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The production and storage of major hazard installations (MHIs) bring potential risks to chemical industrial park (CIP). In the
production system of MHIs, its dangerous degree is mainly determined by key parameters, and abnormal key parameters often lead
to accidents. To predict the real-time risk values of MHIs and improve accident prevention ability of CIP, we need a method that
can combine dynamic prediction and assessment. Quantitative risk assessment (QRA) is not capable of modelling risk variations
during the operation of a process.Therefore, this paper adopts the data-driven approach. Inspired by visual qualitative analysis and
quantitative analysis, a dynamic early warning method is proposed for MHIs. We can get the future trend of these key parameters
by using strongly correlation variables to predict key parameters. Fuzzy evaluation analysis is performed on the risk levels of key
parameters, and the dynamic evaluation index of these MHIs is obtained. This method can be applied to the dynamic evaluation
of MHIs system in CIP. It can contribute to the safety of CIP in some aspects.

1. Introduction

The demand for everyday life materials has stimulated the
vigorous development of the chemical industry. Large CIP
have been built in various countries and regions. CIP have
the characteristics of high complexity, strong association,
and long production process. It is a process with multiple
variables, strong coupling. Industrial process variables devi-
ate from target values and cause a series of failure due to
equipment failure, production equipment aging, personnel
operation error, raw material characteristics, and changes
in external environment [1]. It may also result in industrial
accidents, such as fire, explosions, and leaks. In severe cases,
this deviation may lead to casualties, major economic losses,
and serious environmental pollution [2]. On December 3,
1984, the release of methyl isocyanate gas killed some 3000
people in Bhopal, India. This incident is considered to be the
world’s worst industrial chemical accident, on July 10, 1976,
as a result of a reactor runaway accident in a chemical plant
in Seveso, Italy. Dispersed dioxin into the local atmosphere
led to skin disease chloracne in about 250 people and caustic
soda burns in about 450 people [3]. On August 12, 2015, a

hazardous chemical warehouse in Tianjin Binhai New Area
exploded, leading to the death of 165 people, 8 missing,
798 injured, and 6.87-billion-yuan direct economic loss [4].
Therefore, accident prevention ability of CIP should be
improved.

QRA is a conventional risk modeling method. Although
QRAmethods are useful in modeling accident scenarios and
quantifying risk, but their static structure is not capable of
modeling risk variations during the process operation [5].
Dynamic early warning is a way to improve the preventive
ability of the production system of MHIs in the chemical
industry. In the area of early warning and assessment, with
the use of the Process Resilience Analysis Framework, Jain
et al. [6] proposed a resilience-based approach to managing
uncertainties to better predict process upsets.Meel and Seider
[7] proposed that the failure probabilities of safety systems
and end-states are estimated using copulas andBayesian anal-
ysis to ensure better predictions in plant-specific dynamic
failure assessment. Cheng et al. [8] presented amethod based
on Bayesian and Vine Copula to predict the frequency of
chemical accidents based on variations in different groups.
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Although Bayes’ theorem helps to obtain posterior probabili-
ties, it necessitates identifying likelihood function, which is
a difficult task if it is not a conjugate distribution to prior
probability. Abdolhamidzadeh et al. [9] proposed the concept
of ‘local domino effect’ to deal with a chain of accidents
occurring within a process unit, achieving a good result to
handle the uncertainty and the complexity. Pariyani et al.
[10] introduced a distributed control system through bias
analysis to calculate the probability of system failure, the
risks associated with low probability, severe consequence
incidents being predicted more accurately. Zhou et al. [11]
established a security risk assessment method based on
weighted fuzzy Petri net. This approach can easily model
different relationships between the risk factors as well as their
importance. In terms of social factor, Jain et al. [12] proposed
a novel framework, Process Resilience Analysis Framework
for incorporating both technical and social factors in an
integrated approach resulting in a reduced frequency of
loss of containment events. Aven and Ylönen [13] proposed
a closer integration of the risk analysis and management
approach and the sociotechnical perspective on safety can be
used to improve risk and safety regulations. These methods
take human factors, social factors, and domino effect into
account, but they cannot dynamically assess the risk changes
of hazards caused by abnormal parameter changes.

The prediction of parameters is an important part of
dynamic early warning. Other fields have been applied to
investigate parameter prediction models [14–16]. However,
these traditional methods face the background of big data
with large computational complexity, multiple processes, and
multivariable chemical processes [17]. For instance, due to
the ease in configuring the alarms in control systems, the
number of alarms in a plant has also gone up. This has led to
frequent system problems, increase in the operator workload
due to alarm overload, and industrial accidents. [18]. Hence,
suchmethods are generally inapplicable. Today, big data have
become an important strategic resource for a country [19].
Goel et al. [20] discuss the potential of big data analytics in
the area of process safety and risk management in the energy
industry. A large amount of data is also available in the CIP.
In the early warning of CIP, conducting a reasonable analysis
of big data and fully considering the correlation between
key parameters of various process industries is essential for
prediction analysis [21]. If all variables in the production
system are not filtered, then the calculation is highly complex.
Visual dynamic risk assessment method is an instrument
that can qualitatively analyze the correlation between high-
dimensional variables. Saatci [22] used Parallel Coordinates
to explore the correlation between respiratory signals and
airflow, relative temperature, relative humidity, and other
factors and achieved satisfactory results. Azhar and Rissanen
[23] evaluated an application of Parallel Coordinates for
interactive filtering of alarm data by comparing its user
performance against typical alarm lists. The results showed
that Parallel Coordinates reduce alarm filtering time and
reduce human mistakes. Visualization method can only
simultaneously perform qualitative analysis, and the corre-
lation between variables should be quantitatively analyzed.
Berthold and Höppner [24] investigated clustering time

series based on Euclidean distance and Pearson correlation
and contributed to future research.

The prediction of MHIs should be performed rapidly.
Excessive delay will result in unexpected consequences. Zhao
et al. [25] used GPU to conduct an accelerated operation
and effectively improve the prediction speed. Ruiz et al. [26]
employed a genetic algorithm to optimize neural network
weights, enhance prediction accuracy, and reduce prediction
time. Chemical process industry is associated with many
variables. To handle the high-dimensional variables, Erkmen
and Yıldırım [27] used principal components analysis as
a feature extraction method to promote classification per-
formance. Support vector machine [28], back propagation
neural network (BP neural network) [29], and probabilistic
models are commonly used in traditional prediction models
[30]. However, these methods can be implemented to static
prediction only. When these methods are applied to the
prediction of industrial process dynamics, a dynamic time
modeling problem is transformed into a stationary space
modeling problem, which inevitably leads to a decline in
prediction accuracy. We need to construct the model; it
has a feedback link, which can later memorize the state
information of the key parameters of the chemical industry,
allowing the system to adapt to time-varying characteristics.
For example, Qin et al. [31] used an Elman neural network
to improve the smooth transition period of an autoregressive
model and accurately predicted wind energy and speed.

