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In this paper, we establish a reaction-di�usion predator-prey model with weak Allee e�ect and delay and analyze the conditions of
Turing instability. �e e�ects of Allee e�ect and delay on pattern formation are discussed by numerical simulation. �e results
show that pattern formations change with the addition of weak Allee e�ect and delay. More speci�cally, as Allee e�ect constant
and delay increases, coexistence of spotted and stripe patterns, stripe patterns, and mixture patterns emerge successively. From an
ecological point of view, we �nd that Allee e�ect and delay play an important role in spatial invasion of populations.

1. Introduction

Since the Allee e�ect was proposed by Allee [1] in 1931, the
predator-prey model with Allee e�ect has been studied
extensively [2–27]. From the ordinary di�erential equation
predator-prey model with Allee e�ect to the partial dif-
ferential equation model, many researchers have achieved
rich results [4, 7, 9–16, 28]. Cai et al. [6] established
a Leslie–Gower predator-prey model with additive Allee
e�ect on prey, and they found Allee e�ect can increase the
risk of ecological extinction. Sen et al. [5] established a two-
prey one-predator model with Allee e�ect, and the e�ects of
Allee e�ect on the dynamics of predator population are
discussed. Of course, the research on reaction-di�usion
predator-prey model with Allee e�ect is also very rich. For
example, Wang et al. [7] established a reaction-di�usion
predator-prey model and found the model dynamics ex-
hibits both Allee e�ect and di�usion controlled pattern
formation growth to holes. �ey also studied Allee e�ect
induced instability in a reaction-di�usion predator-prey
model [4]. Petrovskii et al. found that the deterministic
system with Allee e�ect can induce patch invasion [23]. Sun
et al. found that predator mortality plays an important role
in the pattern formation of populations [13]. It is now
believed that the spatial composition of population

interactions has been identi�ed as an important factor in
how ecological communities operate and form. Pattern
formation in the predator-prey model is an appropriate
tool for understanding the basic mechanism of spatio-
temporal population dynamics. We �nd that there are few
studies on delays in reaction-di�usion predator-prey
model with Allee e�ect. So next we discuss the e�ects of
Allee e�ect and delay on pattern formation. First, we
consider a predator-prey model with hyperbolic mortality
established by Zhang et al. [10], the model is obtained as
follows:
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where U and V are the population densities of prey and
predator, respectively; a is the birth rate, K is the carrying
capacity and b is the maximum uptake rate of the prey; c is
the prey density at which the predator has the maximum kill
rate; m is the birth rate of predator; function h(V) reflects
the predator death rate; the habitat Ω ⊂ Rn is a bounded
domain with smooth boundary zΩ; n is the outward unit
normal vector on zΩ; d1 and d2 are the diffusion coefficients,
respectively; and Δ is the Laplacian operator. +e homo-
geneous Neumann boundary condition implies that the
system above is self-contained and there is no host across the
boundary. After nondimensionalization,

U⟶ Ku, V⟶
ac

b
v,

K

c
⟶ β,

a

m
⟶ α, T⟶

t

m
.

(2)

+en, considering that the predator-prey model with
Allee effect is more realistic, people begin to introduce delay
into the predator-prey model and discuss the effects of Allee
effect and delay on the dynamics of the model [2, 17–22].We
try to introduce weak Allee effect and searching delay into
model (1), and then we get
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where h(v) � cv2/e + ηv. For hyperbolic mortality, c is the
death rate of the predator, e and η are coefficients of light
attenuation by water and self-shading in the context of
plankton mortality, and τ is the searching delay. +e weak
Allee effect term is u/u + A, where A> 0 is described as
a weak Allee effect constant.

