2: ,e values of | Res(x, t)| by LSRPSM, RPSM, and VIM for α � 0.2, 0.4 and x � − 10.

t
α � 0.2 α � 0.4

u | Res|LSRPSMi�2 |Res|RPSMi�2 |Res|VIMi�2 u | Res|LSRPSMi�2 |Res|RPSMi�2 |Res|VIMi�2

0.1 0.00672 0.00066 0.00104 0.00465 0.00751 0.00194 0.00144 0.00361
0.2 0.00660 0.00057 0.00089 0.00292 0.00704 0.00121 0.00100 0.00187
0.3 0.00655 0.00063 0.00090 0.00144 0.00670 0.00082 0.00089 0.00054
0.4 0.00653 0.00072 0.00095 0.00016 0.00642 0.00056 0.00088 0.00052
0.5 0.00652 0.00080 0.00100 0.00096 0.00618 0.00036 0.00091 0.00139
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Figure 2: Approximate solution: (a) u(x, t, α � 0.35); (b) u(x, t, α � 0.55); (c) u(x, t, α � 0.75); (d) u(x, t, α � 0.95).
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ϕ0(x, t) � sec h
2 x

4
 ,

ϕ1(x, t) �
1
2
sec h

2 x

4
 tanh

x

4
  +

1
2
sec h

4 x

4
 tanh

x

4
  

tα

Γ(1 + α)
,

ϕ2(x, t) � ⎛⎝
7
8
sec h

6 x

4
 tanh2

x

4
  −

1
8
sec h

6 x

4
 

+
5
4
sec h

4 x

4
 tanh2

x

4
  −

1
4
sec h

4 x

4
 

+
3
8
sec h

2 x

4
 tanh2

x

4
  −

1
8
sec h

2 x

4
 ⎞⎠

t2α

Γ(1 + 2α)
.

(53)

,en,

W
α ϕ0, ϕ1, ϕ2  �

ϕ0 ϕ1 ϕ2
Dαϕ0 Dαϕ1 Dαϕ2
D2αϕ0 D2αϕ1 D2αϕ2





. (54)

When α � 1, x � 2, t � 1, W1[ϕ0, ϕ1, ϕ2] �

− 0.2026562308≠ 0. Hence, the functions ϕ0, ϕ1, andϕ2 are
linearly independent.

So, we can obtain the approximate solution, which can
be written as

u � k0 · sec h
2 x

4
  + k1 · 

1
2
sec h

2 x

4
 tanh

x

4
 

+
1
2
sec h

4 x

4
 tanh

x

4
 

tα

Γ(1 + α)

+ k2 · 
7
8
sec h

6 x

4
 tanh2

x

4
  −

1
8
sec h

6 x

4
 

+
5
4
sec h

4 x

4
 tanh2

x

4
  −

1
4
sec h

4 x

4
  +

3
8
sec h

2 x

4
 tanh2

x

4
 

−
1
8
sec h

2 x

4
 

t2α

Γ(1 + 2α)
.

(55)

From (50), we can get the residual function

Res(x, t, u) � D
α
t u − uxxt + ux +

u2

2
 

x

, (56)

with the initial condition

u(x, 0) � sec h
2 x

4
 . (57)

Using the given condition (57) in (55), we get k0 � 1. So,
(55) can be written as

u � sec h
2 x

4
  + k1 · ⎛⎝

1
2
sec h

2 x

4
 tanh

x

4
  +

1
2
sec h

4 x

4
 

· tanh
x

4
 

tα

Γ(1 + α)
+ k2 · ⎛⎝

7
8
sec h

6 x

4
 tanh2

x

4
 

−
1
8
sec h

6 x

4
  +

5
4
sec h

4 x

4
 tanh2

x

4
  −

1
4
sec h

4 x

4
 

+
3
8
sec h

2 x

4
 tanh2

x

4
  −

1
8
sec h

2 x

4
 

t2α

Γ(1 + 2α)
.

(58)

So, we can obtain Res by substituting (58) into (56).
,en, the functional J will be

J k1, k2(  � B
Ω

Res2 x, t, k1, k2( dx dt. (59)

We compute the functional J of (59). We receive two
algebraic equations as

zJ

zk1
� 0,

zJ

zk2
� 0,

(60)

and then we determine the unknown coefficients of (60)
when α � 1:

k1 � 0.696922329601929,

k2 � 0.328042749015346.
(61)

In Figure 3, we present the exact solutions and the
approximate solutions by the three-dimensional graphics.
Figure 3(a) presents the exact solution and Figure 3(b)
presents the approximate solution when
α � 1, 0≤ t≤ 1, − 10≤ x≤ 10. From Figure 3, we can find
that Figure 3(b) is similar to Figure 3(a). So, the ap-
proximate solution is accurate when the values of α ap-
proach 1.