The present paper is divided as follows. The overall
process of Section 2 briefly introduced a structure of dynamic
early warning method. Section 3 presents the dynamic pre-
diction and evaluation method, which combines variable
correlation analysis, and feature analysis and feature vec-
tor acquisition, to conduct strong correlation analysis and
dimensionality reduction. Construct a recurrent neural net-
work to predict MHIs. Finally, we use the MHIs risk level to
defining amethod for the dynamic evaluation. Section 4 takes
Quzhou City CIP as an example to perform a case study of the
method. Section 5 provides some concluding remarks.

2. Dynamic Prediction and Evaluation Method
for Major Hazard Installations

Given that the chemical accidents are usually caused by
some parameter fluctuations; therefore, it is necessary to
construct a dynamic prediction model. The applications of
neural network in various fields have continuously emerged
recently. Compared with support vector machine [28] and
nonlinear regressions, neural network possesses the robust
multivariable prediction performance and can constantly
adjust the weight among input layer, output layer, and hidden
layer to achieve high-precision prediction [29]. In traditional
neural network, we add a state layer to construct the dynamic
recurrent network, which can better adapt to the dynamic
change characteristics of chemical production parameters.
Analyzing the strong correlation variables of key parameters
is crucial due to numerous parameters and high complexity
of the chemical process. Correlation analysis work, such as
that of Cheng et al. [8], uses the Copula function to establish
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Figure 1: Structure block diagram of dynamic early warning method.

the asymmetric correlation model of anomalous number of
events, considering the correlation among the four teams.
Under the multivariable condition of chemical production
engineering, the process of establishing Copula function is
considerably complicated, and a fast and accurate method
of correlation analysis is necessary. The visualization method
can be used for fast qualitative analysis of relevant variables
and, combined with quantitative analysis method, effectively
implement the selection of strong correlation variables of key
parameter.

The structural block diagram of the dynamic early warn-
ing method is presented in Figure 1. The first part of the
algorithm is variable correlation analysis, the second part is
feature analysis and feature vector acquisition, and the third
part is dynamic recurrent prediction. And the last part is the
dynamic risk assessment. The implementation process of the
algorithm is as follows.

(1) All correlation variables of the key parameters ofMHIs
in the CIP use the qualitative analysis of variable correlation
by data visualization [32].
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(2) The average value and standard deviation of key
parameters and related variables are calculated.

(3) The correlation coefficient r value between two vari-
ables is obtained and the strong correlation variable. (4)
The covariance matrix of the strong correlation variable is
also calculated, and its eigenvalue and the eigenvector are
obtained.

(5) The order of the eigenvalue from large to small
is selected, and the maximum is chosen according to the
established rule. K eigenvalue constitutes the corresponding
eigenvector matrix.

(6)The samples of all relevant variables are projected into
the selected K feature vectors.

(7) The strong correlation matrix is used for dynamically
recursive prediction.

(8) The strong correlation variables used dynamic recur-
rent prediction and evaluated the risk level using the dynam-
ics prediction results of each parameter. The assessment
standard is divided into two levels ultimately determining the
risk level of CIP.

3. The Proposed Methodology

3.1. Correlation Analysis of Variables. Firstly, there is a qual-
itative analysis of the correlative variables of key parameters
of MHIs, and these correlation variables are composed into
a high-dimensional data set. Each variable is divided into
a coordinate axis that is equal in distance and parallel to
each other. Each axis represents an attribute dimension, and
the value of the variable corresponds to the corresponding
position on the axis. In this way, every chemical process
variable can be divided into a broken line on the parallel axis
of n according to its attribute value.The implementation steps
are described in the following.

The associated variables of production key parameters in
the chemical industry MHIs system are combined into the
following scoring matrix S:

S =
[[[[[[[[

𝑆11 𝑆12 ⋅ ⋅ ⋅ 𝑆1p𝑆21 𝑆22 ⋅ ⋅ ⋅ 𝑆2𝑝... ... d
...𝑆𝑛1 𝑆𝑛2 ⋅ ⋅ ⋅ 𝑆𝑛𝑝

]]]]]]]]
. (1)

In the plane with the Descartes coordinate system, each
row in the score matrix S, 𝑆𝑛 = [𝑆𝑛1 𝑆𝑛2 ⋅ ⋅ ⋅ 𝑆𝑛𝑝] cor-
responds to a fold line connected by a k-1-line segment in
a parallel coordinate system. These data must be converted
from the Descartes coordinate system to the parallel coordi-
nate system because each coordinate axis is equal in length;
thus, the scoring matrix is homogenized 0–1.The relationship
between the processed data s𝑛,p and the original data s𝑛,p is
sn,p = (S𝑛,p − S𝑛,min)/(s𝑛,max−S𝑛min), where S𝑛,min and S𝑛,max
are the maximum and minimum values of the correlation
variable, respectively.

Parallel axes represent the correlation variables of each
key parameter in MHIs, which are connected by the param-
eter values of these correlation variables. If the line between

the two variables is crossed to show the X type, then the two
variables are negatively correlated. If the line between the two
variables is parallel, then the two variables indicate positive
correlation. If the lines between variables are randomly
crossed, then no unique relationship exists between the two
variables.

Then, quantitative analyzed the correlation variables of
key parameters of MHIs [33]. Strong and medium correla-
tion variables are further divided to verify the visualization
method. The correlation coefficient is reflected in the symbol
“r,” and the Pearson correlation coefficient is as follows:

rA,B = 1𝑛 − 1
𝑛∑
𝑖=1

(𝐴 𝑖 − Avg (A)𝛿A )(B𝑖 − Avg (B)𝛿B ) , (2)

where n is equal to the number of selected data items.
Avg(A) and Avg(B) are the average values of selected data
on attributes A and B, respectively, and 𝛿A, 𝛿𝐵 are their
corresponding standard deviations.

3.2. Feature Analysis and Feature Vector Acquisition. Con-
cerning the majority of chemical processes, the key param-
eters have numerous strong correlation variables. These
strongly correlation variables constitute a high-dimensional
data, which must be reduced in order to improve the
efficiency and accuracy of prediction of key parameters [34],
n-dimensional features to K dimensions (k<n). The steps are
as follows.

