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In this paper, we consider a multistage feedback control strategy for producing 1,3-propanediol in microbial continuous
fermentation. Both the dilution rate and the concentration of glycerol in the input feed are used as control variables, and these
variables are further assumed to be in the form of a linear combination of biomass and glycerol concentrations. Unlike the general
form of linear feedback control, the coefficients of linear combination are continuous functions with respect to time. Inspired by
the control parameterization method, we use the piecewise-constant functions to approximate the coefficient functions; then we
get the multistage feedback control law by solving nonlinear mathematical programming problems. Numerical results indicate the
flexibility and effectiveness of our strategy.

1. Introduction

Nowadays, the production of 1,3-propanediol(1,3-PD) by
microbial fermentation is very popular. There are three
main ways to produce 1,3-PD by microbial fermentation:
continuous culture, batch culture, and fed-batch culture. The
main method for producing 1,3-PD by continuous culture
is widely concerned [1], since it has the advantages of high
production strength, stable production, and high automation.
Compared with chemical synthesis, microbial fermentation
for producing 1,3-PD is more attractive because it is easy to
implement and does not generate toxic byproducts. Unfortu-
nately, the production of 1,3-PD by microbial fermentation is
not up to the standard of industry. Therefore, more and more
scholars focus on optimizing the yield of 1,3-PDvia microbial
fermentation [2–7].

Previous studies on the optimal control of 1,3-PD only
achieved the open-loop control, see, for example, [8–10].This
is a discount in practical production. Based on our previous
study, we find that feedback control is more in line with actual
production process or experimental process by realizing
closed-loop control. The linear feedback optimal control [11]
has been widely studied in theory and applications. Different
from the traditional approach to determine an optimal

feedback control such as solving the well-known Hamilton-
Jacobi-Bellman partial differential equation, the sensitivity
penalization approach for computing robust suboptimal con-
trollers [12], and the neighboring extremal approach [13, 14],
we consider the feedback control coefficient function with
time dependence. In order to further increase the yield of
1,3-PD, we regard both dilution rate and the concentration
of glycerol in the input feed as the controllers which are
further assumed to be in the form of a linear combination
of biomass and glycerol concentrations. Unlike the general
form of linear feedback control, the coefficients of linear
combination are continuous functions with respect to time.
Inspired by the control parameterization method, we use the
piecewise-constant functions to approximate the coefficient
functions; then we get the multistage feedback control law
by solving nonlinear mathematical programming problems.
Finally, numerical results show the flexibility and effective-
ness of our strategy.

2. Problem Statement

Thedynamicmodel of the continuous culture process is based
on the following assumptions.
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Table 1: The values of parameters [15].

𝑖 𝑚𝑖 𝑌𝑖 Δ𝑞𝑖 𝑘𝑖 𝑏𝑖 𝑐𝑖
1 - - - - 0.025 0.06
2 2.20 0.0082 28.58 11.43 5.18 50.45
3 -2.69 67.69 26.59 15.50 - -
4 -0.97 33.07 5.74 85.71 - -

Assumption 1. Thematerial composition in the fermentation
tank does not change with the position of space, and the
solution in the reactor is sufficiently well mixed so that the
concentrations of reactants are uniform.

Assumption 2. The continuously added medium contains
glycerin only, and the substance in the reactor is exported at
dilution rate 𝐷(𝑡).
Assumption 3. The materials in the fermentation are fully
mixed in which the concentrations are even, and the con-
centrations of the reactants change only with the change of
reaction time.

Under the above assumptions, the mass balance relation-
ships for biomass, substrate, and products in the microbial
continuous culture can be expressed as the following nonlin-
ear dynamic system:

̇𝑥1 (𝑡) = 𝑓1 (𝑡, 𝑢 (𝑡)) = (𝜇 − 𝐷 (𝑡)) 𝑥1 (𝑡) ,
̇𝑥2 (𝑡) = 𝑓2 (𝑡, 𝑢 (𝑡))

= 𝐷 (𝑡) (𝐶𝑠0 (𝑡) − 𝑥2 (𝑡)) − 𝑞2𝑥1 (𝑡) ,
̇𝑥3 (𝑡) = 𝑓3 (𝑡, 𝑢 (𝑡)) = 𝑞3𝑥1 (𝑡) − 𝐷 (𝑡) 𝑥3 (𝑡) ,
̇𝑥4 (𝑡) = 𝑓4 (𝑡, 𝑢 (𝑡)) = 𝑞4𝑥1 (𝑡) − 𝐷 (𝑡) 𝑥4 (𝑡) ,
̇𝑥5 (𝑡) = 𝑓5 (𝑡, 𝑢 (𝑡)) = 𝑞5𝑥1 (𝑡) − 𝐷 (𝑡) 𝑥5 (𝑡) ,