2. Turing Instability

First, we consider the model with τ � 0:
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Obviously, if d1 � d2 � 0, without diffusion in model (4),
then we can obtain the following ordinary differential
equations:
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We mainly focus on the stability of the positive equi-
librium of model (4). Clearly, the positive equilibrium E∗ �

(u∗, v∗) of the ordinary differential equation (ODE) or the
partial differential equation (PDE) model (4) satisfies
f(u∗, v∗) � 0 and g(u∗, v∗) � 0:
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For simplicity of discussion, in this paper, we shall
concentrate the case of η � c and e � 1. We easily see that
model (4) exhibits a positive equilibrium point E∗ � (u∗, v∗)

when β> c/1 − c, 0< c< 1, and A< c/β. When β> c/1 − c,
0< c< 1, and c/β<A< ((βc − c − β)2 + 4βc2)/4β2c, model
(4) exhibits two positive equilibrium points E1∗ � (u1∗, v1∗)

and E2∗ � (u2∗, v2∗). In this work, we mainly focus on
a positive equilibrium point, where
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We calculate the Jacobian matrix of model (5) at E∗,
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We can easily know that the characteristic polynomial is

H(λ) � λ2 − Tλ + D, (9)
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+us, we have the following conclusions:

(a) If T< 0 and D> 0, then the positive equilibrium is
locally asymptotically stable

(b) If T> 0, then the positive equilibrium is unstable

Next, let us consider the PDE model (4); we choose the
perturbation function consisting of the following two-di-
mensional Fourier modes:
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We can easily find that Tk � a11 + a22 − k2(d1 + d2)< 0.
So, if model (3) changes from stable to unstable, it needs to
be
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3. Delay-Induced Instability

Finally, we consider the PDEmodel (4) with delay (searching
delay), and we get model (3). Considering τ and spatial
diffusion, if τ is small enough, the following changes are
made [29]:
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we substitute (16) into model (3) to get
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Expanding in Taylor series and neglecting the higher-
order nonlinearities, we find
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We can see that if f(u∗, v∗) � 0 and g(u∗, v∗) � 0 are
satisfied at equilibrium point E∗ � (u∗, v∗), then we can get
the model:
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v∗) is subjected to a small perturbation of u∗ and v∗. Let
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Assuming that the solution of the system has the fol-
lowing form,
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When k � 0, model (3) undergoes Hopf bifurcation at
Tτ

k � 0, so the critical value for undergoing Hopf bifurcation
can be obtained:

τH �
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4. Amplitude Equations and Pattern Selection

We rewrite the transformed form of system (3) at the
positive spatially homogeneous steady state E∗ � (u∗, v∗) as
follows and denote by (U, V)T the perturbation solution
(U − u∗, V − v∗)

T of the system:
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− αu3
∗ − 3αAu3

∗ + 3αAu2
∗ − αAu∗ + αA2

u∗ + A( 􏼁
3 +

αβ2u∗
c 1 + βu∗( 􏼁

3
⎛⎝ ⎞⎠ −

2τNβ2v∗
(1 − M) 1 + βu∗( 􏼁

3,

A11 � −
α

2 1 + βu∗( 􏼁(1 − M)
+

τNβ
1 + βu∗( 􏼁

2
(1 − M)

,

A02 � 0,

B20 � −
2β2v∗

1 + βu∗( 􏼁
3,

B11 �
β

1 + βu∗( 􏼁
2,

B02 � −
2c

1 + cv∗( 􏼁
2
,

A30 �
1

1 − M

− 9αA2u2
∗ − 6αAu2

∗ + 6αA2u∗ + 2αAu∗ − 4αA2

3 u∗ + A( 􏼁
4 −

αβ3u∗
c 1 + βu∗( 􏼁

4
⎛⎝ ⎞⎠ +

6τNβ3v∗
(1 − M) 1 + βu∗( 􏼁

4,

A21 � −
2τNβ2

(1 − M) 1 + βu∗( 􏼁
3,

A12 � 0,

A03 � 0,

B30 �
6β3v∗

1 + βu∗( 􏼁
4,

B21 � −
2β2

1 + βu∗( 􏼁
3,

B12 � 0,

B03 � −
2c

1 + cv∗( 􏼁
3.