(i) The strong correlation variables are selected from
variable correlation analysis constituting the data matrix X:

𝑋 =
[[[[[[[[

x11 x12 ⋅ ⋅ ⋅ x1m
x21 x22 ⋅ ⋅ ⋅ x2m... ... d

...
xn1 xn2 ⋅ ⋅ ⋅ xnm

]]]]]]]]
. (3)

(ii)The dimensionality of each data matrix dimension has
a serious influence on the principal component, which may
cause a considerable difference between the number and the
value of the principal component and the actual situation.
The strong correlation variables constitute the data matrix X,
and each variable is standardized reprocessed to obtained the
standardized data matrix Z: zn,m = (xnm−xn)/Y2m.The overall
mean of 𝑥𝑚 is xm = (1/n) ∑n

n=1 xn,m, and the total variance
of 𝑥𝑚 is Y2m = (1/(n − 1))∑n

n=1(xn,m − xn)2. The correlation
matrix, C = (1/n)ZTZ, is calculated, in which ZT is the
transpose of the standardized data matrix Z, n represents the
row of matrix Z, m represents the column of matrix Z, and
the calculated correlation matrix C comprises the D principal
component.

(iii) Jacobi’s method is employed to find the eigenvector
wi, i = 1, 2, . . . ,m of the correlation matrix C and eigenvalue
matrix Λ = diag(𝜆1, 𝜆2, . . . , 𝜆m), where 𝜆 is the eigenvalue
and diag represents a diagonal matrix.

(iv) The eigenvalues are arranged in order from large to
small 𝜆1 > 𝜆2 > ⋅ ⋅ ⋅ > 𝜆m. The order of the eigenvector
columns is adjusted correspondingly, allowing the maximum
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variance to be the first principal components, the sublarge
variance as the second principal components, and the least
variance as the D principal component.

(v)The K principal component of the maximum variance
is selected to allow the K principal component to contain
most of the original data information. The cumulative vari-
ance contribution of the commonly selected K principal
components is 85% larger than that of the total variance. That
is, ∑k

j=1 𝜆j/∑d
j=1 𝜆j ≥ 85%.

(vi) By selecting the eigenvectors wi, i = 1, 2, . . . , k, of K
principal components, k independent linear combination of
new variables is obtained:

𝜉1 = 𝑥1𝑤11 + 𝑥2𝑤21 + ⋅ ⋅ ⋅ + 𝑥𝑑𝑤𝑑1𝜉2 = 𝑥1𝑤12 + 𝑥2𝑤22 + ⋅ ⋅ ⋅ + 𝑥𝑑𝑤𝑑2...
𝜉𝑘 = 𝑥1𝑤1𝑘 + 𝑥2𝑤2𝑘 + ⋅ ⋅ ⋅ + 𝑥𝑑𝑤𝑑𝑘.

(4)

(vii) 𝜉1, 𝜉2, . . . , 𝜉𝑘 is the rebuilt K feature after the reduc-
tion of dimension. These features represent the principal
components of all strong correlation variables, and thematrix
T of the K principal components of the strong correlation
variable is as follows:

𝑇 = [[[[[[[

x1𝑤11 𝑥2𝑤21 ⋅ ⋅ ⋅ 𝑥𝑑𝑤𝑑1𝑥1𝑤12 𝑥2𝑤22 ⋅ ⋅ ⋅ 𝑥𝑑𝑤𝑑2... ... d
...𝑥1𝑤1𝑘 𝑥2𝑤2𝑘 ⋅ ⋅ ⋅ 𝑥𝑑𝑤𝑑𝑘

]]]]]]]
. (5)

3.3. Dynamic Recurrent Prediction. In the prediction model,
in traditional neural network, we add a state layer to construct
the dynamic recurrent network. As in Figure 2, which shows
four layers, namely, input layer, hidden layer, state layer, and
output layer [35].

The mathematical model is as follows:

𝑥 (𝑡) = 𝑓 (𝑤(1)𝑥𝑐 (𝑡) + 𝑤(2)𝑢 (𝑡 − 1) + 𝜃(1)) ,
𝑥𝑐 (𝑡) = 𝑥 (𝑡 − 1) ,
y (t) = w(3)x (t) + 𝜃(2),

(6)

where y(t) is the output of the output layer, u(t) is the
external input of the input layer, the matrix T of the K
principal component of the strong correlation variable is
input, xc(t) is the output of the state layer, x(t) is the output
of the hidden layer, w(1) is the connection weight of the state
layer and the hidden layer, and w(2) is the connection weight
between the input layer and the hidden layer. w(3) is the
connection weight of the hidden layer and the output layer,
the 𝜃(1) is the hidden layer threshold, and the 𝜃(2) is the output
threshold value, where 𝑓() represents the activation function

...

. .
 .

. .
 .

. .
 .

y(t)
x(t)

hidden output layer

Input layer

state layer

u(t-1) layer

w(2)

w(3)

w(1)

Ｒ＝(t)

Figure 2: Recurrent neural network structures.

of the neural network using the Sigmoid function presented
in formula (7):

f (x) = 11 + exp [−x] , 0 < 𝑓 (x) < 1. (7)

Formula (6) can be introduced as follows:

xc (t) = f (w(1)k−1xc (t − 1) + w(2)k−2x
c (t − 2)) , (8)

where w(1)k−1 and w(2)k−2 represent the connection weight at
previous different times. Formula (8) indicates that xc(t) is
related to the weight of the connection at the previous time
and realizes the characteristic of dynamic recursion [36].

The input and output of input layer are respectively

I(1)𝛼 (t) = u𝛼 (t − 1) , (9)

O(1)𝛼 (t) = I(1)𝛼 (t) . (10)

𝛼 = [1, 2, ⋅ ⋅ ⋅ 𝐸1], where the input and output of the
hidden layer are respectively

I(2)𝛽 (t) = E1∑
𝛼=1

w(2)𝛽𝛼O
(1)
𝛼 (t) + E2∑

𝛽=1

w(1)𝛽𝛾O
(c)
𝛾 (t) + 𝜃(1), (11)

O(2)𝛽 (t) = f (I(2)𝛽 (t)) = 1
1 + 𝑒I(2)𝛽 (t) . (12)

𝛽 = [1, 2, ⋅ ⋅ ⋅ 𝐸2]. The input and output of the state
layer are respectively as follows:

I(C)𝛾 (t) = O(2)𝛽 (t − 1) , (13)

O(C)𝛾 (t) = I(C)𝛾 (t) = x(C) (t) . (14)
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Figure 3: Hierarchical chart of dynamic assessment of MHIs.