(1)

and

𝑥𝑖 (0) = 𝑥0𝑖 𝑖 = 1, 2, 3, 4, 5, (2)

where 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), and 𝑥5(𝑡), respectively rep-
resent the concentrations of biomass, extracellular glycerol,
extracellular 1,3-PD, acetate, and ethanol at time 𝑡; 𝑥0𝑖 are
the initial concentrations of biomass, glycerol, 1,3-PD, acetate,
and ethanol; 𝑡 ∈ [0, 𝑡𝑓], 𝑡𝑓 is the terminal time;𝜇 is the specific
growth rate of cells; 𝑞2 is the specific consumption rate of
substrate; 𝑞𝑖, 𝑖 = 3, 4, 5, are the specific formation rates of
1,3-PD, acetate, and ethanol, respectively; 𝐷(𝑡) denotes the
dilution rate; 𝐶𝑠0(𝑡) denotes the concentration of glycerol in
the input feed; and 𝑢(𝑡) = (𝐷(𝑡), 𝐶𝑠0(𝑡)). In particular,

𝜇 = 𝜇𝑚 𝑥2 (𝑡)𝑥2 (𝑡) + 𝑘𝑠
5∏
𝑖=2

(1 − 𝑥𝑖 (𝑡)𝑥∗𝑖 ) , (3)

𝑞2 = 𝑚2 + 𝜇𝑌2 + Δ𝑞2 𝑥2 (𝑡)𝑥2 (𝑡) + 𝑘2 , (4)

𝑞3 = 𝑚3 + 𝜇𝑌3 + Δ𝑞3 𝑥2 (𝑡)𝑥2 (𝑡) + 𝑘3 , (5)

𝑞4 = 𝑚4 + 𝜇𝑌4 + Δ𝑞4 𝑥2 (𝑡)𝑥2 (𝑡) + 𝑘4 , (6)

𝑞5 = 𝑞2 ( 𝑏1𝑐1 + 𝐷 (𝑡) 𝑥2 (𝑡) + 𝑏2𝑐2 + 𝐷 (𝑡) 𝑥2 (𝑡)) , (7)

where 𝜇𝑚 = 0.67 is the maximum specific growth rate; 𝑘𝑠 =0.28 is the Monod saturation constant for substrate. Under
anaerobic conditions at 37∘C and pH=7.0, the values of other
parameters used in (1) - (7) are listed in Table 1.

Let 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡))𝑇, 𝑥0 = (𝑥01,𝑥02, . . . , 𝑥05)𝑇, and 𝑓(𝑥(𝑡), 𝑢(𝑡)) fl (𝑓1(𝑡, 𝑢(𝑡)), . . . , 𝑓5(𝑡,𝑢(𝑡)))𝑇. Thus the nonlinear control system can be formulated
as follows:

̇𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑡𝑓]
𝑥 (0) = 𝑥0. (8)

For the actual bioprocess, it should be noted that there
exist critical concentrations for the state vector. Therefore, it
is natural to restrict the concentrations of biomass, glycerol,
and products in a given set 𝑊 defined as

𝑥 (𝑡) ∈ 𝑊 fl [𝑥∗, 𝑥∗] = 5∏
𝑖=1

[𝑥𝑖∗, 𝑥∗𝑖 ] ⊂ 𝑅5+ (9)

where 𝑥∗𝑖 and 𝑥𝑖∗, respectively, denote the upper and lower
bounds of the corresponding state variables.

Equation (9) can be equivalently transformed as contin-
uous state inequality constraints by introducing the functions
as follows:

ℎ𝑖 (𝑥 (𝑡)) ≤ 0, 𝑡 ∈ [0, 𝑡𝑓] , 𝑖 = 1, . . . , 10, (10)

where ℎ𝑖(𝑥(𝑡)) = 𝑥𝑖(𝑡) − 𝑥∗𝑖 and ℎ𝑖+5(𝑥(𝑡)) = 𝑥∗𝑖 − 𝑥𝑖(𝑡), 𝑖 =1, . . . , 5.
In this paper, the dilution rate𝐷(𝑡) and the concentration

of glycerol in the input feed 𝐶𝑠0(𝑡) are chosen as the control
variables 𝑢(𝑡). It is obvious that the control variables are also
constrained:

𝑢∗ ≤ 𝑢 (𝑡) ≤ 𝑢∗, 𝑡 ∈ [0, 𝑡𝑓] , (11)

where 𝑢∗ and 𝑢∗ are the lower and upper bounds of 𝑢(𝑡).
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Let 𝑥(⋅ | 𝑢) be the solution of (8) on [0, 𝑡𝑓]. We can
describe the optimal control problem as follows.

