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Under investigation in this paper is a (3 + 1)-dimensional variable-coe�cient generalized shallow water wave equation. �e exact
lump solutions of this equation are presented by virtue of its bilinear form and symbolic computation. Compared with the
solutions of the previous cases, these solutions contain two inhomogeneous coe�cients, which can show some interesting
nonautonomous characteristics. �ree types of dispersion coe�cients are considered, including the periodic, exponential, and
linear modulations. �e corresponding nonautonomous lump waves have di�erent characteristics of trajectories and velocities.
�e periodic �ssion and fusion interaction between a lump wave and a kink soliton is discussed graphically.

1. Introduction

�e (3 + 1)-dimensional Jimbo–Miwa (JM) equation [1]

2uyt + uxxxy + 3uxuxy + 3uxxuy − 3uxz � 0, (1)

is the second equation in the well-known Kadomtsev–
Petviashvili (KP) hierarchy [1–4]. �is equation can char-
acterize certain (3 + 1)-dimensional nonlinear wave phe-
nomena in physics [1]. Very recently, lump solutions for all
kinds of JM-like equations have aroused great interests [5–
13]. �is type of wave is localized in all directions in space
[14–21], which is di�erent from soliton and rogue wave
[22–33]. For instance, lump and lump-kink solutions for
equation (1) have been obtained in Reference [5]. Classes of
lump-type solutions for equation (1) have been presented in
References [6, 7]. Lump solutions of a reduced JM-like
equation have been investigated in Reference [8]. Interaction
solutions between lump-type and kink solutions for a (3 + 1)-
dimensional JM-like equation have been studied in Reference
[9]. Rogue wave and a pair of resonance stripe solutions of

a reduced (3+ 1)-dimensional JM equation have been dis-
cussed in Reference [10]. New periodic wave, cross-kink wave,
and the interaction phenomenon have been derived in Ref-
erence [11]. Interaction solutions for a reduced extended
equation (1) equation have been analyzed in Reference [12].

With the inhomogeneities of the media and non-
uniformities of the boundaries considered, the variable-co-
e�cient models can often describe more realistic wave
propagations in various physical scenes [34–36]. Note that the
previous studies are mainly focused on the dynamics of lump
waves in the constant-coe�cient JM-like equations [5–13].
However, few studies examine the nonautonomous lump
waves in variable-coe�cient JM-like ones. In this paper, we
will investigate a (3 + 1)-dimensional variable-coe�cient
generalized shallow water wave equation as follows [37]:

α1(t)uyt + α2(t)uxxxy + α3(t)uxuxy + α3(t)uxxuy + α4(t)uxz � 0,

(2)

where the parameters α1(t), α2(t), α3(t), and α4(t) are real
functions of t. When α1(t) � 2, α2(t) � 1, α3(t) � 3, and
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α4(t) � − 3, equation (2) is reduced to (1). Huang et al. [37]
have given the bilinear Bäcklund transformation, soliton,
and periodic wave solutions for equation (2). Liu and Zhu
[38] have studied the breather wave solutions of equation
(2). However, to our knowledge, the lump wave solutions
and their nonautonomous characteristics (e.g., the
accelerated and decelerated motions and trajectories) have
not been reported yet. -e present work aims at these
aspects.

-e paper is organized as follows. In Section 2, the
nonautonomous lump solutions of equation (2) will be
derived based on Hirota’s bilinear form [39–42]. In Section
3, the accelerated and decelerated motions of lump waves
will be investigated analytically. -e characteristics of tra-
jectories of waves will be also studied with different dis-
persion coefficients. In Section 4, the periodic fission and
fusion interaction between a lump wave and a kink soliton
will be discussed graphically. In Section 5, the conclusions
will be given.

2. Nonautonomous Lump Solutions of
Equation (2)

By using the transformation

u � 6
α2(t)

α3(t)
(lnf)x, (3)

which is changed into u � 2(lnf)x with the constraint
α3(t) � 3 × α2(t), the bilinear form for equation (2) is given
as

α2(t)D
3
xDy + α4(t)DxDz + α1(t)DyDt􏽨 􏽩f · f � α2(t)

· 6fxxfxy − 6fxfxxy + 2ffxxxy − 2fxxxfy􏼐 􏼑

+ α4(t) 2ffxz − 2fxfz( 􏼁 + α1(t) 2ffyt − 2fyft􏼐 􏼑 � 0,

(4)

where f is a real function of the spatial coordinates x, y, z and
temporal coordinate t, and Dx, Dy, Dz, and Dt are the bi-
linear derivative operators, defined in Reference [43].
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(5)