𝛾 = [1, 2, ⋅ ⋅ ⋅ 𝐸2]. The input and output of the output
layer are respectively

I(3)𝜇 (t) = s2∑
j=1
w(3)𝜇𝛽O

(2)
𝛽 (t) + 𝜃(2), (15)

y(𝜇) (t) = O(3)𝜇 (t) = g ( ̇I(3)𝜇 (t)) . (16)

where 𝜇 = [1, 2, ⋅ ⋅ ⋅ 𝐸3]. Among them, 𝐸1, 𝐸2, and 𝐸3
are the input, hidden, and output layers, respectively, and the
number of layers of the state layer is the same as that of the
hidden layer. The final y(t) is the predictive value of the key
parameters.

3.4. Dynamic Risk Assessment and Early Warning. Fuzzy
comprehensive evaluation is a comprehensive decision-
making methodology of a multivariable problem-solving
complex decision process [37]. It is developed from fuzzy

sets. We through the first-level and second-level fuzzy com-
prehensive evaluation to determine the risk R value of CIP.
Hierarchical chart is presented in Figure 3. The specific steps
are as follows.

Step 1 (construction of second-level fuzzy comprehensive
evaluation). The second-level fuzzy comprehensive eval-
uation defines an evaluation matrix of key parameters
Q𝑝𝜎𝑝 = [Q1𝜎1 ,Q2𝜎2 , . . . ,Q𝑝𝜎𝑝 ], 𝑝 is the number of MHIs,
and 𝜎1, 𝜎2, . . . , 𝜎𝑝 is the number of key parameters for each
MHIs; they may be different values. The percentage of the
predicted value of the key parameter y(t) exceeding the high
alarm value G: C𝑝𝜎𝑝 = (y(t) − G)/G × 100% multiplies the
corresponding elements between Q𝑝𝜎𝑝 and C𝑝𝜎𝑝 . Then, the
second-level fuzzy comprehensive evaluation index matrix is
obtained.

A𝑝𝜎𝑝 = C𝑝𝜎𝑝 ⋅ Q𝑝𝜎𝑝 . (17)
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Table 1: Dynamic risk level.

comment grade range
Disastrous I R ≥ 100
High risk II 50 ≤ R < 100
Moderate risk III 10 ≤ R < 50
Low risk IV R < 10
Step 2 (construction of the first-level fuzzy comprehensive
evaluation). According to the risk degree of each key param-
eter in MHIs, the weight of the first-level fuzzy comprehen-
sive evaluation is determined: D𝑝 = [D1,D2, . . . ,D𝑝]. The
second-level fuzzy comprehensive evaluation matrix A𝑝𝜎𝑝 =[A1𝜎1 ,A2𝜎2 , . . . ,A𝑝𝜎𝑝 ] obtained by (6) and the weight of the
first-level fuzzy comprehensive evaluation are conducted by
point multiplication, and the risk grade index of the MHIs in
the CIP is obtained as follows:

B𝑝 = A𝑝𝜎𝑝 ⋅ D𝑝, (18)

where 𝑝 is the total number of MHIs in CIP.

Finally, the dynamic level of MHIs in CIP is determined
by the evaluation result. The score of dynamic evaluation is
decided by the scoring method, and the range of the grade is
provided in Table 1. R, which is specified in Identification and
Control of MHIs (GB18218), is used as a grading index [38].
Here, R obtains the value of hazard installations dynamic
index B𝑝.The historical factors ofMHIsmay affect the overall
risk. The data of all dynamic risk grades are derived from
the last time the true value of the historical key parameter
exceeds the high alarm value to return to the safety value or
the current value.

Step 3. The final dynamic assessment of MHIs and early
warning results are used to urge security personnel to exclude
the potential risks of MHIs for the first time.

4. Practical Application

CIP is composed of many MHIs; the air separation distil-
lation section is one of the typical representatives of MHIs.
This practical application relies on the industrial data of a
large CIP in Quzhou City from July 2017, and a series of
model establishment, correlation analysis, prediction, and
assessment is completed to realize the dynamic early warning
function of MHIs in the CIP.

This practical application selects an industry of air sep-
aration distillation section in the CIP as a dynamic early
warning object of MHIs [39], a simplified graphic sketch
of the air separation distillation section in Figure 4. This
section simplifies and removes some industrial process from
the air separation distillation section. To make it easier to
understand the industrial process, we are based on data-
driven method and can neglect to describe the mechanism
of the chemical process industry. The section can separate
air into oxygen and nitrogen. Risk degree of the section is
affected by several key links, such as air separation tower
system, air purification system, and air precooling system.
These production lines are strictly dependent on pressure
and temperature, if pressure and temperature are abnormal,
they may result in an explosion and fire. Air separation
tower system consists of Turboexpander and distillation
column, etc.We removed several weakly parameters and links
for ensuring factories data privacy, but did not affect our
application result. We take liquid air level in lower column
LI101 as the key parameter in air separation distillation
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Table 2

item Description
PI101 Air intake chamber pressure (MPa)
PI102 Nitrogen Outlet Tower Pressure (MPa)
PI103 Oxygen-enriched air outlet pressure (MPa)
PI1201 Air outlet left adsorption bucket pressure (MPa)
PI1202 Air outlet right adsorption barrel pressure(MPa)
PI1203 Instrument air pressure (MPa)
PI01 Pressure of air outlet main heat exchanger(MPa)
PI02 Lower column pressure (MPa)
PI03 Evaporator condenser pressure (MPa)
PDI01 The resistance of lower column (MPa)
PI401 Turboexpander1# Intake pressure (MPa)
PI402 Turboexpander1#Exhaust pressure (MPa)
PI403 Turboexpander2#Intake pressure (MPa)
PI404 Turboexpander2#Exhaust pressure (MPa)
PI2001 Turboexpander1#Bearing air pressure (MPa)
PI2002 Turboexpander2# Bearing air pressure (MPa)
PI2003 Turboexpander1#Sealing pressure (MPa)
PI2004 Turboexpander2#Sealing pressure (MPa)
TI101 Air temperature before entering tower (∘C)
TI102 Outlet Tower Temperature of Contaminated Nitrogen (∘C)
TI103 Outlet Tower Temperature of Contaminated Nitrogen (∘C)
TI1201 Air outlet left adsorption bucket temperature (∘C)
TI1202 Air outlet right adsorption bucket temperature (∘C)
TE1204 Temperature of regenerated gas outlet adsorption bucket (∘C)
TI01 Temperature of main air outlet heat exchanger (∘C)
TI02 Turboexpander1# Intake temperature (∘C)
TI03 Turboexpander2# Intake temperature (∘C)
TI04 Turboexpander1# Exhaust temperature (∘C)
TI05 Turboexpander2# Exhaust temperature (∘C)
TI07 Exit temperature of precooler (∘C)
FI1201 Regenerative gas flow rate (Nm3/h)
FI101 Air flow rate (Nm3/h)
FI102 Nitrogen flow rate (Nm3/h)
LI101 liquid air level in lower column (mm)
LI01 Water cooled liquid level (mm)
LI02 Liquid oxygen level in the main condenser (mm)
SI402 Expander speed (RPM)
LV02 Liquid-air throttle valve (%)