Problem 𝑃0. Choose 𝑢 to minimize the cost function

min 𝐽0 (𝑢) = −𝑥3 (𝑡𝑓 | 𝑢)
𝑠.𝑡. 𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝑥 (𝑡) ∈ 𝑊,
𝑢∗ ≤ 𝑢 (𝑡) ≤ 𝑢∗, 𝑡 ∈ [0.𝑡𝑓] .

(12)

3. Feedback Optimal Control Problem

In microbial fermentation, the most important factors to
influence the final concentration of 1,3-PD are the concentra-
tions of biomass and glycerol. And the linear state feedback
control law is one of the most common feedback control
structures [16]. Thus, the feedback controller is considered
as a linear combination form of the biomass and the glycerol
concentrations, i.e.,

𝑢 (𝑡) = (𝐷 (𝑡) , 𝐶𝑠0 (𝑡)) )

= (𝜑1 (𝑥 (𝑡) , 𝜉 (𝑡)) , 𝜑2 (𝑥 (𝑡) , 𝜉 (𝑡))) ,
𝑡 ∈ [0, 𝑡𝑓] ,

(13)

where 𝜉(𝑡) = (𝜉1(𝑡), 𝜉2(𝑡), 𝜉3(𝑡), 𝜉4(𝑡))𝑇; 𝜑1(𝑥(𝑡), 𝜉(𝑡)) =𝜉1(𝑡)𝑥1(𝑡) + 𝜉2(𝑡)𝑥2(𝑡); and 𝜑2(𝑥(𝑡), 𝜉(𝑡)) = 𝜉3(𝑡)𝑥1(𝑡) +𝜉4(𝑡)𝑥2(𝑡).
The following bound constraints are imposed on the

feedback control coefficients 𝜉(𝑡):
𝑈𝑎𝑑 = [𝛼1, 𝛽1] × [𝛼2, 𝛽2] × [𝛼3, 𝛽3] × [𝛼4, 𝛽4] ,

𝑡 ∈ [0, 𝑡𝑓] . (14)

Substituting (13) into (8) gives

̇𝑥𝑖 (𝑡) = 𝑓𝑖 (𝑥 (𝑡) , 𝜉 (𝑡)) , 𝑡 ∈ [0, 𝑡𝑓] , 𝑖 = 1, 2, . . . , 5, (15)

where

𝑓 (𝑥 (𝑡) , 𝜉 (𝑡))

=
{{{{{{{{{

𝑓1 (𝑥 (𝑡) , 𝜉 (𝑡)) = 𝜇𝑥1 (𝑡) − 𝜉1 (𝑡) 𝑥12 (𝑡) − 𝜉2 (𝑡) 𝑥1 (𝑡) 𝑥2 (𝑡) ,
𝑓2 (𝑥 (𝑡) , 𝜉 (𝑡)) = 𝜉1 (𝑡) 𝜉3 (𝑡) 𝑥12 (𝑡) + (𝜉1 (𝑡) 𝜉4 (𝑡) − 𝜉1 (𝑡) + 𝜉2 (𝑡) 𝜉3 (𝑡)) 𝑥1 (𝑡) 𝑥2 (𝑡) + (𝜉2 (𝑡) 𝜉4 (𝑡) − 𝜉2 (𝑡)) 𝑥22 (𝑡) − 𝑞2𝑥2 (𝑡) ,
𝑓𝑖 (𝑥 (𝑡) , 𝜉 (𝑡)) = 𝑞𝑖𝑥1 (𝑡) − 𝜉1 (𝑡) 𝑥1 (𝑡) 𝑥𝑖 (𝑡) − 𝜉2 (𝑡) 𝑥2 (𝑡) 𝑥𝑖 (𝑡) , 𝑖 = 3, 4, 5.

(16)

Consider system (16) with the initial condition of (8). Let𝑥(⋅ | 𝜉) denote the solution of system (16) on [0, 𝑡𝑓]. Then
the constraint conditions (10) become

ℎ̃𝑖 (𝑥 (𝑡)) ≤ 0, 𝑡 ∈ [0, 𝑡𝑓] , 𝑖 = 1, . . . , 10, (17)

Our goal is to present a state feedback control strategy to
maximize the final concentration of 1,3-PD.We now consider
the problem of choosing the feedback control coefficients𝜉𝑘(𝑡), 𝑘 = 1, 2, 3, 4, to minimize the total system cost subject
to constraints (17).