To search for the nonautonomous lump solutions of
equation (2), we set

f � w
2

+ q
2

+ a9,

w � a1x + a2y + a3z + a4(t),

q � a5x + a6y + a7z + a8(t),

(6)

where ai (i � 1, 2, 3, 5, 6, 7, 9) are the real constants, and
a4(t) and a8(t) are unknown differentiable functions. In
previous work, a4(t) and a8(t) were all considered as
constants rather than real functions [44–48]. Hereby, we use
an improved positive quadratic function to solve the JM
equation with variable coefficients [37]. Substituting equa-
tion (6) into equation (4), we have

a4(t) � −
a5 a3a6 − a2a7( 􏼁 + a1 a2a3 + a6a7( 􏼁( 􏼁 􏽒 α4(t)/α1(t)( 􏼁dt􏼐 􏼑

a2
2 + a2

6
,

a8(t) � −
a2 a3a5 + a1a7( 􏼁 + a6 a5a7 − a1a3( 􏼁( 􏼁 􏽒 α4(t)/α1(t)( 􏼁dt􏼐 􏼑

a2
2 + a2

6
,

α2(t) �
a1a6 − a2a5( 􏼁 a2a7 − a3a6( 􏼁a9α4(t)

3 a2
1 + a2

5( 􏼁 a1a2 + a5a6( 􏼁 a2
2 + a2

6( 􏼁
,

(7)

where (a1a2 + a5a6)≠ 0. By using equation (7), the function
f can be expressed as follows:

f � a1x + a2y + a3z −
a5 a3a6 − a2a7( 􏼁 + a1 a2a3 + a6a7( 􏼁( 􏼁 􏽒 α4(t)/α1(t)( 􏼁dt􏼐 􏼑

a2
2 + a2

6

⎡⎣ ⎤⎦

2

+ a5x + a6y + a7z −
a2 a3a5 + a1a7( 􏼁 + a6 a5a7 − a1a3( 􏼁( 􏼁 􏽒 α4(t)/α1(t)( 􏼁dt􏼐 􏼑

a2
2 + a2

6

⎡⎣ ⎤⎦

2

+ a9.

(8)

-us, we can present a class of lump solutions of the
(3 + 1)-dimensional variable-coefficient JM equation: u �

4a1w + 4a5q

f
, (9)
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and the expressions of functions w and q are given as,
respectively,

w � a1x + a2y + a3z −

a5 a3a6 − a2a7( 􏼁 + a1 a2a3 + a6a7( 􏼁( 􏼁 􏽚 α4(t)/α1(t)( 􏼁dt􏼒 􏼓

a2
2 + a2

6
,

q � a5x + a6y + a7z −

a2 a3a5 + a1a7( 􏼁 + a6 a5a7 − a1a3( 􏼁( 􏼁 􏽚 α4(t)/α1(t)( 􏼁dt􏼒 􏼓

a2
2 + a2

6
.

(10)

If the solutions u(x, y, z, t) are lumps, then they need to
satisfy the following condition:

lim
x2+y2⟶∞

u(x, y, z, t) � 0, ∀(z, t) ∈ R
2
. (11)

By selecting the parameter values a1 � 2, a2 � 1,

a3 � 2, a5 � − 1, a6 � 1, a7 � 1, a9 � 1, t � 0, z � 0, the lump
wave described by solution (9) is depicted in Figures 1(a) and
1(b). One can observe a bright-dark lump; the values of the
width (distance between the peak and valley) and amplitude
of which are 2

�
5

√
/5 and 2

�
5

√
, respectively. -e analytic

expression for trajectory of the peak of the lump is�
5

√
x + 2

�
5

√
y − 1 � 0, while for the valley is

�
5

√
x + 2�

5
√

y + 1 � 0. -us, these two trajectories are parallel to each
other. As shown in Figure 1(c), the lump wave propagates
along a straight line. Obviously, as time increases, the lump
wave moves from − ∞ to +∞ on the x − y plane with the
constant velocity 5

�
5

√
/4. Moreover, due to the existence of

the variable coefficients α1(t) and α2(t) in the solution (9),
the lump wave may show more characteristics which are
absent in constant-coefficient JM equations. We will discuss
this in detail in the following section.

3. Accelerated and Decelerated Motions and
Characteristics of Trajectory

In this section, through symbolic computation, we in-
vestigate the nonautonomous characteristics of the lump
solution of equation (2). We find that the variable co-
efficients α1(t) and α2(t) do not affect the width and am-
plitude of the lump wave. For simplicity, we hereby focus on
the effects of the dispersion coefficient α2(t) on the wave.
-erefore, we hereby suppose α1(t) is constant and analyze
the dynamic characteristics of the nonautonomous lump
wave, including the trajectory and velocity.