section. Since most of the top feed comes from the bottom
of the tower, the working conditions at the bottom of the
tower play a decisive role in the air separation distillation
section. The abnormal liquid air level in lower column will
result in the decrease of oxygen purity, which poses a serious
threat to the normal production of the system. The section
has 38 liquid levels, pressure, temperature, and other sensor
variables, as shown in Table 2, in which the liquid air level in
lower columnof the key parameter is LI101. In order to predict
LI101, we need to find the strong correlation variables in 38
variables. The change trend of LI101 is predicted by the subtle
changes in these strong correlation variables. It should be
noted that LI101 is only one of many key parameters, analysis

process of other key parameters is similar enough to analysis
process of LI101 so that they are not repeated here.

The 38 variables of air separation distillation section are
analyzed by visual correlation analysis. The experimental
datasets comprise 1000 sets, as shown in Figure 5. The value
of LI101 exceeds the high alarm value when the broken line
between two adjacent variables is red. Conversely, the blue
line indicates that the LI101 is not exceeding the high alarm
value.

The 38 variables are not convenient to observe. So,
analyze the correlation between 22 variables on the local
graph. As shown in Figure 6, the lines between LI101 and
adjacent variables PI404 and PI403 are randomly crossed,
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Original dataset: Parallel Coordinates
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Figure 5: Visual correlation analysis of 38 variables.
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Figure 6: Visual correlation analysis local graph A.
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Original dataset: Parallel Coordinates
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Figure 7: Visual correlation analysis local graph B.

Table 3: Strong correlation variable table.

item PI02 PI03 PI401 PI402 PI1201 PI2003 PI102
correlation 0.674∗∗ 0.661∗∗ 0.645∗∗ 0.621∗∗ 0.670∗∗ 0.669∗∗ 0.674∗∗
conspicuousness 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N 1000 1000 1000 1000 1000 1000 1000
item PI103 FI102 FI101 FI1201 TI03 TI04 TI102
correlation 0.659∗∗ 0.659∗∗ 0.602∗∗ 0.697∗∗ 0.617∗∗ -0.611∗∗ -0.633∗∗
conspicuousness 0.000 0.000 0.000 0.000 0.000 0.000 0.000
N 1000 1000 1000 1000 1000 1000 1000

indicating that no special correlation exists between these
variables.

As shown in Figure 7, lines between LI101 and PI2002,
LI101 and PI2003 are overall parallel, indicating a positively
correlated relationship. This method can intuitively and
rapidly select strong correlation of key parameter.

After visual correlation analysis, we filtered 27 corre-
lation variables and eliminated 11 weakly correlation vari-
ables.

Next, in order to verify the accuracy of visual correlation
analysis and further filter strong correlation variables, Pear-
son correlation analysis of 27 correlation variables and the
results of the filtered strong correlation variables are shown
in Table 3.

The table of strong correlation variable has three rows.
Thefirst row is the correlation value, inwhich 0 to 0.33 isweak
correlation, 0.33 to 0.67 is medium correlation, and 0.67 to 1
is strong correlation [40]. The second row is the significant

test result, that is, sig bilateral test. The asterisk behind the
correlation row values represents the degree of saliency: ∗
representing 0.01 < sig < 0.05 indicates significance; ∗∗
representing sig < 0.01 denotes a high degree of significance;
and the third row is the sample capacity.

Take the data of PI02 in Table 3 as an example, where
correlation coefficient r = 0.674, significant P = 0, and sample
capacity N = 1000. The results indicate that PI02 is the lower
column pressure, and this pressure has a strong correlation
with LI101.

The strong correlation variable inTable 3 is used to reduce
the dimension.

The data matrix X is composed of strong correlation
variables, and the matrix is normalized. The normalized
data matrix Z is obtained, and the correlation matrix C is
calculated. The correlation matrix C comprises 14 principal
components. The correlation coefficient matrix of solid cor-
relation variables is shown in Table 4.
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Table 4: Correlation coefficient matrix.

Z-Score PI02 PI03 PI401 PI402 PI1201 PI2003 PI102 PI103 FI102 FI101 FI1201 TI03 TI04 TI102
PI02 1.000 0.354 0.744 0.376 0.720 0.805 0.519 0.884 -0.468 0.396 0.250 0.798 0.114 0.749
PI03 0.354 1.000 0.854 0.976 0.694 0.714 0.699 0.477 -0.623 0.984 0.866 0.156 0.543 0.850
PI401 0.744 0.854 1.000 0.856 0.878 0.933 0.727 0.779 -0.675 0.871 0.750 0.505 0.463 1.000
PI402 0.376 0.976 0.856 1.000 0.637 0.695 0.659 0.462 -0.512 0.993 0.862 0.218 0.444 0.855
PI1201 0.720 0.694 0.878 0.637 1.000 0.958 0.798 0.828 -0.902 0.693 0.650 0.379 0.677 0.868
PI2003 0.805 0.714 0.933 0.695 0.958 1.000 0.785 0.873 -0.766 0.734 0.599 0.525 0.511 0.930
PI102 0.519 0.699 0.727 0.659 0.798 0.785 1.000 0.674 -0.742 0.696 0.670 0.233 0.531 0.716
PI103 0.884 0.477 0.779 0.462 0.828 0.873 0.674 1.000 -0.695 0.509 0.331 0.726 0.288 0.780
FI102 -0.468 -0.623 -0.675 -0.512 -0.902 -0.766 -0.742 -0.695 1.000 -0.590 -0.611 -0.144 -0.796 -0.657
FI101 0.396 0.984 0.871 0.993 0.693 0.734 0.696 0.509 -0.590 1.000 0.866 0.211 0.515 0.869
FI1201 0.250 0.866 0.750 0.862 0.650 0.599 0.670 0.331 -0.611 0.866 1.000 -0.038 0.672 0.738
TI03 0.798 0.156 0.505 0.218 0.379 0.525 0.233 0.726 -0.144 0.211 -0.038 1.000 -0.313 0.519
TI04 0.114 0.543 0.463 0.444 0.677 0.511 0.531 0.288 -0.796 0.515 0.672 -0.313 1.000 0.441
TI102 0.749 0.850 1.000 .855 0.868 0.930 0.716 0.780 -0.657 0.869 0.738 0.519 0.441 1.000