Problem P. Choose 𝜉(𝑡) ∈ 𝑈𝑎𝑑 to minimize the cost function

min 𝐽1 (𝜉) = −𝑥3 (𝑡𝑓 | 𝜉)
𝑠.𝑡. ̇𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝜉 (𝑡)) ,

ℎ̃𝑖 (𝑥 (𝑡)) ≤ 0, 𝑖 = 1, . . . , 10,
𝑥 (0) = 𝑥0,
𝜉 (𝑡) ∈ 𝑈𝑎𝑑, 𝑡 ∈ [0, 𝑡𝑓] .

(18)

Problem P is a nonlinear optimization problem in which
a finite number of decision variables (the feedback control

coefficients) needs to be optimized subject to a set of con-
straints. It is very difficult to solve Problem P, because each
continuous inequality constraint in (17) actually constitutes
an infinite number of constraints—one for each point in[0, 𝑡𝑓]. Hence, Problem P can be viewed as a semi-infinite
optimization problem. Then, we will use a penalty method to
transform Problem P [17].

The condition 𝑥(𝑡) ∈ 𝑊, 𝑡 ∈ [0, 𝑡𝑓] is equivalently
transcribed into

𝐺 (𝜉) = 0, (19)

with

𝐺 (𝜉) = ∫𝑡𝑓
0

10∑
𝑖=1

max {ℎ̃𝑖 (𝑥 (𝑡)) , 0} 𝑑𝑡. (20)

Clearly, 𝐺(𝜉) = 0 if and only if 𝑥(𝑡) ∈ 𝑊. However, the
equality constraint (20) is nonsmooth at the points when ℎ̃𝑖 =0. Consequently, standard optimization routines would have
difficulties in dealing with this type of equality constraints.
Let

𝐺 (𝜉) = ∫𝑡𝑓
0

10∑
𝑖=1

𝜑𝜖(ℎ̃𝑖 (𝑥 (𝑡)) 𝑑𝑡, (21)
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where the smoothing parameter 𝜖 is a very small positive
number, and 𝜑𝜖 : 𝑅 󳨀→ 𝑅 is defined by

𝜑𝜖 (𝜂) =
{{{{{{{{{{{

𝜂 if 𝜂 > 𝜖,
(𝜂 + 𝜖)2

4𝜖 if − 𝜖 ≤ 𝜂 ≤ 𝜖,
0 otherwise.

(22)

Obviously, 𝐺(𝜉) is a smooth function in 𝜉.Then, the objective
function of Problem P can be reformulated as

𝐽 (𝜉) = 𝐽1 (𝜉) + 𝜌𝐺 (𝜉) , (23)

where 𝜌 > 0 is the given penalty parameter. Problem P can be
transformed into the following problem.

Problem Q. Choose 𝜉 to minimize the penalty function 𝐽(𝜉).
min 𝐽 (𝜉) = 𝐽1 (𝜉) + 𝜌𝐺 (𝜉)
𝑠.𝑡. 𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝜎) , 𝑡 ∈ [0, 𝑡𝑓] ,

𝑥 (0) = 𝑥0,
𝜉 (𝑡) ∈ 𝑈𝑎𝑑.

(24)

Similar to thework [18], we can get the following theorem.

Theorem 1. Let 𝜉∗𝜖 be the optimal solution of Problem Q.
Suppose that there exists an optimal solution 𝜉∗ of the original
Problem P. 
en

lim
𝜖󳨀→0

𝐽 (𝜉∗𝜖 ) = 𝐽 (𝜉∗) (25)

Theorem 1 guaranteed that any local solution of the
approximate problem can be used for generating a corre-
sponding local solution of the original problem when the
smoothing penalty parameter is sufficiently small.

4. Control Vector Parameterization Technique
and Particle Swarm Adaptive Algorithm

To solve Problem Q numerically, the control vector parame-
terization approach is applied [19, 20], in which the feedback
control variables 𝜉(𝑡) = [𝜉1(𝑡), 𝜉2(𝑡), 𝜉3(𝑡), 𝜉4(𝑡)] are dis-
cretized. Partition the time horizon [𝑡0 , 𝑡𝑓] into𝑝 subintervals[𝑡𝑘−1, 𝑡𝑘) (𝑘 = 1, . . . , 𝑝) such that 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑝 =𝑡𝑓. Using the piecewise-constant policy, the feedback control
variable 𝜉𝑖(𝑡) is approximated by

𝜉𝑖 (𝑡) ≈ 𝜉𝑖 (𝑡) = 𝑝∑
𝑘=1

𝜎𝑖,𝑘𝜒𝑘 (𝑡) (26)

where 𝜎𝑖,𝑘 is the value of 𝜉𝑖(𝑡) in the 𝑘th subinterval [𝑡𝑘−1, 𝑡𝑘),
and 𝜒𝑘 is defined as