As is shown in Table 3, we present the absolute error in
(48) between different values of x and t when
α � 1, 0≤ t≤ 1, − 2≤ x≤ 2. And the least-squares residual
power series method (LSRPSM) and the q-homotopy
analysis method (q-HAM) [32] with ui(x, t) when i � 2 are
compared with the classic residual power series method with
ui(x, t) when i � 2, as shown in Table 3. ,e approximate
solutions of the q-HAM can be written as
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u2(x, t; n; h) � sec h
2 x

4
  +  − 

εh
8

cosh
x

2
  − 2 

+
1
2
tanh

x

2
 sec h

4 x

4
 

tα

Γ(α + 1)

−
1
2
tanh

x

2
 sec h

2 x

4
 

tα

Γ(α + 1)


1
n

 

+ (n + h) −
εh
8

cosh
x

2
  − 2 

+
1
2
tanh

x

2
 sech4 x

4
 

tα

Γ(α + 1)

−
1
2
tanh

x

2
 sec h

2 x

4
 

tα

Γ(α + 1)
+

h

256
K

· (x, h, ε)sec h
7 x

4
 

t2α− 1

Γ(2α)
−

h

512
F(x, h, ε)sec h

8

x

4
 

t2α

Γ(2α + 1)


1
n

 
2
,

(62)
where

K(x, h, ε) � 40εh cosh
x

4
  − 25εh cosh

3x

4
  + εh cosh

5x

4
 

− 228 sinh
x

4
  + 14 sinh

3x

4
  + 2 sinh

5x

4
 ,

F(x, h, ε) � 150εh sinh
x

2
  − 2εh sinh

3x

2
  − 15εh cosh

x

2
 

+ 24εh cosh(x) − εh cosh
3x

2
  − 40εh + 214 sinh

x

2
 

− 16 sinh(x) − 2 sinh
3x

2
  − 92 cosh

x

2
 

− 64 cosh(x) − 4 cosh
3x

2
  + 416,

(63)

and the values of parameters are h � − 1.5, ε � 0, and n � 1.
FromTable 3, we can obtain that the range of magnitude of

absolute errors is from 10− 3 to 10− 8. ,e absolute errors by the
new method with different values of x and t are within the
acceptable range. Fix the value of t, and the absolute error is the
smallest when x � 0 and the absolute increases as the absolute
value of x increases. Compared with the classic residual power
series method and the q-homotopy analysis method, the least-
squares residual power series method is more accurate.

Using the same method, the linearly independent
functions can be verified when α � 0.3, 0.6, 0.9.,en, we can
obtain the unknown coefficients k1 and k2, respectively, by
using the least-squares method.

Figure 4 shows the influence of different α on the ap-
proximate solutions when 0≤ t≤ 1, − 10≤x≤ 10. Figures 4(a)–
4(c) present approximate solutions for α � 0.3, α � 0.6, and
α � 0.9, respectively.

From Figure 4, we can conclude that the larger the value
of α, the smoother the images, and the closer to the image of
the exact solution.

Using the same method, the linearly independent
functions can be verified when α � 0.7, 0.9. ,e unknown
coefficients k1 and k2 can be obtained by using the least-
squares method. Table 4 shows the approximate solutions
and the values of | Res(x, t)| when t � 0.01.

Example 3. Consider the following fractional biological
population equation:

D
α
t u(x, y, t) � u

2
(x, y, t) 

xx
+ u

2
(x, y, t) 

yy
+ hu(x, y, t),

t> 0, 0< α≤ 1,

(64)

with the initial condition

u(x, y, 0) �
���
xy

√
, (65)

and the exact solution when α � 1 is

10
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–10 0
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Figure 3: 3D graphics of exact and approximate solutions. (a) u(x, t)exact. (b) u(x, t)LSRPSM.