Table 5: Principal component characteristic root and contribution rate.

assembly
Initial Eigenvalues Extraction of load square sum

total variance cumulative% total variance cumulative%
percentage percentage

1 9.543 68.165 68.165 9.543 68.165 68.165
2 2.328 16.631 84.796 2.328 16.631 84.796
3 1.232 8.800 93.597 1.232 8.800 93.597
4 0.341 2.434 96.031
5 0.204 1.454 97.484
6 0.139 0.990 98.474
7 0.076 0.543 99.017
8 0.061 0.432 99.450
9 0.045 0.322 99.771
10 0.021 0.149 99.920
11 0.007 0.051 99.971
12 0.002 0.017 99.988
13 0.002 0.012 100.000
14 5.197E-5 0.000 100.000

The correlation coefficient matrix shows a strong cor-
relation between the indexes. For example, the correlation
coefficient between PI03 and PI402 and FI101 is large, as in
Table 4.This result shows that an overlap exists between their
index information. Next, the Jacobi method is used to find
the eigenvector wi, i = 1, 2, . . . ,m of the correlation matrixΛ = diag(𝜆1, 𝜆2, . . . , 𝜆m), where 𝜆 is the eigenvalue and diag
is a diagonalmatrix.The eigenvalues are sorted by the order of𝜆1 > 𝜆2 > ⋅ ⋅ ⋅ > 𝜆m, and the order of the eigenvector column
is adjusted correspondingly, making the maximum variance
the first principal components, the second largest variance as
the second principal components, and theminimumvariance
as the thirteenth principal components.

As shown in Table 5, the principal component character-
istic root and contribution rate are characteristic root 𝜆1 =9.543, characteristic root 𝜆2 = 2.328, and characteristic root𝜆3 = 1.23. The cumulative variance contribution rate of

the first three principal components reached 93.597%, which
covers most of the information. This finding suggests that
the first three principal components can represent the 13
principal components; therefore, the first three indexes can
be extracted. The principal component is taken as 𝜉1, 𝜉2, and𝜉3. The principal component load vector is calculated by the
three principal components, and the result is presented in
Table 6.

The indexes PI02, PI03, PI401, PI402, PI1201, PI2003,
PI102, PI103, PI102, FI101, FI1201, and TI102 have high load
on the first principal component, and the correlation is high.
TI03 has high load on the second principal components and
a strong correlation. TI04 has high load on the third principal
components and a strong correlation.

The load matrix of the principal component is the eigen-
vector of the principal component. Principal component load
vector is divided by the arithmetic square root of the principal
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Table 6: Principal component load vector.

assembly
1 2 3

PI02 0.7 0.654 −0.06
PI03 0.874 -0.338 0.302
PI401 0.97 0.093 0.154
PI402 0.851 -0.284 0.429
PI1201 0.936 0.074 -0.314
PI2003 0.948 0.212 -0.118
PI102 0.833 -0.075 -0.165
PI103 0.801 0.515 -0.199
PI102 -0.805 0.135 0.512
FI101 0.884 -0.289 0.34
FI1201 0.79 -0.5 0.155
TI03 0.419 0.841 0.224
TI04 0.596 -0.552 -0.617
TI102 0.965 0.109 0.174

Table 7: Load matrix of the principal component.

assembly
1 2 3

PI02 0.23 0.43 -0.05
PI03 0.28 -0.22 0.27
PI401 0.31 0.06 0.14
PI402 0.28 -0.19 0.39
PI1201 0.3 0.05 -0.28
PI2003 0.31 0.14 -0.11
PI102 0.27 -0.05 -0.15
PI103 0.26 0.34 -0.18
PI102 -0.26 0.09 0.46
FI101 0.29 -0.19 0.31
FI1201 0.26 -0.33 0.14
TI03 0.14 0.55 0.2
TI04 0.19 -0.36 -0.56
TI102 0.31 0.07 0.16

component characteristic root, that is, the load matrix of the
principal component:

𝑈i = Ai√𝜆i
. (19)

The results are shown in Table 7. The expression of the
principal component coefficient is

𝜉1 = 𝑥1𝑈1 + 𝑥2𝑈2 + ⋅ ⋅ ⋅ + 𝑥𝑑𝑈𝑑. (20)

The eigenvector is the load matrix Ui, i = 1, 2, . . . , d, and
the eigenvalue is the value of other variables at the same time.

Table 7 uses the three principal component to dynamic
recurrent prediction.

4.1. Prediction Model. BP neural network is a feedback-free
feedforward neural network, which is composed of a set of

interconnected neurons, in which each neuron is connected
with the corresponding weight [41]. The extreme learning
machine (ELM) is a single hidden layer feedforward neural
network. It is made up by a simple structure with strong
learning and generalization ability. This model has been
extensively used in the fields of pattern recognition and
regression estimation [42].

Through filtered of key parameter correlation variables
and dimensionality reduction, 14 groups of strong correlation
variables were filtered from 38 groups of correlation variables.
After dimensionality reduction, 3 groups of principal compo-
nents representing 14 groups of strong correlation variables
were obtained.

The following is the prediction of key parameter. The
method is compared with BP neural network, ELM, and
dynamic recurrent prediction model without dimensional-
ity reduction. For fairness, the selected variables are also
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Table 8: Sample set allocation table.

Data sets prorate% amount
Training 70% 700
Validation 15% 150
Testing 15% 150

analyzed by visual qualitative analysis and quantitative
correlation analysis. The predicted experimental data are
derived from 14 sets of solid correlation variables, which
remove abnormal values data and acquire 1000 sets of
effective data as experimental samples.The distribution of the
sample set is presented in Table 8.

In this study, the configuration of hardware involves CPU
of Intel Core i5-7300HQ, with main clock frequency of 2.50
GHz and GPU is GeForce GTX1050Ti by NVIDIA. This
study adopts the following international evaluation index to
measure the prediction efficiency of the model.

(1) Maximum Error (ME)

ME = max (fi − yi
) , i = 1, 2, 3, . . . , n. (21)

Among them, n is the sample size, fi is the predicted value,
and yi is the true value.

(2) Mean Absolute Error (MAE) is the average of the
absolute value of the deviation between all observed and
predicted values.