𝜒𝑘 (𝑡) fl {{{
1, if 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘) ,
0, otherwise. (27)

Let 𝜎 = [𝜎1, 𝜎2, 𝜎3, 𝜎4]𝑇, where 𝜎𝑖 = [𝜎𝑖,1, . . . , 𝜎𝑖,𝑝].
With the 𝜉 ∈ 𝑈𝑎𝑑, the differential equation (15) is of form

𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝜎) , (28)

where

𝑓 (𝑥 (𝑡) , 𝜎) = 𝑓(𝑥 (𝑡) , 𝑝∑
𝑘=1

𝜎𝑖,𝑘𝜒𝑖,𝑘 (𝑡)) . (29)

The initial condition remains:

𝑥 (0) = 𝑥0. (30)

Let 𝑥(⋅ | 𝜎) be the solution of the system (28) cor-
responding to the control parameter vector 𝜎. And in this
way, Problem Q can be approximated by a sequence of
nonlinear programming problems, in which 𝜎 is regarded as
the decision vector.

We may now specify the approximate Problem Q(p) as
follows.

Problem Q(p). Find a control parameter vector 𝜎 ∈ 𝑈𝑎𝑑 to
minimize the cost function.

min 𝐽 (𝜎) = 𝐽1 (𝜎) + 𝜌𝐺 (𝜎)
𝑠.𝑡. 𝑥̇ (𝑡) = 𝑓 (𝑥 (𝑡) , 𝜎) , 𝑡 ∈ [0, 𝑡𝑓] ,

𝑥 (0) = 𝑥0,
𝜎 ∈ 𝑈𝑎𝑑.

(31)

Theorem 2. Let 𝜉∗ be the optimal control of the approximate
Problem Q(p). Suppose that the original Problem Q has an
optimal control 𝜉∗. 
en,

lim
𝑝󳨀→∞

𝐽 (𝜉∗) = 𝐽 (𝜉∗) (32)

To solve the Problem P as mathematical programming
problems, we require the gradient formulae for the function𝐽(𝜎). We shall derive the required formulae as follows [21].

Let the corresponding Hamiltonian function for the cost
function be defined by

𝐻(𝑡, 𝑥, 𝜎, 𝜆) = m (𝑥 (𝑡) , 𝜎) + 𝜆𝑇𝑓 (𝑥 (𝑡) , 𝜎) , (33)

where

m (𝑥 (𝑡) , 𝜎) = 𝜌 10∑
𝑖=1

𝜑𝜖 (ℎ̃𝑖 (𝑥 (𝑡))) , (34)

and

𝜆 (𝑡) = (𝜆1 (𝑡) , 𝜆2 (𝑡) , 𝜆3 (𝑡) , 𝜆4 (𝑡) , 𝜆5 (𝑡))𝑇 (35)

is the solution of the costate system

𝜆̇ (𝑡) = −𝜕𝐻 (𝑡, 𝑥, 𝜎, 𝜆)𝑇𝜕𝑥 , (36)
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with the boundary condition

𝜆 (𝑡𝑓) = (0, 0, 0, 0, 0)𝑇 . (37)

Using the similar arguments in [19], we obtain the
gradient of 𝐽 is

𝜕𝐽 (𝜎)𝜕𝜎 = ∫𝑡𝑓
0

𝜕𝐻 (𝑡, 𝑥 (𝑡 | 𝜎) , 𝜎, 𝜆 (𝑡 | 𝜎))𝜕𝜎 𝑑𝑡. (38)

During actual computation, the control parameterization
is carried out on an partition of the interval [0, 𝑡𝑓]; each
component of (38) can be written in a more specific form:

𝜕𝐽 (𝜎)𝜕𝜎𝑖,𝑗 = ∫𝑡𝑗
𝑡𝑗−1

𝜕𝐻 (𝑡, 𝑥 (𝑡 | 𝜎) , 𝜎, 𝜆 (𝑡 | 𝜎))
𝜕𝜉𝑖 𝑑𝑡. (39)

Based on the above control vector parameterization
approach, we adopt a gradient-based adaptive refinement
method [22] for solving Problem Q(p). The algorithm is
adaptive so as to obtain economic and effective discretization
grids. In thisway, a high-quality solution can be obtainedwith
low computational cost.