Complexity 9



Table 3: Absolute errors by LSRPSM, RPSM, and q-HAM for α � 1.

x t u(x, t)exact ui(x, t)LSRPSMi�2 Error(x, t)LSRPSMi�2 Error(x, t)RPSMi�2 Error(x, t)
q− HAM
i�2

− 2
0.001 0.7862659997 0.7862214953 4.45 × 10− 5 1.43 × 10− 4 2.55 × 10− 4

0.01 0.7846288220 0.7841854331 4.43 × 10− 3 1.43 × 10− 3 2.53 × 10− 3

0.1 0.7681097917 0.7638324718 4.28 × 10− 3 1.41 × 10− 2 2.36 × 10− 2

− 1
0.001 0.9398996870 0.9398591595 4.05 × 10− 5 1.08 × 10− 4 1.24 × 10− 4

0.01 0.9388589039 0.9384533623 4.06 × 10− 4 1.09 × 10− 3 1.27 × 10− 3

0.1 0.9280305730 0.9239405363 4.09 × 10− 3 1.19 × 10− 2 1.55 × 10− 2

0
0.001 0.9999999376 0.9999999180 1.96 × 10− 8 1.88 × 10− 7 8.12 × 10− 7

0.01 0.9999937500 0.9999917989 1.95 × 10− 6 1.88 × 10− 5 8.13 × 10− 5

0.1 0.9993752604 0.9991798931 1.95 × 10− 4 1.88 × 10− 3 8.12 × 10− 3

1
0.001 0.9401299142 0.9401704358 4.05 × 10− 5 1.08 × 10− 4 1.23 × 10− 4

0.01 0.9411611582 0.9415661251 4.05 × 10− 4 1.07 × 10− 3 1.16 × 10− 3

0.1 0.9510358396 0.9550681642 4.03 × 10− 3 9.76 × 10− 3 5.16 × 10− 3

2
0.001 0.7866294307 0.7866739725 4.45 × 10− 5 1.43 × 10− 4 2.55 × 10− 4

0.01 0.7882631114 0.7887102046 4.47 × 10− 4 1.43 × 10− 3 2.53 × 10− 3

0.1 0.8044323122 0.8090801868 4.65 × 10− 3 1.45 × 10− 2 2.34 × 10− 2
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Figure 4: Approximate solution: (a) u(x, t, α � 0.3); (b) u(x, t, α � 0.6); (c) u(x, t, α � 0.9).
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u(x, y, t) �
���
xy

√
e

ht
. (66)

Using the classic residual power series method, we can
obtain the following equations [33]:

ϕ0(x, t) �
���
xy

√
,

ϕ1(x, t) � h
���
xy

√
,

ϕ2(x, t) � h
2 ���

xy
√

.

(67)

,en,

W
α ϕ0,ϕ1, ϕ2  �

���
xy

√
h

���
xy

√
h2 ���

xy
√

Dα ���
xy

√
Dα(h

���
xy

√
) Dα h2 ���

xy
√

 

D2α ���
xy

√
D2α(h

���
xy

√
) D2α h2 ���

xy
√

 





.

(68)

When α � 1, x � 0.1, y � 0.1, t � 0.4, h � 0.5, W1[ϕ0, ϕ1,
ϕ2]≠ 0. Hence, the functions ϕ0, ϕ1, andϕ2 are linearly
independent.

So, we can obtain the approximate solution, which can
be written as

u � k0 ·
���
xy

√
+ k1 · h

���
xy

√
+ k2 · h

2 ���
xy

√
. (69)

From (64), we can obtain the residual function

Res(x, t, u) � D
α
t u(x, y, t) − u

2
(x, y, t) 

xx
− u

2
(x, y, t) 

yy

− hu(x, y, t),

(70)

with the initial condition

u(x, y, 0) �
���
xy

√
. (71)

Using the given condition (71) in (69), we get k0 � 1. So,
(69) can be written as

u �
���
xy

√
+ k1 · h

���
xy

√
+ k2 · h

2 ���
xy

√
. (72)

So, we can obtain Res by substituting (72) into (70).
,en, the functional J will be

J k1, k2(  � C
Ω

Res2 x, y, t, k1, k2( dx dy dt. (73)

We compute the functional J of (73). We receive two
algebraic equations as

zJ

zk1
� 0,

zJ

zk2
� 0,

(74)

and then we determine the unknown coefficients of (74)
when α � 1:

k1 � 1.00001331097321,

k2 � 1.12959019129015.
(75)

From Figure 5, we obtain the exact solutions and the
approximate solutions by the three-dimensional graphics.
Figure 5(a) presents the exact solution, and Figure 5(b)
presents the approximate solution. ,e condition of Fig-
ure 5 is α � 1, t � 1, h � 0.5, − 1≤x≤ 1, − 1≤y≤ 1. From
Figure 5, we can conclude the three-dimensional graphics of
the approximate solutions are similar to the exact solutions.