(35)

Next, near the Turing bifurcation threshold, we expand
the control parameter τ as

τT − τ � ετ1 + ε2τ2 + ε3τ3 + o ε3􏼐 􏼑, (36)

where |ε|≪ 1. Similarly, expand the solution X, linear
operator L, and the nonlinear term H into Taylor series at
ε � 0:

X � ε
U1

V1
􏼠 􏼡 + ε2

U2

V2
􏼠 􏼡 + ε3

U3

V3
􏼠 􏼡 + o ε3􏼐 􏼑, (37)

H � ε2h2 + ε3h3 + o ε3􏼐 􏼑, (38)

L � LT + τT − τ( 􏼁M, (39)
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where

h2 �
h1
2

h2
2

⎛⎝ ⎞⎠ �
AT
20U

2
1 + AT

11U1V1 + AT
02V

2
1

BT
20U

2
1 + BT

11U1V1 + BT
02V

2
1

⎛⎝ ⎞⎠,

h3 �
h1
3

h2
3

⎛⎝ ⎞⎠ �
AT
30U

3 + AT
21U

2V + AT
12UV2 + AT

03V
3 + 2 AT

20U1U2 + AT
02V1V2( 􏼁 + AT

11 U1V2 + V1U2( 􏼁

BT
30U

3 + BT
21U

2V + BT
12UV2 + BT

03V
3 + 2 BT

20U1U2 + BT
02V1V2( 􏼁 + BT

11 U1V2 + V1U2( 􏼁
⎛⎝ ⎞⎠

−
α1 A20′ U2

1 + A11′ U1V1 + A02′ V2
1( 􏼁

α1 B20′ U
2
1 + B11′ U1V1 + B02′ V

2
1( 􏼁

⎛⎝ ⎞⎠.

(40)

are terms corresponding to the second and third orders in
the expansion of the nonlinear term and for the linear
operator

L � LT + τT − τ( 􏼁M. (41)

We have,

LT �

a10 + τa01N − k2d1
1 − M

b10 + τb01N − τd2Nk2

1 − M

b10 b01 − k2d2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

τ�τT

, (42)

M �
m11 m12

m21 m22
􏼠 􏼡, (43)

where m11 � − a21N/1 − M, m12 � − a22N + d2Nk2/1 − M,
m21 � 0, and m22 � 0 at U � u∗.

Finally, we introduce multiple time scales:
z

zt
� ε

z

zT1
+ ε2

z

zT2
+ o ε2􏼐 􏼑. (44)

+en, substituting equations (33)–(44) into equation
(32) and expanding it with respect to different orders of
εi, (i � 1, 2, 3),

ε : LT

u1

v1

⎛⎜⎝ ⎞⎟⎠ � 0,

ε2 : LT

u2

v2

⎛⎜⎝ ⎞⎟⎠ �
z

zT1

u1

v1

⎛⎜⎝ ⎞⎟⎠ − α1M
u1

v1

⎛⎜⎝ ⎞⎟⎠ − h2,

ε3 : LT

u3

v3

⎛⎜⎝ ⎞⎟⎠ �
z

zT1

u2

v2

⎛⎜⎝ ⎞⎟⎠ +
z

zT2

u1

v1

⎛⎜⎝ ⎞⎟⎠ − α1M
u2

v2

⎛⎜⎝ ⎞⎟⎠

− α2M
u1

v1

⎛⎜⎝ ⎞⎟⎠ − h3.

(45)

In what follows, we seek the amplitude equations by
solving system (45). Since LT has an eigenvector associated
with the zero eigenvalue,

(f, 1)
T
, f �

− a01 − τb01N + τd2Nk2

a10 + τb10N − k2d1
. (46)

+e general solution of the first system of (45) can be
written as

U1

V1
􏼠 􏼡 �

f

1
􏼠 􏼡 􏽘

3

j�1
Wje

ikj ·r
+ c.c.⎛⎝ ⎞⎠, (47)

where Wj is the amplitude of the mode eikj ·r. Notice that the
second system of (45) is nonhomogeneous, and L∗T, the
adjoint operator of LT, has zero eigenvectors in the form of

1

g
􏼠 􏼡e

ikj ·r
+ c.c., j � 1, 2, 3, (48)

with g � − b01(1 − M)/a10 + τb10N − k2d1. Let

FU

FV

⎛⎝ ⎞⎠ �
z

zT1

U1

V1

⎛⎝ ⎞⎠ − β1
m11U1 + m12V1

m21U1 + m22V1

⎛⎝ ⎞⎠

− α2M
h1
2

h2
2

⎛⎜⎝ ⎞⎟⎠.