Define 𝐽∗𝑙, 𝜉∗𝑙𝑖 = [𝜎∗𝑙𝑖,1, . . . , 𝜎∗𝑙𝑖,𝑝], (𝑖 = 1, . . . , 4), Δ𝑙 = [𝑡𝑙0,. . . , 𝑡𝑙𝑝]𝑇 as the optimal objective function value, the optimal
solution, and the corresponding discretization time grid
found in iteration 𝑙. Δ𝑙󸀠 fl [𝑡𝑙󸀠0 , . . . , 𝑡𝑙󸀠2𝑝]𝑇 is obtained by bisect-
ing each subinterval in Δ𝑙 with initial control variable 𝜉𝑙󸀠𝑖 =
[𝜎∗𝑙𝑖,1, 𝜎∗𝑙𝑖,1, . . . , 𝜎∗𝑙𝑖,𝑝, 𝜎∗𝑙𝑖,𝑝]𝑇. Suppose 𝐽∗𝑙󸀠 , 𝜉∗𝑙󸀠𝑖 = [𝜎∗𝑙󸀠𝑖,1 , . . . , 𝜎∗𝑙󸀠𝑖,2𝑝]
are the optimal objective function value and the optimal
solution in iteration 𝑙󸀠, respectively. We hope to find a new
discretization grid to make it better adapted to the solution.

Define the sensitivity of 𝜎𝑙󸀠𝑖,𝑗 as follows:
𝑠𝑖,𝑗 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝐽

𝜕𝜎𝑙󸀠𝑖,𝑗
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 , 𝑤ℎ𝑒𝑟𝑒 𝜎𝑙󸀠𝑖,𝑗 = 𝜎∗𝑙𝑖,⌊(𝑗+1)/2⌋, (40)

where ⌊(𝑗+1)/2⌋ denotes the maximum integer that does not
exceed (𝑗+1)/2. Suppose𝜎∗𝑙−1𝑖,𝐾 and 𝜎∗𝑙𝑖,𝐾 are the optimal values
in time interval 𝐾 fl [𝑡𝑙󸀠2𝑘−2, 𝑡𝑙󸀠2𝑘] in iteration 𝑙 −1 and iteration𝑙, respectively.

For a given value 𝜀1 > 0, if󵄨󵄨󵄨󵄨󵄨𝜎∗𝑙𝑖.𝐾 − 𝜎∗𝑙−1𝑖,𝐾 󵄨󵄨󵄨󵄨󵄨 < 𝜀1, (41)

then let
𝑠𝑖,2𝑘−1 = 0

𝑎𝑛𝑑 𝑠𝑖,2𝑘 = 0. (42)

If the following conditions

𝑠𝑖,2𝑘−1 > 𝜆1𝑠𝑖
𝑜𝑟 𝑠𝑖,2𝑘 > 𝜆1𝑠𝑖, (43)

hold, in which

𝑠𝑖 = 12𝑝
2𝑝∑
𝑗=1

𝑠𝑖,𝑗, (44)

then the grid point 𝑡𝑙󸀠2𝑘−1 in Δ𝑙󸀠 is reserved; otherwise,
eliminate it. When both 𝑡𝑙󸀠2𝑘−1 and 𝑡𝑙󸀠2(𝑘+1)−1 are removed, the
grid point 𝑡𝑙󸀠2𝑘 is also eliminated if

𝑠𝑖,2𝑘−1 < 𝜆2𝑠𝑖,𝑠𝑖,2𝑘 < 𝜆2𝑠𝑖,𝑠𝑖,2𝑘+1 < 𝜆2𝑠𝑖,𝑠𝑖,2(𝑘+1) < 𝜆2𝑠𝑖,
𝑎𝑛𝑑 󵄨󵄨󵄨󵄨󵄨𝜎∗𝑙𝑖,𝑘+1 − 𝜎∗𝑙𝑖,𝑘󵄨󵄨󵄨󵄨󵄨 < 𝜀2

(45)

where 𝜆1, 𝜆2, and 𝜀2 are given constants, and 𝜆1 > 0, 𝜆2 ∈(0, 𝜆1], 𝜀2 > 0.
Themain steps of this algorithm are as follows.

Algorithm 3.

Step 0. Choose the initial time grids Δ0, the maximum
number of iterations 𝑙𝑚𝑎𝑥 ≥ 1, error tolerance 𝑡𝑜𝑙𝐽 > 0,
constants 𝜀1 > 0, 𝜀2 > 0, 𝜆1 > 0, 𝜆2 ∈ (0, 𝜆1]. Initialize the
parameters 𝑁, 𝑙, 𝑐1, 𝑐2, 𝑑1, 𝑑2, 𝜏, 𝜔𝑚𝑎𝑥, 𝜔𝑚𝑖𝑛, 𝑉𝑚𝑎𝑥, 𝑉𝑚𝑖𝑛, 𝐾𝑚𝑎𝑥.
Step 1. Set 𝑙 = 0.
Step 2. By using particle swarm optimization algorithm to
obtain the optimal objective function value 𝐽∗𝑙 and the
optimal solution 𝜉∗𝑙, in which 𝜉∗𝑙 = [𝜉∗𝑙1 , 𝜉∗𝑙2 , 𝜉∗𝑙3 , 𝜉∗𝑙4 ]𝑇,𝜉∗𝑙𝑖 = [𝜎∗𝑙𝑖,1, . . . , 𝜎∗𝑙𝑖,𝑝], i = 1, . . . , 4, 𝑝 is the interval number
corresponding to the interval cross powder at this time.