As is shown in Table 5, we present the absolute error in
(49) between different values of x and t when
α � 1, t � 1, 0≤ x≤ 1, 0≤y≤ 1. And the least-squares re-
sidual power series method (LSRPSM) with ui(x, t) when
i � 2 is compared with the classic residual power series
method and the homotopy perturbation method (HPM)
[34] with ui(x, t) when i � 2, as shown in Table 5. ,e
approximate solutions of HPM for i � 2 can be written as

u2(x, t) �
���
xy

√
+

htα

Γ(1 + α)

���
xy

√
+

h2t2α

Γ(1 + 2α)

���
xy

√
. (76)

From Table 5, we can conclude that the absolute errors
with the different values of x and y are within the acceptable
range. Given the same items, we compare the residual power
series method and the homotopy perturbation method with
the least-squares residual power series method, and the new
method is more accurate.

Using the least-squares residual power series method,
the linearly independent functions can be verified when
α � 0.3, 0.5, 0.7, 0.9. ,en, we can obtain the unknown

Table 4: ,e values of | Res(x, t)| by LSRPSM, RPSM, and q-HAM for α � 0.7, 0.9 and t � 0.01.

x
α � 0.7 α � 0.9

u | Res|LSRPSMi�2 |Res|RPSMi�2 |Res|q− HAM
i�2 u | Res|LSRPSMi�2 |Res|RPSMi�2 |Res|q− HAM

i�2

0 0.99983 0.01260 0.07816 0.28128 0.99998 0.00051 0.01180 0.05991
0.5 0.98773 0.10168 0.18716 0.88821 0.98587 0.04172 0.11075 0.01272
1 0.94605 0.17595 0.39198 0.98303 0.94249 0.06384 0.19674 0.10785
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coefficients k1 and k2, respectively, by using the least-squares
method.

Figure 6 shows the influence of different α on the ap-
proximate solutions when t � 1, h � 0.5, 0≤x≤ 1, 0≤y≤ 1.
Figure 6(a) presents approximate solutions for α � 0.3,
Figure 6(b) presents approximate solutions for α � 0.5,
Figure 6(c) presents approximate solutions for α � 0.7, and
Figure 6(d) presents approximate solutions for α � 0.9.

From Figure 6, the larger the value of alfa, the smoother
the image and the closer the image to the exact solution.

Using the least-squares residual power series method,
the linearly independent functions can be verified when
α � 0.3, 0.6. ,e unknown coefficients k1 and k2 can be
obtained by using the least-squares method. Table 6 shows

the approximate solutions and the values of | Res(x, t)| when
t � 0.1, h � 0.3, i � 2.

5. Conclusion

In this paper, we discuss the approximate solutions of the
least-squares residual power series method. ,is method is
an improvement on the classic residual power series method.
We combine the least-squares method and residual power
series method. We obtain more accurate approximate so-
lutions with fewer expansion terms. ,e approximate so-
lutions are presented by data and graphics. ,e results show
that the approximate solutions solved by this method have
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Figure 5: 3D graphics of exact and approximate solutions. (a) u(x, t)exact. (b) u(x, t)LSRPSM.

Table 5: Absolute errors by LSRPSM, RPSM, and HPM for α � 1.

x y u(x, t)exact ui(x, t)LSRPSMi�2 Error(x, t)RPSMi�2 Error(x, t)LSRPSMi�2 Error(x, t)HPM
i�2