MAE = 1
n

i=n∑
i=1

fi − yi
 . (22)

(3) Root Mean Square Error (RMSE) represents the
discreteness of the error distribution. A small RMSE leads to
concentrated error distribution and high prediction accuracy.

RMSE = √ 1
n

i=n∑
i=1
(fi − yi)2. (23)

(4) Mean Absolute Percentage Error (MAPE) can be
used to measure the prediction results of a model, and its
calculation formula is as follows:

MAPE = sum
((fi − yi

 × 100) /yi)
n

. (24)

For the dynamic recurrent predictionmodel, the determi-
nation of the number of hidden layer neurons is an empirical
problem that must be constantly tested. The number of
hidden layer neurons in the dynamic recurrent network
structure, which is not reduced by dimensionality reduction,
is set to 2–10. The prediction error proportionality to the
number of neurons in different hidden layers is shown in
Figure 8. In the dynamic recurrent network model, MAPE
gradually decreases when the number of hidden layer neu-
rons increases from 2 to 9. When the number of hidden
layer neurons increases from 9 to 10, MAPE also gradually
increases, indicating that the optimal number of hidden
layer neurons was 8. For the Dimensionality Reduction-
Dynamic Recurrent model, the optimal number of hidden
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Figure 8: MAPE value and the number of neurons.

layer neurons is 5.When the number of hidden layer neurons
is larger than 5, the increasing trend of MAPE gradually
flattens and eventually stabilizes with the increase in the
number of hidden layer neurons, indicating that the stability
of the Dimensionality Reduction-Dynamic Recurrent model
is strong.

According to the analysis results of the two preceding
models, the network structure of dynamic recurrent model
is 14-9-1, and the network structure of Dimensionality
Reduction-Dynamic Recurrent model is 3-5-1.

Four methods were tested 30 times using the sample data
with a time step of 1 min to visualize their prediction effect.
When the dynamic recurrent network is trained, the transfer
function of the hidden layer unit takes the S tangent function
Tansig, the output unit also uses the S tangent function
Tansig, and the training function adopts the momentum and
adaptive gradient decreasing training function, traingdx.

An excerpt fragment from the 150 sets of test data is
shown in Figure 9. Results show that the four prediction
modeling methods have achieved good prediction results for
the time series of key parameter. However, there is a high
correspondence between fitting curve of predicted data and
actual real values and have greater prediction accuracy than
the three other prediction models.

Several kinds of evaluation indexes of the four prediction
models are calculated. Figure 10 indicates the prediction error
chart of the four prediction methods, and Table 9 shows the
performance indexes of several prediction methods, and the
result is presented. The MAE and the RMSE of this method
are all excellent among the four methods, which show that
this method has higher precision than the other methods in
the chemical key parameter prediction. From the mean value
of themaximum error and the absolute value of the percentile
relative error, the method demonstrates more stable than the
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Table 9: Performance evaluation of different prediction models.

Method ME MAE RMSE MAPE (%) TIME (s)
BP 74.641 9.982 129.060 1.023% 337.414
ELM 70.414 7.916 99.137 0.793% 0.77
Dynamic Recurrent 49.381 5.768 69.117 0.577% 40.341
Proposed Method 31.360 4.879 55.958 0.498% 34.732
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Figure 9: Prediction results of key parameters.

other methods in predicting the dynamic time series of the
chemical industry.

Among the fourmethods of this application, ELMhas the
shortest prediction time but has weaker prediction accuracy
and stability than the proposedmethod in this paper, and the
BP neural network is poor in all aspects. After dimensionality
reduction, the performance of this method is superior to the
single dynamic recurrent model method.

4.2. Evaluation and Discussion. In this application, the risk
degree of air separation distillation section is assumed to be
affected by several key links, such as air separation tower
system, air purification system, and air precooling system.
Moreover, the risk degree of air separation tower system is
considerably influenced by several key links. The evaluation
index and evaluation coefficient are presented in Table 10.

The second-level fuzzy comprehensive evaluation is used
to define the evaluation matrix Q2𝜎2 = [Q21,Q22,Q23,Q24]
of the fine air separation distillation section, and the key
parameter y(t) exceeding the high alarm value G:

C2𝜎2 = y (t) − G
G

× 100%. (25)
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Figure 10: Prediction error of four prediction models.

The following is only for liquid air level in lower
column.Multiply the elements corresponding to Q21 and
C21. The second-level fuzzy comprehensive evaluation index
matrix of liquid air level in lower column:

A21 = C21 ⋅ Q21. (26)

The 0–25 period of real-time prediction of the excerpt key
parameter is presented in Figure 11. The yellow line at 1030
mm is LI101 high alarm value and purple line at 1040 mm is
High-High alarm value. The current predictive value of time
is 24 min. The corresponding value is 960.236 mm.

The effect of the fuzzy comprehensive evaluation of
historical key parameter becomes smaller with the increase
time. This study considers an algorithm for generating an
attenuation factor to accurately evaluate the influence of the
fuzzy comprehensive evaluation of historical key parameter
on MHIs.

Assuming that the second-level fuzzy comprehensive
evaluation of key parameter is A, allowing A to assign a
timeliness weight 𝑡𝑝 to the numerical adjustment to eliminate
the effect of time factors on the overall MHIs rating results, L
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Table 10: Second-level fuzzy evaluation index and evaluation coefficient.

key production links key parameters evaluation labeling evaluation coefficient

Air precooling system Circulation water
level Q11 880

Air separation tower
system (contain Distillation
column)

Liquid air level in
lower column Q21 1110

Distillation column
pressure Q22 1050

Liquid oxygen level in
the main condenser Q23 1010

Distillation column
top temperature Q24 1040

Air purification system

Adsorption barrel
temperature Q31 890

Adsorption barrel
pressure Q32 870
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Figure 11: Real-time prediction and display of key parameters.

is the number of abnormal after the last time the real value of
the key parameter exceeds the high alarm.

𝐿∑
𝑝=1

𝑡𝑝 = 1, 1 ≤ 𝑝 ≤ 𝐿. (27)

Time weight 𝑡𝑝 is called time attenuation factor. In this
paper, the attenuation trend of second-level fuzzy compre-
hensive evaluations with time is presented by decreasing the
ratio of equal ratio, where 𝑡(𝑝−1) ̸= 𝑡𝑝 ̸= 𝑡(𝑝+1).

𝑡(𝑝−1)𝑡𝑝 = 𝑡𝑝𝑡(𝑝+1) , 2 ≤ 𝑝 ≤ 𝐿 − 1. (28)

Input. L historical key parameter matrix A21 and correspond-
ing time attenuation factor {𝑡1, 𝑡2, . . . , 𝑡𝐿}.