(49)

+en, in view of the Fredholm solvability conditions,

(1, g)
F

j
U

F
j
V

⎛⎝ ⎞⎠ � 0, (50)

where F
j
U and F

j
V are the coefficients of eikj ·r in FU and FV,

respectively. It follows after some routine calculation that,
for jl � 1, 2, 3 and jl ≠ lm, if l≠m,

(f + g)
zWj1

zT1
� α1h3Wj1 − 2 h1 + gh2( 􏼁Wj2Wj3, (51)

where

h1 � − f
2
A

T
20 + fA

T
11 + A

T
02􏼐 􏼑,

h2 � − f
2
B

T
20 + fB

T
11 + B

T
02􏼐 􏼑,

h3 � fm11 + m12 + g fm21 + m22( 􏼁.

(52)

Notice the forms of U1 and V1 given by (47). We have
a particular solution for the second system of (45) as follows:
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U2

V2
􏼠 􏼡 �

U0

V0

⎛⎝ ⎞⎠ + 􏽘
3

j�1

Uj

Vj

⎛⎝ ⎞⎠e
ikj ·r

+ 􏽘
3

j�1

Ujj

Vjj

⎛⎝ ⎞⎠e
i2kj ·r

+
U12

V12

⎛⎝ ⎞⎠e
i k1− k2( )·r

+
U23

V23

⎛⎝ ⎞⎠e
i k2− k3( )·r

+
U31

V31

⎛⎝ ⎞⎠e
i k3− k1( )·r

+ c.c.,

(53)

with the coefficients being given below at αT � α:

U0

V0

⎛⎜⎝ ⎞⎟⎠ �

2 B01h1 − A01h2( 􏼁

Δ0

2 A10h2 − B10h1( 􏼁

Δ0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

􏽘
3

j�1
Wj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
,

≡
zU0

zV0

⎛⎝ ⎞⎠􏽘

3

j�1
Wj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
, Uj � fVj,

Xjj

Yjj

⎛⎜⎝ ⎞⎟⎠

≡
zU1

zV1

⎛⎝ ⎞⎠W
2
j ,

�
1

A10 − 4d1k
2
c􏼐 􏼑 B01 − 4d2k

2
c􏼐 􏼑 − A01B10

×

B01 − 4d2k
2
c􏼐 􏼑h1 − A01h2

A10 − 4d1k
2
c􏼐 􏼑h2 − B10h1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠W

2
j ,

Xjk

Yjk

⎛⎜⎝ ⎞⎟⎠ ≡
zU2

zV2

⎛⎝ ⎞⎠WjWk,

�
1

A10 − 3d1k
2
c􏼐 􏼑 B01 − 3d2k

2
c􏼐 􏼑 − A01B10

×

B01 − 3d2k
2
c􏼐 􏼑h1 − A01h2

A10 − 3d1k
2
c􏼐 􏼑h2 − B10h1

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠WjWk.

(54)

Again, apply the Fredholm solvability condition to the
third system of (45). We have, for j � 1,

(f + g)
zVj

zT1
+

zWj

zT2
􏼠 􏼡 � h α1Vj + α2Wj􏼐 􏼑 + h4WlWm

+ H VlWm + VmWl( 􏼁 − G1 W1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐

+ G2 W2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ W3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑􏼑Wj,