0.1

0.1 0.1648721271 0.1648625055 2.37 × 10− 3 9.62 × 10− 6 2.37 × 10− 3

0.2 0.2331643981 0.2331507911 3.35 × 10− 3 1.36 × 10− 5 3.35 × 10− 3

0.3 0.2855669010 0.2855502359 4.11 × 10− 3 1.67 × 10− 5 4.11 × 10− 3

0.4 0.3297442542 0.3297250110 4.74 × 10− 3 1.92 × 10− 5 4.74 × 10− 3

0.5 0.3686652837 0.3686437692 5.30 × 10− 3 2.15 × 10− 5 5.30 × 10− 3

0.3

0.1 0.2855669010 0.2855502359 4.11 × 10− 3 1.67 × 10− 5 4.11 × 10− 3

0.2 0.4038525842 0.4038290162 5.81 × 10− 3 2.36 × 10− 5 5.81 × 10− 3

0.3 0.4946163813 0.4945875165 7.12 × 10− 3 2.89 × 10− 5 7.12 × 10− 3

0.4 0.5711338018 0.5711004716 8.22 × 10− 3 3.33 × 10− 5 8.22 × 10− 3

0.5 0.6385470025 0.6385097382 9.19 × 10− 3 3.73 × 10− 5 9.19 × 10− 3

0.5

0.1 0.3686652837 0.3686437692 5.30 × 10− 3 2.15 × 10− 5 5.30 × 10− 3

0.2 0.5213714443 0.5213410181 7.50 × 10− 3 3.04 × 10− 5 7.50 × 10− 3

0.3 0.6385470025 0.6385097382 9.19 × 10− 3 3.73 × 10− 5 9.19 × 10− 3

0.4 0.7373305676 0.7372875385 1.06 × 10− 2 4.30 × 10− 5 1.06 × 10− 2

0.5 0.8243606355 0.8243125275 1.19 × 10− 2 4.81 × 10− 5 1.19 × 10− 2

1

0.1 0.5213714443 0.5213410181 7.50 × 10− 3 3.04 × 10− 5 7.50 × 10− 3

0.2 0.7373305676 0.7372875385 1.06 × 10− 2 4.30 × 10− 5 1.06 × 10− 2

0.3 0.9030418312 0.9029891315 1.30 × 10− 2 5.27 × 10− 5 1.30 × 10− 2

0.4 1.0427428890 1.0426820360 1.50 × 10− 2 6.09 × 10− 5 1.50 × 10− 2

0.5 1.1658219910 1.1657539560 1.68 × 10− 2 6.80 × 10− 5 1.68 × 10− 2
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little error. In summary, this new technique is effective and
accurate in finding approximate solutions for the time-
fractional differential equations.
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Figure 6: Approximate solution: (a) u(x, t, α � 0.3); (b) u(x, t, α � 0.5); (c) u(x, t, α � 0.7); (d) u(x, t, α � 0.9).

Table 6: ,e values of | Res(x, t)| by LSRPSM, RPSM, and HPM for α � 0.3, 0.6 and t � 0.1.

x y
α � 0.3 α � 0.6

u | Res|LSRPSM | Res|RPSM |Res|HPM u | Res|LSRPSM |Res|RPSM |Res|HPM

0.1
0.1 0.120 5.388 × 10− 5 7.590 × 10− 4 7.590 × 10− 4 0.109 9.892 × 10− 5 1.546 × 10− 4 1.546 × 10− 4

0.2 0.169 7.620 × 10− 5 1.073 × 10− 3 1.073 × 10− 3 0.154 1.399 × 10− 4 2.187 × 10− 4 2.187 × 10− 4

0.3 0.202 9.333 × 10− 5 1.315 × 10− 3 1.315 × 10− 3 0.189 1.713 × 10− 4 2.678 × 10− 4 2.678 × 10− 4

0.2
0.1 0.169 7.620 × 10− 5 1.073 × 10− 3 1.073 × 10− 3 0.154 1.399 × 10− 4 2.187 × 10− 4 2.187 × 10− 4

0.2 0.239 1.078 × 10− 4 1.518 × 10− 3 1.518 × 10− 3 0.218 1.978 × 10− 4 3.092 × 10− 4 3.092 × 10− 4

0.3 0.293 1.320 × 10− 4 1.859 × 10− 3 1.859 × 10− 3 0.267 2.423 × 10− 4 3.787 × 10− 4 3.787 × 10− 4

0.3
0.1 0.207 9.333 × 10− 5 1.315 × 10− 3 1.315 × 10− 3 0.189 1.713 × 10− 4 2.678 × 10− 4 2.678 × 10− 4

0.2 0.293 1.320 × 10− 4 1.859 × 10− 3 1.859 × 10− 3 0.267 2.423 × 10− 4 3.787 × 10− 4 3.787 × 10− 4

0.3 0.359 1.616 × 10− 4 2.277 × 10− 3 2.277 × 10− 3 0.327 2.968 × 10− 4 4.639 × 10− 4 4.639 × 10− 4
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