We first consider the periodic dispersion modulation.
Figure 2(a) shows a segment-typed trajectory for a non-
autonomous lump wave with α2(t) � − (12/5) cos(t). In
order to analyze the trajectory and velocity clearly, we
give the coordinates of the peak and valley as ((

�
5

√
/5) +

20 sin(t), − 10 sin(t)) and (− (
�
5

√
/5) + 20 sin(t), − 10 sin(t)),

respectively. By using the computation, we can find that both
the trajectories of peak and valley are similar to the constant-
coefficient case mentioned above. However, because of the
periodic modulation, the range of motion of the lump wave
along the x-axis (y-axis) is confined to (− 20, 20) [(− 10, 10)].
And the coordinates of two endpoints are A (20, − 10) and B
(− 20, 10). -e lump wave propagates between these two

points. In addition, the velocity of the lump is variable as
a result of periodic modulation, the expression of which is
v � 10

�
5

√
|cos t|. As demonstrated in Figure 2(b), the velocity

of the lump wave periodically varies with time. -e period T
is equal to π. When t � n × π (n is an integer), the velocity
reaches the maximum 10

�
5

√
(O). Similarly, when

t � (π/2) + n × π, the velocity reaches the minimum 0 (A or
B). We can conclude that the periodic dispersion does lead to
accelerated and decelerated motions of the lump wave.

Next, with the dispersion coefficient α2(t) being in the
form of α2(t) � (1/5)e− t, we show another type of trajectory
for the lump wave in Figure 3(a). Similarly, the
coordinates of the peak and valley appear as ((

�
5

√
/5)+

(5/3)e− t, − (5/6)e− t) and (− (
�
5

√
/5) + (5/3)e− t, − (5/6)e− t). It

is obvious that the trajectory of the lump wave is a half-line,
which is different from the case of periodic modulation. -e
range of motion of the wave is confined to in the second
quadrant on the x − y plane. As the time t increases, it moves
from infinity to the origin O. Figure 3(b) depicts the velocity
of the lump wave whose expression is v � (5

�
5

√
/6)

���
e− 2t

√
.

-e velocity decreases gradually with the time, and when
t⟶ +∞, it is close to zero.-at means the lump wave will
eventually stop at the origin O.

Finally, we suppose that the dispersion coefficient α2(t)

is the linear function of t, which is taken as α2(t) � − (2/5)t.
As above, we can easily calculate the coordinates of the peak
and valley which appear as ((

�
5

√
/5) + (5/3)t2, − (5/6)t2) and

(− (
�
5

√
/5) + (5/3)t2, − (5/6)t2). As shown in Figure 4(a), the

trajectory is similar to the case of exponential modulation.
Nevertheless, the difference is that the lump wave is not
localized at a fixed point eventually; on the contrary, it
walks back. We then obtain the expression of the velocity
for the lump v � (5

�
5

√
/3)|t|. Figure 4(b) shows the velocity

curve of the wave. As time increases (t< 0), the velocity of
the wave decreases gradually. At t � 0, the velocity reaches
the minimum 0. -en, the lump wave starts to accelerate
with time (t> 0). Compared with the previous cases, we
discover that the velocity of the lump wave varies with time
linearly.

4. Interaction between Single-Lump Wave and
One-Kink Soliton

In this section, we study the interaction between single-lump
wave and one-kink soliton. We assume that the function f in
equation (4) has the following forms (here, we use f1, w1, q1,
and l1 to distinguish from the single-lump case):
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Figure 1: (a) -e three-dimensional plot of the nonautonomous lump wave via the solution (9). (b) -e density plot of (a). (c) -e
line-typed trajectory of the nonautonomous lump wave via the solution (9). -e relevant parameters are set to
a1 � 2, a2 � 1, a3 � 2, a5 � − 1, a6 � 1, a7 � 1, a9 � 1, z � 0, t � 0.
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Figure 2: (a) -e segment-typed trajectory of the nonautonomous lump wave via the solution (9). (b) -e velocity curve of the non-
autonomous lump wave with time.-e variable coefficients are taken as α1(t) � 2 and α2(t) � − (12/5) cos(t). -e other parameters are the
same as Figure 1.
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Figure 3: (a) -e half-line-typed trajectory of the nonautonomous lump wave via the solution (9). (b) -e velocity curve of the non-
autonomous lump wave with time. -e variable coefficients are taken as α1(t) � 2 and α2(t) � (1/5)e− t. -e other parameters are the same
as Figure 1.
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f1 � w
2
1 + q

2
1 + l1 + a9, (12)

with

w1 � a1x + a2y + a3z + a4(t),

q1 � a5x + a6y + a7z + a8(t),

l1 � m × e
k1x+k2y+k3z+k4(t)

,

(13)

where m, ai (i � 1, 2, 3, 5, 6, 7, 9), and kj (j � 1, 2, 3) are
real coefficients and a4(t), a8(t), k4(t) are unknown

differentiable functions, which are to be determined later.
After substituting equation (12) into equation (4), taking