Step 2.1. Randomly generate 𝑁 particles with uniform
distribution on 𝑈𝑎𝑑. Denote the position and velocity of
particles by 𝜉𝑛 = [𝜉𝑛1 , 𝜉𝑛2 , 𝜉𝑛3 , 𝜉𝑛4]𝑇 ∈ 𝑈𝑎𝑑, in which 𝜉𝑛𝑖 =[𝜎𝑛𝑖,1, . . . , 𝜎𝑛𝑖,𝑝] and V𝑛 = [V𝑛1 , V𝑛2 , V𝑛3 , V𝑛4], respectively, where V𝑛𝑖 =[𝜃𝑛𝑖,1, . . . , 𝜃𝑛𝑖,𝑝], 𝜃𝑛𝑖,𝑘 ∈ [𝑉𝑖𝑚𝑖𝑛, 𝑉𝑖𝑚𝑎𝑥], 𝑘 = 1, . . . , 𝑝. 𝑉𝑖𝑚𝑖𝑛 and𝑉𝑖𝑚𝑎𝑥 denote the 𝑖th components of𝑉𝑚𝑖𝑛 and𝑉𝑚𝑎𝑥. Set 𝐽𝑛𝑝𝑏𝑒𝑠𝑡 is
the best objective value found by the 𝑛th individual particle,𝜉𝑛∗ = [𝜉𝑛∗1 , 𝜉𝑛∗2 , 𝜉𝑛∗3 , 𝜉𝑛∗4 ] is the best position found by the 𝑛th
individual particle. Let 𝐽𝑔𝑏𝑒𝑠𝑡 denote the best objective value
found by any member of the swarms, 𝜉∗ = [𝜉∗1 , 𝜉∗2 , 𝜉∗3 , 𝜉∗4 ]
denote the best position found by anymember of the swarms.

Step 2.2. Let 𝑘 = 1, 𝐽𝑛𝑝𝑏𝑒𝑠𝑡 󳨀→ +∞, 𝐽𝑔𝑏𝑒𝑠𝑡 󳨀→ +∞.

Step 2.3. For each 𝑛 = 1, 2, . . . , 𝑁, use 𝜉𝑛 to calculate the
corresponding objective function values 𝐽(𝜉𝑛).
Step 2.4. If 𝐽(𝜉𝑛) < 𝐽𝑛𝑝𝑏𝑒𝑠𝑡, then set 𝐽𝑛𝑝𝑏𝑒𝑠𝑡 = 𝐽(𝜉𝑛) and 𝜉𝑛∗ = 𝜉𝑛.
Step 2.5. If 𝐽𝑛𝑝𝑏𝑒𝑠𝑡 < 𝐽𝑔𝑏𝑒𝑠𝑡, then set 𝐽𝑔𝑏𝑒𝑠𝑡 = 𝐽𝑛𝑝𝑏𝑒𝑠𝑡 and 𝜉∗ = 𝜉𝑛∗.
Step 2.6. If 𝑘 ≤ 𝐾𝑚𝑎𝑥, then go to Step 2.7; otherwise, stop.

Step 2.7. Update the inertia term according to the following
formula:

𝜔 = (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛 − 𝑑1) exp{ 1𝐾𝑚𝑎𝑥 + 𝑑2 (𝑘 − 1)} . (46)
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Step 2.8. For each 𝑛 = 1, . . . , 𝑁, compute

𝜃𝑛𝑖,𝑘 = 𝜔𝜃𝑛𝑖,𝑘 + 𝑐1𝑟1 (𝜎𝑛∗𝑖,𝑘 − 𝜎𝑛𝑖,𝑘) + 𝑐2𝑟2 (𝜎∗𝑖,𝑘 − 𝜎𝑛𝑖,𝑘) , (47)

where 𝑟1, 𝑟2 obey the uniform distributions on [0, 1].
Step 2.9. For each 𝑛 = 1, 2, . . . , 𝑁, compute

𝜎𝑛𝑖,𝑘 = 𝜎𝑛𝑖,𝑘 + 𝜃𝑛𝑖,𝑘 (48)

Step 2.10. Set 𝑘 = 𝑘 + 1, and return go to Step 2.3.