(55)

with
h4 � − 2α1 A20′ f

2
+ A11′ f + A02′ + g B20′ f

2
+ A11′ f + B02′􏼐 􏼑􏼐 􏼑,

H � − 2 h1 + gh2( 􏼁,

G1 � − 3A30f
3

+ 2A11fzV0 + A11fzV1 + 4A20fzU0􏼐

+ 2A20fzU1 + 3A21f
2

+ 4A02zV0 + 2A02zV1

+ 2A11zU0 + A11zU1 + 3A12f + 3A03􏼁 − g B30f
3

􏼐

+ 2B11fzV0 + B11fzV1 + 4B20fzU0 + 2B20fzU1

+ 3B21f
2

+ 4B02zV0 + 2B02zV1 + 2B11zU0 + B11zU1

+ 3B12f + 3B03􏼁,

G2 � − 6A30f
3

+ 2A11fzV0 + A11fzV2 + 4A20fzU0􏼐

+ 2A20fzU2 + 6A21f
2

+ 4A02zV0 + 2A02zV2 + 2A11zU0

+ A11zU2 + 6A12f + 6A03􏼁 − g 6B30f
3

+ 2B11fzV0􏼐

+ B11fzV2 + 4B20fzU0 + 2B20fzU2 + 6B21f
2

+ 4B02zV0

+ 2B02zV2 + 2B11zU0 + B11zU2 + 6B12f + 6B03􏼁.

(56)

+e combination of equations (51) and (55) gives the
amplitude equation (57) for the amplitude

τ0
zAj

zt
� μAj + hAlAm − g1 A1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ g2 A2
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

+ A3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2

􏼐 􏼑􏼐 􏼑Aj,

(57)

where

τ0 �
f + g

τT fm11 + m12 + g fm21 + m22( 􏼁􏼂 􏼃
,

μ �
τT − τ
τT

,

h �
H

τT fm11 + m12 + g fm21 + m22( 􏼁􏼂 􏼃
,

gi �
Gi

τT fm11 + m12 + g fm21 + m22( 􏼁􏼂 􏼃
.

(58)

Please notice that system (57) is in complex form.
Following to reference [30], for the purpose of convenience
of discussion, we convert it into the real form by
Aj � ρj exp(iφj) with ρj as the real amplitudes and φj as
phase angles:

τ0
zφ
zt

� − h
ρ21ρ

2
2 + ρ21ρ

2
3 + ρ22ρ

2
3

ρ1ρ2ρ3
sinφ,

τ0
zρ1
zt

� − μρ1 + hρ2ρ3 cosφ − g1ρ
3
1 − g2 ρ23 + ρ22􏼐 􏼑ρ1,

τ0
zρ2
zt

� − μρ2 + hρ1ρ3 cosφ − g1ρ
3
2 − g2 ρ23 + ρ21􏼐 􏼑ρ2,

τ0
zρ3
zt

� − μρ3 + hρ2ρ1 cosφ − g1ρ
3
3 − g2 ρ21 + ρ22􏼐 􏼑ρ3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(59)
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where φ � φ1 + φ2 + φ3. Since we are only interested in the
stable steady states and notice the fact that hρi ≠ 0, from the
first equation of (59), we haveφ � 0 or π. Also, noticing the fact
that τ0 > 0, it implies that when h> 0, the state corresponding
to φ � 0 is stable, but the one corresponding to φ � π when
h< 0. +en, system of amplitude equation (59) becomes

τ0
zρ1
zt

� μρ1 + |h|ρ2ρ3 − g1ρ
3
1 − g2 ρ23 + ρ22􏼐 􏼑ρ1,

τ0
zρ2
zt

� μρ2 + |h|ρ1ρ3 − g1ρ
3
2 − g2 ρ23 + ρ21􏼐 􏼑ρ2,

τ0
zρ3
zt

� μρ3 + |h|ρ2ρ1 − g1ρ
3
3 − g2 ρ21 + ρ22􏼐 􏼑ρ3.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Please notice that generally the amplitude equations are
valid only when the control parameter is in the Turing space.
It is easy to see that the above system of ordinary differential
equation (60) has five equilibria, which corresponds five
kinds of steady states [10, 30, 31]. Noticing the symmetry of
the system, we have the following:

(1) System (60) always has an equilibrium E0 � (0, 0, 0),
which is stable for μ< μ2 � 0 and unstable for μ> μ2