Table 11: Percentage of key parameter over normal threshold,
second-level fuzzy comprehensive evaluation, and attenuation fac-
tor.

key parameter C21 A21 𝑡𝑝
1037.760 0.753% 8.283 0.038
1035.590 0.543% 5.973 0.055
1038.630 0.838% 9.218 0.078
1038.190 0.795% 8.745 0.112
1042.530 1.217% 13.387 0.160
1044.700 1.427% 15.697 0.229
1042.530 1.217% 13.387 0.327

Output. Second-level fuzzy comprehensive evaluation value
of eliminating time factor is A

A = L∑
p=1

A × tp. (29)

The interval L is 7 for the last time the segment data
exceeds the high alarm value to the last return to the security
value, in which the key parameter exceeds the percentage of
the normal threshold. The second-level fuzzy comprehensive
evaluation and the attenuation factor are shown in Table 11.

The second-level fuzzy comprehensive evaluation value
excluding time factor is A21, which is calculated as follows:

A21 = [8.283 5.973 9.218 8.745 13.387 15.697 13.387]
[[[[[[[[[[[[[[[

0.0380.0550.0780.1120.1600.2290.327

]]]]]]]]]]]]]]]

= 12.4558. (30)

Then, the weight set of the first layer is determined: the
effect of each index on the air separation distillation section
risk grade, that is, the weight allocation, is shown in Table 12.

Multiply the second-level fuzzy comprehensive evalu-
ation matrix A2 and the weight of the first-level fuzzy
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Table 12: Level weight allocation.

Hazard installation Key production number link Weight(D)

Air separation distillation section B
Air precooling system B1 0.07

Air separation tower system B2 0.76
Air purification system B3 0.17

comprehensive evaluation, so the risk grade index of the air
separation distillation section in CIP is as follows:

B2 = A2𝜎2 ⋅D2. (31)

We assume that the risk grade index of the air pre-
cooling system and the air purification system is B1 =4.796, B3 = 6.163, the second-level fuzzy comprehensive
evaluation values A22, A


23 and A24 of distillation column

pressure, liquid oxygen level in the main condenser, and
distillation column top temperature are 10.637, 9.58, and 6.37,
respectively, which are the key parameters of air separation
tower system; therefore, the risk grade index

R = B1 × 0.07 + B2 × 0.76 + B3 × 0.17 = 4.796 × 0.07 +(10.637+9.58+6.37+12.4558)× 0.76+6.163×0.17 = 31.056
of the air separation distillation section. Combined with the
dynamic evaluation level in Table 1, the dynamic grade of
the air separation distillation section in CIP is determined
to be 31.056, which is a moderate risk grade. The division
of the dynamic risk level fully considers the influence of
the historical factors of MHIs on the overall risk, and the
historical data will have decreasing impact on the overall risk
over time.

5. Conclusion

This study introduces a dynamic early warning method
of MHIs in CIP. Data visual qualitative analysis method
and quantitative analysis are conducted to filter the corre-
lation variables. Feature analysis, feature vector acquisition
performs the dimensionality reduction of key parameters,
effectively improving the performance of dynamic recurrent
prediction in the chemical process industry parameters.
However, there are still some defects in the current study that
we cannot solve. In future research, we need to pay more
attention to identification of false alarms and consider human
factors and social factors.These research directionswill be the
key points of our future research.

Nomenclature

S: Composition matrix
s𝑛,p: Composition matrix is

homogenized 0–1
rA,B: Correlation coefficient
𝑋 = {xnm}: Strong correlation variables

data matrix
Z = {zn,m}: Standardized data matrix
C: Correlation matrix
Y2m: Total variance of 𝑥𝑚

xm: Overall mean of 𝑥𝑚
wi, i = 1, 2, . . . ,m: Eigenvector of the

correlation matrix CΛ = diag(𝜆1, 𝜆2, . . . , 𝜆m): Eigenvalue matrix of the
correlation matrix C

K: Principal component of C
wi, i = 1, 2, . . . , k,: Eigenvectors of K𝜉1, 𝜉2, . . . , 𝜉𝑘: Rebuilt K feature after the

reduction of dimension
𝑇: K principal components of

the strong correlation
variable

y(t): Output of the output layer
u(t): External input of the input

layer
xc(t): Output of the state layer
x(t): Output of the hidden layer
w(1): Connection weight of the

state layer and the hidden
layer

w(2): Connection weight
between the input layer
and the hidden layer

w(3): Connection weight of the
hidden layer and the
output layer𝜃(1): Hidden layer threshold𝜃(2): Output threshold value

f(x): Represents the activation
function of the neural
network

I(1)𝛼 (t): Input of input layer is
respectively

O(1)𝛼 (t): Output of input layer is
respectively

I(2)𝛽 (t): Input of the hidden layer
O(2)
𝛽
(t): Output of the hidden layer

I(C)𝛾 (t): Input of the state layer
O(C)𝛾 (t): Output of the state layer
I(3)𝜇 (t): Input of the output layer
G: High alarm value𝑝: The number of MHIs𝜎𝑝: The number of key

parameters for MHIs
C𝑝𝜎𝑝%: The percentage of the

predicted value of the key
parameter y(t) exceeding
the high alarm value
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Q𝑝𝜎𝑝 = [Q1𝜎1 ,Q2𝜎2 , . . . ,Q𝑝𝜎𝑝]: The weight of the
second-level of fuzzy
comprehensive evaluation

D𝑝 = [D1,D2, . . . ,D𝑝]: The weight of the first-level
of fuzzy comprehensive
evaluation

A𝑝𝜎𝑝 = [A1𝜎1 ,A2𝜎2 , . . . ,A𝑝𝜎𝑝 ]: Second-level fuzzy
comprehensive evaluation
index matrix

B𝑝: Risk grade index of the
MHIs𝑡𝑝: Timeliness weight

A: Second-level fuzzy
comprehensive evaluation
value of eliminating time
factor

L: Last time the segment data
exceeds the high alarm
value to the last return to
the security value.
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[24] M. R. Berthold and F. Höppner,On Clustering Time Series Using
Euclidean Distance and Pearson Correlation, 2016.

[25] J. Zhao, X. Zhu, W. Wang, and Y. Liu, “Extended Kalman filter-
based Elman networks for industrial time series prediction with
GPU acceleration,”Neurocomputing, vol. 118, no. 6, pp. 215–224,
2013.

[26] L. G. B. Ruiz, R. Rueda, M. P. Cuéllar, and M. C. Pegala-
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