Step 3. Check the stopping criterion. If 𝑙 = 𝑙𝑚𝑎𝑥 or |(𝐽∗𝑙 −𝐽∗𝑙−1)/𝐽∗𝑙| < 𝑡𝑜𝑙𝐽(𝑙 > 0), stop; otherwise, go to Step 4.
Step 4. Refine time grids.

Step 4.1. Bisecting each subinterval in Δ𝑙 to obtain the
temporary grids Δ𝑙󸀠 and the corresponding control variables
𝜉𝑙󸀠 .
Step 4.2. Compute the sensitivity according to (42), (43), and
(44).

Step 4.3. Eliminate unnecessary grid points according to (45),
(46), and (47).

Step 4.4. Let 𝜉𝑙+1 = 𝜉𝑙󸀠 , Δ𝑙+1 = Δ𝑙󸀠 .
Step 5. Set 𝑙 = 𝑙 + 1. If 𝑙 = 𝑙𝑚𝑎𝑥, stop; otherwise, go to Step 2.

Remark 4. In the above algorithm, 𝑁 denote the total
number of particles in the swarm. 𝑐1 and c2 are the cog-
nitive and social scaling parameters. 𝜔𝑚𝑎𝑥 and 𝜔𝑚𝑖𝑛 are
the maximum and minimum inertia weights. 𝑉𝑚𝑎𝑥 and𝑉𝑚𝑖𝑛 are vectors containing the maximum and minimum
particle velocities. 𝐾𝑚𝑎𝑥 is the maximum number of iter-
ation. 𝑑1 and 𝑑2 are control factors. 𝑘 is the iteration
index.

5. Numerical Results

In the microbial fermentation, we choose the boundary
value of state vector as 𝑥∗ = [0.001, 100, 0, 0, 0]𝑇, 𝑥∗ =[10, 2039, 939.5, 1026, 360.9]; the initial concentrations of
biomass, glycerol, 1,3-PD, acetate, and ethanol are 𝑥10 =0.404𝑚𝑚𝑜𝑙/𝐿, 𝑥20 = 440.8578𝑚𝑚𝑜𝑙/𝐿, 𝑥30 = 0.01𝑚𝑚𝑜𝑙/𝐿,𝑥40 = 0.01𝑚𝑚𝑜𝑙/𝐿, and 𝑥50 = 0.01𝑚𝑚𝑜𝑙/𝐿, respectively.
The control variable 𝐶𝑠0(𝑡) ∈ [100, 1800], 𝐷(𝑡) ∈ [0.05, 0.67].
For the parameters in the algorithm, we choose the following
values: 𝜀1 = 10−8, 𝜀2 = 10−4, 𝜆1 = 0.2, 𝜆2 = 0.2,𝑡𝑜𝑙𝐽 = 10−4, 𝑐1 = 2, 𝑐2 = 2, 𝑑1 = 0.2, 𝑑2 = 0.7,𝜔𝑚𝑎𝑥 = 0.7, 𝜔𝑚𝑖𝑛 = 0.4, 𝑁 = 8, and 𝐾𝑚𝑎𝑥 = 20.
The whole continuous fermentation was implemented with
enough substrate. The total fermentation time is taken as100ℎ. As a matter of experience, for the range of 𝜉(𝑡) we
chose 𝛼1 = 0, 𝛽1 = 400, 𝛼2 = 0, 𝛽2 = 2, 𝛼3 = 0, 𝛽3 =20, 𝛼4 = 0, and 𝛽4 = 0.0001. Using Algorithm 3, we get
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Figure 1: Evolution of the time grids.
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Figure 2:The first feedback control coefficient.

the concentration of 1,3-PD at the terminal time is 752.7951
mmol/L. The detailed evolution of time grids is illustrated in
Figure 1, after six iterations, the optimal time grids is found,
and in this case the results agree with experimental data.
Figure 1 also shows the division of time grids in each iteration.
The feedback control parameters are shown in Figures 2–5,
respectively. The dilution rate and the glycerol concentration
in feed are shown in Figures 6 and 7. The concentration
changes of biomass, glycerol, 1,3-PD, acetate, and ethanol
under the optimal feedback control are shown in Figure 8.
The computational results verify the effectiveness of this
method.

6. Conclusions

In this paper, we have considered a feedback control strategy
which is close-loop control for producing 1,3-PD inmicrobial
continuous fermentation and developed a particle swarm
adaptive algorithm to obtain the global solution. Numerical
results show that the method is successful at producing high-
quality control strategies.
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