(2) System (60) has an equilibrium Es � (
����
μ/g1

􏽰
, 0, 0)

corresponding to stripe patterns, which is stable for
μ> μ3 � h2g1/(g2 − g1)

2 and unstable for μ> μ3
(3) System (60) has an equilibrium Eh � (ρ1, ρ2, ρ3)

corresponding to hexagon patterns, with φ � 0
or φ � π, and ρ+

1 � |h| +
���������������
h2 + 4(g1 + 2g2)μ

􏽰
/2(g1+

2g2) is stable for μ< μ4 � h2(2g1 + g2)/(g2 − g1)
2

and ρ−
1 � |h| −

���������������
h2 + 4(g1 + 2g2)μ

􏽰
/2(g1 + 2g2) is

unstable, where ρ1 � ρ2 � ρ3 � |h| ±
���������
h2 + 4(g1+

􏽰

2g2)μ/2(g1 + 2g2)

(4) System (60) has an equilibrium Em � (ρ1, ρ2, ρ3)
corresponding to mixed patterns, with g1 >g2,
μ>g1ρ21 which is unstable, where ρ1 � |h|/g2 − g1,

ρ2 � ρ3 �

��������������

μ − g1ρ21/g2 + g1

􏽱

5. Numerical Simulations

In this section, we will further study the dynamic behavior of
the coexistence equilibrium of the delayed reaction-diffusion
model (3) using numerical simulation in two-dimensional
space. In this paper, a two-dimensional delay reaction-diffu-
sion model is treated by the finite difference method in the
discrete region of 100 × 100. +e spatial distance between two
lattices is defined as the step size Δx andΔy, using the
standard five-point approximation for the 2D Laplacian with
the zero-flux boundary conditions, and the time step is
expressed as Δt. Take a fixed time step Δt � 0.01. What needs
to be further explained is that the concentrations (Sn+1

i,j , In+1
i,j ) at

the moment (n + 1)Δt at the mesh position (i, j) are given by

Sn+1
i,j � Sn

i,j + Δtd1ΔhSn
i,j + Δtf Sn

i,j, In
i,j􏼐 􏼑,

In+1
i,j � In

i,j + Δtd2ΔhIn
i,j + Δtg Sn

i,j, In
i,j􏼐 􏼑,

(61)

with the diffusion term (Laplacian) are defined by

ΔhSn
i,j �

Sn
i+1,j + Sn

i,j+1 + Sn
i− 1,j + Sn

i,j− 1 − 4Sn
i,j

h2 ,

ΔhIn
i,j �

In
i+1,j + In

i,j+1 + In
i− 1,j + In

i,j− 1 − 4In
i,j

h2 .

(62)

Other parameters are fixed as

α � 0.65,

β � 6,

c � 0.5,

e � 1,

η � 0.5,

d1 � 0.001,

d2 � 0.1.

(63)

First, we discuss the effect of weak Allee effect on Turing
pattern information. We try to take the Allee effect constant
to A � 0, A � 0.02, and A � 0.1. Here, we first discuss the
situation without delay. When A � 0, Zhang et al. [10] give
the condition of Turing instability. Here, we just give the
pattern formations. By comparing Figures 1 and 2 (A � 0
and A � 0.02), we find that the initial state is the coexistence
of stripes and spots, and the stripes are very long. With the
increase of Allee parameters, the length of stripes decreases
and some stripes even form a circle. +en, we continue to
increase the value of the weak Allee parameter like Figure 3
(A � 0.1), and we find that pattern formations have changed
again. As time goes on, we find that pattern formations show
a cycle when t � 100 and when t � 500 and we find that the
cycle diffuses outward (indicating that pattern formations
are not stable) to form a butterfly-like shape; and finally,
when we increase to t � 2000, we find that the pattern
formations are not stable. It was found that pattern for-
mations became stripes and spots again. After we tried to
add more time, we found that the pattern formation did not
change again.

Next, let us discuss the pattern formation change of the
model with time delay and without Allee effect. We change
the delay to τ � 0.25. By comparing with Figure 1, we find
that the stripes and spots of the original pattern formations
change to stripes like Figure 4, and the pattern formations
will not change as time goes on.