Λ �
a2
1 + a2

5( 􏼁
2

a2
2 + a2

6( 􏼁
2

a2a5 − a1a6( 􏼁 a1a2 + a5a6( 􏼁 a2a7 − a3a6( 􏼁 a2a3 + a6a7( 􏼁
2,

(14)

we can get the constraining equations for the parameters

α4(t) � − 3Λ a
2
2 + a

2
6􏼐 􏼑k

2
3α2(t), (15)

a4(t) � 3Λ a5 a3a6 − a2a7( 􏼁 + a1 a2a3 + a6a7( 􏼁( 􏼁k
2
3 􏽚

α2(t)

α1(t)
dt􏼠 􏼡,

a8(t) � 3Λ a2 a3a5 + a1a7( 􏼁 + a6 a5a7 − a1a3( 􏼁( 􏼁k
2
3 􏽚

α2(t)

α1(t)
dt􏼠 􏼡,

k4(t) �
Λ a2

1 + a2
5( 􏼁 a2

2 + a2
6( 􏼁 a1 3a3a

2
2 + 4a6a7a2 − a3a

2
6( 􏼁 + a5 − a7a

2
2 + 4a3a6a2 + 3a2

6a7( 􏼁( 􏼁k3
3 􏽒 α2(t)/α1(t)( 􏼁dt􏼐 􏼑

a1a2 + a5a6( 􏼁
2

a2a3 + a6a7( 􏼁
,

a9 �
a1a2 + a5a6( 􏼁

2
a2a3 + a6a7( 􏼁

2

a2
1 + a2

5( 􏼁 a2
2 + a2

6( 􏼁
2
k2
3

,

k1 �
a2
1 + a2

5( 􏼁 a2
2 + a2

6( 􏼁k3

a1a2 + a5a6( 􏼁 a2a3 + a6a7( 􏼁
,

k2 �
a2
2 + a2

6( 􏼁k3

a2a3 + a6a7
,

(16)

with the constraint

m> 0,

a2a5 − a1a6( 􏼁 a1a2 + a5a6( 􏼁 a2a7 − a3a6( 􏼁 a2a3 + a6a7( 􏼁α1(t)≠ 0.

(17)

In consideration of the transformation u � 2(lnf)x, we
can get the single-lump and one-kink soliton waves to the
(3 + 1)-dimensional variable-coefficient JM equation:

u �
2 2a1w1 + 2a5q1 + k1l1( 􏼁

w2
1 + q21 + l1 + a9

. (18)
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Figure 4: (a) -e half-line-typed trajectory of the nonautonomous lump wave via the solution (9). (b) -e velocity curve of the non-
autonomous lump wave with time.-e variable coefficients are taken as α1(t) � 2 and α2(t) � − (2/5)t.-e other parameters are the same as
Figure 1.
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We can also find out that the solution (18) is composed
of the rational and exponential functions, which describe
the propagation behaviors of a lump wave and a soliton,
respectively. Besides, it is worth noticing that the variable
coefficients α1(t) and α2(t) appear in both two functions. It
means that we can choose different dispersion coefficients
[α2(t)] to control the trajectories and velocities of the
lump wave and soliton, even for their interaction. -is
is different from the case in constant-coefficient JM
equations. In Figure 5, we can observe the interaction

between single-lump wave and one-kink soliton with
the parameters selected as a1 � 2, a2 � 2, a3 � − 1, a5 � − 1,

a6 � 1.5, a7 � 1, k3 � 1, m � 0.1, α1(t) � 2, α2(t) � 0.02 cos
(t). From t � − 1 to t � 0, the lump and soliton are moving
towards each other at the same time and they collide when
t � 0. After that, the lump vanishes and the process could
be seen as the fusion behavior. When t � 3, we can see that
the lump wave appears once again. -en, they are moving
away from each other which may be called as the fission
behavior. When t � 4, the lump wave goes back to its initial
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Figure 5: -e three-dimensional plot of periodic interaction between single-lump wave and one-kink soliton via the solution (18). -e
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location and so does the kink soliton. -ey repeat the same
behavior in the next period. It is pointed out that the
velocities of the lump wave and kink soliton vary with time.
-e lump wave propagates on a segment while the soliton
moves between two parallel lines.

5. Conclusion

In conclusion, we have studied the (3 + 1)-dimensional
variable-coefficient generalized shallow water wave equa-
tion, which characterizes the flow below a pressure surface in
a fluid. -rough the Hirota method, we have obtained
nonautonomous lump solutions for equation (2). We have
found that the variable coefficient affects the velocity and
trajectory of the single-lump wave. Besides, we have ob-
served that the dispersion coefficient has influence on the
interaction between the lump wave and kink soliton.
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