Finally, we discuss the pattern formations of models with
Allee effect and time delay (A � 0.02 and τ � 0.02). We find
that pattern formations are spots when t � 100; as time goes
on t � 500, we find that pattern formations change again,
similar to Figure 3, but the final pattern formations change
differently. We can see that pattern formations change into
strips surrounded by spots; we increase the time again
(t � 2000) to find that the pattern will spread outward in this
form, forming the phenomenon of strip pattern surrounded
by spots pattern; we further increase the time (t � 5000) to
find that the pattern such as in Figure 5 tends to stabilize and
does not change again.
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Figure 1: Mixture patterns obtained with model (1) for A � 0 and τ � 0. Time: (a) t � 100, (b) t � 500, (c) t � 2000, and (d) t � 5000.
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Figure 2: Continued.
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6. Conclusion

+is paper is based on a model that considers a predator-
prey model with nonlinear mortality and Holling II func-
tional response. +e weak Allee effect is introduced and the
effect of the Allee effect on pattern formations is considered.
Furthermore, we consider a class of reaction-diffusion
predator-prey models with searching delay and weak Allee

effect, considering the effects of delay on pattern formations.
We give the stability and Turing instability of the positive
equilibrium point E∗. As a result of diffusion, model (3) and
model (4) exhibits stationary Turing pattern. Furthermore,
through numerical simulation, comparing Figures 1 and 2,
we find that the Allee effect will reduce the length of the strip
pattern in Figure 1, and there will be some “cycle” pattern as
shown in Figure 2. From an ecological point of view, we
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Figure 2: Mixture patterns obtained with model (1) for A � 0.02 and τ � 0. Time: (a) t � 100, (b) t � 500, (c) t � 2000, and (d) t � 5000.
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Figure 3: Mixture patterns obtained with model (1) for A � 0.1 and τ � 0. Time: (a) t � 100, (b) t � 500, (c) t � 2000, and (d) t � 5000.
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Figure 4: Stripes pattern obtained with model (1) for A � 0 and τ � 0.25. Time: (a) t � 100, (b) t � 500, (c) t � 1000, and (d) t � 2000.

0.1

0.2

0.3

0.7

0.5

0.6

0.4

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

u

(a)

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0.5
0.55

0.45

0
1
2
3
4
5
6
7
8
9
10

0 2 4 6 8 10

u

(b)

Figure 5: Continued.
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know that the Allee effect increases the risk of population
extinction, while the effect of the longer stripe pattern in
Figure 1 increases the likelihood of predation. However, the
shorter stripes and spots in Figure 2 reduce the likelihood of
predation. As the Allee effect parameter continues to in-
crease, we find that the pattern has changed again. +e type
of the pattern is similar to that of Figure 1, but the density
and size of the pattern will change slightly as shown in
Figure 3. We believe that in order to avoid predator hunting,
predators are concentrated in a certain area rather than
scattered throughout the habitat, which further reduces the
contact area between predator and prey. Over time, prey
needs to migrate to new habitats. +e aggregation pattern
diffuses slowly, the predator follows the pursuit, and the
aggregation point enlarges gradually. It is worth noting
when the Allee effect parameter is A � 0.1, there are two
positive equilibrium points in model (4). Next, we consider
the effect of delay on pattern formations. By comparing
Figure 1 with Figure 4, we find when the delay is τ � 0.25, the
pattern changes from the state where the starting spots
pattern and the strip pattern coexist to the case where only
the strip pattern exists. Finally, we try to consider the Allee
effect and delay to observe the changes in pattern forma-
tions, where A � 0.02 and τ � 0.02. We find that when both
are present, the spots pattern is surrounded by strip patterns
as shown in Figure 5. +is reminds us of animals in the
natural world at the lower end of the food chain, often with
a means of protection. Juvenile animals are surrounded by
adult animals to reduce the probability of their juvenile
animals being preyed. +is may be an interesting finding or
not. So, we find that Allee effect and delay play an important
role in spatial invasion of populations.
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